201
|
Kuo WT, Chang JM, Chen CC, Tsao N, Chang CP. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life 2021; 74:157-169. [PMID: 34467634 DOI: 10.1002/iub.2543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are key cells in regulating tumor development, metastasis, immune responses, inflammation, and chemoresistance. In response to TME stimulation, circulating monocytes are recruited and differentiated as TAMs. Most TAMs are defined as alternatively activated (M2) phenotype to create immunosuppressive TME and support tumor progression. In contrast, classically activated (M1) TAMs can produce pro-inflammatory cytokines and enhance immune responses against tumor development. Autophagy is a conserved catabolic process to control cellular homeostasis and biological function. Emerging evidence reveals crucial contribution of autophagy in modulating TAM plasticity and functional polarization in TME. In this review, we introduce the current understanding of autophagy-regulated TAM function in development of cancer. We focus on how autophagy modulates antigen presentation, LC3-associated phagocytosis, cytokine secretion, inflammasome regulation, recruitment, differentiation, and polarization of TAMs and suggest strategies for potential therapeutics by targeting autophagy in TAMs. We expect this review can provide a new notion of future cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chin Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Nina Tsao
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Peng Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
202
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
203
|
Xu S, Zhong Y, Nie C, Pan Y, Adeli M, Haag R. Co-Delivery of Doxorubicin and Chloroquine by Polyglycerol Functionalized MoS2 Nanosheets for Efficient Multidrug-Resistant Cancer Therapy. Macromol Biosci 2021; 21:e2100233. [PMID: 34411417 DOI: 10.1002/mabi.202100233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Indexed: 01/11/2023]
Abstract
2D MoS2 has shown a great potential in biomedical applications, due to its superior loading capacity, photothermal property, and biodegradation. In this work, polyglycerol functionalized MoS2 nanosheets with photothermal and pH dual-stimuli responsive properties are used for the co-delivery of doxorubicin and chloroquine and treatment of multidrug-resistant HeLa (HeLa-R) cells. The polyglycerol functionalized MoS2 nanosheets with 80 nm average size show a high biocompatibility and loading efficiency (≈90%) for both drugs. The release of drugs from the nanosheets at pH 5.5 is significantly promoted by laser irradiation leading to efficient destruction of incubated HeLa-R cells. In vitro evaluation shows that the designed nanoplatform has a high ability to kill HeLa-R cells. Confocal experiments demonstrate that the synthesized drug delivery system enhances the cellular uptake of DOX via folic acid targeting ligand. Taking advantage of the combined properties including biocompatibility and targeting ability as well as high loading capacity and photothermal release, this multifunctional nanosystem is a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Shaohui Xu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Yinan Zhong
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Yuanwei Pan
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Mohsen Adeli
- Faculty of Science, Department of Chemistry, Lorestan University, Khorramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
204
|
Nabar NR, Heijjer CN, Shi CS, Hwang IY, Ganesan S, Karlsson MCI, Kehrl JH. LRRK2 is required for CD38-mediated NAADP-Ca 2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy 2021; 18:204-222. [PMID: 34313548 PMCID: PMC8865229 DOI: 10.1080/15548627.2021.1954779] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD38 is a cell surface receptor capable of generating calcium-mobilizing second messengers. It has been implicated in host defense and cancer biology, but signaling mechanisms downstream of CD38 remain unclear. Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of Parkinson disease; it is also a risk factor for Crohn disease, leprosy, and certain types of cancers. The pathogenesis of these diseases involves inflammation and macroautophagy/autophagy, processes both CD38 and LRRK2 are implicated in. Here, we mechanistically and functionally link CD38 and LRRK2 as upstream activators of TFEB (transcription factor EB), a host defense transcription factor and the master transcriptional regulator of the autophagy/lysosome machinery. In B-lymphocytes and macrophages, we show that CD38 and LRRK2 exist in a complex on the plasma membrane. Ligation of CD38 with the monoclonal antibody clone 90 results in internalization of the CD38-LRRK2 complex and its targeting to the endolysosomal system. This generates an NAADP-dependent calcium signal, which requires LRRK2 kinase activity, and results in the downstream activation of TFEB. lrrk2 KO macrophages accordingly have TFEB activation defects following CD38 or LPS stimulation and fail to switch to glycolytic metabolism after LPS treatment. In overexpression models, the pathogenic LRRK2G2019S mutant promotes hyperactivation of TFEB even in the absence of CD38, both by stabilizing TFEB and promoting its nuclear translocation via aberrant calcium signaling. In sum, we have identified a physiological CD38-LRRK2-TFEB signaling axis in immune cells. The common pathogenic mutant, LRRK2G2019S, appears to hijack this pathway. Abbreviations:ADPR: ADP-ribose; AMPK: AMP-activated protein kinase; BMDM: bone marrow-derived macrophage; cADPR: cyclic-ADP-ribose; COR: C-terminal of ROC; CTSD: cathepsin D; ECAR: extracellular acidification rate; EDTA: ethylenediaminetetraacetic acid; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GPN: Gly-Phe β-naphthylamide; GSK3B/GSK3β: glycogen synthase kinase 3 beta; GTP: guanosine triphosphate; KD: knockdown; LAMP1: lysosomal-associated membrane protein 1; LRR: leucine rich repeat; LRRK2: leucine rich repeat kinase 2; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; MCOLN1: mucolipin 1; MFI: mean fluorescence intensity; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NAADP: nicotinic acid adenine dinucleotide phosphate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; PD: Parkinson disease; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; q-RT-PCR: quantitative reverse transcription polymerase chain reaction; ROC: Ras of complex; siRNA: small interfering RNA; SQSTM1/p62: sequestome 1; TFEB: transcription factor EB; TPCN: two pore channel; TRPM2: transient receptor potential cation channel, subfamily M, member 2; ZKSCAN3: zinc finger with KRAB and SCAN domains 3
Collapse
Affiliation(s)
- Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Heijjer
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
205
|
Fu Y, Peng Y, Zhao S, Mou J, Zeng L, Jiang X, Yang C, Huang C, Li Y, Lu Y, Wu M, Yang Y, Kong T, Lai Q, Wu Y, Yao Y, Wang Y, Gou L, Yang J. Combination Foretinib and Anti-PD-1 Antibody Immunotherapy for Colorectal Carcinoma. Front Cell Dev Biol 2021; 9:689727. [PMID: 34307367 PMCID: PMC8298272 DOI: 10.3389/fcell.2021.689727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors have achieved unprecedented success in cancer immunotherapy. However, the overall response rate to immune checkpoint inhibitor therapy for many cancers is only between 20 and 40%, and even less for colorectal cancer (CRC) patients. Thus, there is an urgent need to develop an efficient immunotherapeutic strategy for CRC. Here, we developed a novel CRC combination therapy consisting of a multiple receptor tyrosine kinase inhibitor (Foretinib) and anti-PD-1 antibody. The combination therapy significantly inhibited tumor growth in mice, led to improved tumor regression without relapse (83% for CT26 tumors and 50% for MC38 tumors) and prolonged overall survival. Mechanistically, Foretinib caused increased levels of PD-L1 via activating the JAK2-STAT1 pathway, which could improve the effectiveness of the immune checkpoint inhibitor. Moreover, the combination therapy remodeled the tumor microenvironment and enhanced anti-tumor immunity by further increasing the infiltration and improving the function of T cells, decreasing the percentage of tumor-associated macrophages (TAMs) and inhibiting their polarization toward the M2 phenotype. Furthermore, the combination therapy inhibited the metastasis of CT26-Luc tumors to the lung in BALB/c mouse by reducing proportions of regulatory T-cells, TAMs and M2 phenotype TAMs in their lungs. This study suggests that a novel combination therapy utilizing both Foretinib and anti-PD-1 antibody could be an effective combination strategy for CRC immunotherapy.
