201
|
Abstract
PURPOSE OF REVIEW Perturbation of the epigenome is emerging as a central driving force in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and follicular lymphoma. The purpose of this review is to explain how alteration of different layers of the epigenome contributes to the biology and clinical features of these tumors. RECENT FINDINGS Key new findings implicate DNA methylation heterogeneity as a core feature of DLBCL. Epigenetic diversity is linked to unfavorable clinical outcomes, clonal selection at relapse, and is driven at least in part because of the actions of activation-induced cytosine deaminase, which is a unique feature of B-cell lymphomas. Somatic mutations in histone modifier genes drive lymphomagenesis through the establishment of aberrant gene-specific histone modification signatures. For example, EZH2 somatic mutations drive silencing of bivalent gene promoters through histone 3 lysine 27 trimethylation, whereas KMT2D (MLL2) mutations disrupt specific sets of enhancers through depletion of histone 3 lysine 4 mono and dimethylation (H3K4me1/me2). SUMMARY Appreciation of the epigenome in determining lymphoma clonal heterogeneity and in driving lymphoma phenotypes through altered promoter and enhancer histone modification profiles is leading to a paradigm shift in how we understand and design therapies for DLBCL and follicular lymphoma.
Collapse
|
202
|
Ge Z, Gu Y, Han Q, Sloane J, Ge Q, Gao G, Ma J, Song H, Hu J, Chen B, Dovat S, Song C. Plant homeodomain finger protein 2 as a novel IKAROS target in acute lymphoblastic leukemia. Epigenomics 2017; 10:59-69. [PMID: 28994305 DOI: 10.2217/epi-2017-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Clinical significance of plant homeodomain finger 2 (PHF2) expressions is explored in acute lymphoblastic leukemia (ALL) patients. METHODS mRNA level was examined by qPCR. The retroviral gene expression, shRNA knockdown and chromatin-immunoprecipitation are used to observe IKAROS regulation on PHF2 transcription. RESULTS PHF2 expression is significantly reduced in subsets of ALL patients, and PHF2 low expression correlates with leukemia cell proliferation and an elevation of several poor prognostic markers in B-cell ALL. IKAROS directly promotes PHF2 expression and patients with IKAROS deletion have significantly lower PHF2 expression. Casein kinase II (CK2) inhibitor significantly promotes PHF2 expression in an IKAROS-dependent manner, and casein kinase II inhibitor treatment also results in an increase of PHF2 expression and enrichment of IKAROS and H3K4me3 at PHF2 promoter in primary cells. CONCLUSION Our results demonstrate that the IKAROS promotes PHF2 expression, and suggest that PHF2 low expression works with the IKAROS gene deletion to drive oncogenesis of ALL.
Collapse
Affiliation(s)
- Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China
| | - Qi Han
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Justin Sloane
- Department of Obstetrics & Gynecology, Abington Jefferson-Health, Abington, PA 19001, USA.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Goufeng Gao
- Department of Pathology & Laboratory Medicine, University of California-Davis Medical Center, Sacramento, CA 95817, USA
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Huihui Song
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China
| | - Jiaojiao Hu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Sinisa Dovat
- International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Chunhua Song
- International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| |
Collapse
|
203
|
Kuroki S, Okashita N, Baba S, Maeda R, Miyawaki S, Yano M, Yamaguchi M, Kitano S, Miyachi H, Itoh A, Yoshida M, Tachibana M. Rescuing the aberrant sex development of H3K9 demethylase Jmjd1a-deficient mice by modulating H3K9 methylation balance. PLoS Genet 2017; 13:e1007034. [PMID: 28949961 PMCID: PMC5630185 DOI: 10.1371/journal.pgen.1007034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/06/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation is a hallmark of heterochromatin. H3K9 demethylation is crucial in mouse sex determination; The H3K9 demethylase Jmjd1a deficiency leads to increased H3K9 methylation at the Sry locus in embryonic gonads, thereby compromising Sry expression and causing male-to-female sex reversal. We hypothesized that the H3K9 methylation level at the Sry locus is finely tuned by the balance in activities between the H3K9 demethylase Jmjd1a and an unidentified H3K9 methyltransferase to ensure correct Sry expression. Here we identified the GLP/G9a H3K9 methyltransferase complex as the enzyme catalyzing H3K9 methylation at the Sry locus. Based on this finding, we tried to rescue the sex-reversal phenotype of Jmjd1a-deficient mice by modulating GLP/G9a complex activity. A heterozygous GLP mutation rescued the sex-reversal phenotype of Jmjd1a-deficient mice by restoring Sry expression. The administration of a chemical inhibitor of GLP/G9a enzyme into Jmjd1a-deficient embryos also successfully rescued sex reversal. Our study not only reveals the molecular mechanism underlying the tuning of Sry expression but also provides proof on the principle of therapeutic strategies based on the pharmacological modulation of epigenetic balance. In eukaryotes, DNA wraps an octamer of the core histones. Covalent modifications on the histones have diverse biological functions including transcriptional regulation. Histone H3 lysine 9 (H3K9) methylation is a hallmark of transcriptionally silenced chromatin. In mammals, the sex-determining gene Sry initiates testis differentiation in embryonic gonads. Sry expression in gonads is fine-tuned in both space and time. Here, we demonstrated that fine-tuning of Sry expression is achieved by the balance in activities between H3K9 demethylase and H3K9 methyltransferase. We found that the GLP/G9a complex is the enzyme catalyzing H3K9 methylation of Sry. Based on this finding, we tried to rescue the sex-reversal phenotype of the mutant mice by modulating the H3K9 methylation balance of Sry. We succeeded by modulating the H3K9 methylation balance not only with a genetic approach but also with a chemical approach using an inhibitor of GLP/G9a enzyme. Aberrant histone methylation levels are associated with diseases, including cancer, and intellectual disability. Our study provides proof for the principle of therapeutic strategies based on the pharmacological modulation of histone methylation balance.
Collapse
Affiliation(s)
- Shunsuke Kuroki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Naoki Okashita
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shoko Baba
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ryo Maeda
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shingo Miyawaki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masashi Yano
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Miyoko Yamaguchi
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Satsuki Kitano
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hitoshi Miyachi
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akihiro Itoh
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Makoto Tachibana
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
204
|
Gong F, Miller KM. Histone methylation and the DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:37-47. [PMID: 31395347 DOI: 10.1016/j.mrrev.2017.09.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023]
Abstract
Preserving genome function and stability are paramount for ensuring cellular homeostasis, an imbalance in which can promote diseases including cancer. In the presence of DNA lesions, cells activate pathways referred to as the DNA damage response (DDR). As nuclear DNA is bound by histone proteins and organized into chromatin in eukaryotes, DDR pathways have evolved to sense, signal and repair DNA damage within the chromatin environment. Histone proteins, which constitute the building blocks of chromatin, are highly modified by post-translational modifications (PTMs) that regulate chromatin structure and function. An essential histone PTM involved in the DDR is histone methylation, which is regulated by histone methyltransferase (HMT) and histone demethylase (HDM) enzymes that add and remove methyl groups on lysine and arginine residues within proteins respectively. Methylated histones can alter how proteins interact with chromatin, including their ability to be bound by reader proteins that recognize these PTMs. Here, we review histone methylation in the context of the DDR, focusing on DNA double-strand breaks (DSBs), a particularly toxic lesion that can trigger genome instability and cell death. We provide a comprehensive overview of histone methylation changes that occur in response to DNA damage and how the enzymes and reader proteins of these marks orchestrate the DDR. Finally, as many epigenetic pathways including histone methylation are altered in cancer, we discuss the potential involvement of these pathways in the etiology and treatment of this disease.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States.
