201
|
Chen H, Wang SH, Chen C, Yu XY, Zhu JN, Mansell T, Novakovic B, Saffery R, Baker PN, Han TL, Zhang H. A novel role of FoxO3a in the migration and invasion of trophoblast cells: from metabolic remodeling to transcriptional reprogramming. Mol Med 2022; 28:92. [PMID: 35941589 PMCID: PMC9358829 DOI: 10.1186/s10020-022-00522-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background The forkhead box O3a protein (FoxO3a) has been reported to be involved in the migration and invasion of trophoblast, but its underlying mechanisms unknown. In this study, we aim to explore the transcriptional and metabolic regulations of FoxO3a on the migration and invasion of early placental development.
Methods Lentiviral vectors were used to knock down the expression of FoxO3a of the HTR8/SVneo cells. Western blot, matrigel invasion assay, wound healing assay, seahorse, gas-chromatography-mass spectrometry (GC–MS) based metabolomics, fluxomics, and RNA-seq transcriptomics were performed. Results We found that FoxO3a depletion restrained the migration and invasion of HTR8/SVneo cells. Metabolomics, fluxomics, and seahorse demonstrated that FoxO3a knockdown resulted in a switch from aerobic to anaerobic respiration and increased utilization of aromatic amino acids and long-chain fatty acids from extracellular nutrients. Furthermore, our RNA-seq also demonstrated that the expression of COX-2 and MMP9 decreased after FoxO3a knockdown, and these two genes were closely associated with the migration/invasion progress of trophoblast cells. Conclusions Our results suggested novel biological roles of FoxO3a in early placental development. FoxO3a exerts an essential effect on trophoblast migration and invasion owing to the regulations of COX2, MMP9, aromatic amino acids, energy metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Shi-Han Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin-Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jia-Nan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
202
|
Yu M, Yang Y, Huang C, Ge L, Xue L, Xiao Z, Xiao T, Zhao H, Ren P, Zhang JV. Chemerin: A Functional Adipokine in Reproductive Health and Diseases. Biomedicines 2022; 10:biomedicines10081910. [PMID: 36009457 PMCID: PMC9406010 DOI: 10.3390/biomedicines10081910] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
As a multifaceted adipokine, chemerin has been found to perform functions vital for immunity, adiposity, and metabolism through its three known receptors (chemokine-like receptor 1, CMKLR1; G-protein-coupled receptor 1, GPR1; C-C motif chemokine receptor-like 2, CCRL2). Chemerin and the cognate receptors are also expressed in the hypothalamus, pituitary gland, testis, ovary, and placenta. Accumulating studies suggest that chemerin participates in normal reproduction and underlies the pathological mechanisms of certain reproductive system diseases, including polycystic ovary syndrome (PCOS), preeclampsia, and breast cancer. Herein, we present a comprehensive review of the roles of the chemerin system in multiple reproductive processes and human reproductive diseases, with a brief discussion and perspectives on future clinical applications.