Collapse
Affiliation(s)
- Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Mou
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu, China
| | - Lishi Zeng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chengli Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuyan Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Kong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangping Wu
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- West China School of Public Health and Healthy Food Evaluation Research Center/No. 4 West China Teaching Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
206
|
Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007576. [PMID: 34050699 DOI: 10.1002/adma.202007576] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The discovery of immune checkpoint blockade has revolutionized the field of immuno-oncology and established the foundation for developing various new therapies that can surpass conventional cancer treatments. Most recent immunotherapeutic strategies have focused on adaptive immune responses by targeting T cell-activating pathways, genetic engineering of T cells with chimeric antigen receptors, or bispecific antibodies. Despite the unprecedented clinical success, these T cell-based treatments have only benefited a small proportion of patients. Thus, the need for the next generation of cancer immunotherapy is driven by identifying novel therapeutic molecules or new immunoengineered cells. To maximize the therapeutic potency via innate immunogenicity, the convergence of innate immunity-based therapy and biomaterials is required to yield an efficient index in clinical trials. This review highlights how biomaterials can efficiently reprogram and recruit innate immune cells in tumors and ultimately initiate activation of T cell immunity against advanced cancers. Moreover, the design and specific biomaterials that improve innate immune cells' targeting ability to selectively activate immunogenicity with minimal adverse effects are discussed.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
207
|
Krueger J, Santinon F, Kazanova A, Issa ME, Larrivee B, Kremer R, Milhalcioiu C, Rudd CE. Hydroxychloroquine (HCQ) decreases the benefit of anti-PD-1 immune checkpoint blockade in tumor immunotherapy. PLoS One 2021; 16:e0251731. [PMID: 34181666 PMCID: PMC8238207 DOI: 10.1371/journal.pone.0251731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy using checkpoint blockade (ICB) with antibodies such as anti-PD-1 has revolutionised the treatment of many cancers. Despite its use to treat COVID-19 patients and autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis, the effect of hydroxychloroquine (HCQ) on cancer immunotherapy has not been examined. In this study, remarkably, we find that HCQ alone, or in combination with azithromycin (AZ), at doses used to treat patients, decreased the therapeutic benefit of anti-PD-1 in cancer immunotherapy. No deleterious effect was seen on untreated tumors. Mechanistically, HCQ and HCQ/AZ inhibited PD-L1 expression on tumor cells, while specifically targeting the anti-PD-1 induced increase in progenitor CD8+CD44+PD-1+TCF1+ tumor infiltrating T cells (TILs) and the generation of CD8+CD44+PD-1+ effectors. Surprisingly, it also impaired the appearance of a subset of terminally exhausted CD8+ TILs. No effect was seen on the presence of CD4+ T cells, FoxP3+ regulatory T cells (Tregs), thymic subsets, B cells, antibody production, myeloid cells, or the vasculature of mice. This study indicates for the first time that HCQ and HCQ/AZ negatively impact the ability of anti-PD-1 checkpoint blockade to promote tumor rejection.
Collapse
Affiliation(s)
- Janna Krueger
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital (CR-HMR) Montreal, Quebec, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, Quebec, Canada
| | - Francois Santinon
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital (CR-HMR) Montreal, Quebec, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, Quebec, Canada
| | - Alexandra Kazanova
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital (CR-HMR) Montreal, Quebec, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, Quebec, Canada
| | - Mark E. Issa
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital (CR-HMR) Montreal, Quebec, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, Quebec, Canada
| | - Bruno Larrivee
- Department of Ophthalmology, Universite de Montreal, Montreal, Quebec, Canada
| | - Richard Kremer
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, Montreal, Canada
| | - Catalin Milhalcioiu
- Division of Medical Oncology, Department of Medicine, McGill University Health Center, Montreal, Canada
| | - Christopher E. Rudd
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital (CR-HMR) Montreal, Quebec, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, Montreal, Canada
| |
Collapse
|
208
|
Fan D, Yue Q, Chen J, Wang C, Yu R, Jin Z, Yin S, Wang Q, Chen L, Liao X, Peng C, Zhang J, Cao Z, Mao Y, Huang R, Chen L, Li C. Reprogramming the immunosuppressive microenvironment of IDH1 wild-type glioblastoma by blocking Wnt signaling between microglia and cancer cells. Oncoimmunology 2021; 10:1932061. [PMID: 34123575 PMCID: PMC8183516 DOI: 10.1080/2162402x.2021.1932061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vast majority (>90%) of glioblastoma (GBM) patients belong to the isocitrate dehydrogenase 1 wild type (IDH1WT) group which exhibits a poor prognosis with a median survival of less than 15 months. This study demonstrated numerous immunosuppressive genes as well as β-catenin gene, pivotal for Wnt/β-catenin signaling, were upregulated in 206 IDH1WT glioma patients using the Chinese Glioma Genome Atlas (CGGA) database. The increase in microglia with an immunosuppressive phenotype and the overexpression of β-catenin protein were further verified in IDH1WT GBM patients and IDH1WT GL261 glioma allografts. Subsequently, we found that IDH1WT GL261 cell-derived conditioned medium activated Wnt/β-catenin signaling in primary microglia and triggered their transition to an immunosuppressive phenotype. Blocking Wnt/β-catenin signaling not only attenuated microglial polarization to the immunosuppressive subtype but also reactivated immune responses in IDH1WT GBM allografts by simultaneously enhancing cytotoxic CD8+ T cell infiltration and downregulating regulatory T cells. Positron emission tomography imaging demonstrated enhanced proinflammatory activities in IDH1WT GBM allografts after the blockade of Wnt signaling. Finally, gavage administration of a Wnt signaling inhibitor significantly restrained tumor proliferation and improved the survival of model mice bearing IDH1WT GBM allografts. Depletion of CD8+ T cells remarkably abrogated the therapeutic efficacy induced by the Wnt signaling inhibitor. Overall, the present work indicates that the crosstalk between IDH1WT glioma cells and immunosuppressive microglia is important in maintaining the immunosuppressive glioma microenvironment. Blocking Wnt/β-catenin signaling is a promising complement for IDH1WT GBM treatment by improving the hostile immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Dandan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Ziyi Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shujie Yin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luo Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xueling Liao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Chengyuan Peng
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianpin Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonglian Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruimin Huang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
209
|
Lakpa KL, Khan N, Afghah Z, Chen X, Geiger JD. Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. J Neuroimmune Pharmacol 2021; 16:219-237. [PMID: 33751445 PMCID: PMC8099033 DOI: 10.1007/s11481-021-09990-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA.
| |
Collapse
|
210
|
Xie R, Ruan S, Liu J, Qin L, Yang C, Tong F, Lei T, Shevtsov M, Gao H, Qin Y. Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials 2021; 275:120891. [PMID: 34051669 DOI: 10.1016/j.biomaterials.2021.120891] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Insufficient drug accumulation and chemoresistance remain two major challenges in cancer chemotherapy. Herein, we designed a furin-responsive aggregated nanoplatform loaded with doxorubicin (DOX) and hydroxychloroquine (HCQ) (AuNPs-D&H-R&C) to combine chemotherapy, autophagy inhibition and macrophage polarization. AuNPs-D&H-R&C could passively target breast tumor via enhanced permeability and retention (EPR) effect after systemic administration and further aggregate together triggered by furin overexpressed in breast cancer. The in situ aggregations hindered the back-flow of NPs to the bloodstream and exocytosis of tumor cells, leading to enhanced drug accumulation within tumors. Moreover, upon exposure to acidic pH in the endosomes/lysosomes, HCQ was efficiently released and it inhibited autophagy and thus restored the sensitivity of tumor cell to DOX. Meanwhile, autophagy inhibition could reprogram tumor-promoting M2-like TAMs to anti-tumor M1 phenotype, exerting a synergistic effect in overcoming chemoresistance. In vitro studies demonstrated the superiority of furin-triggered aggregated AuNPs delivery system in enhancing drug accumulation in breast tumor, compared with PEGlyated AuNPs. The co-delivery of DOX and HCQ showed much improved chemotherapeutic efficiency to chemoresistant MCF-7/ADR breast tumor, in large part due to macrophage polarization. In conclusion, we developed a stimulus-responsive delivery system and proposed a potential combination strategy to overcome chemoresistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Shaobo Ruan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Jiaqi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Chuanyao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, 194064, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| | - Yi Qin
- Department of Orthopedics, Zhuhai Hospital, Jinan University, Zhuhai People's Hospital, 79 Kangning Road, Zhuhai, 519000, China.