| |
Collapse
|
205
|
Duan YC, Ma YC, Qin WP, Ding LN, Zheng YC, Zhu YL, Zhai XY, Yang J, Ma CY, Guan YY. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur J Med Chem 2017; 140:392-402. [PMID: 28987602 DOI: 10.1016/j.ejmech.2017.09.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Lysine specific demethylase 1 (LSD1) and Histone deacetylases (HDACs) are promising drug targets for cancers. Recent studies reveal an important functional interplay between LSD1 and HDACs, and there is evidence for the synergistic effect of combined LSD1 and HDAC inhibitors on cancers. Therefore, development of inhibitors targeting both LSD1 and HDACs might be a promising strategy for epigenetic therapy of cancers. We report herein the synthesis of a series of tranylcypromine derivatives as LSD1/HDACs dual inhibitors. Most compounds showed potent LSD1 and HDACs inhibitory activity, especially compound 7 displayed the most potent inhibitory activity against HDAC1 and HDAC2 with IC50 of 15 nM and 23 nM, as well as potent inhibition against LSD1 with IC50 of 1.20 μM. Compound 7 demonstrated stronger anti-proliferative activities than SAHA with IC50 values ranging from 0.81 to 4.28 μM against MGC-803, MCF-7, SW-620 and A-549 human cancer cell lines. Further mechanistic studies showed that compound 7 treatment in MGC-803 cells dose-dependently increased cellular H3K4 and H3K9 methylation, as well as H3 acetylation, decreased the mitochondrial membrane potential and induced remarkable apoptosis. Docking studies showed that compound 7 can be well docked into the active binding sites of LSD1 and HDAC2. This finding highlights the potential for the development of LSD1/HDACs dual inhibitors as novel anticancer drugs.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Yong-Cheng Ma
- Department of Pharmacy, Zhengzhou University People's Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan, China
| | - Wen-Ping Qin
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Li-Na Ding
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying-Li Zhu
- Department of Pharmacy, Zhengzhou University People's Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan, China
| | - Xiao-Yu Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jing Yang
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Chao-Ya Ma
- Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
206
|
Dobrynin G, McAllister TE, Leszczynska KB, Ramachandran S, Krieg AJ, Kawamura A, Hammond EM. KDM4A regulates HIF-1 levels through H3K9me3. Sci Rep 2017; 7:11094. [PMID: 28894274 PMCID: PMC5593970 DOI: 10.1038/s41598-017-11658-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 01/11/2023] Open
Abstract
Regions of hypoxia (low oxygen) occur in most solid tumours and cells in these areas are the most aggressive and therapy resistant. In response to decreased oxygen, extensive changes in gene expression mediated by Hypoxia-Inducible Factors (HIFs) contribute significantly to the aggressive hypoxic tumour phenotype. In addition to HIFs, multiple histone demethylases are altered in their expression and activity, providing a secondary mechanism to extend the hypoxic signalling response. In this study, we demonstrate that the levels of HIF-1α are directly controlled by the repressive chromatin mark, H3K9me3. In conditions where the histone demethylase KDM4A is depleted or inactive, H3K9me3 accumulates at the HIF-1α locus, leading to a decrease in HIF-1α mRNA and a reduction in HIF-1α stabilisation. Loss of KDM4A in hypoxic conditions leads to a decreased HIF-1α mediated transcriptional response and correlates with a reduction in the characteristics associated with tumour aggressiveness, including invasion, migration, and oxygen consumption. The contribution of KDM4A to the regulation of HIF-1α is most robust in conditions of mild hypoxia. This suggests that KDM4A can enhance the function of HIF-1α by increasing the total available protein to counteract any residual activity of prolyl hydroxylases.
Collapse
Affiliation(s)
- Grzegorz Dobrynin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Tom E McAllister
- Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Katarzyna B Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Shaliny Ramachandran
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Akane Kawamura
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre of Human Genetics, Roosevelt Drive, The University of Oxford, Oxford, OX3 7BN, UK
- Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
207
|
Rinaldi G, Rossi M, Fendt SM. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| |
Collapse
|
208
|
Battaglia S, Karasik E, Gillard B, Williams J, Winchester T, Moser MT, Smiraglia DJ, Foster BA. LSD1 dual function in mediating epigenetic corruption of the vitamin D signaling in prostate cancer. Clin Epigenetics 2017; 9:82. [PMID: 28811844 PMCID: PMC5553900 DOI: 10.1186/s13148-017-0382-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lysine-specific demethylase 1A (LSD1) is a key regulator of the androgen (AR) and estrogen receptors (ER), and LSD1 levels correlate with tumor aggressiveness. Here, we demonstrate that LSD1 regulates vitamin D receptor (VDR) activity and is a mediator of 1,25(OH)2-D3 (vitamin D) action in prostate cancer (PCa). METHODS Athymic nude mice were xenografted with CWR22 cells and monitored weekly after testosterone pellet removal. Expression of LSD1 and VDR (IHC) were correlated with tumor growth using log-rank test. TRAMP tumors and prostates from wild-type (WT) mice were used to evaluate VDR and LSD1 expression via IHC and western blotting. The presence of VDR and LSD1 in the same transcriptional complex was evaluated via immunoprecipitation (IP) using nuclear cell lysate. The effect of LSD1 and 1,25(OH)2-D3 on cell viability was evaluated in C4-2 and BC1A cells via trypan blue exclusion. The role of LSD1 in VDR-mediated gene transcription was evaluated for Cdkn1a, E2f1, Cyp24a1, and S100g via qRT-PCR-TaqMan and via chromatin immunoprecipitation assay. Methylation of Cdkn1a TSS was measured via bisulfite sequencing, and methylation of a panel of cancer-related genes was quantified using methyl arrays. The Cancer Genome Atlas data were retrieved to identify genes whose status correlates with LSD1 and DNA methyltransferase 1 (DNMT1). Results were correlated with patients' survival data from two separate cohorts of primary and metastatic PCa. RESULTS LSD1 and VDR protein levels are elevated in PCa tumors and correlate with faster tumor growth in xenograft mouse models. Knockdown of LSD1 reduces PCa cell viability, and gene expression data suggest a dual coregulatory role of LSD1 for VDR, acting as a coactivator and corepressor in a locus-specific manner. LSD1 modulates VDR-dependent transcription by mediating the recruitment of VDR and DNMT1 at the TSS of VDR-targeted genes and modulates the epigenetic status of transcribed genes by altering H3K4me2 and H3K9Ac and DNA methylation. Lastly, LSD1 and DNMT1 belong to a genome-wide signature whose expression correlates with shorter progression-free survival and overall survival in primary and metastatic patients' samples, respectively. CONCLUSIONS Results demonstrate that LSD1 has a dual coregulatory role as corepressor and coactivator for VDR and defines a genomic signature whose targeting might have clinical relevance for PCa patients.
Collapse
Affiliation(s)
- Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Jennifer Williams
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Trisha Winchester
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Michael T Moser
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Dominic J Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| |
Collapse
|
209
|
Foma AM, Aslani S, Karami J, Jamshidi A, Mahmoudi M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm Res 2017; 66:1057-1073. [DOI: 10.1007/s00011-017-1082-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022] Open
|
210
|
Chen L, Vasilatos SN, Qin Y, Katz TA, Cao C, Wu H, Tasdemir N, Levine KM, Oesterreich S, Davidson NE, Huang Y. Functional characterization of lysine-specific demethylase 2 (LSD2/KDM1B) in breast cancer progression. Oncotarget 2017; 8:81737-81753. [PMID: 29137219 PMCID: PMC5669845 DOI: 10.18632/oncotarget.19387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Flavin-dependent histone demethylases govern histone H3K4 methylation and act as important chromatin modulators that are extensively involved in regulation of DNA replication, gene transcription, DNA repair, and heterochromatin gene silencing. While the activities of lysine-specific demethylase 1 (LSD1/KDM1A) in facilitating breast cancer progression have been well characterized, the roles of its homolog LSD2 (KDM1B) in breast oncogenesis are relatively less understood. In this study, we showed that LSD2 protein level was significantly elevated in malignant breast cell lines compared with normal breast epithelial cell line. TCGA- Oncomine database showed that LSD2 expression is significantly higher in basal-like breast tumors compared to other breast cancer subtypes or normal breast tissue. Overexpression of LSD2 in MDA-MB-231 cells significantly altered the expression of key important epigenetic modifiers such as LSD1, HDAC1/2, and DNMT3B; promoted cellular proliferation; and augmented colony formation in soft agar; while attenuating motility and invasion. Conversely, siRNA-mediated depletion of endogenous LSD2 hindered growth of multiple breast cancer cell lines while shRNA-mediated LSD2 depletion augmented motility and invasion. Moreover, LSD2 overexpression in MDA-MB-231 cells facilitated mammosphere formation, enriched the subpopulation of CD49f+/EpCAM- and ALDHhigh, and induced the expression of pluripotent stem cell markers, NANOG and SOX2. In xenograft studies using immune-compromised mice, LSD2-overexpressing MDA-MB-231 cells displayed accelerated tumor growth but significantly fewer lung metastases than controls. Taken together, our findings provide novel insights into the critical and multifaceted roles of LSD2 in the regulation of breast cancer progression and cancer stem cell enrichment.