Collapse
Affiliation(s)
- Ming Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Lei Ge
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Xue
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhonglin Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Tianxia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Peigen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
203
|
Domingues RR, Beard AD, Connelly MK, Wiltbank MC, Hernandez LL. Fluoxetine-induced perinatal morbidity in a sheep model. Front Med (Lausanne) 2022; 9:955560. [PMID: 35991651 PMCID: PMC9386076 DOI: 10.3389/fmed.2022.955560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are the most common antidepressants used by pregnant women. However, adverse pregnancy outcomes have been described in women taking SSRI during pregnancy—placental lesions, premature birth, poor neonatal adaptation. We aimed to investigate the effects of fluoxetine (Prozac® most commonly used SSRI) treatment during the last month of gestation on pregnancy complications, placental and neonatal health in a non-depressed sheep model. On day 119 ± 1 postbreeding (experimental day 0; E0) of a 151-day expected gestation, Hampshire ewes were randomly assigned to receive fluoxetine (n = 9 ewes, 15 lambs; daily intravenously treatment with 10 mg/kg on E0 and E1 and 5 mg/kg daily thereafter until parturition) or to a control group (n = 10; 14 lambs; vehicle only). Blood samples from ewes were collected throughout the experimental period and postpartum; blood from lambs were collected postpartum. Analysis of variance was used for statistical analysis. Fluoxetine treatment reduced placentome growth during the last month of pregnancy. Gestation length was decreased by 4.5 days in fluoxetine-treated ewes. Birthweight was reduced in lambs exposed to fluoxetine in utero; weights remained decreased until postnatal day 3. Placentome diameter by birthweight ratio was not different between groups suggesting that the decreased placentome diameter was accompanied by decreased lamb birthweight. During the first week postnatal, lambs exposed to fluoxetine in utero had decreased blood pH and decreased total carbon dioxide, bicarbonate, and base excess and increased lactate (days 3–6), collectively indicative of metabolic acidemia. Additionally, ionized calcium was decreased between postnatal days 0 to 4 in lambs exposed to fluoxetine in utero. Using a non-depressed animal model clearly defines a role for SSRI on the occurrence of perinatal complications and neonatal morbidity. The decreased placentome diameter, shortened gestation, decreased birthweight, decreased calcium levels, and neonatal acidemia suggest the occurrence of intrauterine growth restriction. The persistence of neonatal acidemia for several days postpartum suggests poor neonatal adaptation to extrauterine environment.
Collapse
Affiliation(s)
- Rafael R. Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam D. Beard
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Meghan K. Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Milo C. Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Laura L. Hernandez
| |
Collapse
|
204
|
Liu S, Feng K, An S, Qiu J, Zhou Q, Yang Y. 2,4,6-triiodophenol exhibits embryotoxicity to pre-implantation mouse embryos in an in vitro exposure model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113745. [PMID: 35691197 DOI: 10.1016/j.ecoenv.2022.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
2,4,6-triiodophenol (TIP), a novel type of halophenolic disinfection byproducts, has been widely detected in water bodies, even in drinking water. Recently, TIP has drawn increasing concerns on account of considerable developmental toxicity towards lower organisms and cytotoxicity for mammalian cells. However, it remains unknown about its toxicity on mammalian pre-implantation embryos. Here, by exposing mouse zygotes derived in vitro fertilization to TIP, which ranged from 5 to 50 μM, we found that TIP impaired the quality of pre-implantation mouse embryos in a dose-dependent manner, inducing decline of both total and trophectoderm cell numbers, enhancing caspase 3/7 activity and reactive oxygen species generation, though it did not decrease blastocyst formation efficiency. For the sake that only high qualified embryos are able to implant in endometrium and generate health body finally, we applied a previously modified in vitro culture system to assess TIP-exposed blastocysts' further developmental potency beyond pre-implantation stage. Surprisingly, although the exposed dose was only 5 μM and TIP was removed as soon as the zygotes reached blastocyst stage, these blastocysts still nearly lost their implantation and egg cylinder formation ability, exhibiting abnormal embryonic lineage differentiation pattern as well. Therefore, our study not only entirely shows TIP embryonic toxicity on mouse pre-implantation embryos, but also proposes a model to evaluate embryotoxicity from the zygote to egg cylinder stage.
