201
|
Argov T, Sapir SR, Pasechnek A, Azulay G, Stadnyuk O, Rabinovich L, Sigal N, Borovok I, Herskovits AA. Coordination of cohabiting phage elements supports bacteria-phage cooperation. Nat Commun 2019; 10:5288. [PMID: 31754112 PMCID: PMC6872733 DOI: 10.1038/s41467-019-13296-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens often carry multiple prophages and other phage-derived elements within their genome, some of which can produce viral particles in response to stress. Listeria monocytogenes 10403S harbors two phage elements in its chromosome, both of which can trigger bacterial lysis under stress: an active prophage (ϕ10403S) that promotes the virulence of its host and can produce infective virions, and a locus encoding phage tail-like bacteriocins. Here, we show that the two phage elements are co-regulated, with the bacteriocin locus controlling the induction of the prophage and thus its activity as a virulence-associated molecular switch. More specifically, a metalloprotease encoded in the bacteriocin locus is upregulated in response to stress and acts as an anti-repressor for CI-like repressors encoded in each phage element. Our results provide molecular insight into the phenomenon of polylysogeny and its intricate adaptation to complex environments.
Collapse
Affiliation(s)
- Tal Argov
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Shai Ran Sapir
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Anna Pasechnek
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Gil Azulay
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Olga Stadnyuk
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Lev Rabinovich
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Nadejda Sigal
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Ilya Borovok
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Anat A Herskovits
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
202
|
Khan A, Wahl LM. Quantifying the forces that maintain prophages in bacterial genomes. Theor Popul Biol 2019; 133:168-179. [PMID: 31758948 DOI: 10.1016/j.tpb.2019.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Genome sequencing has revealed that prophages, viral sequences integrated in a bacterial chromosome, are abundant, accounting for as much as 20% of the bacterial genome. These sequences can confer fitness benefits to the bacterial host, but may also instigate cell death through induction. Several recent investigations have revealed that the distribution of prophage lengths is bimodal, with a clear distinction between small and large prophages. Here we develop a mathematical model of the evolutionary forces affecting the prophage size distribution, and fit this model to three recent data sets. This approach offers quantitative estimates for the relative rates of lysogeny, induction, mutational degradation and selection acting on a wide class of prophage sequences. The model predicts that large prophages are predominantly maintained by the introduction of new prophage sequences through lysogeny, whereas shorter prophages can be enriched when they no longer encode the genes necessary for induction, but still offer selective benefits to their hosts.
Collapse
Affiliation(s)
- Amjad Khan
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Lindi M Wahl
- Department of Applied Mathematics, Western University, London, ON, Canada.
| |
Collapse
|
203
|
Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, Waldbauer JR, Coleman ML. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2019; 18:21-34. [PMID: 31690825 DOI: 10.1038/s41579-019-0270-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Ecosystems are controlled by 'bottom-up' (resources) and 'top-down' (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | | | - David M Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Seth G John
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
204
|
Carey JN, Mettert EL, Fishman-Engel DR, Roggiani M, Kiley PJ, Goulian M. Phage integration alters the respiratory strategy of its host. eLife 2019; 8:49081. [PMID: 31650957 PMCID: PMC6814406 DOI: 10.7554/elife.49081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Temperate bacteriophages are viruses that can incorporate their genomes into their bacterial hosts, existing there as prophages that refrain from killing the host cell until induced. Prophages are largely quiescent, but they can alter host phenotype through factors encoded in their genomes (often virulence factors) or by disrupting host genes as a result of integration. Here we describe another mechanism by which a prophage can modulate host phenotype. We show that a temperate phage that integrates in Escherichia coli reprograms host regulation of an anaerobic respiratory system, thereby inhibiting a bet hedging strategy. The phage exerts this effect by upregulating a host-encoded signal transduction protein through transcription initiated from a phage-encoded promoter. We further show that this phenomenon occurs not only in a laboratory strain of E. coli, but also in a natural isolate that contains a prophage at this site. Animals and plants can all fall prey to viruses – and so can bacteria. The viruses that infect bacteria are called bacteriophages (or phages for short), and they are found everywhere bacteria live and probably outnumber bacteria by at least ten to one. While some phages quickly kill every bacterial cell they infect, others enter a dormant state by inserting their DNA into the DNA of their host cell. Here they lie in wait for a signal that reactivates them, triggering the production of more phages and the death of the host cell. While the phage lies dormant its DNA may harm the host by interfering with nearby bacterial genes, or it may actually provide new genes that benefit the host. In most cases the effects of dormant phages are unknown. A bacterium known as Escherichia coli is commonly found in the intestines of humans and other mammals. It can use a nutrient called trimethylamine oxide (TMAO) to help it survive rapid decreases in oxygen levels that can occur in its environment. When a phage called HK022 infects E. coli, the phage enters a dormant state by inserting its DNA between two genes that are critical for E. coli to use TMAO. However, it is not clear what effect, if any, HK022 has on E. coli’s behavior. To address this question, Carey et al. used genetic approaches to study E. coli cells carrying dormant HK022 phages. The experiments showed that the bacteria lost the ability to use TMAO to survive rapid decreases in oxygen because the dormant phages switched on one of the neighboring E. coli genes. Unexpectedly, the phage achieved this by neatly replacing the gene’s own promoter – the stretch of DNA that contains information about when the gene should be switched on, and how strongly – with a substitute promoter carried in the phage’s DNA. This substitute promoter is stronger than the normal version – meaning that the gene is more active than it should be. Phages are key players in every natural population of microbes and are therefore entwined in the health of humans and the environment. The findings of Carey et al. show a new mechanism through which phages modify their hosts. In the future it may be possible to develop this mechanism into a tool to manipulate bacteria in complex environments like infection sites, for example by introducing phages that block the mechanisms that allow bacteria to tolerate antibiotics.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, United States
| | | | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, United States
| | - Mark Goulian
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biology, University of Pennsylvania, Philadelphia, United States.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
205
|
Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun 2019; 10:4852. [PMID: 31649284 PMCID: PMC6813308 DOI: 10.1038/s41467-019-12825-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Prophages (viral genomes integrated within a host bacterial genome) can confer various phenotypic traits to their hosts, such as enhanced pathogenicity. Here we analyse >1300 genomes of 70 different Streptococcus species and identify nearly 800 prophages and satellite prophages (prophages that do not encode their own structural components but rely on the bacterial host and another helper prophage for survival). We show that prophages and satellite prophages are widely distributed among streptococci in a structured manner, and constitute two distinct entities with little effective genetic exchange between them. Cross-species transmission of prophages is not uncommon. Furthermore, a satellite prophage is associated with virulence in a mouse model of Streptococcus pneumoniae infection. Our findings highlight the potential importance of prophages in streptococcal biology and pathogenesis. Prophages are viral genomes integrated within bacterial genomes. Here, Rezaei Javan et al. identify nearly 800 prophages and satellite prophages in > 1300 Streptococcus genomes, and show that a satellite prophage is associated with virulence in a mouse model of pneumococcal infection.
Collapse
Affiliation(s)
| | | | - Asma Akter
- Department of Medicine, Imperial College London, London, UK
| | - Jeremy Brown
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Angela B Brueggemann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK. .,Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
206
|
Large Phenotypic and Genetic Diversity of Prophages Induced from the Fish Pathogen Vibrio anguillarum. Viruses 2019; 11:v11110983. [PMID: 31653117 PMCID: PMC6893619 DOI: 10.3390/v11110983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023] Open
Abstract
Vibrio anguillarum is a marine pathogenic bacterium that causes vibriosis in fish and shellfish. Although prophage-like sequences have been predicted in V. anguillarum strains, many are not characterized, and it is not known if they retain the functional capacity to form infectious particles that can infect and lysogenize other bacterial hosts. In this study, the genome sequences of 28 V. anguillarum strains revealed 55 different prophage-related elements. Chemical and spontaneous induction allowed a collection of 42 phage isolates, which were classified in seven different groups according to a multiplex PCR assay. One shared prophage sequence, p41 (group III), was present in 17 V. anguillarum strains, suggesting that this specific element is very dynamically exchanged among V. anguillarum populations. Interestingly, the host range of genetically identical phages was highly dependent on the strains used for proliferation, indicating that phenotypic properties of phages were partly regulated by the host. Finally, experimental evidence displayed that the induced phage ɸVa_90-11-287_p41 was able to lysogenize V. anguillarum strain Ba35, and subsequently spontaneously become released from the lysogenized cells, demonstrating an efficient transfer of the phage among V. anguillarum strains. Altogether, the results showed large genetic and functional diversity and broad distribution of prophages in V. anguillarum, and demonstrated the potential of prophages as drivers of evolution in V. anguillarum strains.