Collapse
Affiliation(s)
- Lin Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, P.R. China
| | - Shauna N Vasilatos
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ye Qin
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tiffany A Katz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Chunyu Cao
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,China Three Gorges University, Yichang, Hubei, P. R. China
| | - Hao Wu
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Nilgun Tasdemir
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yi Huang
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
211
|
Abstract
LSD1 has become an important biologically validated epigenetic target for cancer therapy since its identification in 2004. LSD1 mediates many cellular signaling pathways and is involved in the initiation and development of cancers. Aberrant overexpression of LSD1 has been observed in different types of cancers, and inactivation by small molecules suppresses cancer cell differentiation, proliferation, invasion and migration. To date, a large number of LSD1 inhibitors have been reported, RG6016, GSK-2879552, INCB059872, IMG-7289 and CC-90011 are currently undergoing clinical assessment for the treatment of acute myeloid leukemia, small-cell lung cancer, etc. In this review, we briefly highlight recent advances of LSD1 inhibitors mainly covering the literatures from 2015 to 2017 and tentatively propose our perspectives on the design of new LSD1 inhibitors for cancer therapy.
Collapse
|
212
|
Mould DP, Bremberg U, Jordan AM, Geitmann M, Maiques-Diaz A, McGonagle AE, Small HF, Somervaille TCP, Ogilvie D. Development of 5-hydroxypyrazole derivatives as reversible inhibitors of lysine specific demethylase 1. Bioorg Med Chem Lett 2017; 27:3190-3195. [PMID: 28545974 DOI: 10.1016/j.bmcl.2017.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
Abstract
A series of reversible inhibitors of lysine specific demethylase 1 (LSD1) with a 5-hydroxypyrazole scaffold have been developed from compound 7, which was identified from the patent literature. Surface plasmon resonance (SPR) and biochemical analysis showed it to be a reversible LSD1 inhibitor with an IC50 value of 0.23µM. Optimisation of this compound by rational design afforded compounds with Kd values of <10nM. In human THP-1 cells, these compounds were found to upregulate the expression of the surrogate cellular biomarker CD86. Compound 11p was found to have moderate oral bioavailability in mice suggesting its potential for use as an in vivo tool compound.
Collapse
Affiliation(s)
- Daniel P Mould
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | - Ulf Bremberg
- Beactica AB, Uppsala Business Park, Virdings allé 2, 75450, Uppsala, Sweden
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Matthis Geitmann
- Beactica AB, Uppsala Business Park, Virdings allé 2, 75450, Uppsala, Sweden
| | - Alba Maiques-Diaz
- Leukaemia Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alison E McGonagle
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Helen F Small
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Tim C P Somervaille
- Leukaemia Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
213
|
Hosseini A, Minucci S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 2017; 9:1123-1142. [PMID: 28699367 DOI: 10.2217/epi-2017-0022] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation plays a key role in the regulation of chromatin structure, and its dynamics regulates important cellular processes. The investigation of the role of alterations in histone methylation in cancer has led to the identification of histone methyltransferases and demethylases as promising novel targets for therapy. Lysine-specific demethylase 1(LSD1, also known as KDM1A) is the first discovered histone lysine demethylase, with the ability to demethylase H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. LSD1 regulates the balance between self-renewal and differentiation of stem cells, and is highly expressed in various cancers, playing an important role in differentiation and self-renewal of tumor cells. In this review, we summarize recent studies about the LSD1, its role in normal and tumor cells, and the potential use of small molecule LSD1 inhibitors in therapy.
Collapse
Affiliation(s)
- Amir Hosseini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
214
|
Blagg J, Workman P. Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell 2017; 32:9-25. [PMID: 28697345 PMCID: PMC5511331 DOI: 10.1016/j.ccell.2017.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023]
Abstract
Small-molecule chemical probes or tools have become progressively more important in recent years as valuable reagents to investigate fundamental biological mechanisms and processes causing disease, including cancer. Chemical probes have also achieved greater prominence alongside complementary biological reagents for target validation in drug discovery. However, there is evidence of widespread continuing misuse and promulgation of poor-quality and insufficiently selective chemical probes, perpetuating a worrisome and misleading pollution of the scientific literature. We discuss current challenges with the selection and use of chemical probes, and suggest how biologists can and should be more discriminating in the probes they employ.
Collapse
Affiliation(s)
- Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
215
|
Yang J, Milasta S, Hu D, AlTahan AM, Interiano RB, Zhou J, Davidson J, Low J, Lin W, Bao J, Goh P, Nathwani AC, Wang R, Wang Y, Ong SS, Boyd VA, Young B, Das S, Shelat A, Wu Y, Li Z, Zheng JJ, Mishra A, Cheng Y, Qu C, Peng J, Green DR, White S, Guy RK, Chen T, Davidoff AM. Targeting Histone Demethylases in MYC-Driven Neuroblastomas with Ciclopirox. Cancer Res 2017; 77:4626-4638. [PMID: 28684529 DOI: 10.1158/0008-5472.can-16-0826] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 11/28/2016] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Histone lysine demethylases facilitate the activity of oncogenic transcription factors, including possibly MYC. Here we show that multiple histone demethylases influence the viability and poor prognosis of neuroblastoma cells, where MYC is often overexpressed. We also identified the approved small-molecule antifungal agent ciclopirox as a novel pan-histone demethylase inhibitor. Ciclopirox targeted several histone demethylases, including KDM4B implicated in MYC function. Accordingly, ciclopirox inhibited Myc signaling in parallel with mitochondrial oxidative phosphorylation, resulting in suppression of neuroblastoma cell viability and inhibition of tumor growth associated with an induction of differentiation. Our findings provide new insights into epigenetic regulation of MYC function and suggest a novel pharmacologic basis to target histone demethylases as an indirect MYC-targeting approach for cancer therapy. Cancer Res; 77(17); 4626-38. ©2017 AACR.
Collapse
Affiliation(s)
- Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Sandra Milasta
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dongli Hu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alaa M AlTahan
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rodrigo B Interiano
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junfang Zhou
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jesse Davidson
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ju Bao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pollyanna Goh
- Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Amit C Nathwani
- Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Ruoning Wang
- Department of Pediatrics, The Ohio State University School of Medicine, The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Disease, Columbus, Ohio
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut
| | - Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vincent A Boyd
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yinan Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhenmei Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jie J Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashutosh Mishra
- Department of Structural Biology, Department of Developmental Neurobiology and St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology and St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
216
|
Zucconi BE, Cole PA. Allosteric regulation of epigenetic modifying enzymes. Curr Opin Chem Biol 2017; 39:109-115. [PMID: 28689145 DOI: 10.1016/j.cbpa.2017.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings.
Collapse
Affiliation(s)
- Beth E Zucconi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
217
|
Zhang Z, Lei A, Xu L, Chen L, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. J Biol Chem 2017. [PMID: 28634230 DOI: 10.1074/jbc.m117.785865] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 (CDH1), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells.