Collapse
Affiliation(s)
- Siya Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Ke Feng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Shiyu An
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
205
|
Mitochondria Targeted Antioxidant Significantly Alleviates Preeclampsia Caused by 11β-HSD2 Dysfunction via OPA1 and MtDNA Maintenance. Antioxidants (Basel) 2022; 11:antiox11081505. [PMID: 36009224 PMCID: PMC9404992 DOI: 10.3390/antiox11081505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
We have previously demonstrated that placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) dysfunction contributes to PE pathogenesis. We sought to elucidate molecular mechanisms underlying 11β-HSD2 dysfunction-induced PE and to seek potential therapeutic targets using a 11β-HSD2 dysfunction-induced PE-like rat model as well as cultured extravillous trophoblasts (EVTs) since PE begins with impaired function of EVTs. In 11β-HSD2 dysfunction-induced PE-like rat model, we revealed that placental mitochondrial dysfunction occurred, which was associated with mitDNA instability and impaired mitochondrial dynamics, such as decreased optic atrophy 1 (OPA1) expression. MitoTEMPO treatment significantly alleviated the hallmark of PE-like features and improved mitDNA stability and mitochondrial dynamics in the placentas of rat PE-like model. In cultured human EVTs, we found that 11β-HSD2 dysfunction led to mitochondrial dysfunction and disrupted mtDNA stability. MitoTEMPO treatment improved impaired invasion and migration induced by 11β-HSD2 dysfunction in cultured EVTs. Further, we revealed that OPA1 was one of the key factors that mediated 11β-HSD2 dysfunction-induced excess ROS production, mitochondrial dysfunction and mtDNA reduction. Our data indicates that 11β-HSD2 dysfunction causes mitochondrial dysfunctions, which impairs trophoblast function and subsequently results in PE development. Our study immediately highlights that excess ROS is a potential therapeutic target for PE.
Collapse
|
206
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
207
|
Parameshwar PK, Sagrillo-Fagundes L, Azevedo Portilho N, Pastor WA, Vaillancourt C, Moraes C. Engineered models for placental toxicology: Emerging approaches based on tissue decellularization. Reprod Toxicol 2022; 112:148-159. [PMID: 35840119 DOI: 10.1016/j.reprotox.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Recent increases in prescriptions and illegal drug use as well as exposure to environmental contaminants during pregnancy have highlighted the critical importance of placental toxicology in understanding and identifying risks to both mother and fetus. Although advantageous for basic science, current in vitro models often fail to capture the complexity of placental response, likely due to their inability to recreate and monitor aspects of the microenvironment including physical properties, mechanical forces and stiffness, protein composition, cell-cell interactions, soluble and physicochemical factors, and other exogenous cues. Tissue engineering holds great promise in addressing these challenges and provides an avenue to better understand basic biology, effects of toxic compounds and potential therapeutics. The key to success lies in effectively recreating the microenvironment. One strategy to do this would be to recreate individual components and then combine them. However, this becomes challenging due to variables present according to conditions such as tissue location, age, health status and lifestyle. The extracellular matrix (ECM) is known to influence cellular fate by working as a storage of factors. Decellularized ECM (dECM) is a recent tool that allows usage of the original ECM in a refurbished form, providing a relatively reliable representation of the microenvironment. This review focuses on using dECM in modified forms such as whole organs, scaffold sheets, electrospun nanofibers, hydrogels, 3D printing, and combinations as building blocks to recreate aspects of the microenvironment to address general tissue engineering and toxicology challenges, thus illustrating their potential as tools for future placental toxicology studies.