| |
Collapse
|
211
|
Zhang Z, Ji J, Liu H. Drug Repurposing in Oncology: Current Evidence and Future Direction. Curr Med Chem 2021; 28:2175-2194. [PMID: 33109032 DOI: 10.2174/0929867327999200820124111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing, the application of known drugs and compounds with a primary non-oncology purpose, might be an attractive strategy to offer more effective treatment options to cancer patients at a low cost and reduced time. METHODS This review described a total of 10 kinds of non-oncological drugs from more than 100 mechanical studies as well as evidence from population-based studies. The future direction of repurposed drug screening is discussed by using patient-derived tumor organoids. RESULTS Many old drugs showed previously unknown effects or off-target effects and can be intelligently applied for cancer chemoprevention and therapy. The identification of repurposed drugs needs to combine evidence from mechanical studies and population-based studies. Due to the heterogeneity of cancer, patient-derived tumor organoids can be used to screen the non-oncological drugs in vitro. CONCLUSION These identified old drugs could be repurposed in oncology and might be added as adjuvants and finally benefit patients with cancers.
Collapse
Affiliation(s)
- Zhenzhan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
212
|
Rückert M, Flohr AS, Hecht M, Gaipl US. Radiotherapy and the immune system: More than just immune suppression. STEM CELLS (DAYTON, OHIO) 2021; 39:1155-1165. [PMID: 33961721 DOI: 10.1002/stem.3391] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/20/2021] [Indexed: 11/07/2022]
Abstract
Radiotherapy (RT) is still one of the standard cancer therapies, with up to two third of all cancer patients with solid tumors being irradiated in the course of their disease. The aim of using ionizing radiation in fractionated treatment schedules was always to achieve local tumor control by inducing DNA damage which can be repaired by surrounding normal tissue but leads to cell death in tumor cells. Meanwhile, it is known that RT also has immunological effects reshaping the tumor microenvironment. Nevertheless, RT alone often fails to elicit potent antitumor immune responses as these effects can be immunostimulatory as well as immunosuppressive. Here, we discuss how immunotherapies can be exploited in combined therapies to boost RT-induced antitumor immune responses or to counteract preexisting and RT-mediated immunosuppression to improve local and systemic tumor control. Furthermore, we highlight some parameters of radioimmunotherapies (RITs) which are under investigation for potential optimizations and how RIT approaches are tested in first phases II and III trials. Finally, we discuss how RT might affect normal and cancer stem cells.
Collapse
Affiliation(s)
- Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Ann-Sophie Flohr
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
213
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
214
|
Autophagy mediated lipid catabolism facilitates glioma progression to overcome bioenergetic crisis. Br J Cancer 2021; 124:1711-1723. [PMID: 33723393 PMCID: PMC8110959 DOI: 10.1038/s41416-021-01294-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Activation of mTORC1 plays a significant role in cancer development and progression. However, the metabolic mechanisms to sustain mTORC1 activation of cancer cells within stressed environments are still under-appreciated. We recently revealed high autophagy activity in tumour cells with mTORC1 hyper-activation. Nevertheless, the functions and mechanisms of autophagy in regulating mTORC1 in glioma are not studied. METHODS Using glioma patient database and human glioma cells, we assessed the mechanisms and function of selective autophagy to sustain mTORC1 hyper-activation in glioma. RESULTS We revealed a strong association of altered mRNA levels in mTORC1 upstream and downstream genes with prognosis of glioma patients. Our results indicated that autophagy-mediated lipid catabolism was essential to sustain mTORC1 activity in glioma cells under energy stresses. We found that autophagy inhibitors or fatty acid oxidation (FAO) inhibitors in combination with 2-Deoxy-D-glucose (2DG) decreased energy production and survival of glioma cells in vitro. Consistently, inhibition of autophagy or FAO inhibitors with 2DG effectively suppressed the progression of xenografted glioma with hyper-activated mTORC1. CONCLUSIONS This study established an autophagy/lipid degradation/FAO/ATP generation pathway, which might be used in brain cancer cells under energy stresses to maintain high mTORC1 signalling for tumour progression.
Collapse
|
215
|
Shang J, Yang Q, Fan W, Chen Y, Tang D, Guo H, Xiong B, Huang S, Zhang XB. Probing Dynamic Features of Phagosome Maturation in Macrophage using Au@MnO x @SiO 2 Nanoparticles as pH-Sensitive Plasmonic Nanoprobes. Chem Asian J 2021; 16:1150-1156. [PMID: 33724702 DOI: 10.1002/asia.202100031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Indexed: 11/05/2022]
Abstract
Phagosome maturation in macrophage is essential to the clearance of pathogenic materials in host defence but the dynamic features remain difficult to be measured in real time. Herein, we reported the multilayered Au@MnOx @SiO2 nanoparticle as a robust pH-sensitive plasmonic nanosensor for monitoring the dynamic acidification features over the phagosome maturation process in macrophage under darkfield microscopy. For this multilayered nanosensor, the gold nanoparticle core plays a role of signal reporter, the MnOx shell and the outmost SiO2 act as the sensing layer and the protecting layer, respectively. After subject to the acidic buffer solution, the MnOx layer in the multilayered nanoprobe could be decomposed rapidly, resulting in a remarkable spectral shift and color change under darkfield microscopy. We demonstrated this nanosensor for the investigation of single phagosome acidification dynamics by monitoring the color changes of nanoprobes after phagocytosis over time. The nanoprobes after phagocytosized in macrophage displayed a slight color change within the first hour and then cost several minutes to change from red to green in the next stage, indicating the phagosome undergoes a slow first and then fast acidification feature as well as a slow-to-fast acidification translation over the phagosome maturation process. Moreover, we validated that the slow-to-fast acidification translation was dependent on the activation of V-ATPase from the ATP depletion assay. We believed that this nanosensor is promising for studying the dynamic acidification features as well as disorders in phagosome maturation in phagocytic cells, which might provide valuable information for understanding the disease pathogenesis related to phagosome dysfunctions.