Collapse
Affiliation(s)
- Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Anhua Lei
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Liyang Xu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Lu Chen
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yonglong Chen
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Xiaoli Yang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Min Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China.
| |
Collapse
|
218
|
Liang J, Labadie S, Zhang B, Ortwine DF, Patel S, Vinogradova M, Kiefer JR, Mauer T, Gehling VS, Harmange JC, Cummings R, Lai T, Liao J, Zheng X, Liu Y, Gustafson A, Van der Porten E, Mao W, Liederer BM, Deshmukh G, An L, Ran Y, Classon M, Trojer P, Dragovich PS, Murray L. From a novel HTS hit to potent, selective, and orally bioavailable KDM5 inhibitors. Bioorg Med Chem Lett 2017; 27:2974-2981. [PMID: 28512031 DOI: 10.1016/j.bmcl.2017.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
Abstract
A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C-C bond between the pyrrolidine and pyridine. Replacing this with a C-N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (LogD) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5mg/kg resulted in unbound Cmax ∼2-fold of its cell potency (PC9 H3K4Me3 0.96μM), meeting our criteria for an in vivo tool compound from a new scaffold.
Collapse
Affiliation(s)
- Jun Liang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Sharada Labadie
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Birong Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Snahel Patel
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - James R Kiefer
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Till Mauer
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Victor S Gehling
- Constellation Pharmaceuticals Inc., 215 First Street, Suite 200, Cambridge, MA 02142, USA
| | | | - Richard Cummings
- Constellation Pharmaceuticals Inc., 215 First Street, Suite 200, Cambridge, MA 02142, USA
| | - Tommy Lai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jiangpeng Liao
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoping Zheng
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yichin Liu
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amy Gustafson
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Weifeng Mao
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Gauri Deshmukh
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Le An
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yingqing Ran
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Marie Classon
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Trojer
- Constellation Pharmaceuticals Inc., 215 First Street, Suite 200, Cambridge, MA 02142, USA
| | | | - Lesley Murray
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
219
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 789] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
220
|
Hancock R, Masson N, Dunne K, Flashman E, Kawamura A. The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. ACS Chem Biol 2017; 12:1011-1019. [PMID: 28051298 PMCID: PMC5404277 DOI: 10.1021/acschembio.6b00958] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
Abstract
The JmjC histone lysine demethylases (KDMs) are epigenetic regulators involved in the removal of methyl groups from post-translationally modified lysyl residues within histone tails, modulating gene transcription. These enzymes require molecular oxygen for catalytic activity and, as 2-oxoglutarate (2OG)-dependent oxygenases, are related to the cellular oxygen sensing HIF hydroxylases PHD2 and FIH. Recent studies have indicated that the activity of some KDMs, including the pseudogene-encoded KDM4E, may be sensitive to changing oxygen concentrations. Here, we report detailed analysis of the effect of oxygen availability on the activity of the KDM4 subfamily member KDM4A, importantly demonstrating a high level of O2 sensitivity both with isolated protein and in cells. Kinetic analysis of the recombinant enzyme revealed a high KMapp(O2) of 173 ± 23 μM, indicating that the activity of the enzyme is able to respond sensitively to a reduction in oxygen concentration. Furthermore, immunofluorescence experiments in U2OS cells conditionally overexpressing KDM4A showed that the cellular activity of KDM4A against its primary substrate, H3K9me3, displayed a graded response to depleting oxygen concentrations in line with the data obtained using isolated protein. These results suggest that KDM4A possesses the potential to act as an oxygen sensor in the context of chromatin modifications, with possible implications for epigenetic regulation in hypoxic disease states. Importantly, this correlation between the oxygen sensitivity of the catalytic activity of KDM4A in biochemical and cellular assays demonstrates the utility of biochemical studies in understanding the factors contributing to the diverse biological functions and varied activity of the 2OG oxygenases.
Collapse
Affiliation(s)
- Rebecca
L Hancock
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Norma Masson
- Target Discovery Institute, NDM Research Building, University
of Oxford, Roosevelt
Drive, Oxford OX3 7BN, United Kingdom
| | - Kate Dunne
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Emily Flashman
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Akane Kawamura
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
221
|
Kawamura A, Münzel M, Kojima T, Yapp C, Bhushan B, Goto Y, Tumber A, Katoh T, King ONF, Passioura T, Walport LJ, Hatch SB, Madden S, Müller S, Brennan PE, Chowdhury R, Hopkinson RJ, Suga H, Schofield CJ. Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Nat Commun 2017; 8:14773. [PMID: 28382930 PMCID: PMC5384220 DOI: 10.1038/ncomms14773] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/01/2017] [Indexed: 12/28/2022] Open
Abstract
The JmjC histone demethylases (KDMs) are linked to tumour cell proliferation and are current cancer targets; however, very few highly selective inhibitors for these are available. Here we report cyclic peptide inhibitors of the KDM4A-C with selectivity over other KDMs/2OG oxygenases, including closely related KDM4D/E isoforms. Crystal structures and biochemical analyses of one of the inhibitors (CP2) with KDM4A reveals that CP2 binds differently to, but competes with, histone substrates in the active site. Substitution of the active site binding arginine of CP2 to N-ɛ-trimethyl-lysine or methylated arginine results in cyclic peptide substrates, indicating that KDM4s may act on non-histone substrates. Targeted modifications to CP2 based on crystallographic and mass spectrometry analyses results in variants with greater proteolytic robustness. Peptide dosing in cells manifests KDM4A target stabilization. Although further development is required to optimize cellular activity, the results reveal the feasibility of highly selective non-metal chelating, substrate-competitive inhibitors of the JmjC KDMs.
Collapse
Affiliation(s)
- Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Martin Münzel
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Tatsuya Kojima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Clarence Yapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington OX3 7DQ, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Bhaskar Bhushan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington OX3 7DQ, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Oliver N. F. King
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Louise J. Walport
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Stephanie B. Hatch
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington OX3 7DQ, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Sarah Madden
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Susanne Müller
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington OX3 7DQ, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Paul E. Brennan
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington OX3 7DQ, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Richard J. Hopkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- JST, CREST, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
222
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
223
|
Song MH, Nair VS, Oh KI. Vitamin C enhances the expression of IL17 in a Jmjd2-dependent manner. BMB Rep 2017; 50:49-54. [PMID: 27931518 PMCID: PMC5319665 DOI: 10.5483/bmbrep.2017.50.1.193] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 01/09/2023] Open
Abstract
Previously, we reported that vitamin C facilitates the CpG demethylation of Foxp3 enhancer in CD4+Foxp3+ regulatory T cells (Tregs) by enhancing the activity of a DNA demethylase ten-eleven-translocation (Tet). However, it is not clear whether vitamin C affects other helper T cell lineages like T helper type 17 (Th17) cells which are related with Tregs. Here, we show that the expression of interleukin-17A (IL17) increases with the treatment of vitamin C but not with other antioxidants. Interestingly, the upregulation of IL17 was not accompanied by DNA demethylation in Il17 promoter and was independent of Tet enzymes. Rather, vitamin C reduced the trimethylation of histone H3 lysine 9 (H3K9me3) in the regulatory elements of the Il17 locus, and the effects of vitamin C were abrogated by knockdown of jumonji-C domain-containing protein 2 (jmjd2). These results suggest that vitamin C can affect the expression of IL17 by modulating the histone demethylase activity. [BMB Reports 2017; 50(1): 49-54].
Collapse
Affiliation(s)
- Mi Hye Song
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Varun Sasidharan Nair
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Kwon Ik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
| |
Collapse
|
224
|
Abstract
The organization of the chromatin structure is essential for maintaining cell-type-specific gene expression and therefore for cell identity. This structure is highly dynamic and is regulated by a large number of chromatin-associated proteins that are required for normal development and differentiation. Recurrent somatic mutations have been found with high frequency in genes coding for chromatin-associated proteins in cancer, and several of these are required for cancer maintenance. In this review, we discuss recent advances in understanding the role of chromatin-associated proteins in transcription, development, and cancer. Specifically, we focus on selected examples of proteins belonging to the histone methyltransferase, histone demethylase, or bromodomain families, for which specific small molecule inhibitors have been developed and are in either preclinical or clinical trials.