Collapse
|
207
|
Takano S, Fukuda K, Koto A, Miyazaki R. A novel system of bacterial cell division arrest implicated in horizontal transmission of an integrative and conjugative element. PLoS Genet 2019; 15:e1008445. [PMID: 31609967 PMCID: PMC6812849 DOI: 10.1371/journal.pgen.1008445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA elements in the prokaryotic world. ICEs are usually retained within the bacterial chromosome, but can be excised and transferred from a donor to a new recipient cell, even of another species. Horizontal transmission of ICEclc, a prevalent ICE in proteobacteria, only occurs from developed specialized transfer competent (tc) cells in the donor population. tc cells become entirely dedicated to the ICE transmission at the cost of cell proliferation. The cell growth impairment is mediated by two ICEclc located genes, parA and shi, but the mechanistic and dynamic details of this process are unknown. To better understand the function of ParA and Shi, we followed their intracellular behavior from fluorescent protein fusions, and studied host cell division at single-cell level. Superresolution imaging revealed that ParA-mCherry colocalized with the host nucleoid while Shi-GFP was enriched at the membrane during the growth impairment. Despite being enriched at different cellular locations, the two proteins showed in vivo interactions, and mutations in the Walker A motif of ParA dislocalized both ParA and Shi. In addition, ParA mutations in the ATPase motif abolished the growth arrest on the host cell. Time-lapse microscopy revealed that ParA and Shi initially delay cell division, suggesting an extension of the S phase of cells, but eventually completely inhibit cell elongation. The parA-shi locus is highly conserved in other ICEclc-related elements, and expressing ParA-Shi from ICEclc in other proteobacterial species caused similar growth arrest, suggesting that the system functions similarly across hosts. The results of our study provide mechanistic insight into the novel and unique system on ICEs and help to understand such epistatic interaction between ICE genes and host physiology that entails efficient horizontal gene transfer.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kohei Fukuda
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
208
|
Lysogeny in the Lactic Acid Bacterium Oenococcus oeni Is Responsible for Modified Colony Morphology on Red Grape Juice Agar. Appl Environ Microbiol 2019; 85:AEM.00997-19. [PMID: 31375489 DOI: 10.1128/aem.00997-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Oenococcus oeni is the lactic acid bacterium (LAB) that most commonly drives malolactic fermentation in wine. Although oenococcal prophages are highly prevalent, their implications on bacterial fitness have remained unexplored and more research is required in this field. An important step toward achieving this goal is the ability to produce isogenic pairs of strains that differ only by the lysogenic presence of a given prophage, allowing further comparisons of different phenotypic traits. A novel protocol for the rapid isolation of lysogens is presented. Bacteria were first picked from the center of turbid plaques produced by temperate oenophages on a sensitive nonlysogenic host. When streaked onto an agar medium containing red grape juice (RGJ), cells segregated into white and red colonies. PCR amplifications with phage-specific primers demonstrated that only lysogens underwent white-red morphotypic switching. The method proved successful for various oenophages irrespective of their genomic content and attachment site used for site-specific recombination in the bacterial chromosome. The color switch was also observed when a sensitive nonlysogenic strain was infected with an exogenously provided lytic phage, suggesting that intracolonial lysis triggers the change. Last, lysogens also produced red colonies on white grape juice agar supplemented with polyphenolic compounds. We posit that spontaneous prophage excision produces cell lysis events in lysogenic colonies growing on RGJ agar, which, in turn, foster interactions between lysed materials and polyphenolic compounds to yield colonies easily distinguishable by their red color. Furthermore, the technique was used successfully with other species of LAB.IMPORTANCE The presence of white and red colonies on red grape juice (RGJ) agar during enumeration of Oenococcus oeni in wine samples is frequently observed by stakeholders in the wine industry. Our study brings an explanation for this intriguing phenomenon and establishes a link between the white-red color switch and the lysogenic state of O. oeni It also provides a simple and inexpensive method to distinguish between lysogenic and nonlysogenic derivatives in O. oeni with a minimum of expended time and effort. Noteworthy, the protocol could be adapted to two other species of LAB, namely, Leuconostoc citreum and Lactobacillus plantarum It could be an effective tool to provide genetic, ecological, and functional insights into lysogeny and aid in improving biotechnological processes involving members of the lactic acid bacterium (LAB) family.
Collapse
|
209
|
Tabib-Salazar A, Mulvenna N, Severinov K, Matthews SJ, Wigneshweraraj S. Xenogeneic Regulation of the Bacterial Transcription Machinery. J Mol Biol 2019; 431:4078-4092. [DOI: 10.1016/j.jmb.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
210
|
Papadopoulou A, Dalsgaard I, Wiklund T. Inhibition Activity of Compounds and Bacteriophages against Flavobacterium psychrophilum Biofilms In Vitro. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:225-238. [PMID: 31216387 DOI: 10.1002/aah.10069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Flavobacterium psychrophilum produces biofilms under laboratory conditions, and it has been inconclusively suggested that F. psychrophilum biofilms can be a potential reservoir for transmission of the pathogen to a fish population under fish farming conditions. Therefore, there is a need for anti-biofilm compounds. The main aim of this study was to determine the anti-biofilm properties of certain compounds and bacteriophages on F. psychrophilum biofilms under static conditions using a standard 96-well microtiter plate biofilm assay in vitro. Eight compounds (A-type proanthocyanidins, D-leucine, EDTA, emodin, fucoidan, L-alliin, parthenolide, and 2-aminoimidazole) at three sub-minimum inhibitory concentrations (sub-MICs), four bacteriophages (Fpv-3, Fpv-9, Fpv-10, and Fpv-21), and a phage combination (Fpv-9 + Fpv-10) were tested for inhibition of biofilm formation and reduction of the biomass of mature biofilms formed by two smooth isolates (P7-9/10 and P1-10B/10) and two rough isolates (P7-9/2R/10 and P1-10B/2R/10) of F. psychrophilum. The crystal violet staining method was used to stain the biofilms. Most of the compounds at sub-MICs inhibited the biofilm formation of mainly smooth isolates, attaining up to 80% inhibition. Additionally, the same reduction trend was also observed for 2-aminoimidazole, emodin, parthenolide, and D-leucine on the biomass of mature biofilms in a concentration-dependent manner. The anti-biofilm properties of the compounds are believed to lie in their ability to disturb the cellular interactions during biofilm formation and probably to cause cell dispersal in already formed biofilms. Lytic bacteriophages efficiently inhibited biofilm formation of F. psychrophilum, while they partially reduced the biomass of mature biofilms. However, the phage combination (Fpv-9 + Fpv-10) showed a successful reduction in the biomass of F. psychrophilum mature biofilms. We conclude that inhibiting compounds together with bacteriophages may supplement the use of disinfectants against bacterial biofilms (e.g., F. psychrophilum biofilms), leading to a reduced occurrence of bacterial coldwater disease outbreaks at fish farms.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland
| | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland
| |
Collapse
|
211
|
Ingmer H, Gerlach D, Wolz C. Temperate Phages of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0058-2018. [PMID: 31562736 PMCID: PMC10921950 DOI: 10.1128/microbiolspec.gpp3-0058-2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate S. aureus phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of S. aureus as a human pathogen.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
212
|
Liu X, Tang K, Zhang D, Li Y, Liu Z, Yao J, Wood TK, Wang X. Symbiosis of a P2‐family phage and deep‐sea
Shewanella putrefaciens. Environ Microbiol 2019; 21:4212-4232. [DOI: 10.1111/1462-2920.14781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Dali Zhang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention Guangdong Provincial Institute of Public Health Guangzhou 511430 China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Thomas K. Wood
- Department of Chemical Engineering Pennsylvania State University University Park PA 16802‐4400 USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
213
|
Generation of a Prophage-Free Variant of the Fast-Growing Bacterium Vibrio natriegens. Appl Environ Microbiol 2019; 85:AEM.00853-19. [PMID: 31253674 PMCID: PMC6696956 DOI: 10.1128/aem.00853-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
The fast-growing marine bacterium Vibrio natriegens represents an emerging strain for molecular biology and biotechnology. Genome sequencing and quantitative PCR analysis revealed that the first chromosome of V. natriegens ATCC 14048 contains two prophage regions (VNP1 and VNP2) that are both inducible by the DNA-damaging agent mitomycin C and exhibit spontaneous activation under standard cultivation conditions. Their activation was also confirmed by live cell imaging of an mCherry fusion to the major capsid proteins of VNP1 and VNP2. Transmission electron microscopy visualized the release of phage particles belonging to the Siphoviridae family into the culture supernatant. Freeing V. natriegens from its proviral load, followed by phenotypic characterization, revealed an improved robustness of the prophage-free variant toward DNA-damaging conditions, reduced cell lysis under hypo-osmotic conditions, and an increased pyruvate production compared to wild-type levels. Remarkably, the prophage-free strain outcompeted the wild type in a competitive growth experiment, emphasizing that this strain is a promising platform for future metabolic engineering approaches.IMPORTANCE The fast-growing marine bacterium Vibrio natriegens represents an emerging model host for molecular biology and biotechnology, featuring a reported doubling time of less than 10 minutes. In many bacterial species, viral DNA (prophage elements) may constitute a considerable fraction of the whole genome and may have detrimental effects on the growth and fitness of industrial strains. Genome analysis revealed the presence of two prophage regions in the V. natriegens genome that were shown to undergo spontaneous induction under standard cultivation conditions. In this study, we generated a prophage-free variant of V. natriegens Remarkably, the prophage-free strain exhibited a higher tolerance toward DNA damage and hypo-osmotic stress. Moreover, it was shown to outcompete the wild-type strain in a competitive growth experiment. In conclusion, our study presents the prophage-free variant of V. natriegens as a promising platform strain for future biotechnological applications.