Collapse
Affiliation(s)
- Jinhui Shang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qian Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wenjun Fan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yancao Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Haowei Guo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bin Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyan Huang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
216
|
Lv Q, Xing Y, Liu Y, Chen Q, Xu J, Hu L, Zhang Y. Didymin switches M1-like toward M2-like macrophage to ameliorate ulcerative colitis via fatty acid oxidation. Pharmacol Res 2021; 169:105613. [PMID: 33915297 DOI: 10.1016/j.phrs.2021.105613] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory response by different polarized macrophages has a critical role in a variety of immunological pathophysiology, such as ulcerative colitis (UC). Herein, targeting the paradigm of macrophage phenotypes by small molecular modulators may influence the disease status. In the present study, we firstly demonstrated that didymin, one of the most abundant flavonoid constituents present in the citrus fruits such as oranges and lemons, remarkably attenuated the clinical symptoms of acute and chronic colitis in mice. Mechanistic studies showed that didymin converted pro-inflammatory M1-like to anti-inflammatory M2-like macrophage phenotype, but did not alter the polarization of M2-like macrophages. Metabolic tracing studies revealed that didymin strengthened fatty acid oxidation rather than glycolysis by inducing Hadhb expression. More importantly, in vivo studies verified that promotion of Hadhb expression resulted in the conversion of M1- toward M2-like macrophages and eventually alleviated colitis. Our data highlights the potential of macrophage paradigm in UC inflammation and put forth the stage for considering didymin as a metabolism regulator in reprogramming macrophage polarization, which may serve as a promising therapeutic approach for treatment of inflammation-associated disorders.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yao Xing
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yijun Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qingzhu Chen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jingyi Xu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
217
|
Verhoeven J, Baelen J, Agrawal M, Agostinis P. Endothelial cell autophagy in homeostasis and cancer. FEBS Lett 2021; 595:1497-1511. [PMID: 33837545 DOI: 10.1002/1873-3468.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Autophagy, the major lysosomal pathway for the degradation and recycling of cytoplasmic materials, is increasingly recognized as a major player in endothelial cell (EC) biology and vascular pathology. Particularly in solid tumors, tumor microenvironmental stress such as hypoxia, nutrient deprivation, inflammatory mediators, and metabolic aberrations stimulates autophagy in tumor-associated blood vessels. Increased autophagy in ECs may serve as a mechanism to alleviate stress and restrict exacerbated inflammatory responses. However, increased autophagy in tumor-associated ECs can re-model metabolic pathways and affect the trafficking and surface availability of key mediators and regulators of the interplay between EC and immune cells. In line with this, heightened EC autophagy is involved in pathological angiogenesis, inflammatory, and immune responses. Here, we review major cellular and molecular mechanisms regulated by autophagy in ECs under physiological conditions and discuss recent evidence implicating EC autophagy in tumor angiogenesis and immunosurveillance.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Jef Baelen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| |
Collapse
|
218
|
Luo ZW, Xia K, Liu YW, Liu JH, Rao SS, Hu XK, Chen CY, Xu R, Wang ZX, Xie H. Extracellular Vesicles from Akkermansia muciniphila Elicit Antitumor Immunity Against Prostate Cancer via Modulation of CD8 + T Cells and Macrophages. Int J Nanomedicine 2021; 16:2949-2963. [PMID: 33907401 PMCID: PMC8068512 DOI: 10.2147/ijn.s304515] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) is one of the most common malignancies in males. Despite the success of immunotherapy in many malignant cancers, strategies are still needed to improve therapeutic efficacy in PCa. This study aimed to investigate the effects of Akkermansia muciniphila-derived extracellular vesicles (Akk-EVs) on PCa and elucidate the underlying immune-related mechanism. METHODS Akk-EVs were isolated by ultracentrifugation and intravenously injected to treat syngeneic PCa-bearing immune-competent mice. Immunophenotypic changes in immune cells, such as cytotoxic T lymphocytes and macrophages, were measured via flow cytometry analysis. Histological examination was used to detect morphological changes in major organs after Akk-EVs treatments. In vitro, flow cytometry was performed to confirm the effects of Akk-EVs on the activation of CD8+ T cells. Quantitative PCR and immunofluorescence staining were carried out to test the impact of Akk-EVs on macrophage polarization. Cell counting kit-8 (CCK-8) analysis, colony formation assays, and scratch wound healing assays were conducted to assess the effects of Akk-EVs-treated macrophages on the proliferation and invasion of PCa cells. CCK-8 assays also confirmed the impact of Akk-EVs on the viability of normal cells. RESULTS Intravenous injection of Akk-EVs in immune-competent mice reduced the tumor burden of PCa without inducing obvious toxicity in normal tissues. This treatment elevated the proportion of granzyme B-positive (GZMB+) and interferon γ-positive (IFN-γ+) lymphocytes in CD8+ T cells and caused macrophage recruitment, with increased tumor-killing M1 macrophages and decreased immunosuppressive M2 macrophages. In vitro, Akk-EVs increased the number of GZMB+CD8+ and IFN-γ+CD8+ T cells and M1-like macrophages. In addition, conditioned medium from Akk-EVs-treated macrophages suppressed the proliferation and invasion of prostate cells. Furthermore, the effective dose of Akk-EVs was well-tolerated in normal cells. CONCLUSION Our study revealed the promising prospects of Akk-EVs as an efficient and biocompatible immunotherapeutic agent for PCa treatment.
Collapse
Affiliation(s)
- Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Xiangya Nursing School, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiong-Ke Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
219
|
Lv J, Wang Z, Qu Y, Zhu H, Zhu Q, Tong W, Bao L, Lv Q, Cong J, Li D, Deng W, Yu P, Song J, Tong WM, Liu J, Liu Y, Qin C, Huang B. Distinct uptake, amplification, and release of SARS-CoV-2 by M1 and M2 alveolar macrophages. Cell Discov 2021; 7:24. [PMID: 33850112 PMCID: PMC8043100 DOI: 10.1038/s41421-021-00258-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/11/2021] [Indexed: 01/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades the alveoli, where abundant alveolar macrophages (AMs) reside. How AMs respond to SARS-CoV-2 invasion remains elusive. Here, we show that classically activated M1 AMs facilitate viral spread; however, alternatively activated M2 AMs limit the spread. M1 AMs utilize cellular softness to efficiently take up SARS-CoV-2. Subsequently, the invaded viruses take over the endo-lysosomal system to escape. M1 AMs have a lower endosomal pH, favoring membrane fusion and allowing the entry of viral RNA from the endosomes into the cytoplasm, where the virus achieves replication and is packaged to be released. In contrast, M2 AMs have a higher endosomal pH but a lower lysosomal pH, thus delivering the virus to lysosomes for degradation. In hACE2 transgenic mouse model, M1 AMs are found to facilitate SARS-CoV-2 infection of the lungs. These findings provide insights into the complex roles of AMs during SARS-CoV-2 infection, along with potential therapeutic targets.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Zhenfeng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Yajin Qu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Qiangqiang Zhu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Wei Tong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Qi Lv
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Ji Cong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Dan Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Wei Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Pin Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, CAMS and Peking Union Medical College, Beijing 100005, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, CAMS and Peking Union Medical College, Beijing 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China.
| | - Yuying Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China. .,Clinical Immunology Center, CAMS, Beijing 100005, China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China.
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China. .,Clinical Immunology Center, CAMS, Beijing 100005, China. .,Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
220
|
Purification and characterization of a novel mixed-linkage α,β-d-glucan from Arca subcrenata and its immunoregulatory activity. Int J Biol Macromol 2021; 182:207-216. [PMID: 33831453 DOI: 10.1016/j.ijbiomac.2021.03.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 01/03/2023]
Abstract
Arca subcrenata Lischke is a seafood with high nutritional value. In this study, we purified and characterized a novel water-soluble polysaccharide (ASPG-2) from Arca subcrenata with significant immunoregulatory effects and no apparent cell toxicity. ASPG-2 is a class of mixed-linkage α,β-d-glucan backbones with α-linked side chains with a molecular weight of 4.39 × 105 Da. Its structure was characterized as a repeating unit consisting of (1 → 3)-β-d-Glcp, (1 → 4)-α-d-Glcp, (1 → 4,6)-α-d-Glcp and (1 → 6)-α-d-Glcp. Using mouse RAW264.7 macrophages, we demonstrated that ASPG-2 exerted marked immunoregulatory effects by promoting the secretion of NO and increasing the phagocytosis of RAW264.7 cells in vitro. Moreover, flow cytometry analysis of the expression of the cell surface molecule CD86 revealed that ASPG-2 could polarize RAW264.7 cells into the M1 type. The immunomodulatory mechanism of ASPG-2 in macrophages was associated with the activation of the TLR4-MAPK/Akt-NF-κB signalling pathways. These results indicated that ASPG-2 might be researched and developed as a potential immunomodulatory agent or health product from marine organisms.
Collapse
|
221
|
Yang X, Lei P, Huang L, Tang X, Wei B, Wei H. Prognostic value of LRRC4C in Colon and Gastric Cancers correlates with Tumour Microenvironment Immunity. Int J Biol Sci 2021; 17:1413-1427. [PMID: 33867855 PMCID: PMC8040466 DOI: 10.7150/ijbs.58876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, we aimed to use ESTIMATE and CIBERSORT computational methods to analyse transcriptional information on COAD and STAD in TCGA. We downloaded transcriptome RNA-seq data of 446 patients with colon cancer from TCGA and estimated the amount of immune and stromal components in the COAD samples using CIBERSORT algorithms. We analysed differentially expressed genes in 446 TCGA samples and 585 Series GSE39582 samples, in high- and low-scoring groups, using Cox regression. The expression of LRRC4C, correlated positively with clinicopathological characteristics and negatively with the survival of patients with COAD. Single-gene survival analysis using Gene Expression Profiling Interactive Analysis 2.0 and Kaplan-Meier plotter revealed an association between high levels of LRRC4C expression and poor prognosis in patients with colon and gastric cancers. Gene set enrichment analysis of COAD and STAD samples indicated that genes in groups expressing high and low LRRC4C levels were mainly enriched in immune-related activities and metabolic pathways, respectively. Difference and correlation analyses of the relationship between LRRC4C expression and tumour-infiltrating immune cells, determined using CIBERSORT algorithms, revealed that monocytes, resting mast cells, and M2 macrophages were positively correlated with LRRC4C expression.