Collapse
Affiliation(s)
- Kristian Helin
- Biotech Research and Innovation Centre (BRIC),
- Centre for Epigenetics, and
- The Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Saverio Minucci
- Department of Experimental Oncology,
- Drug Development Program, European Institute of Oncology, 20139 Milan, Italy
- Department of Biosciences, University of Milan, 20100 Milan, Italy
| |
Collapse
|
225
|
Vianello P, Sartori L, Amigoni F, Cappa A, Fagá G, Fattori R, Legnaghi E, Ciossani G, Mattevi A, Meroni G, Moretti L, Cecatiello V, Pasqualato S, Romussi A, Thaler F, Trifiró P, Villa M, Botrugno OA, Dessanti P, Minucci S, Vultaggio S, Zagarrí E, Varasi M, Mercurio C. Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 2: Structure-Based Drug Design and Structure–Activity Relationship. J Med Chem 2017; 60:1693-1715. [DOI: 10.1021/acs.jmedchem.6b01019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paola Vianello
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Luca Sartori
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Federica Amigoni
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Anna Cappa
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Giovanni Fagá
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Raimondo Fattori
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Legnaghi
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Giuseppe Ciossani
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
1, 27100 Pavia, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
1, 27100 Pavia, Italy
| | - Giuseppe Meroni
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Loris Moretti
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Valentina Cecatiello
- Crystallography
Unit, Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
- IFOM- The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milano, Italy
| | - Sebastiano Pasqualato
- Crystallography
Unit, Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Alessia Romussi
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Florian Thaler
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Paolo Trifiró
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Manuela Villa
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Oronza A. Botrugno
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Paola Dessanti
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Saverio Minucci
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
- Department
of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Stefania Vultaggio
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elisa Zagarrí
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Mario Varasi
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Ciro Mercurio
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
- Genextra Group, DAC s.r.l., Via
Adamello 16, 20139 Milano, Italy
| |
Collapse
|
226
|
Faleiro I, Leão R, Binnie A, de Mello RA, Maia AT, Castelo-Branco P. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget 2017; 8:12484-12500. [PMID: 28036257 PMCID: PMC5355359 DOI: 10.18632/oncotarget.14226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 01/06/2023] Open
Abstract
Epigenetic dysregulation is one of many factors that contribute to cancer development and progression. Numerous epigenetic alterations have been identified in urologic cancers including histone modifications, DNA methylation changes, and microRNA expression. Since these changes are reversible, efforts are being made to develop epigenetic drugs that restore the normal epigenetic patterns of cells, and many clinical trials are already underway to test their clinical potential. In this review we analyze multiple clinical trials (n=51) that test the efficacy of these drugs in patients with urologic cancers. The most frequently used epigenetic drugs were histone deacetylase inhibitors followed by antisense oligonucleotides, DNA methyltransferase inhibitors and histone demethylase inhibitors, the last of which are only being tested in prostate cancer. In more than 50% of the clinical trials considered, epigenetic drugs were used as part of combination therapy, which achieved the best results. The epigenetic regulation of some cancers is still matter of research but will undoubtedly open a window to new therapeutic approaches in the era of personalized medicine. The future of therapy for urological malignancies is likely to include multidrug regimens in which epigenetic modifying drugs will play an important role.
Collapse
Affiliation(s)
- Inês Faleiro
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ricardo Leão
- Department of Surgery, Princess Margaret Cancer Center, Division of Urology, University of Toronto, Toronto, Canada
- Renal Transplantation and Urology Service, Coimbra University Hospital Center EPE, Faculty of Medicine, University of Coimbra, Portugal
| | - Alexandra Binnie
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ramon Andrade de Mello
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ana-Teresa Maia
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Pedro Castelo-Branco
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| |
Collapse
|
227
|
Cascella B, Lee SG, Singh S, Jez JM, Mirica LM. The small molecule JIB-04 disrupts O 2 binding in the Fe-dependent histone demethylase KDM4A/JMJD2A. Chem Commun (Camb) 2017; 53:2174-2177. [PMID: 28144654 PMCID: PMC5511625 DOI: 10.1039/c6cc09882g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
JIB-04, a specific inhibitor of the O2-activating, Fe-dependent histone lysine demethylases, is revealed to disrupt the binding of O2 in KDM4A/JMJD2A through a continuous O2-consumption assay, X-ray crystal structure data, and molecular docking.
Collapse
Affiliation(s)
- Barbara Cascella
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA. and Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | - Soon Goo Lee
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | - Sukrit Singh
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | - Liviu M Mirica
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|
228
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
229
|
Pang J, Yang YW, Huang Y, Yang J, Zhang H, Chen R, Dong L, Huang Y, Wang D, Liu J, Li B. P110β Inhibition Reduces Histone H3K4 Di-Methylation in Prostate Cancer. Prostate 2017; 77:299-308. [PMID: 27800642 DOI: 10.1002/pros.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022]
Abstract
INTRODUCTION AND AIMS Epigenetic alteration plays a major role in the development and progression of human cancers, including prostate cancer. Histones are the key factors in modulating gene accessibility to transcription factors and post-translational modification of the histone N-terminal tail including methylation is associated with either transcriptional activation (H3K4me2) or repression (H3K9me3). Furthermore, phosphoinositide 3-kinase (PI3 K) signaling and the androgen receptor (AR) are the key determinants in prostate cancer development and progression. We recently showed that prostate-targeted nano-micelles loaded with PI3 K/p110beta specific inhibitor TGX221 blocked prostate cancer growth in vitro and in vivo. Our objective of this study was to determine the role of PI3 K signaling in histone methylation in prostate cancer, with emphasis on histone H3K4 methylation. METHODS PI3 K non-specific inhibitor LY294002 and p110beta-specific inhibitor TGX221 were used to block PI3 K/p110beta signaling. The global levels of H3K4 and H3K9 methylation in prostate cancer cells and tissue specimens were evaluated by Western blot assay and immunohistochemical staining. A synthetic androgen R1881 was used to stimulate AR activity in prostate cancer cells. A castration-resistant prostate cancer (CRPC) specific human tissue microarray (TMA) was used to assess the global levels of H3K4me2 methylation by immunostaining approach. RESULTS Our data revealed that H3K4me2 levels were significantly elevated after androgen stimulation. With RNA silencing and pharmacology approaches, we further defined that inhibition of PI3 K/p110beta activity through gene-specific knocking down and small chemical inhibitor TGX221 abolished androgen-stimulated H3K4me2 methylation. Consistently, prostate cancer-targeted delivery of TGX221 in vivo dramatically reduced the global levels of H3K4me2 as assessed by immunohistochemical staining on tissue section of mouse xenografts from CRPC cell lines 22RV1 and C4-2. Finally, immunostaining data revealed a strong H3K4me2 immunosignal in CRPC tissues compared to primary tumors and benign prostate tissues. CONCLUSIONS Taken together, our results suggest that PI3 K/p110beta-dependent signaling is involved in androgen-stimulated H3K4me2 methylation in prostate cancer, which might be used as a novel biomarker for disease prognosis and targeted therapy. Prostate 77:299-308, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jun Pang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue-Wu Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiling Huang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Pathology, China Three Gorges University School of Medicine, Yichang, China
| | - Jun Yang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Urology, Tongji Hospital, Huanzhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruibao Chen
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Urology, Tongji Hospital, Huanzhong University of Science and Technology, Wuhan, China
| | - Liang Dong
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Yan Huang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dongying Wang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huanzhong University of Science and Technology, Wuhan, China
| | - Benyi Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Pathology, China Three Gorges University School of Medicine, Yichang, China
| |
Collapse
|
230
|
Lindsay C, Seikaly H, Biron VL. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets. J Otolaryngol Head Neck Surg 2017; 46:9. [PMID: 28143553 PMCID: PMC5282807 DOI: 10.1186/s40463-017-0185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.