Collapse
Affiliation(s)
| | | | - Nathalia Azevedo Portilho
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada; Department of Obstetrics and Gynecology, Université de Montréal, Montréal, Québec, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada; Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada; Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
208
|
Li R, Peng J, Zhang W, Wu Y, Hu R, Chen R, Gu W, Zhang L, Qin L, Zhong M, Chen LC, Sun Q, Liu C. Ambient fine particulate matter exposure disrupts placental autophagy and fetal development in gestational mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113680. [PMID: 35617897 DOI: 10.1016/j.ecoenv.2022.113680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that some adverse pregnancy outcomes, especially intrauterine growth restriction (IUGR), are associated with gestational exposure to ambient fine particulate matter (PM2.5). However, potential mechanism remains to be elucidated. In the present study, pregnant C57BL/6 mice were randomly assigned to be exposed to either filtered air or ambient PM2.5 in the gestation period via a concentrated whole-body exposure system. We found that gestational PM2.5 exposure exerted no effect on implantation, preterm delivery, as well as fetal resorption and death. However, in utero fetal exposure to PM2.5 showed a significant reduction in body weight and crown-rump length on GD13 and GD18. Meanwhile, maternal blood sinusoid in placenta was markedly reduced along with abnormal expression of placental nutrient transporters and growth hormone in dams exposed to PM2.5. Additional tests showed gestational PM2.5 exposure decreased autophagy-related protein levels and inhibited autophagy flux mainly on GD15. Correspondingly, AMPK/mTOR signaling pathway, a critical negative regulator of autophagy, was activated in placenta on GD15 by PM2.5 exposure as well. These findings provide evidences that placental developmental disorder caused by autophagy inhibition might be an important mechanism for the growth restriction caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Peng
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yunlu Wu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Renjie Hu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mianhua Zhong
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
209
|
Chen Y, Siriwardena D, Penfold C, Pavlinek A, Boroviak TE. An integrated atlas of human placental development delineates essential regulators of trophoblast stem cells. Development 2022; 149:275917. [PMID: 35792865 PMCID: PMC9340556 DOI: 10.1242/dev.200171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/12/2022] [Indexed: 12/21/2022]
Abstract
The trophoblast lineage safeguards fetal development by mediating embryo implantation, immune tolerance, nutritional supply and gas exchange. Human trophoblast stem cells (hTSCs) provide a platform to study lineage specification of placental tissues; however, the regulatory network controlling self-renewal remains elusive. Here, we present a single-cell atlas of human trophoblast development from zygote to mid-gestation together with single-cell profiling of hTSCs. We determine the transcriptional networks of trophoblast lineages in vivo and leverage probabilistic modelling to identify a role for MAPK signalling in trophoblast differentiation. Placenta- and blastoid-derived hTSCs consistently map between late trophectoderm and early cytotrophoblast, in contrast to blastoid-trophoblast, which correspond to trophectoderm. We functionally assess the requirement of the predicted cytotrophoblast network in an siRNA-screen and reveal 15 essential regulators for hTSC self-renewal, including MAZ, NFE2L3, TFAP2C, NR2F2 and CTNNB1. Our human trophoblast atlas provides a powerful analytical resource to delineate trophoblast cell fate acquisition, to elucidate transcription factors required for hTSC self-renewal and to gauge the developmental stage of in vitro cultured cells.
Collapse
Affiliation(s)
- Yutong Chen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | | | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
210
|
Deng P, Cui K, Shi Y, Zhu Y, Wang Y, Shao X, Qin J. Fluidic Flow Enhances the Differentiation of Placental Trophoblast-Like 3D Tissue from hiPSCs in a Perfused Macrofluidic Device. Front Bioeng Biotechnol 2022; 10:907104. [PMID: 35845423 PMCID: PMC9280037 DOI: 10.3389/fbioe.2022.907104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The human placenta serves as a multifunctional organ to maintain the proper development of a fetus. However, our knowledge of the human placenta is limited due to the lack of appropriate experimental models. In this work, we created an in vitro placental trophoblast-like model via self-organization of human induced pluripotent stem cells (hiPSCs) in a perfused 3D culture macrofluidic device. This device allowed cell seeding, in situ trophoblast lineage differentiation, and formation of trophoblast-like tissues from hiPSCs in a biomimetic microenvironment. It incorporated extracellular matrix (ECM) and fluid flow in a single device. After trophoblast lineage differentiation, we were able to generate the 3D clusters with major cell types of the human placenta, including trophoblast progenitor cytotrophoblasts (CTBs), differentiated subtypes, syncytiotrophoblasts (STBs), and extravillous trophoblasts (EVTs) under long-term 3D culture (∼23 days). Moreover, the formed tissues exhibited enhanced expressions of CTB-, STB-, and EVT-related markers at the level of genes and proteins under a dynamic culture compared with static conditions. RNA-seq analysis revealed the higher expression of trophoblast-specific genes in 3D tissues, indicating the essential role of fluid flow to promote the trophoblast differentiation of hiPSCs. The established placental 3D model combined a bioengineering strategy with developmental principles, providing a promising platform for the study of placental biology in a biomimetic microenvironment in health and disease.