Collapse
Affiliation(s)
- XiaoFeng Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Purun Lei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Lijun Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Xiao Tang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - HongBo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| |
Collapse
|
222
|
Zhu Y, Liang H, Liu X, Wu J, Yang C, Wong TM, Kwan KYH, Cheung KMC, Wu S, Yeung KWK. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. SCIENCE ADVANCES 2021; 7:eabf6654. [PMID: 33811079 PMCID: PMC11060047 DOI: 10.1126/sciadv.abf6654] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Proper immune responses are critical for successful biomaterial implantation. Here, four scales of honeycomb-like TiO2 structures were custom made on titanium (Ti) substrates to investigate cellular behaviors of RAW 264.7 macrophages and their immunomodulation on osteogenesis. We found that the reduced scale of honeycomb-like TiO2 structures could significantly activate the anti-inflammatory macrophage phenotype (M2), in which the 90-nanometer sample induced the highest expression level of CD206, interleukin-4, and interleukin-10 and released the highest amount of bone morphogenetic protein-2 among other scales. Afterward, the resulting immune microenvironment favorably triggered osteogenic differentiation of murine mesenchymal stem cells in vitro and subsequent implant-to-bone osteointegration in vivo. Furthermore, transcriptomic analysis revealed that the minimal scale of TiO2 honeycomb-like structure (90 nanometers) facilitated macrophage filopodia formation and up-regulated the Rho family of guanosine triphosphatases (RhoA, Rac1, and CDC42), which reinforced the polarization of macrophages through the activation of the RhoA/Rho-associated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangmei Liu
- School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tak Man Wong
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Kenny Y H Kwan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
223
|
Huang Q, Liang X, Ren T, Huang Y, Zhang H, Yu Y, Chen C, Wang W, Niu J, Lou J, Guo W. The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications. Cell Oncol (Dordr) 2021; 44:525-539. [PMID: 33788151 DOI: 10.1007/s13402-021-00598-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor. Compared with previous treatment modalities, such as amputation, more recent comprehensive treatment modalities based on neoadjuvant chemotherapy combined with limb salvage surgery have improved the survival rates of patients. Osteosarcoma treatment has, however, not further improved in recent years. Therefore, attention has shifted to the tumor microenvironment (TME) in which osteosarcoma cells are embedded. Therapeutic targets in the TME may be key to improving osteosarcoma treatment. Tumor-associated macrophages (TAMs) are the most common immune cells within the TME. TAMs in osteosarcoma may account for over 50% of the immune cells, and may play important roles in tumorigenesis, angiogenesis, immunosuppression, drug resistance and metastasis. Knowledge on the role of TAMs in the development, progression and treatment of osteosarcoma is gradually improving, although different or even opposing opinions still remain. CONCLUSIONS TAMs may participate in the malignant progression of osteosarcoma through self-polarization, the promotion of blood vessel and lymphatic vessel formation, immunosuppression, and drug resistance. Besides, various immune checkpoint proteins expressed on the surface of TAMs, such as PD-1 and CD47, provide the possibility of the application of immune checkpoint inhibitors. Several clinical trials have been carried out and/or are in progress. Mifamotide and the immune checkpoint inhibitor Camrelizumab were both found to be effective in prolonging progression-free survival. Thus, TAMs may serve as attractive therapeutic targets. Targeting TAMs as a complementary therapy is expected to improve the prognosis of osteosarcoma. Further efforts may be made to identify potential beneficiaries of TAM-targeted therapies.
Collapse
Affiliation(s)
- Qingshan Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| |
Collapse
|
224
|
Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:127. [PMID: 33767177 PMCID: PMC7994399 DOI: 10.1038/s41392-021-00506-6] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
225
|
Li Y, Hodge J, Liu Q, Wang J, Wang Y, Evans TD, Altomare D, Yao Y, Murphy EA, Razani B, Fan D. TFEB is a master regulator of tumor-associated macrophages in breast cancer. J Immunother Cancer 2021; 8:jitc-2020-000543. [PMID: 32487570 PMCID: PMC7269543 DOI: 10.1136/jitc-2020-000543] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) play key roles in the development of many malignant solid tumors including breast cancer. They are educated in the tumor microenvironment (TME) to promote tumor growth, metastasis, and therapy resistance. However, the phenotype of TAMs is elusive and how to regulate them for therapeutic purpose remains unclear; therefore, TAM-targeting therapies have not yet achieved clinical success. The purposes of this study were to examine the role of transcription factor EB (TFEB) in regulating TAM gene expression and function and to determine if TFEB activation can halt breast tumor development. Methods Microarrays were used to analyze the gene expression profile of macrophages (MΦs) in the context of breast cancer and to examine the impact of TFEB overexpression. Cell culture studies were performed to define the mechanisms by which TFEB affects MΦ gene expression and function. Mouse studies were carried out to investigate the impact of MΦ TFEB deficiency or activation on breast tumor growth. Human cancer genome data were analyzed to reveal the prognostic value of TFEB and its regulated genes. Results TAM-mimic MΦs display a unique gene expression profile, including significant reduction in TFEB expression. TFEB overexpression favorably modulates TAM gene expression through multiple signaling pathways. Specifically, TFEB upregulates suppressor of cytokine signaling 3 (SOCS3) and peroxisome proliferator-activated receptor γ (PPARγ) expression and autophagy/lysosome activities, inhibits NLRP3 (NLR Family Pyrin Domain Containing 3) inflammasome and hypoxia-inducible factor (HIF)-1α mediated hypoxia response, and thereby suppresses an array of effector molecules in TAMs including arginase 1, interleukin (IL)-10, IL-1β, IL-6 and prostaglandin E2. MΦ-specific TFEB deficiency promotes, while activation of TFEB using the natural disaccharide trehalose halts, breast tumor development by modulating TAMs. Analysis of human patient genome database reveals that expression levels of TFEB, SOCS3 and PPARγ are positive prognostic markers, while HIF-1α is a negative prognostic marker of breast cancer. Conclusions Our study identifies TFEB as a master regulator of TAMs in breast cancer. TFEB controls TAM gene expression and function through multiple autophagy/lysosome-dependent and independent pathways. Therefore, pharmacological activation of TFEB would be a promising therapeutic approach to improve the efficacy of existing treatment including immune therapies for breast cancer by favorably modulating TAM function and the TME.
Collapse
Affiliation(s)
- Yong Li
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Johnie Hodge
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Qing Liu
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Trent D Evans
- Cardiovascular Division, Department of Medicine and Department of Pathology & Immunology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, South Carolina, USA
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medicine School, Nanjing, China
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine and Department of Pathology & Immunology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
226
|
Metcalf KJ, Alazzeh A, Werb Z, Weaver VM. Leveraging microenvironmental synthetic lethalities to treat cancer. J Clin Invest 2021; 131:143765. [PMID: 33720045 PMCID: PMC7954586 DOI: 10.1172/jci143765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Treatment resistance leads to cancer patient mortality. Therapeutic approaches that employ synthetic lethality to target mutational vulnerabilities in key tumor cell signaling pathways have proven effective in overcoming therapeutic resistance in some cancers. Yet, tumors are organs composed of malignant cells residing within a cellular and noncellular stroma. Tumor evolution and resistance to anticancer treatment are mediated through a dynamic and reciprocal dialogue with the tumor microenvironment (TME). Accordingly, expanding tumor cell synthetic lethality to encompass contextual synthetic lethality has the potential to eradicate tumors by targeting critical TME circuits that promote tumor progression and therapeutic resistance. In this Review, we summarize current knowledge about the TME and discuss its role in treatment. We outline the concept of tumor cell-specific synthetic lethality and describe therapeutic approaches to expand this paradigm to leverage TME synthetic lethality to improve cancer therapy.