Collapse
Affiliation(s)
- Cameron Lindsay
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Hadi Seikaly
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Vincent L Biron
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
231
|
Ma X, Wang J, Liu J, Mo Q, Yan X, Ma D, Duan H. Targeting CD146 in combination with vorinostat for the treatment of ovarian cancer cells. Oncol Lett 2017; 13:1681-1687. [PMID: 28454309 PMCID: PMC5403387 DOI: 10.3892/ol.2017.5630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/14/2016] [Indexed: 02/03/2023] Open
Abstract
Drug resistance is the predominant cause of mortality in late-stage patients with ovarian cancer. Histone deacetylase inhibitors (HDACis) have emerged as a novel type of second line drug with high specificity for tumor cells, including ovarian cancer cells. However, HDACis usually exhibit relatively low potencies when used as a single agent. The majority of current clinical trials are combination strategies. These strategies are more empirical than mechanism-based applications. Previously, it was reported that the adhesion molecule cluster of differentiation 146 (CD146) is significantly induced in HDACi-treated tumor cells. The present study additionally confirmed that the induction of CD146 is a common phenomenon in vorinostat-treated ovarian cancer cells. AA98, an anti-CD146 monoclonal antibody (mAb), was used to target CD146 function. Synergistic antitumoral effects between AA98 and vorinostat were examined in vitro and in vivo. The potential effect of combined AA98 and vorinostat treatment on the protein kinase B (Akt) pathway was determined by western blotting. The present study found that targeting of CD146 substantially enhanced vorinostat-induced killing via the suppression of activation of Akt pathways in ovarian cancer cells. AA98 in combination with vorinostat significantly inhibited cell proliferation and increased apoptosis. In vivo, AA98 synergized with vorinostat to inhibit tumor growth and prolong survival in ovarian cancer. These data suggest that an undesired induction of CD146 may serve as a protective response to offset the antitumor efficacy of vorinostat. By contrast, targeting CD146 in combination with vorinostat may be exploited as a novel strategy to more effectively kill ovarian cancer cells.
Collapse
Affiliation(s)
- Xiaoli Ma
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Jiandong Wang
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Jia Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qingqing Mo
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiyun Yan
- Center of Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hua Duan
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| |
Collapse
|
232
|
Jambhekar A, Anastas JN, Shi Y. Histone Lysine Demethylase Inhibitors. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026484. [PMID: 28049654 DOI: 10.1101/cshperspect.a026484] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic regulation of covalent modifications to histones is essential for maintaining genomic integrity and cell identity and is often compromised in cancer. Aberrant expression of histone lysine demethylases has been documented in many types of blood and solid tumors, and thus demethylases represent promising therapeutic targets. Recent advances in high-throughput chemical screening, structure-based drug design, and structure-activity relationship studies have improved both the specificity and the in vivo efficacy of demethylase inhibitors. This review will briefly outline the connection between demethylases and cancer and will provide a comprehensive overview of the structure, specificity, and utility of currently available demethylase inhibitors. To date, a select group of demethylase inhibitors is being evaluated in clinical trials, and additional compounds may soon follow from the bench to the bedside.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jamie N Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
233
|
Sankar A, Kooistra SM, Gonzalez JM, Ohlsson C, Poutanen M, Helin K. Maternal expression of the JMJD2A/KDM4A histone demethylase is critical for pre-implantation development. Development 2017; 144:3264-3277. [DOI: 10.1242/dev.155473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
Regulation of chromatin composition through post-translational modifications of histones contributes to transcriptional regulation and is essential for many cellular processes, including differentiation and development. JMJD2A/KDM4A is a lysine demethylase with specificity towards di- and tri-methylated lysine 9 and lysine 36 of histone H3 (H3K9me2/me3 and H3K36me2/me3). Here, we report that Kdm4a as a maternal factor plays a key role in embryo survival and is vital for female fertility. Kdm4a−/- female mice ovulate normally with comparable fertilization but poor implantation rates, and cannot support healthy transplanted embryos to term. This is due to a role for Kdm4a in uterine function, where its loss causes reduced expression of key genes involved in ion transport, nutrient supply and cytokine signalling, that impact embryo survival. In addition, a significant proportion of Kdm4a deficient oocytes displays a poor intrinsic ability to develop into blastocysts. These embryos cannot compete with healthy embryos for implantation in vivo, highlighting Kdm4a as a maternal effect gene. Thus, our study dissects an important dual role for maternal Kdm4a in determining faithful early embryonic development and the implantation process.
Collapse
Affiliation(s)
- Aditya Sankar
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Present Address: Centre for Chromosome Stability, Institute of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Susanne Marije Kooistra
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- Present Address: Department of Neuroscience, University Medical Centre, Groningen, University of Groningen, Groningen, The Netherlands
| | - Javier Martin Gonzalez
- Core Facility for Transgenic Mice, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Claes Ohlsson
- Department of Physiology Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
234
|
Discovery of resveratrol derivatives as novel LSD1 inhibitors: Design, synthesis and their biological evaluation. Eur J Med Chem 2017; 126:246-258. [DOI: 10.1016/j.ejmech.2016.11.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/06/2023]
|
235
|
Basu Mallik S, Pai A, Shenoy RR, Jayashree BS. Novel flavonol analogues as potential inhibitors of JMJD3 histone demethylase-A study based on molecular modelling. J Mol Graph Model 2016; 72:81-87. [PMID: 28064082 DOI: 10.1016/j.jmgm.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
Epigenetic modulation of gene expression has drawn enormous attention among researchers globally in the present scenario. Since their discovery, Jmj-C histone demethylases were identified as useful markers in understanding the role of epigenetics in inflammatory conditions and in cancer as well. This has created arousal of interest in search of suitable candidates. Potential inhibitors from various other scaffolds such as hydroxyquinolines, hydroxamic acids and triazolopyridines have already been identified and reported. In this direction, our present study attempts to target one of the important members of the family- namely JMJD3 (also known as KDM6B), that plays a pivotal role in inflammatory and immune reactions. Using molecular modeling approaches, myricetin analogues were identified as promising inhibitors of JMJD3. Extensive literature review showed myricetin as the most promising flavonol inhibitor for this enzyme. It served as a prototype for our study and modification of it's scaffold led to generation of analogues. The ZINC database was used as a repository for natural compounds and their analogues. Using similarity search options, 65 analogues of myricetin were identified and screened against JMJD3 (PDB ID: 4ASK), using the high throughput virtual screening and ligand docking tools in Maestro Molecular Modeling platform (version 10.5) from Schrödinger, LLC. 8 analogues out of 65 were identified as the most appropriate candidates which gave the best pose in ligand docking. Their binding mode and energy calculations were analysed using induced fit docking (IFD) and prime-MMGBSA tool, respectively. Thus, our findings highlight the most promising analogues of myricetin with comparable binding affinity as well as binding energy than their counterparts that could be taken for further optimisation as inhibitors of JMJD3 in both in vitro and in vivo screening studies.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Aravinda Pai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - B S Jayashree
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India.
| |
Collapse
|
236
|
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73:4493-4515. [PMID: 27392607 PMCID: PMC5459373 DOI: 10.1007/s00018-016-2303-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process for morphogenesis and organ development which reversibly enables polarized epithelial cells to lose their epithelial characteristics and to acquire mesenchymal properties. It is now evident that the aberrant activation of EMT is also a critical mechanism to endow epithelial cancer cells with migratory and invasive capabilities associated with metastatic competence. This dedifferentiation program is mediated by a small cohort of pleiotropic transcription factors which orchestrate a complex array of epigenetic mechanisms for the wide-spread changes in gene expression. Here, we review major epigenetic mechanisms with an emphasis on histone modifications and discuss their implications in EMT and tumor progression. We also highlight mechanisms underlying transcription regulation concerted by various chromatin-modifying proteins and EMT-inducing transcription factors at different molecular layers. Owing to the reversible nature of epigenetic modifications, a thorough understanding of their functions in EMT will not only provide new insights into our knowledge of cancer progression and metastasis, but also facilitate the development of diagnostic and therapeutic strategies for human malignancy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
237
|
Sareddy GR, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi RK. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene 2016; 36:2423-2434. [PMID: 27893719 DOI: 10.1038/onc.2016.395] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Glioma stem cells (GSCs) have a central role in glioblastoma (GBM) development and chemo/radiation resistance, and their elimination is critical for the development of efficient therapeutic strategies. Recently, we showed that lysine demethylase KDM1A is overexpressed in GBM. In the present study, we determined whether KDM1A modulates GSCs stemness and differentiation and tested the utility of two novel KDM1A-specific inhibitors (NCL-1 and NCD-38) to promote differentiation and apoptosis of GSCs. The efficacy of KDM1A targeting drugs was tested on purified GSCs isolated from established and patient-derived GBMs using both in vitro assays and in vivo orthotopic preclinical models. Our results suggested that KDM1A is highly expressed in GSCs and knockdown of KDM1A using shRNA-reduced GSCs stemness and induced the differentiation. Pharmacological inhibition of KDM1A using NCL-1 and NCD-38 significantly reduced the cell viability, neurosphere formation and induced apoptosis of GSCs with little effect on differentiated cells. In preclinical studies using orthotopic models, NCL-1 and NCD-38 significantly reduced GSCs-driven tumor progression and improved mice survival. RNA-sequencing analysis showed that KDM1A inhibitors modulate several pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that KDM1A inhibitors induce activation of the unfolded protein response (UPR) pathway. These results strongly suggest that selective targeting of KDM1A using NCL-1 and NCD-38 is a promising therapeutic strategy for elimination of GSCs.