Collapse
|
214
|
Fornelos N, Browning DF, Pavlin A, Podlesek Z, Hodnik V, Salas M, Butala M. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue. Nucleic Acids Res 2019; 46:9432-9443. [PMID: 30053203 PMCID: PMC6182141 DOI: 10.1093/nar/gky646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
The GIL01 bacteriophage is a temperate phage that infects the insect pathogen Bacillus thuringiensis. During the lytic cycle, phage gene transcription is initiated from three promoters: P1 and P2, which control the expression of the early phage genes involved in genome replication and P3, which controls the expression of the late genes responsible for virion maturation and host lysis. Unlike most temperate phages, GIL01 lysogeny is not maintained by a dedicated phage repressor but rather by the host's regulator of the SOS response, LexA. Previously we showed that the lytic cycle was induced by DNA damage and that LexA, in conjunction with phage-encoded protein gp7, repressed P1. Here we examine the lytic/lysogenic switch in more detail and show that P3 is also repressed by a LexA-gp7 complex, binding to tandem LexA boxes within the promoter. We also demonstrate that expression from P3 is considerably delayed after DNA damage, requiring the phage-encoded DNA binding protein, gp6. Surprisingly, gp6 is homologous to LexA itself and, thus, is a rare example of a LexA homologue directly activating transcription. We propose that the interplay between these two LexA family members, with opposing functions, ensures the timely expression of GIL01 phage late genes.
Collapse
Affiliation(s)
- Nadine Fornelos
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
215
|
Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. ENVIRONMENT INTERNATIONAL 2019; 129:488-496. [PMID: 31158595 DOI: 10.1016/j.envint.2019.05.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The emerging contamination of pathogenic bacteria in the soil has caused a serious threat to public health and environmental security. Therefore, effective methods to inactivate pathogenic bacteria and decrease the environmental risks are urgently required. As a century-old technique, bacteriophage (phage) therapy has a high efficiency in targeting and inactivating pathogenic bacteria in different environmental systems. This review provides an update on the status of bacteriophage therapy for the inactivation of pathogenic bacteria in the soil environment. Specifically, the applications of phage therapy in soil-plant and soil-groundwater systems are summarized. In addition, the impact of phage therapy on soil functioning is described, including soil function gene transmission, soil microbial community stability, and soil nutrient cycling. Soil factors, such as soil temperature, pH, clay mineral, water content, and nutrient components, influence the survival and activity of phages in the soil. Finally, the future research prospects of phage therapy in soil environments are described.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wentao Jiao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
216
|
Stevens RH, Zhang H, Sedgley C, Bergman A, Manda AR. The prevalence and impact of lysogeny among oral isolates of Enterococcus faecalis. J Oral Microbiol 2019; 11:1643207. [PMID: 31489125 PMCID: PMC6711143 DOI: 10.1080/20002297.2019.1643207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 10/29/2022] Open
Abstract
Bacterial phenotypic properties are frequently influenced by the uptake of extrachromosomal genetic elements, such as plasmids and bacteriophage genomes. Such modifications can result in enhanced pathogenicity due to toxin production, increased toxin release, altered antigenicity, and resistance to antibiotics. In the case of bacteriophages, the phage genome can stably integrate into the bacterial chromosome as a prophage, to produce a lysogenic cell. Oral enterococcal strains have been isolated from subgingival plaque and the root canals of endodontically-treated teeth that have failed to heal. Previously, we isolated a bacteriophage, phage ɸEf11, induced from a lysogenic Enterococcus faecalis strain recovered from the root canal of a failed endodontic case. PCR analysis using phage ɸEf11-specific oligonucleotide primers, disclosed that lysogens containing ɸEf11 prophages were commonly found among oral E. faecalis strains, being detected in 19 of 61 (31%) strains examined. Furthermore, in comparison to an isogenic cured strain, cultures of a lysogen harboring an ɸEf11 prophage exhibited altered phenotypic characteristics, such as increased persistence at high density, enhanced biofilm formation, and resistance to a bacteriophage lytic enzyme. From these results we conclude that lysogeny is common among oral E. faecalis strains, and that it alters properties of the lysogenic cell.
Collapse
Affiliation(s)
- Roy H Stevens
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Hongming Zhang
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christine Sedgley
- Department of Endodontology, Oregon Health and Science University, Portland, OR, USA
| | - Adam Bergman
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Anil Reddy Manda
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| |
Collapse
|
217
|
ϕSa3mw Prophage as a Molecular Regulatory Switch of Staphylococcus aureus β-Toxin Production. J Bacteriol 2019; 201:JB.00766-18. [PMID: 30962356 PMCID: PMC6597384 DOI: 10.1128/jb.00766-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 11/20/2022] Open
Abstract
Phage regulatory switches (phage-RSs) are a newly described form of active lysogeny where prophages function as regulatory mechanisms for expression of chromosomal bacterial genes. In Staphylococcus aureus, ϕSa3int is a widely distributed family of prophages that integrate into the β-toxin structural gene hlb, effectively inactivating it. However, β-toxin-producing strains often arise during infections and are more virulent in experimental infective endocarditis and pneumonia infections. We present evidence that in S. aureus MW2, ϕSa3mw excision is temporally and differentially responsive to growth conditions relevant to S. aureus pathogenesis. PCR analyses of ϕSa3mw (integrated and excised) and of intact hlb showed that ϕSa3mw preferentially excises in response to hydrogen peroxide-induced oxidative stress and during biofilm growth. ϕSa3mw remains as a prophage when in contact with human aortic endothelial cells in culture. A criterion for a prophage to be considered a phage-RS is the inability to lyse host cells. MW2 grown under phage-inducing conditions did not release infectious phage particles by plaque assay or transmission electron microscopy, indicating that ϕSa3mw does not carry out a productive lytic cycle. These studies highlight a dynamic, and perhaps more sophisticated, S. aureus-prophage interaction where ϕSa3int prophages provide a novel regulatory mechanism for the conditional expression of virulence factors.IMPORTANCE β-Toxin is a sphingomyelinase hemolysin that significantly contributes to Staphylococcus aureus pathogenesis. In most S. aureus isolates the prophage ϕSa3int inserts into the β-toxin gene hlb, inactivating it, but human and experimental infections give rise to β-toxin-producing variants. However, it remained to be established whether ϕSa3mw excises in response to specific environmental cues, restoring the β-toxin gene sequence. This is not only of fundamental interest but also critical when designing intervention strategies and therapeutics. We provide evidence that ϕSa3mw actively excises, allowing the conditional expression of β-toxin. ϕSa3int prophages may play a novel and largely uncharacterized role in S. aureus pathogenesis as molecular regulatory switches that promote bacterial fitness and adaptation to the challenges presented by the mammalian host.