Collapse
Affiliation(s)
| | | | - Zena Werb
- Department of Anatomy
- Helen Diller Family Comprehensive Cancer Center
| | - Valerie M. Weaver
- Department of Surgery
- Helen Diller Family Comprehensive Cancer Center
- Center for Bioengineering and Tissue Regeneration, and
- Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
227
|
Tian D, Qin F, Zhao H, Zhang C, Wang H, Liu N, Ai Y. Bio-Responsive nanoparticle for tumor targeting and enhanced photo-immunotherapy. Colloids Surf B Biointerfaces 2021; 202:111681. [PMID: 33714187 DOI: 10.1016/j.colsurfb.2021.111681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
Despite the potential of immunotherapy in various solid tumors, the efficiency of immunotherapy is limited by little tumor-infiltrating lymphocytes (TILs) and abundant immunosuppressive M2-type tumor-associated macrophages (M2-TAMs) in the tumor microenvironment (TME). Herein, we design a versatile photo-immunotherapy nanoparticle (termed as HA-AuNR/M-M2pep NP) to conquer above challenges. The HA-AuNR/M-M2pep NP is composed of hyaluronic acid modified gold nanorod (HA-AuNR) surface-modified with matrix metalloproteinase-2 (MMP2)-responsive M2pep fusion peptides (M-M2pep). Upon tumor site, the fabricated HA-AuNR/M-M2pep NP releases M2pep through the cleavage of MMP2-sensitive peptide to selectively deplete M2-TAMs and improve immunoactivity of TME. Meanwhile, HA-AuNR could target to tumor cells and realize precise tumor photothermal therapy (PTT) under near infrared light irradiation, which further triggers immunogenic cell death (ICD) of tumor cells and elicits antitumor immunity. In vivo antitumor studies reveal that HA-AuNR/M-M2pep NPs-mediated PTT and M2-TAMs depletion recruit TILs, activate effector T lymphocytes, secrete antitumor cytokines (e.g. IFN-γ, TNF-α), and effectively inhibit the growth of tumor. Collectively, HA-AuNR/M-M2pep NP-mediated photo-immunotherapy based on dual targeted delivery and bio-responsive drug release holds tremendous promise to enhance antitumor efficacy.
Collapse
Affiliation(s)
- Dandan Tian
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feifei Qin
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chaofan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Nan Liu
- China National Tobacco Quality Supervision and Test Centre, Zhengzhou, 450001, China.
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
228
|
Zhu H, Wang G, Zhu H, Xu A. ITGA5 is a prognostic biomarker and correlated with immune infiltration in gastrointestinal tumors. BMC Cancer 2021; 21:269. [PMID: 33711961 PMCID: PMC7953822 DOI: 10.1186/s12885-021-07996-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Integrin Subunit Alpha 5 (ITGA5), belongs to the integrin alpha chain family, is vital for promoting cancer cell invasion, metastasis. However, the correlation between ITGA5 expression and immune infiltration in gastrointestinal tumors remain unclear. METHODS The expression level of ITGA5 was detected by Oncomine and Tumor Immune Estimation Resource (TIMER). The association between ITGA5 and prognosis of patients was identified by Kaplan-Meier plotter, Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and PrognoScan. We evaluated the correlation between ITGA5 expression and immune infiltrating level via TIMER. Besides, TIMER, immunohistochemistry (IHC) staining and western blot were used to explore correlations between ITGA5 expression and markers of immune infiltrates cells. Furthermore, we constructed protein-protein interaction (PPI) network and performed functional enrichment by GeneMANIA and Metascape. RESULTS ITGA5 was generally overexpressed and correlated with worse prognosis in multiple types of gastrointestinal tumors. In addition, ITGA5 expression level was significantly associated with tumor purity and immune infiltration levels of different immune cells in gastrointestinal tumors. Interestingly, immune markers for monocytes, tumor - associated macrophages (TAMs), macrophages 2 (M2) cells and T-helper 2 (Th2) cells were found to be significantly and positively correlated with ITGA5 expression levels in colon and gastric cancer. Results from IHC staining and western blot further proved that markers of Th2 and M2 cell were significantly increased in gastric cancer patients with high ITGA5 expression levels. Lastly, interaction network and function enrichment analysis revealed ITGA5 was mainly involved in "integrin mediated signaling pathway", "leukocyte migration", "cell-substrate adhesion". CONCLUTIONS Our study demonstrated that ITGA5 may act as an essential regulator of tumor immune cell infiltration and a valuable prognostic biomarker in gastrointestinal tumors. Additional work is needed to fully elucidate the underlying mechanisms behind these observations.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Haixing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, People's Republic of China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China. .,Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China.
| |
Collapse
|
229
|
Yang S, Zhang Y, Lu S, Yang L, Yu S, Yang H. CaCO3-Encapsulated Au Nanoparticles Modulate Macrophages toward M1-like Phenotype. ACS APPLIED BIO MATERIALS 2021; 4:3214-3223. [DOI: 10.1021/acsabm.0c01608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shouning Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanmin Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Sijia Lu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Huayan Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
230
|
Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54:437-453. [PMID: 33691134 PMCID: PMC8026106 DOI: 10.1016/j.immuni.2021.01.018] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Autophagy is a quality-control, metabolic, and innate immunity process. Normative autophagy affects many cell types, including hematopoietic as well as non-hematopoietic, and promotes health in model organisms and humans. When autophagy is perturbed, this has repercussions on diseases with inflammatory components, including infections, autoimmunity and cancer, metabolic disorders, neurodegeneration, and cardiovascular and liver diseases. As a cytoplasmic degradative pathway, autophagy protects from exogenous hazards, including infection, and from endogenous sources of inflammation, including molecular aggregates and damaged organelles. The focus of this review is on the role of autophagy in inflammation, including type I interferon responses and inflammasome outputs, from molecules to immune cells. A special emphasis is given to the intersections of autophagy with innate immunity, immunometabolism, and functions of organelles such as mitochondria and lysosomes that act as innate immunity and immunometabolic signaling platforms.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
231
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
232
|
Li C, Zhang Y, Qi Y, Liu M, Li B, Zhang M, Feng J, Zhang X. Bacterium‐Inspired Nanoagents Armed with On‐Switch of Immune Recruitment and Immune Activation. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chu‐Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Dan Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Miao‐Deng Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Ming‐Kang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
233
|
Xiao M, Benoit A, Hasmim M, Duhem C, Vogin G, Berchem G, Noman MZ, Janji B. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol 2021; 11:626309. [PMID: 33718194 PMCID: PMC7951055 DOI: 10.3389/fonc.2021.626309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Caroline Duhem
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Guillaume Vogin
- Université de Lorraine - UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandoeuvre-lès-Nancy, France.,Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.,Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
234
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
235
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
236
|
Jiang Y, Chen P, Hu K, Dai G, Li J, Zheng D, Yuan H, He L, Xie P, Tu M, Peng S, Qu C, Lin W, Chung RT, Hong J. Inflammatory microenvironment of fibrotic liver promotes hepatocellular carcinoma growth, metastasis and sorafenib resistance through STAT3 activation. J Cell Mol Med 2021; 25:1568-1582. [PMID: 33410581 PMCID: PMC7875922 DOI: 10.1111/jcmm.16256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/14/2019] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The pro-inflammatory and pro-fibrotic liver microenvironment facilitates hepatocarcinogenesis. However, the effects and mechanisms by which the hepatic fibroinflammatory microenvironment modulates intrahepatic hepatocellular carcinoma (HCC) progression and its response to systematic therapy remain largely unexplored. We established a syngeneic orthotopic HCC mouse model with a series of persistent liver injury induced by CCl4 gavage, which mimic the dynamic effect of hepatic pathology microenvironment on intrahepatic HCC growth and metastasis. Non-invasive bioluminescence imaging was applied to follow tumour progression over time. The effect of the liver microenvironment modulated by hepatic injury on sorafenib resistance was investigated in vivo and in vitro. We found that the persistent liver injury facilitated HCC growth and metastasis, which was positively correlated with the degree of liver inflammation rather than the extent of liver fibrosis. The inflammatory cytokines in liver tissue were clearly increased after liver injury. The two indicated cytokines, tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), both promoted intrahepatic HCC progression via STAT3 activation. In addition, the hepatic inflammatory microenvironment contributed to sorafenib resistance through the anti-apoptotic protein mediated by STAT3, and STAT3 inhibitor S3I-201 significantly improved sorafenib efficacy impaired by liver inflammation. Clinically, the increased inflammation of liver tissues was accompanied with the up-regulated STAT3 activation in HCC. Above all, we concluded that the hepatic inflammatory microenvironment promotes intrahepatic HCC growth, metastasis and sorafenib resistance through activation of STAT3.