Collapse
Affiliation(s)
- G R Sareddy
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - S Viswanadhapalli
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P Surapaneni
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| | - A Brenner
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,The Department of Hematology and Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R K Vadlamudi
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
238
|
Alberro N, Torrent-Sucarrat M, Arrastia I, Arrieta A, Cossío FP. Two-State Reactivity of Histone Demethylases Containing Jumonji-C Active Sites: Different Mechanisms for Different Methylation Degrees. Chemistry 2016; 23:137-148. [DOI: 10.1002/chem.201604219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Nerea Alberro
- Department of Organic Chemistry I; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Manuel Lardizabal Ibilbidea 3 20018 San Sebastián/Donostia Spain
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Manuel Lardizabal Ibilbidea 3 20018 San Sebastián/Donostia Spain
- Donostia International Physics Center (DIPC); Manuel Lardizabal Ibilbidea 4 20018 San Sebastián/Donostia Spain
- Ikerbasque; Basque Foundation for Science; María Díaz de Haro 3, 6 floor 48013 Bilbao Spain
| | - Iosune Arrastia
- Donostia International Physics Center (DIPC); Manuel Lardizabal Ibilbidea 4 20018 San Sebastián/Donostia Spain
| | - Ana Arrieta
- Department of Organic Chemistry I; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Manuel Lardizabal Ibilbidea 3 20018 San Sebastián/Donostia Spain
| | - Fernando P. Cossío
- Department of Organic Chemistry I; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Manuel Lardizabal Ibilbidea 3 20018 San Sebastián/Donostia Spain
- Donostia International Physics Center (DIPC); Manuel Lardizabal Ibilbidea 4 20018 San Sebastián/Donostia Spain
| |
Collapse
|
239
|
The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer. Oncogene 2016; 36:2565-2576. [PMID: 27869162 PMCID: PMC5418103 DOI: 10.1038/onc.2016.412] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) has poor prognosis and rapid recurrence because of widespread dissemination of peritoneal metastases at diagnosis. Multiple pathways contribute to the aggressiveness of ovarian cancer, including hypoxic signaling mechanisms. In this study, we have determined that the hypoxia-inducible histone demethylase KDM4B is expressed in ∼60% of EOC tumors assayed, including primary and matched metastatic tumors. Expression of KDM4B in tumors is positively correlated with expression of the tumor hypoxia marker CA-IX, and is robustly induced in EOC cell lines exposed to hypoxia. KDM4B regulates expression of metastatic genes and pathways, and loss of KDM4B increases H3K9 trimethylation at the promoters of target genes like LOXL2, LCN2 and PDGFB. Suppressing KDM4B inhibits ovarian cancer cell invasion, migration and spheroid formation in vitro. KDM4B also regulates seeding and growth of peritoneal tumors in vivo, where its expression corresponds to hypoxic regions. This is the first demonstration that a Jumonji-domain histone demethylase regulates cellular processes required for peritoneal dissemination of cancer cells, one of the predominant factors affecting prognosis of EOC. The pathways regulated by KDM4B may present novel opportunities to develop combinatorial therapies to improve existing therapies for EOC patients.
Collapse
|
240
|
Garcia J, Lizcano F. KDM4C Activity Modulates Cell Proliferation and Chromosome Segregation in Triple-Negative Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:169-175. [PMID: 27840577 PMCID: PMC5094578 DOI: 10.4137/bcbcr.s40182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 12/23/2022]
Abstract
The Jumonji-containing domain protein, KDM4C, is a histone demethylase associated with the development of several forms of human cancer. However, its specific function in the viability of tumoral lineages is yet to be determined. This work investigates the importance of KDM4C activity in cell proliferation and chromosome segregation of three triple-negative breast cancer cell lines using a specific demethylase inhibitor. Immunofluorescence assays show that KDM4C is recruited to mitotic chromosomes and that the modulation of its activity increases the number of mitotic segregation errors. However, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cell proliferation assays demonstrate that the demethylase activity is required for cell viability. These results suggest that the histone demethylase activity of KDM4C is essential for breast cancer progression given its role in the maintenance of chromosomal stability and cell growth, thus highlighting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeison Garcia
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
241
|
Cao XJ, Garcia BA. Global Proteomics Analysis of Protein Lysine Methylation. ACTA ACUST UNITED AC 2016; 86:24.8.1-24.8.19. [PMID: 27801517 DOI: 10.1002/cpps.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysine methylation is a common protein post-translational modification dynamically mediated by protein lysine methyltransferases (PKMTs) and protein lysine demethylases (PKDMs). Beyond histone proteins, lysine methylation on non-histone proteins plays a substantial role in a variety of functions in cells and is closely associated with diseases such as cancer. A large body of evidence indicates that the dysregulation of some PKMTs leads to tumorigenesis via their non-histone substrates. However, most studies on other PKMTs have made slow progress owing to the lack of approaches for extensive screening of lysine methylation sites. However, recently, there has been a series of publications to perform large-scale analysis of protein lysine methylation. In this unit, we introduce a protocol for the global analysis of protein lysine methylation in cells by means of immunoaffinity enrichment and mass spectrometry. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xing-Jun Cao
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
242
|
Investigation of EZH2 pathways for novel epigenetic treatment strategies in oropharyngeal cancer. J Otolaryngol Head Neck Surg 2016; 45:54. [PMID: 27793210 PMCID: PMC5084374 DOI: 10.1186/s40463-016-0168-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Background In recent decades, the incidence of oropharyngeal squamous cell carcinoma (OPSCC) has been rising worldwide as a result of increasing oncogenic human papillomavirus (HPV) infections in the oropharynx. EZH2 is an epigenetic regulatory protein associated with tumor aggressiveness and negative survival outcomes in several human cancers. We aimed to determine the role of EZH2 as a potential therapeutic epigenetic target in HPV-positive and negative OPSCC. Methods The expression of EZH2 was measured by immunohistochemistry (IHC) and droplet digital PCR (ddPCR) in 2 HPV-positive and 2 HPV-negative cell lines. The cell lines were then cultured and treated with one of 3 EZH2 epigenetic inhibitors (3-deazaneplanocin A, GSK-343 and EPZ005687) or DMSO (control). Following 2, 4 and 7 days of treatment, cells were analyzed and compared by gene expression, cell survival and proliferation assays. Results EZH2 targeting resulted in greater inhibition of growth and survival in HPV-positive compared to HPV-negative cells lines. The expression profile of genes important in OPSCC also differed according to HPV-positivity for Ki67, CCND1, MET and PTEN/PIK3CA, but remained unchanged for EGFR, CDKN2A and p53. Conclusion Inhibition of EZH2 has anti-tumorigenic effects on OPSCC cells in culture that is more pronounced in HPV-positive cell lines. EZH2 is a promising epigenetic target for the treatment of OPSCC.