Collapse
|
218
|
Zeng Z, Zhan W, Wang W, Wang P, Tang K, Wang X. Biofilm formation in Pseudoalteromonas lipolytica is related to IS5-like insertions in the capsular polysaccharide operon. FEMS Microbiol Ecol 2019; 95:5488432. [PMID: 31077283 DOI: 10.1093/femsec/fiz065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/10/2019] [Indexed: 11/14/2022] Open
Abstract
Bacterial capsular polysaccharides (CPSs) participate in environmental adaptation in diverse bacteria species. However, the role and regulation of CPS production in marine bacteria have remained largely unexplored. We previously reported that both wrinkled and translucent Pseudoalteromonas lipolytica variants with altered polysaccharide production were generated in pellicle biofilm-associated cells. In this study, we observed that translucent variants were generated at a rate of ∼20% in colony biofilms of P. lipolytica cultured on HSLB agar plates for 12 days. The DNA sequencing results revealed that nearly 90% of these variants had an IS5-like element inserted within the coding or promoter regions of nine genes in the cps operon. In contrast, IS5 insertion into the cps operon was not detected in planktonic cells. Furthermore, we demonstrated that the IS5 insertion event inactivated CPS production, which leads to a translucent colony morphology. The CPS-deficient variants showed an increased ability to form attached biofilms but exhibited reduced resistance to sublethal concentrations of antibiotics. Moreover, deleting the DNA repair gene recA significantly decreased the frequency of occurrence of CPS-deficient variants during biofilm formation. Thus, IS insertion into the cps operon is an important mechanism for the production of genetic variants during biofilm formation of marine bacteria.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Waner Zhan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
219
|
Big Impact of the Tiny: Bacteriophage-Bacteria Interactions in Biofilms. Trends Microbiol 2019; 27:739-752. [PMID: 31128928 DOI: 10.1016/j.tim.2019.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 01/17/2023]
Abstract
Bacteriophages (phages) have been shaping bacterial ecology and evolution for millions of years, for example, by selecting for defence strategies. Evidence supports that bacterial biofilm formation is one such strategy and that biofilm-mediated protection against phage infection depends on maturation and composition of the extracellular matrix. Interestingly, studies have revealed that phages can induce and strengthen biofilms. Here we review interactions between bacteria and phages in biofilms, discuss the underlying mechanisms, the potential of phage therapy for biofilm control, and emphasize the importance of considering biofilms in future phage research. This is especially relevant as biofilms are associated with increased tolerance towards antibiotics and are implicated in the majority of chronic infections.
Collapse
|
220
|
Origin of a Core Bacterial Gene via Co-option and Detoxification of a Phage Lysin. Curr Biol 2019; 29:1634-1646.e6. [PMID: 31080080 DOI: 10.1016/j.cub.2019.04.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 11/23/2022]
Abstract
Temperate phages constitute a potentially beneficial genetic reservoir for bacterial innovation despite being selfish entities encoding an infection cycle inherently at odds with bacterial fitness. These phages integrate their genomes into the bacterial host during infection, donating new but deleterious genetic material: the phage genome encodes toxic genes, such as lysins, that kill the bacterium during the phage infection cycle. Remarkably, some bacteria have exploited the destructive properties of phage genes for their own benefit by co-opting them as toxins for functions related to bacterial warfare, virulence, and secretion. However, do toxic phage genes ever become raw material for functional innovation? Here, we report on a toxic phage gene whose product has lost its toxicity and has become a domain of a core cellular factor, SpmX, throughout the bacterial order Caulobacterales. Using a combination of phylogenetics, bioinformatics, structural biology, cell biology, and biochemistry, we have investigated the origin and function of SpmX and determined that its occurrence is the result of the detoxification of a phage peptidoglycan hydrolase gene. We show that the retained, attenuated activity of the phage-derived domain plays an important role in proper cell morphology and developmental regulation in representatives of this large bacterial clade. To our knowledge, this is the first observation of a phage gene domestication event in which a toxic phage gene has been co-opted for core cellular function at the root of a large bacterial clade.
Collapse
|
221
|
Ainuddin U, Khurram M, Hasan SMR. Cloning the λ Switch: Digital and Markov Representations. IEEE Trans Nanobioscience 2019; 18:428-436. [PMID: 30946673 DOI: 10.1109/tnb.2019.2908669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lysis-lysogeny switch in E. coli due to infection from lambda phage has been extensively studied and explained by scientists of molecular biology. The bacterium either survives with the viral strand of deoxyribonucleic acid (DNA) or dies producing hundreds of viruses for propagation of infection. Many proteins transcribed after infection by λ phage take part in determining the fate of the bacterium, but two proteins that play a key role in this regard are the cI and cro dimers, which are transcribed off the viral DNA. This paper presents a novel modeling mechanism for the lysis-lysogeny switch, by transferring the interactions of the main proteins, the lambda right operator and promoter regions and the ribonucleic acid (RNA) polymerase, to a finite state machine (FSM), to determine cell fate. The FSM, and thus derived is implemented in field-programmable gate array (FPGA), and simulations have been run in random conditions. A Markov model has been created for the same mechanism. Steady state analysis has been conducted for the transition matrix of the Markov model, and the results have been generated to show the steady state probability of lysis with various model values. In this paper, it is hoped to lay down guidelines to convert biological processes into computing machines.
Collapse
|
222
|
Quigley LNM, Edwards A, Steen AD, Buchan A. Characterization of the Interactive Effects of Labile and Recalcitrant Organic Matter on Microbial Growth and Metabolism. Front Microbiol 2019; 10:493. [PMID: 30941109 PMCID: PMC6433851 DOI: 10.3389/fmicb.2019.00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 11/23/2022] Open
Abstract
Geochemical models typically represent organic matter (OM) as consisting of multiple, independent pools of compounds, each accessed by microorganisms at different rates. However, recent findings indicate that organic compounds can interact within microbial metabolisms. The relevance of interactive effects within marine systems is debated and a mechanistic understanding of its complexities, including microbe-substrate relationships, is lacking. As a first step toward uncovering mediating processes, the interactive effects of distinct pools of OM on the growth and respiration of marine bacteria, individual strains and a simple, constructed community of Roseobacter lineage members were tested. Isolates were provided with natural organic matter (NOM) and different concentrations (1, 4, 40, 400 μM-C) and forms of labile OM (acetate, casamino acids, tryptone, coumarate). The microbial response to the mixed substrate regimes was assessed using viable counts and respiration in two separate experiments. Two marine bacteria and a six-member constructed community were assayed with these experiments. Both synergistic and antagonistic growth responses were evident for all strains, but all were transient. The specific substrate conditions promoting a response, and the direction of that response, varied amongst species. These findings indicate that the substrate conditions that result in OM interactive effects are both transient and species-specific and thus influenced by both the composition and metabolic potential of a microbial community.
Collapse
Affiliation(s)
- Lauren N M Quigley
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Abigail Edwards
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Andrew D Steen
- Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Alison Buchan
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
223
|
Czajkowski R. May the Phage be With You? Prophage-Like Elements in the Genomes of Soft Rot Pectobacteriaceae: Pectobacterium spp. and Dickeya spp. Front Microbiol 2019; 10:138. [PMID: 30828320 PMCID: PMC6385640 DOI: 10.3389/fmicb.2019.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Soft Rot Pectobacteriaceae (SRP; Pectobacterium spp. and Dickeya spp., formerly known as pectinolytic Erwinia spp.) are necrotrophic bacterial pathogens infecting a large number of plant species worldwide, including agriculturally-important crops. Despite the SRP importance in agriculture, little is known about the bacteriophages infecting them, and even less about the prophages present in their genomes. Prophages are recognized as factors underlying bacterial virulence, genomic diversification and ecological fitness that contribute to the novel phenotypic properties of bacterial hosts. Likewise, they are recognized as a driving force of bacterial evolution. In this study, 57 complete genomes of Pectobacterium spp. and Dickeya spp. deposited in NCBI GenBank, were analyzed for the presence of prophage-like elements. Viral sequences were discovered in 95% of bacterial genomes analyzed with the use of PHASTER, PhiSpy, and manual curation of the candidate sequences using NCBI BLAST. In total 37 seemingly intact and 48 putatively defective prophages were found. The 37 seemingly intact prophages (27 sequences in Dickeya spp. genomes and 10 sequences in Pectobacterium spp. genomes) were annotated using RAST. Analysis of the prophage genes encoding viral structural proteins allowed classification of these prophages into different families of the order Caudovirales (tailed bacteriophages) with the SRP prophages of the Myoviridae family (81% of found prophages) being the most abundant. The phylogenetic relationships between prophages were analyzed using amino acid sequences of terminase large subunit (gene terL), integrase (gene int), holin (gene hol), and lysin (gene lys). None of these markers however proved fully useful for clear phylogenetic separation of prophages of SRP into distinct clades. Comparative analyses of prophage proteomes revealed six clusters: five present in Dickeya spp. and one within Pectobacterium spp. When screened for the presence of bacterial genes in the genomes of intact prophages, only one prophage did not contain any ORFs of bacterial origin, the other prophages contained up to 23 genes acquired from bacterial hosts. The bacterial genes present in prophages could possibly affect fitness and virulence of their hosts. The implication of prophage presence in the genomes of Pectobacterium spp. and Dickeya spp. is discussed.