Collapse
Affiliation(s)
- Yuchuan Jiang
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Peng Chen
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Guanqi Dai
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Jinying Li
- Department of GastroenterologyGuangzhou Overseas Chinese HospitalJinan UniversityGuangzhouChina
| | - Dandan Zheng
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Hui Yuan
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Lu He
- Department of RadiotherapyAffiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Penghui Xie
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Mengxian Tu
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Shuang Peng
- Department of PathophysiologySchool of MedicineJinan UniversityGuangzhouChina
| | - Chen Qu
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Wenyu Lin
- Liver Center and Gastrointestinal DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Jian Hong
- Department of Abdominal SurgeryIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
237
|
Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021; 9:jitc-2020-001341. [PMID: 33504575 PMCID: PMC8728363 DOI: 10.1136/jitc-2020-001341] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
238
|
Xu L, Xie X, Luo Y. The role of macrophage in regulating tumour microenvironment and the strategies for reprogramming tumour-associated macrophages in antitumour therapy. Eur J Cell Biol 2021; 100:151153. [PMID: 33476912 DOI: 10.1016/j.ejcb.2021.151153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
Tumour-associated macrophages (TAMs) that present abundantly in the tumour microenvironment (TME) exhibit a protumour property, such as promoting genetic instability, tumour metastasis and immunosuppression. Macrophage-targeted therapeutic approaches hence have been applied and shown their significances in the process of tumour immune treatment, including blocking TAM recruitment, depleting or transforming TAMs that already exist in the tumour site. Here, we summarized the functional regulation of TAMs in the respects of hypoxia environment, metabolism in the tumour microenvironment and the transcription factors involved. We reviewed the strategies for transforming TAMs, including immune stimuli targeting TAMs, inhibitors against TAMs, pathogen or irradiation stimulation on TAMs, and the application of natural compounds in TAMs. Furthermore, we also discussed the macrophage-targeted therapies in the clinical studies. Taken together, this review tries to shed light on the TAM regulation and the main strategies of TAM reprogramming for an enhanced immune surveillance.
Collapse
Affiliation(s)
- Liping Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, PR China; Medical School, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Xiaoli Xie
- Medical School, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Ying Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, PR China; Guizhou Provincial Key Laboratory & Drug Development on Common Disease, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
239
|
Zhou H, He H, Liang R, Pan H, Chen Z, Deng G, Zhang S, Ma Y, Liu L, Cai L. In situ poly I:C released from living cell drug nanocarriers for macrophage-mediated antitumor immunotherapy. Biomaterials 2021; 269:120670. [PMID: 33485214 DOI: 10.1016/j.biomaterials.2021.120670] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Immunotherapy is one of the most promising approaches to inhibit tumor growth and metastasis by activating host immune functions. However, the arising problems such as low immune response caused by complex tumor microenvironment and extremely systemic immune storm still limit the clinical applications of immunotherapy. Here, we construct Poly I: C-encapsulated poly (lactic-co-glycolic acid) nanoparticles (PLP NPs) with a slow release profile. A biomimetic system (MPLP), which loads PLP NPs on the surface of bone marrow-derived macrophage (BMDM) via the maleimide-thiol conjugation, is synthesized to effectively deliver PLP, control drug release and activate the tumor-specific immune response in situ. The results show that PLP NPs loading does not affect the activity and function of BMDM. Then, BMDM acts as a living cell drug vehicle and promotes the accumulation of PLP NPs in tumors, where Poly I: C is released from PLP NPs and reprograms BMDM into tumoricidal M1 macrophage. Furthermore, MPLP triggers potent antitumor immune responses in vivo and effectively inhibits local and metastatic tumors without causing adverse pathological immune reactions. This study offers an inspiration to facilitate clinical translation through the delivery of drugs by living immune cells for future anticancer therapy.
Collapse
Affiliation(s)
- Haimei Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Nano Science and Technology Institute, University of Science &Technology of China, Suzhou, 215123, PR China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Shengping Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Nano Science and Technology Institute, University of Science &Technology of China, Suzhou, 215123, PR China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; HRYZ Biotech Co., Shenzhen, 518057, PR China.
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai, 519000, PR China.
| |
Collapse
|
240
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
241
|
Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH. iScience 2021; 24:102032. [PMID: 33521599 PMCID: PMC7820131 DOI: 10.1016/j.isci.2020.102032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Although recent evidence suggests the involvement of iron accumulation in the pathogenesis of nonalcoholic steatohepatitis (NASH), the underlying mechanisms remain poorly understood. Previously, we reported a unique histological structure termed "crown-like structure (CLS)," where liver-resident macrophages (Kupffer cells) surround dead hepatocytes, scavenge their debris, and induce inflammation and fibrosis in NASH. In this study, using magnetic column separation, we show that iron-rich Kupffer cells exhibit proinflammatory and profibrotic phenotypic changes during the development of NASH, at least partly, through activation of MiT/TFE transcription factors. Activation of MiT/TFE transcription factors is observed in Kupffer cells forming CLSs in murine and human NASH. Iron chelation effectively attenuates liver fibrosis in a murine NASH model. This study provides insight into the pathophysiologic role of iron in NASH. Our data also shed light on a unique macrophage subset rich in iron that contributes to CLS formation and serves as a driver of liver fibrosis.
Collapse
|
242
|
Maisonneuve C, Tsang DKL, Foerster EG, Robert LM, Mukherjee T, Prescott D, Tattoli I, Lemire P, Winer DA, Winer S, Streutker CJ, Geddes K, Cadwell K, Ferrero RL, Martin A, Girardin SE, Philpott DJ. Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells. Cell Rep 2021; 34:108677. [PMID: 33503439 DOI: 10.1016/j.celrep.2020.108677] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Pioneering studies from the early 1980s suggested that bacterial peptidoglycan-derived muramyl peptides (MPs) could exert either stimulatory or immunosuppressive functions depending, in part, on chronicity of exposure. However, this Janus-faced property of MPs remains largely unexplored. Here, we demonstrate the immunosuppressive potential of Nod1, the bacterial sensor of diaminopimelic acid (DAP)-containing MPs. Using a model of self-limiting peritonitis, we show that systemic Nod1 activation promotes an autophagy-dependent reprogramming of macrophages toward an alternative phenotype. Moreover, Nod1 stimulation induces the expansion of myeloid-derived suppressor cells (MDSCs) and maintains their immunosuppressive potential via arginase-1 activity. Supporting the role of MDSCs and tumor-associated macrophages in cancer, we demonstrate that myeloid-intrinsic Nod1 expression sustains intra-tumoral arginase-1 levels to foster an immunosuppressive and tumor-permissive microenvironment during colorectal cancer (CRC) development. Our findings support the notion that bacterial products, via Nod1 detection, modulate the immunosuppressive activity of myeloid cells and fuel tumor progression in CRC.