Collapse
|
243
|
Thaler F, Mercurio C. Compounds and methods for inhibiting histone demethylases: a patent evaluation of US20160102096A1. Expert Opin Ther Pat 2016; 26:1367-1370. [PMID: 27730846 DOI: 10.1080/13543776.2016.1246539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Jumonji C (JmjC) domain containing histone lysine demethylases have a clear role both in the development and in some diseases including inflammation and cancer. The histone lysine demethylases represent an attractive target for the identification of therapeutic agents and the pyridine derivatives are a scaffolds largely investigated for the identification and development of inhibitors of enzymes of the Jumonji family. This commentary is a scientific evaluation of a patent application US20160102096A1 that describes novel pyridine derivatives in which the introduction of specific substituents is used to modulate the selectivity profile of the inhibitors.
Collapse
Affiliation(s)
- Florian Thaler
- a Experimental Therapeutics Unit , IFOM - The FIRC Institute of Molecular Oncology , Milan , Italy
| | - Ciro Mercurio
- a Experimental Therapeutics Unit , IFOM - The FIRC Institute of Molecular Oncology , Milan , Italy
| |
Collapse
|
244
|
Dehne N, Brüne B. Hypoxic inhibition of JMJD3 reduces H3K27me3 demethylation and induction of the STAT6 target gene CCL18. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1490-1501. [PMID: 27737800 DOI: 10.1016/j.bbagrm.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023]
Abstract
Hypoxia, by activating transcription factors induces transcription of some genes but it also reduces mRNA synthesis by mechanisms that are poorly defined. Activation of human macrophages with interleukin (IL)-4 showed that up-regulation of some IL-4 target genes was reduced when macrophages were incubated at 1% oxygen. Hypoxia impaired induction of chemokine (C-C motif) ligand 18 (CCL18), although IL-4-induced DNA binding of the transcription factor STAT6 remained intact. In contrast, induction of serine peptidase inhibitor, Kunitz type (SPINT)2, another IL-4/STAT6 target gene, was not affected by hypoxia. The repressive histone mark histone 3 lysine 27 trimethylation (H3K27me3), known to prevent chromatin remodelling and transcription, was removed from the SPINT2 but not the CCL18 gene locus under hypoxia or dimethyloxalylglycine-treatment. The H3K27me3 demethylase JMJD3 was required for CCL18 gene induction but dispensable for induction of SPINT2. Our data indicate that hypoxic inhibition of JMJD3 activity reduces demethylation of H3K27me3, nucleosome removal, and hence induction of the STAT6 target gene CCL18, while induction of other STAT6-inducible genes such as SPINT2 remained unaffected by JMJD3. In contrast to mouse MΦ in human cells JMJD3 is not recruited by transcription factors like IRF4, KL4, or PPARγ to convey specificity in gene induction.
Collapse
Affiliation(s)
- Nathalie Dehne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
245
|
Abstract
Limited perfusion of solid tumours produces a nutrient-deprived tumour core microenvironment. Low glutamine levels in the tumour core are now shown to lead to reduced levels of α-ketoglutarate and decreased histone demethylase activity, thereby promoting a less differentiated and more therapy-resistant state of the tumour cells.
Collapse
|
246
|
Zurlo G, Guo J, Takada M, Wei W, Zhang Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim Biophys Acta Rev Cancer 2016; 1866:208-220. [PMID: 27663420 DOI: 10.1016/j.bbcan.2016.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/26/2022]
Abstract
Protein hydroxylation is a post-translational modification catalyzed by 2-oxoglutarate-dependent dioxygenases. The hydroxylation modification can take place on various amino acids, including but not limited to proline, lysine, asparagine, aspartate and histidine. A classical example of this modification is hypoxia inducible factor alpha (HIF-α) prolyl hydroxylation, which affects HIF-α protein stability via the Von-Hippel Lindau (VHL) tumor suppressor pathway, a Cullin 2-based E3 ligase adaptor protein frequently mutated in kidney cancer. In addition to protein stability regulation, protein hydroxylation may influence other post-translational modifications or the kinase activity of the modified protein (such as Akt and DYRK1A/B). In other cases, protein hydroxylation may alter protein-protein interaction and its downstream signaling events in vivo (such as OTUB1, MAPK6 and eEF2K). In this review, we highlight the recently identified protein hydroxylation targets and their pathophysiological roles, especially in cancer settings. Better understanding of protein hydroxylation will help identify novel therapeutic targets and their regulation mechanisms to foster development of more effective treatment strategies for various human cancers.
Collapse
Affiliation(s)
- Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mamoru Takada
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
247
|
Substituted 2-(2-aminopyrimidin-4-yl)pyridine-4-carboxylates as potent inhibitors of JumonjiC domain-containing histone demethylases. Future Med Chem 2016; 8:1553-71. [DOI: 10.4155/fmc.15.188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Aberrant expression of iron(II)- and 2-oxoglutarate-dependent JumonjiC histone demethylases has been linked to cancer. Potent demethylase inhibitors are drug candidates and biochemical tools to elucidate the functional impact of demethylase inhibition. Methods & results: Virtual screening identified a novel lead scaffold against JMJD2A with low-micromolar potency in vitro. Analogs were acquired from commercial sources respectively synthesized in feedback with biological testing. Optimized compounds were transformed into cell-permeable prodrugs. A cocrystal x-ray structure revealed the mode of binding of these compounds as competitive to 2-oxoglutarate and confirmed kinetic experiments. Selectivity studies revealed a preference for JMJD2A and JARID1A over JMJD3. Conclusion: Virtual screening and rational structural optimization led to a novel scaffold for highly potent and selective JMJD2A inhibitors.
Collapse
|
248
|
Hino S, Kohrogi K, Nakao M. Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci 2016; 107:1187-92. [PMID: 27375009 PMCID: PMC5021031 DOI: 10.1111/cas.13004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms underlie the phenotypic plasticity of cells, while aberrant epigenetic regulation through genetic mutations and/or misregulated expression of epigenetic factors leads to aberrant cell fate determination, which provides a foundation for oncogenic transformation. Lysine‐specific demethylase‐1 (LSD1, KDM1A) removes methyl groups from methylated proteins, including histone H3, and is frequently overexpressed in various types of solid tumors and hematopoietic neoplasms. While LSD1 is involved in a wide variety of normal physiological processes, including stem cell maintenance and differentiation, it is also a key player in oncogenic processes, including compromised differentiation, enhanced cell motility and metabolic reprogramming. Here, we present an overview of how LSD1 epigenetically regulates cellular plasticity through distinct molecular mechanisms in different biological contexts. Targeted inhibition of the context‐dependent activities of LSD1 may provide a highly selective means to eliminate cancer cells.
Collapse
Affiliation(s)
- Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| | - Kensaku Kohrogi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
249
|
Gehling VS, Bellon SF, Harmange JC, LeBlanc Y, Poy F, Odate S, Buker S, Lan F, Arora S, Williamson KE, Sandy P, Cummings RT, Bailey CM, Bergeron L, Mao W, Gustafson A, Liu Y, VanderPorten E, Audia JE, Trojer P, Albrecht BK. Identification of potent, selective KDM5 inhibitors. Bioorg Med Chem Lett 2016; 26:4350-4. [DOI: 10.1016/j.bmcl.2016.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/26/2022]
|
250
|
Structural aspects of small-molecule inhibition of methyllysine reader proteins. Future Med Chem 2016; 8:1681-702. [PMID: 27577975 DOI: 10.4155/fmc-2016-0082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Methyl reader proteins recognize and bind to post-translationally methylated residues. They execute the commands issued by protein methyltransferases and play functional roles in diverse cellular processes including gene regulation, development and oncogenesis. Efforts to inhibit these proteins are relatively new. Only a small number of methyl reader proteins belonging to the chromodomain, malignant brain tumor domain, plant homeodomain finger and Tudor domain families have been targeted by chemical inhibitors. This review summarizes inhibitors that have been reported to date, and provides a perspective for future progress. Structural determinants for methyl reader inhibition will be presented, along with an analysis of the molecular interactions that control potency and selectivity for inhibitors of each family.
Collapse
|