Collapse
Affiliation(s)
- Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
224
|
Warwick-Dugdale J, Buchholz HH, Allen MJ, Temperton B. Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol J 2019; 16:15. [PMID: 30709355 PMCID: PMC6359870 DOI: 10.1186/s12985-019-1120-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Microbial communities living in the oceans are major drivers of global biogeochemical cycles. With nutrients limited across vast swathes of the ocean, marine microbes eke out a living under constant assault from predatory viruses. Viral concentrations exceed those of their bacterial prey by an order of magnitude in surface water, making these obligate parasites the most abundant biological entities in the ocean. Like the pirates of the 17th and 18th centuries that hounded ships plying major trade and exploration routes, viruses have evolved mechanisms to hijack microbial cells and repurpose their cargo and indeed the vessels themselves to maximise viral propagation. Phenotypic reconfiguration of the host is often achieved through Auxiliary Metabolic Genes - genes originally derived from host genomes but maintained and adapted in viral genomes to redirect energy and substrates towards viral synthesis. In this review, we critically evaluate the literature describing the mechanisms used by bacteriophages to reconfigure host metabolism and to plunder intracellular resources to optimise viral production. We also highlight the mechanisms used when, in challenging environments, a 'batten down the hatches' strategy supersedes that of 'plunder and pillage'. Here, the infecting virus increases host fitness through phenotypic augmentation in order to ride out the metaphorical storm, with a concomitant impact on host substrate uptake and metabolism, and ultimately, their interactions with their wider microbial community. Thus, the traditional view of the virus-host relationship as predator and prey does not fully characterise the variety or significance of the interactions observed. Recent advances in viral metagenomics have provided a tantalising glimpse of novel mechanisms of viral metabolic reprogramming in global oceans. Incorporation of these new findings into global biogeochemical models requires experimental evidence from model systems and major improvements in our ability to accurately predict protein function from sequence data.
Collapse
Affiliation(s)
- Joanna Warwick-Dugdale
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH UK
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Holger H. Buchholz
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Michael J. Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH UK
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Ben Temperton
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
225
|
Abstract
Bacteriophages, discovered about a century ago, have been pivotal as models for understanding the fundamental principles of molecular biology. While interest in phage biology declined after the phage "golden era," key recent developments, including advances in phage genomics, microscopy, and the discovery of the CRISPR-Cas anti-phage defense system, have sparked a renaissance in phage research in the past decade. This review highlights recently discovered unexpected complexities in phage biology, describes a new arsenal of phage genes that help them overcome bacterial defenses, and discusses advances toward documentation of the phage biodiversity on a global scale.
Collapse
Affiliation(s)
- Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
226
|
Abstract
The study of bacteriophages (phages) and prophages has provided key insights into almost every cellular process as well as led to the discovery of unexpected new mechanisms and the development of valuable tools. This is exemplified for RNA-based regulation. For instance, the characterization and exploitation of the antiphage CRISPR (clustered regularly interspaced short palindromic repeat) systems is revolutionizing molecular biology. Phage-encoded proteins such as the RNA-binding MS2 protein, which is broadly used to isolate tagged RNAs, also have been developed as valuable tools. Hfq, the RNA chaperone protein central to the function of many base-pairing small RNAs (sRNAs), was first characterized as a bacterial host factor required for Qβ phage replication. The ongoing studies of RNAs are continuing to reveal regulatory connections between infecting phages, prophages, and bacteria and to provide novel insights. There are bacterial and prophage sRNAs that regulate prophage genes, which impact bacterial virulence as well as bacterial cell killing. Conversely, phage- and prophage-encoded sRNAs modulate the expression of bacterial genes modifying metabolism. An interesting subcategory of the prophage-encoded sRNAs are sponge RNAs that inhibit the activities of bacterial-encoded sRNAs. Phages also affect posttranscriptional regulation in bacteria through proteins that inhibit or alter the activities of key bacterial proteins involved in posttranscriptional regulation. However, what is most exciting about phage and prophage research, given the millions of phage-encoded genes that have not yet been characterized, is the vast potential for discovering new RNA regulators and novel mechanisms and for gaining insight into the evolution of regulatory RNAs.
Collapse
|
227
|
Wahl A, Battesti A, Ansaldi M. Prophages in Salmonella enterica: a driving force in reshaping the genome and physiology of their bacterial host? Mol Microbiol 2018; 111:303-316. [PMID: 30466179 PMCID: PMC7380047 DOI: 10.1111/mmi.14167] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
Thanks to the exponentially increasing number of publicly available bacterial genome sequences, one can now estimate the important contribution of integrated viral sequences to the diversity of bacterial genomes. Indeed, temperate bacteriophages are able to stably integrate the genome of their host through site‐specific recombination and transmit vertically to the host siblings. Lysogenic conversion has been long acknowledged to provide additional functions to the host, and particularly to bacterial pathogen genomes where prophages contribute important virulence factors. This review aims particularly at highlighting the current knowledge and questions about lysogeny in Salmonella genomes where functional prophages are abundant, and where genetic interactions between host and prophages are of particular importance for human health considerations.
Collapse
Affiliation(s)
- Astrid Wahl
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Aurélia Battesti
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| |
Collapse
|
228
|
Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, Du S, Rensing C. Pelagiphages in thePodoviridaefamily integrate into host genomes. Environ Microbiol 2018; 21:1989-2001. [DOI: 10.1111/1462-2920.14487] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University Xiamen Fujian China
| | | | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Jing Sun
- Department of MicrobiologyOregon State University Corvallis OR USA
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou Fujian China
| |
Collapse
|
229
|
Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2018; 111:495-513. [PMID: 30475408 PMCID: PMC7379572 DOI: 10.1111/mmi.14170] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2018] [Indexed: 12/15/2022]
Abstract
Pf filamentous prophages are prevalent among clinical and environmental Pseudomonasaeruginosa isolates. Pf4 and Pf5 prophages are integrated into the host genomes of PAO1 and PA14, respectively, and play an important role in biofilm development. However, the genetic factors that directly control the lysis‐lysogeny switch in Pf prophages remain unclear. Here, we identified and characterized the excisionase genes in Pf4 and Pf5 (named xisF4 and xisF5, respectively). XisF4 and XisF5 represent two major subfamilies of functional excisionases and are commonly found in Pf prophages. While both of them can significantly promote prophage excision, only XisF5 is essential for Pf5 excision. XisF4 activates Pf4 phage replication by upregulating the phage initiator gene (PA0727). In addition, xisF4 and the neighboring phage repressor c gene pf4r are transcribed divergently and their 5′‐untranslated regions overlap. XisF4 and Pf4r not only auto‐activate their own expression but also repress each other. Furthermore, two H‐NS family proteins, MvaT and MvaU, coordinately repress Pf4 production by directly repressing xisF4. Collectively, we reveal that Pf prophage excisionases cooperate in controlling lysogeny and phage production.
Collapse
Affiliation(s)
- Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
230
|
Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem Soc Trans 2018; 46:1605-1613. [DOI: 10.1042/bst20180178] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Meeting global food demands for a growing human population with finite natural resources is a major challenge. Aquaculture and agriculture are critical to satisfy food requirements, yet suffer significant losses from bacterial diseases. Therefore, there is an urgent need to develop novel antimicrobial strategies, which is heightened by increasing antibiotic resistance. Bacteriophages (phages) are viruses that specifically infect bacteria, and phage-derived therapies are promising treatments in the fight against bacterial diseases. Here, we describe multiple ways that phages and phage-based technologies can be used as antimicrobials. Antimicrobial activity can be achieved through lysis of targeted bacteria by virulent phages or lytic enzymes. Alternatively, phages can be engineered for the delivery of lethal genes and other cargoes to kill bacteria and to manipulate the bacterial response to conventional antibiotics. We also briefly highlight research exploring phages as potential biocontrol agents with examples from agriculture and aquaculture.
Collapse
|
231
|
Daly RA, Roux S, Borton MA, Morgan DM, Johnston MD, Booker AE, Hoyt DW, Meulia T, Wolfe RA, Hanson AJ, Mouser PJ, Moore JD, Wunch K, Sullivan MB, Wrighton KC, Wilkins MJ. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat Microbiol 2018; 4:352-361. [DOI: 10.1038/s41564-018-0312-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
|
232
|
Howard-Varona C, Vik DR, Solonenko NE, Li YF, Gazitua MC, Chittick L, Samiec JK, Jensen AE, Anderson P, Howard-Varona A, Kinkhabwala AA, Abedon ST, Sullivan MB. Fighting Fire with Fire: Phage Potential for the Treatment of E. coli O157 Infection. Antibiotics (Basel) 2018; 7:E101. [PMID: 30453470 PMCID: PMC6315980 DOI: 10.3390/antibiotics7040101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Hemolytic⁻uremic syndrome is a life-threating disease most often associated with Shiga toxin-producing microorganisms like Escherichia coli (STEC), including E. coli O157:H7. Shiga toxin is encoded by resident prophages present within this bacterium, and both its production and release depend on the induction of Shiga toxin-encoding prophages. Consequently, treatment of STEC infections tend to be largely supportive rather than antibacterial, in part due to concerns about exacerbating such prophage induction. Here we explore STEC O157:H7 prophage induction in vitro as it pertains to phage therapy-the application of bacteriophages as antibacterial agents to treat bacterial infections-to curtail prophage induction events, while also reducing STEC O157:H7 presence. We observed that cultures treated with strictly lytic phages, despite being lysed, produce substantially fewer Shiga toxin-encoding temperate-phage virions than untreated STEC controls. We therefore suggest that phage therapy could have utility as a prophylactic treatment of individuals suspected of having been recently exposed to STEC, especially if prophage induction and by extension Shiga toxin production is not exacerbated.