Collapse
Affiliation(s)
- Charles Maisonneuve
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Derek K L Tsang
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dave Prescott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Tattoli
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul Lemire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel A Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Pathology, Toronto General Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Saint Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Catherine J Streutker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Saint Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Kaoru Geddes
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York Grossman University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard L Ferrero
- Department of Molecular and Translational Sciences, Monash University, Clayton, 3800 VIC, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, 3168 VIC, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, 3800 VIC, Australia
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
243
|
Chen D, Zhang X, Li Z, Zhu B. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Am J Cancer Res 2021; 11:1016-1030. [PMID: 33391518 PMCID: PMC7738889 DOI: 10.7150/thno.51777] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages phagocytize pathogens to initiate innate immunity and products from the tumor microenvironment (TME) to mediate tumor immunity. The loss of tumor-associated macrophage (TAM)-mediated immune responses results in immune suppression. To reverse this immune disorder, the regulatory mechanism of TAMs in the TME needs to be clarified. Immune molecules (cytokines and chemokines) from TAMs and the TME have been widely accepted as mutual mediators of signal transduction in the past few decades. Recently, researchers have tried to seek the intrinsic mechanism of TAM phenotypic and functional changes through metabolic connections. Numerous metabolites derived from the TME have been identified that induce the cell-cell crosstalk with TAMs. The bulk tumor cells, immune cells, and stromal cells produce metabolites in the TME that are involved in the metabolic regulation of TAMs. Meanwhile, some products from TAMs regulate the biological functions of the tumor as well. Here, we review the recent reports demonstrating the metabolic regulation between TME and TAMs.
Collapse
|
244
|
Nanomedicine Reformulation of Chloroquine and Hydroxychloroquine. Molecules 2020; 26:molecules26010175. [PMID: 33396545 PMCID: PMC7794963 DOI: 10.3390/molecules26010175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The chloroquine family of antimalarials has a long history of use, spanning many decades. Despite this extensive clinical experience, novel applications, including use in autoimmune disorders, infectious disease, and cancer, have only recently been identified. While short term use of chloroquine or hydroxychloroquine is safe at traditional therapeutic doses in patients without predisposing conditions, administration of higher doses and for longer durations are associated with toxicity, including retinotoxicity. Additional liabilities of these medications include pharmacokinetic profiles that require extended dosing to achieve therapeutic tissue concentrations. To improve chloroquine therapy, researchers have turned toward nanomedicine reformulation of chloroquine and hydroxychloroquine to increase exposure of target tissues relative to off-target tissues, thereby improving the therapeutic index. This review highlights these reformulation efforts to date, identifying issues in experimental designs leading to ambiguity regarding the nanoformulation improvements and lack of thorough pharmacokinetics and safety evaluation. Gaps in our current understanding of these formulations, as well as recommendations for future formulation efforts, are presented.
Collapse
|
245
|
Wabitsch S, McVey JC, Ma C, Ruf B, Kamenyeva O, McCallen JD, Diggs LP, Heinrich B, Greten TF. Hydroxychloroquine can impair tumor response to anti-PD1 in subcutaneous mouse models. iScience 2020; 24:101990. [PMID: 33490900 PMCID: PMC7807148 DOI: 10.1016/j.isci.2020.101990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Hydroxychloroquine (HCQ) is a well-known anti-inflammatory drug but is also known as an anti-inflammatory drug. Here, we evaluate the influence of HCQ treatment on the effect of anti-PD1 tumor immunotherapy. Anti-PD1 therapy-sensitive tumor lines MC38, CT26, and RIL-175 were used to investigate the impact of HCQ on anti-PD1 therapy efficacy. In vitro assays demonstrated that HCQ directly inhibited tumor cell growth in all the tested tumor cell lines. HCQ treatment impaired both antigen-specific and nonspecific T-cell production of TNFα and IFNγ in vitro and in vivo. Importantly, in all the three tumor models, HCQ treatment significantly impaired the response to anti-PD1 treatment, accompanying diminished in vivo T-cell activation and reduced tumor-infiltrating, antigen-specific CD8+ T cells. This study shows that HCQ treatment can result in immunotherapy failure due to its immunosuppressive effects that offset both increased MHC-I expression by tumor cell and direct cytotoxicity. HCQ inhibits both antigen-specific and nonspecific CD4+ and CD8+ T function HCQ inhibits tumor cell growth in vitro HCQ impairs anti-PD1 therapy
Collapse
Affiliation(s)
- Simon Wabitsch
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA
| | - John C McVey
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Justin D McCallen
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA
| | - Laurence P Diggs
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 10/3B43, Bethesda, MD 20892, USA
| |
Collapse
|
246
|
Astanina E, Bussolino F, Doronzo G. Multifaceted activities of transcription factor EB in cancer onset and progression. Mol Oncol 2020; 15:327-346. [PMID: 33252196 PMCID: PMC7858119 DOI: 10.1002/1878-0261.12867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in cancer biology. Together with microphthalmia‐associated transcription factor, transcription factor E3 and transcription factor EC, TFEB belongs to the microphthalmia family of bHLH‐leucine zipper transcription factors that may be implicated in human melanomas, renal and pancreatic cancers. TFEB was originally described as being translocated in a juvenile subset of pediatric renal cell carcinoma; however, whole‐genome sequencing reported that somatic mutations were sporadically found in many different cancers. Besides its oncogenic activity, TFEB controls the autophagy‐lysosomal pathway by recognizing a recurrent motif present in the promoter regions of a set of genes that participate in lysosome biogenesis; furthermore, its dysregulation was found to have a crucial pathogenic role in different tumors by modulating the autophagy process. Other than regulating cancer cell‐autonomous responses, recent findings indicate that TFEB participates in the regulation of cellular functions of the tumor microenvironment. Here, we review the emerging role of TFEB in regulating cancer cell behavior and choreographing tumor–microenvironment interaction. Recognizing TFEB as a hub of network of signals exchanged within the tumor between cancer and stroma cells provides a fresh perspective on the molecular principles of tumor self‐organization, promising to reveal numerous new and potentially druggable vulnerabilities.
Collapse
Affiliation(s)
- Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
247
|
Perrotta C, Cattaneo MG, Molteni R, De Palma C. Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front Cell Dev Biol 2020; 8:602901. [PMID: 33363161 PMCID: PMC7758408 DOI: 10.3389/fcell.2020.602901] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a constitutive pathway that allows the lysosomal degradation of damaged components. This conserved process is essential for metabolic plasticity and tissue homeostasis and is crucial for mammalian post-mitotic cells. Autophagy also controls stem cell fate and defective autophagy is involved in many pathophysiological processes. In this review, we focus on established and recent breakthroughs aimed at elucidating the impact of autophagy in differentiation and homeostasis maintenance of endothelium, muscle, immune system, and brain providing a suitable framework of the emerging results and highlighting the pivotal role of autophagic response in tissue functions, stem cell dynamics and differentiation rates.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
248
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
249
|
Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-induced 5'-half molecules of tRNAHisGUG activate Toll-like receptor 7. PLoS Biol 2020; 18:e3000982. [PMID: 33332353 PMCID: PMC7745994 DOI: 10.1371/journal.pbio.3000982] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5'-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5'-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5'-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5'-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5'-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5'-tRNA half species into EVs. The EV-5'-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5'-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of "immune activators" to 5'-tRNA half molecules.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
250
|
Lim J, Murthy A. Targeting Autophagy to Treat Cancer: Challenges and Opportunities. Front Pharmacol 2020; 11:590344. [PMID: 33381037 PMCID: PMC7768823 DOI: 10.3389/fphar.2020.590344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process that targets its cargo for lysosomal degradation. In addition to its function in maintaining tissue homeostasis, autophagy is recognized to play a context-dependent role in cancer. Autophagy may inhibit tumor initiation under specific contexts; however, a growing body of evidence supports a pro-tumorigenic role of this pathway in established disease. In this setting, autophagy drives treatment resistance, metabolic changes, and immunosuppression both in a tumor-intrinsic and extrinsic manner. This observation has prompted renewed interest in targeting autophagy for cancer therapy. Novel genetic models have proven especially insightful, revealing unique and overlapping roles of individual autophagy-related genes in tumor progression. Despite identification of pharmacologically actionable nodes in the pathway, fundamental challenges still exist for successful therapeutic inhibition of autophagy. Here we summarize the current understanding of autophagy as a driver of resistance against targeted and immuno-therapies and highlight knowledge gaps that, if addressed, may provide meaningful advances in the treatment of cancer.
Collapse
Affiliation(s)
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|