Collapse
Affiliation(s)
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - M Consuelo Gazitua
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Lauren Chittick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Jennifer K Samiec
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Aubrey E Jensen
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Paige Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
233
|
Zhang QY, Gui JF. Diversity, evolutionary contribution and ecological roles of aquatic viruses. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1486-1502. [DOI: 10.1007/s11427-018-9414-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023]
|
234
|
Arioli S, Eraclio G, Della Scala G, Neri E, Colombo S, Scaloni A, Fortina MG, Mora D. Role of Temperate Bacteriophage ϕ20617 on Streptococcus thermophilus DSM 20617 T Autolysis and Biology. Front Microbiol 2018; 9:2719. [PMID: 30473689 PMCID: PMC6237837 DOI: 10.3389/fmicb.2018.02719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
Streptococcus thermophilus DSM 20167T showed autolytic behavior when cultured in lactose- and sucrose-limited conditions. The amount of cell lysis induced was inversely related to the energetic status of the cells, as demonstrated by exposing cells to membrane-uncoupling and glycolysis inhibitors. Genome sequence analysis of strain DSM 20617T revealed the presence of a pac-type temperate bacteriophage, designated Φ20617, whose genomic organization and structure resemble those of temperate streptococcal bacteriophages. The prophage integrated at the 3'-end of the gene encoding the glycolytic enzyme enolase (eno), between eno and the lipoteichoic acid synthase-encoding gene ltaS, affecting their transcription. Comparative experiments conducted on the wild-type strain and a phage-cured derivative strain revealed that the cell-wall integrity of the lysogenic strain was compromised even in the absence of detectable cell lysis. More importantly, adhesion to solid surfaces and heat resistance were significantly higher in the lysogenic strain than in the phage-cured derivative. The characterization of the phenotype of a lysogenic S. thermophilus and its phage-cured derivative is relevant to understanding the ecological constraints that drive the stable association between a temperate phage and its bacterial host.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Giovanni Eraclio
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Giulia Della Scala
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Eros Neri
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Stefano Colombo
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Maria Grazia Fortina
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
235
|
Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 2018; 17:13-24. [DOI: 10.1038/s41579-018-0112-2] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
236
|
Keen EC, Dantas G. Close Encounters of Three Kinds: Bacteriophages, Commensal Bacteria, and Host Immunity. Trends Microbiol 2018; 26:943-954. [PMID: 29909042 PMCID: PMC6436384 DOI: 10.1016/j.tim.2018.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
Recent years have witnessed an explosion of interest in the human microbiota. Although commensal bacteria have dominated research efforts to date, mounting evidence suggests that endogenous viral populations (the 'virome') play key roles in basic human physiology. The most numerous constituents of the human virome are not eukaryotic viruses but rather bacteriophages, viruses that infect bacteria. Here, we review phages' interactions with their immediate (prokaryotic) and extended (eukaryotic) hosts and with each other, with a particular emphasis on the temperate phages and prophages which dominate the human virome. We also discuss key outstanding questions in this emerging field and emphasize the urgent need for functional studies in animal models to complement previous in vitro work and current computational approaches.
Collapse
Affiliation(s)
- Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
237
|
Rohde C, Wittmann J, Kutter E. Bacteriophages: A Therapy Concept against Multi-Drug-Resistant Bacteria. Surg Infect (Larchmt) 2018; 19:737-744. [PMID: 30256176 PMCID: PMC6302670 DOI: 10.1089/sur.2018.184] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) are viruses that kill bacteria specifically but cannot infect other kinds of organisms. They have attracted new attention since the increasing antibiotic resistance developed into a global crisis. Phage therapy, a 100-year-old form of antibacterial treatment in medicine, is gaining momentum because phages represent a therapy concept without such negative side effects as toxicity; phages are the only therapeutic agent that regulates itself at the sites of infection and decays when the infectious bacteria have been killed. Nature is an almost infinite phage resource: New ones can be isolated for most kinds of problem bacteria as needed; bacteria and their phages constantly co-evolve. This is important as new pathogenic bacterial variants evolve and new challenging situations arise. In human therapy, "cocktails" of multiple phages may reduce the probability of selecting bacteria that developed resistance to a certain phage. Antibiotic agents can be applied together with phages in many circumstances; the two often function synergistically. Phages cannot be expected to replace antibiotic agents in our medical arsenal, but can be used where antibiotic agents fail. The selected phages, however, must be obligately virulent, well-characterized, and highly purified before application. Countless patients and their physicians are waiting for re-establishing phage therapy as a flexible, tailored medicine; infrastructures should be built in all countries urgently: The 2015 World Health Organization assembly resolution 68.7.3. called for national action plans by May 2017 to combat the antimicrobial drug resistance crisis. This article discusses the therapeutic potential of phages and describes challenges and recent developments.
Collapse
Affiliation(s)
- Christine Rohde
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | |
Collapse
|
238
|
García-Pastor L, Sánchez-Romero MA, Gutiérrez G, Puerta-Fernández E, Casadesús J. Formation of phenotypic lineages in Salmonella enterica by a pleiotropic fimbrial switch. PLoS Genet 2018; 14:e1007677. [PMID: 30252837 PMCID: PMC6173445 DOI: 10.1371/journal.pgen.1007677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/05/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
The std locus of Salmonella enterica, an operon acquired by horizontal transfer, encodes fimbriae that permit adhesion to epithelial cells in the large intestine. Expression of the std operon is bistable, yielding a major subpopulation of StdOFF cells (99.7%) and a minor subpopulation of StdON cells (0.3%). In addition to fimbrial proteins, the std operon encodes two proteins, StdE and StdF, that have DNA binding capacity and control transcription of loci involved in flagellar synthesis, chemotaxis, virulence, conjugal transfer, biofilm formation, and other cellular functions. As a consequence of StdEF pleiotropic transcriptional control, StdON and StdOFF subpopulations may differ not only in the presence or absence of Std fimbriae but also in additional phenotypic traits. Separation of StdOFF and StdON lineages by cell sorting confirms the occurrence of lineage-specific features. Formation of StdOFF and StdON lineages may thus be viewed as a rudimentary bacterial differentiation program. We show that the std fimbrial operon of Salmonella enterica undergoes bistable expression, a trait far from exceptional among loci that encode components of the bacterial envelope. However, an unsuspected trait of the std operon is the presence of two genes that encode pleiotropic regulators of gene expression. Indeed, StdE and StdF are DNA-binding proteins that control transcription of hundreds of genes. As a consequence, StdEF govern multiple phenotypic traits, and the fimbriated and non-fimbriated Salmonella lineages may differ in motility, virulence, conjugal transfer, biofilm formation, and potentially in other phenotypic features. We hypothesize that pleiotropic control of gene expression by StdEF may contribute to adapt the non-fimbriated lineage to acute infection and the fimbriated lineage to chronic infection.
Collapse
Affiliation(s)
- Lucía García-Pastor
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Elena Puerta-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- * E-mail: (EPF); (JC)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail: (EPF); (JC)
| |
Collapse
|
239
|
Gabiatti N, Yu P, Mathieu J, Lu GW, Wang X, Zhang H, Soares HM, Alvarez PJJ. Bacterial Endospores as Phage Genome Carriers and Protective Shells. Appl Environ Microbiol 2018; 84:e01186-18. [PMID: 30006404 PMCID: PMC6121981 DOI: 10.1128/aem.01186-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Bacterial endospores can serve as phage genome protection shells against various environmental stresses to enhance microbial control applications. The genomes of polyvalent lytic Bacillus phages PBSC1 and PBSC2, which infect both B. subtilis subsp. subtilis and B. cereus NRS 248, were incorporated into B. subtilis endospores (without integration into the host chromosome). When PBSC1 and PBSC2 were released from germinating endospores, they significantly inhibited the growth of the targeted opportunistic pathogen B. cereus Optimal endospore entrapment was achieved when phages were introduced to the fast-sporulating prespores at a multiplicity of infection of 1. Longer endospore maturation (48 h versus 24 h) increased both spore yield and efficiency of entrapment. Compared with free phages, spore-protected phage genomes showed significantly higher resistance toward high temperatures (60 to 80°C), extreme pH (pH 2 or pH 12), and copper ions (0.1 to 10 mg/liter). Endospore germination is inducible by low concentrations of l-alanine or by a germinant mixture (l-asparagine, d-glucose, d-fructose, and K+) to trigger the expression, assembly, and consequent release of phage particles within 60 to 90 min. Overall, the superior resiliency of polyvalent phages protected by endospores might enable nonrefrigerated phage storage and enhance phage applications after exposure to adverse environmental conditions.IMPORTANCE Bacteriophages are being considered for the control of multidrug-resistant and other problematic bacteria in environmental systems. However, the efficacy of phage-based microbial control is limited by infectivity loss during phage delivery and/or storage. Here, we exploit the pseudolysogenic state of phages, which involves incorporation of their genome into bacterial endospores (without integration into the host chromosome), to enhance survival in unfavorable environments. We isolated polyvalent (broad-host-range) phages that efficiently infect both benign and opportunistically pathogenic Bacillus strains and encapsulated the phage genomes in B. subtilis endospores to significantly improve resistance to various environmental stressors. Encapsulation by spores also significantly enhanced phage genome viability during storage. We also show that endospore germination can be induced on demand with nutrient germinants that trigger the release of active phages. Overall, we demonstrate that encapsulation of polyvalent phage genomes into benign endospores holds great promise for broadening the scope and efficacy of phage biocontrol.
Collapse
Affiliation(s)
- Naiana Gabiatti
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Grant W Lu
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Xifan Wang
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hugo M Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
240
|
Oladeinde A, Cook K, Orlek A, Zock G, Herrington K, Cox N, Plumblee Lawrence J, Hall C. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS One 2018; 13:e0202286. [PMID: 30169497 PMCID: PMC6118388 DOI: 10.1371/journal.pone.0202286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is a clinically-important serovar linked to food-borne illness, and commonly isolated from poultry. Investigations of a large, multistate outbreak in the USA in 2013 identified poultry litter (PL) as an important extra-intestinal environment that may have selected for specific S. Heidelberg strains. Poultry litter is a mixture of bedding materials and chicken excreta that contains chicken gastrointestinal (GI) bacteria, undigested feed, feathers, and other materials of chicken origin. In this study, we performed a series of controlled laboratory experiments which assessed the microevolution of two S. Heidelberg strains (SH-2813 and SH-116) in PL previously used to raise 3 flocks of broiler chickens. The strains are closely related at the chromosome level, differing from the reference genome by 109 and 89 single nucleotide polymorphisms/InDels, respectively. Whole genome sequencing was performed on 86 isolates recovered after 0, 1, 7 and 14 days of microevolution in PL. Only strains carrying an IncX1 (37kb), 2 ColE1 (4 and 6kb) and 1 ColpVC (2kb) plasmids survived more than 7 days in PL. Competition experiments showed that carriage of these plasmids was associated with increased fitness. This increased fitness was associated with an increased copy number of IncX1 and ColE1 plasmids. Further, all Col plasmid-bearing strains had hotspot mutations in 37 loci on the chromosome and in 3 loci on the IncX1 plasmid. Additionally, we observed a decrease in susceptibility to tobramycin, kanamycin, gentamicin, neomycin and fosfomycin for Col plasmid-bearing strains. Our study demonstrates how positive selection from poultry litter can change the evolutionary path of S. Heidelberg.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Alex Orlek
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Greg Zock
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kyler Herrington
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Nelson Cox
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Jodie Plumblee Lawrence
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Carolina Hall
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| |
Collapse
|
241
|
Das S, Pettersson BMF, Behra PRK, Mallick A, Cheramie M, Ramesh M, Shirreff L, DuCote T, Dasgupta S, Ennis DG, Kirsebom LA. Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing. Sci Rep 2018; 8:12040. [PMID: 30104693 PMCID: PMC6089878 DOI: 10.1038/s41598-018-30152-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the "M"- and the "Aronson"-type. We suggest that these two clusters should be considered to represent two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to the ability of M. marinum to occupy different ecological niches.
Collapse
Affiliation(s)
- Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Amrita Mallick
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Martin Cheramie
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Lisa Shirreff
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Tanner DuCote
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
242
|
Duerkop BA, Kleiner M, Paez-Espino D, Zhu W, Bushnell B, Hassell B, Winter SE, Kyrpides NC, Hooper LV. Murine colitis reveals a disease-associated bacteriophage community. Nat Microbiol 2018; 3:1023-1031. [PMID: 30038310 PMCID: PMC6112176 DOI: 10.1038/s41564-018-0210-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/27/2018] [Indexed: 02/08/2023]
Abstract
The dysregulation of intestinal microbial communities is associated with inflammatory bowel diseases (IBD). Studies aimed at understanding the contribution of the microbiota to inflammatory diseases have primarily focused on bacteria, yet the intestine harbors a viral component dominated by prokaryotic viruses known as bacteriophages (phages). Phage numbers are elevated at the intestinal mucosal surface and phages increase in abundance during IBD, suggesting that phages play an unidentified role in IBD. We used a sequence independent approach for the selection of viral contigs and then applied quantitative metagenomics to study intestinal phages in a mouse model of colitis. We discovered that during colitis the intestinal phage population is altered and transitions from an ordered state to a stochastic dysbiosis. We identified phages specific to pathobiotic hosts associated with intestinal disease, whose abundances are significantly altered during colitis. Additionally, phage populations in healthy and diseased mice overlapped with phages from healthy humans and humans with IBD. Our findings indicate that intestinal phage communities are altered during inflammatory disease establishing a platform for investigating phage involvement in IBD.
Collapse
Affiliation(s)
- Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | | | - Wenhan Zhu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brian Bushnell
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Brian Hassell
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
243
|
Squires RA. Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again. N Z Vet J 2018; 66:229-235. [PMID: 29925297 DOI: 10.1080/00480169.2018.1491348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteriophages (or phages) are naturally-occurring viruses that can infect and kill bacteria. They are remarkably diverse, numerous and widespread. Each phage has a narrow host range yet a large majority of bacteria studied so far play host to bacteriophages, hence the remarkable phage diversity. Phages were discovered just over 100 years ago and they have been used for treatment of bacterial infections in humans and other animals since the 1920s. They have also been studied intensively and this has led to, and continues to lead to, major insights in the fields of molecular biology and recombinant DNA technology, including that DNA is the genetic material, nucleotides are arranged in triplets to make codons, and messenger RNA is needed for protein synthesis. This article begins with a description of bacteriophages and explains why there has recently been a strong resurgence of interest in their clinical use for treatment of bacterial infections, particularly those caused by organisms resistant to multiple antimicrobial compounds. The history of bacteriophage therapy is briefly reviewed, followed by a review and critique of promising but very limited clinical research on the use of bacteriophages to treat bacterial infections in dogs. Other potential veterinary uses and benefits of bacteriophage therapy are also briefly discussed. There are important practical challenges that will have to be overcome before widespread implementation and commercialisation of bacteriophage therapy can be achieved, which are also considered.
Collapse
Affiliation(s)
- R A Squires
- a Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Australia
| |
Collapse
|
244
|
Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Sci Rep 2018; 8:9973. [PMID: 29967440 PMCID: PMC6028584 DOI: 10.1038/s41598-018-28326-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
Prophages are known to encode important virulence factors in the human pathogen Vibrio cholerae. However, little is known about the occurrence and composition of prophage-encoded traits in environmental vibrios. A database of 5,674 prophage-like elements constructed from 1,874 Vibrio genome sequences, covering sixty-four species, revealed that prophage-like elements encoding possible properties such as virulence and antibiotic resistance are widely distributed among environmental vibrios, including strains classified as non-pathogenic. Moreover, we found that 45% of Vibrio species harbored a complete prophage-like element belonging to the Inoviridae family, which encode the zonula occludens toxin (Zot) previously described in the V. cholerae. Interestingly, these zot-encoding prophages were found in a variety of Vibrio strains covering both clinical and marine isolates, including strains from deep sea hydrothermal vents and deep subseafloor sediments. In addition, the observation that a spacer from the CRISPR locus in the marine fish pathogen V. anguillarum strain PF7 had 95% sequence identity with a zot gene from the Inoviridae prophage found in V. anguillarum strain PF4, suggests acquired resistance to inoviruses in this species. Altogether, our results contribute to the understanding of the role of prophages as drivers of evolution and virulence in the marine Vibrio bacteria.
Collapse
|
245
|
Deutsch DR, Utter B, Verratti KJ, Sichtig H, Tallon LJ, Fischetti VA. Extra-Chromosomal DNA Sequencing Reveals Episomal Prophages Capable of Impacting Virulence Factor Expression in Staphylococcus aureus. Front Microbiol 2018; 9:1406. [PMID: 30013526 PMCID: PMC6036120 DOI: 10.3389/fmicb.2018.01406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/07/2018] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen with well-characterized bacteriophage contributions to its virulence potential. Recently, we identified plasmidial and episomal prophages in S. aureus strains using an extra-chromosomal DNA (exDNA) isolation and sequencing approach, uncovering the plasmidial phage ϕBU01, which was found to encode important virulence determinants. Here, we expanded our extra-chromosomal sequencing of S. aureus, selecting 15 diverse clinical isolates with known chromosomal sequences for exDNA isolation and next-generation sequencing. We uncovered the presence of additional episomal prophages in 5 of 15 samples, but did not identify any plasmidial prophages. exDNA isolation was found to enrich for circular prophage elements, and qPCR characterization of the strains revealed that such prophage enrichment is detectable only in exDNA samples and would likely be missed in whole-genome DNA preparations (e.g., detection of episomal prophages did not correlate with higher prophage excision rates nor higher excised prophage copy numbers in qPCR experiments using whole-genome DNA). In S. aureus MSSA476, we found that enrichment and excision of the prophage ϕSa4ms into the cytoplasm was temporal and that episomal prophage localization did not appear to be a precursor to lytic cycle replication, suggesting ϕSa4ms excision into the cytoplasm may be part of a novel lysogenic switch. For example, we show that ϕSa4ms excision alters the promoter and transcription of htrA2 , encoding a stress-response serine protease, and that alternative promotion of htrA2 confers increased heat-stress survival in S. aureus COL. Overall, exDNA isolation and focused sequencing may offer a more complete genomic picture for bacterial pathogens, offering insights into important chromosomal dynamics likely missed with whole-genome DNA-based approaches.
Collapse
Affiliation(s)
- Douglas R Deutsch
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| | - Bryan Utter
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| | - Kathleen J Verratti
- Applied Physics Laboratory, National Security Systems Biology Center, Johns Hopkins University, Laurel, MD, United States
| | - Heike Sichtig
- Center for Devices and Radiological Health, Office of In Vitro Diagnostics, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Luke J Tallon
- Genomics Resource Center, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
246
|
Chatterjee A, Duerkop BA. Beyond Bacteria: Bacteriophage-Eukaryotic Host Interactions Reveal Emerging Paradigms of Health and Disease. Front Microbiol 2018; 9:1394. [PMID: 29997604 PMCID: PMC6030379 DOI: 10.3389/fmicb.2018.01394] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
For decades, a wealth of information has been acquired to define how host associated microbial communities contribute to health and disease. Within the human microbiota this has largely focused on bacteria, yet there is a myriad of viruses that occupy various tissue sites, the most abundant being bacteriophages that infect bacteria. Animal hosts are colonized with niche specific microbial communities where bacteria are continuously co-evolving with phages. Bacterial growth, metabolic activity, pathogenicity, antibiotic resistance, interspecies competition and evolution can all be influenced by phage infection and the beneficial nature of such interactions suggests that to an extent phages are tolerated by their hosts. With the understanding that phage-specific host–microbe interactions likely contribute to bacterial interactions with their mammalian hosts, phages and their communities may also impact aspects of mammalian health and disease that have gone unrecognized. Here, we review recent progress in understanding how bacteria acquire and tolerate phage in both pure culture and within complex communities. We apply these findings to discuss how intra-body phages interact with bacteria to influence their eukaryotic hosts through potential contributions to microbial homeostasis, mucosal immunity, immune tolerance and autoimmunity.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
247
|
Vale FF, Lehours P. Relating Phage Genomes to Helicobacter pylori Population Structure: General Steps Using Whole-Genome Sequencing Data. Int J Mol Sci 2018; 19:ijms19071831. [PMID: 29933614 PMCID: PMC6073503 DOI: 10.3390/ijms19071831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
The review uses the Helicobacter pylori, the gastric bacterium that colonizes the human stomach, to address how to obtain information from bacterial genomes about prophage biology. In a time of continuous growing number of genomes available, this review provides tools to explore genomes for prophage presence, or other mobile genetic elements and virulence factors. The review starts by covering the genetic diversity of H. pylori and then moves to the biologic basis and the bioinformatics approaches used for studding the H. pylori phage biology from their genomes and how this is related with the bacterial population structure. Aspects concerning H. pylori prophage biology, evolution and phylogeography are discussed.
Collapse
Affiliation(s)
- Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Philippe Lehours
- Laboratoire de Bacteriologie, Centre National de Référence des Campylobacters et Hélicobacters, Place Amélie Raba Léon, 33076 Bordeaux, France.
- INSERM U1053-UMR Bordeaux Research in Translational Oncology, BaRITOn, 33000 Bordeaux, France.
| |
Collapse
|
248
|
Li G, Shen M, Yang Y, Le S, Li M, Wang J, Zhao Y, Tan Y, Hu F, Lu S. Adaptation of Pseudomonas aeruginosa to Phage PaP1 Predation via O-Antigen Polymerase Mutation. Front Microbiol 2018; 9:1170. [PMID: 29910791 PMCID: PMC5992289 DOI: 10.3389/fmicb.2018.01170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
Adaptation of bacteria to phage predation poses a major obstacle for phage therapy. Bacteria adopt multiple mechanisms, such as inhibition of phage adsorption and CRISPR/Cas systems, to resist phage infection. Here, a phage-resistant mutant of Pseudomonas aeruginosa strain PA1 under the infection of lytic phage PaP1 was selected for further study. The PaP1-resistant variant, termed PA1RG, showed decreased adsorption to PaP1 and was devoid of long chain O-antigen on its cell envelope. Whole genome sequencing and comparative analysis revealed a single nucleotide mutation in the gene PA1S_08510, which encodes the O-antigen polymerase Wzy that is involved in lipopolysaccharide (LPS) biosynthesis. PA1_Wzy was classified into the O6 serotype based on sequence homology analysis and adopts a transmembrane topology similar to that seem with P. aeruginosa strain PAO1. Complementation of gene wzy in trans enabled the mutant PA1RG to produce the normal LPS pattern with long chain O-antigen and restored the susceptibility of PA1RG to phage PaP1 infection. While wzy mutation did not affect bacterial growth, mutant PA1RG exhibited decreased biofilm production, suggesting a fitness cost of PA1 associated with resistance of phage PaP1 predation. This study uncovered the mechanism responsible for PA1RG resistance to phage PaP1 via wzy mutation and revealed the role of phages in regulating bacterial behavior.
Collapse
Affiliation(s)
- Gang Li
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Mengyu Shen
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Yuhui Yang
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Army Medical University, Chongqing, China
| |
Collapse
|
249
|
Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA, Brewer HM, Ansong C, Orr G, Adkins JN, Sullivan MB. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. THE ISME JOURNAL 2018; 12:1605-1618. [PMID: 29568113 PMCID: PMC5955906 DOI: 10.1038/s41396-018-0099-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/08/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Phage-host interactions are critical to ecology, evolution, and biotechnology. Central to those is infection efficiency, which remains poorly understood, particularly in nature. Here we apply genome-wide transcriptomics and proteomics to investigate infection efficiency in nature's own experiment: two nearly identical (genetically and physiologically) Bacteroidetes bacterial strains (host18 and host38) that are genetically intractable, but environmentally important, where phage infection efficiency varies. On host18, specialist phage phi18:3 infects efficiently, whereas generalist phi38:1 infects inefficiently. On host38, only phi38:1 infects, and efficiently. Overall, phi18:3 globally repressed host18's transcriptome and proteome, expressed genes that likely evaded host restriction/modification (R/M) defenses and controlled its metabolism, and synchronized phage transcription with translation. In contrast, phi38:1 failed to repress host18's transcriptome and proteome, did not evade host R/M defenses or express genes for metabolism control, did not synchronize transcripts with proteins and its protein abundances were likely targeted by host proteases. However, on host38, phi38:1 globally repressed host transcriptome and proteome, synchronized phage transcription with translation, and infected host38 efficiently. Together these findings reveal multiple infection inefficiencies. While this contrasts the single mechanisms often revealed in laboratory mutant studies, it likely better reflects the phage-host interaction dynamics that occur in nature.
Collapse
Affiliation(s)
| | | | | | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
250
|
Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0424. [PMID: 29061896 DOI: 10.1098/rstb.2016.0424] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
In biological systems, evolutionary innovations can spread not only from parent to offspring (i.e. vertical transmission), but also 'horizontally' between individuals, who may or may not be related. Nowhere is this more apparent than in bacteria, where novel ecological traits can spread rapidly within and between species through horizontal gene transfer (HGT). This important evolutionary process is predominantly a by-product of the infectious spread of mobile genetic elements (MGEs). We will discuss the ecological conditions that favour the spread of traits by HGT, the evolutionary and social consequences of sharing traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, Arthur Willis Environment Centre, University of Sheffield, 1 Maxfield Avenue, Sheffield S10 1AE, UK
| |
Collapse
|