Collapse
Affiliation(s)
- Pengwei Deng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Kangli Cui
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Shi
- Dalian Key Laboratory of Reproduction and Mother-child Genetics, Dalian Women and Children’s Medical Group, Dalian, China
| | - Yujuan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaoguang Shao
- Dalian Key Laboratory of Reproduction and Mother-child Genetics, Dalian Women and Children’s Medical Group, Dalian, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jianhua Qin,
| |
Collapse
|
211
|
Casazza RL, Philip DT, Lazear HM. Interferon Lambda Signals in Maternal Tissues to Exert Protective and Pathogenic Effects in a Gestational Stage-Dependent Manner. mBio 2022; 13:e0385721. [PMID: 35471083 PMCID: PMC9239100 DOI: 10.1128/mbio.03857-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
Interferon lambda (IFN-λ) (type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here, we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I·C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling, specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages. IMPORTANCE Pregnancy is an immunologically complex situation, which must balance protecting the fetus from maternal pathogens with preventing maternal immune rejection of non-self fetal and placental tissue. Cytokines, such as interferon lambda (IFN-λ), contribute to antiviral immunity at the maternal-fetal interface. We found in a mouse model of congenital Zika virus infection that IFN-λ can have either a protective antiviral effect or cause immune-mediated pathology, depending on the stage of gestation when IFN-λ signaling occurs. Remarkably, both the protective and pathogenic effects of IFN-λ occurred through signaling exclusively in maternal immune cells rather than in fetal or placental tissues or in other maternal cell types, identifying a new role for IFN-λ at the maternal-fetal interface.
Collapse
Affiliation(s)
- Rebecca L. Casazza
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
212
|
Mice lacking DCAF2 in placenta die at the gastrulation stage. Cell Tissue Res 2022; 389:559-572. [PMID: 35711069 DOI: 10.1007/s00441-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
UV-damaged DNA-binding protein 1 (DDB1) and cullin 4-associated factor 2 (DCAF2, also known as DTL or CDT2) is an evolutionarily highly conserved substrate recognition factor in the cullin 4 RING E3 ubiquitin ligase (CRL4) complex. This complex degrades multiple DNA replication and cell cycle-associated proteins to maintain genome stability. To clarify the function of DCAF2 in vivo, we used Cre recombinase driven by the Elf5 promoter to generate knockout mouse model that was specifically deleted Dcaf2 in the trophoblast lineage (Elf5-Cre; Dcaf2fl/fl, Dcaf2 cKO). Here, we show that mice with the genotype Elf5-Cre; Dcaf2fl/+ are normal and fertile. However, after mating of Elf5-Cre; Dcaf2fl/+ mice with Dcaf2fl/fl, no Dcaf2 cKO pups were born. Timed pregnancy studies have shown that Dcaf2 cKO mice developed abnormally on embryonic day 5.5 and died at gastrulation stage. It is worth noting that the extraembryonic ectoderm of Dcaf2 cKO mice is severely reduced or missing and leading to embryonic death. We also proved that stronger DNA damage accumulated in the trophoblastic cells of Dcaf2 cKO mice at E8.5. In addition, higher expression of Caspase-3 was found in the embryonic and trophoblastic cells of these cKO mice. In general, our research shows that the placental DCAF2 is crucial to the formation of gastrula.
Collapse
|
213
|
Wang Y, Jiang X, Jia L, Wu X, Wu H, Wang Y, Li Q, Yu R, Wang H, Xiao Z, Liang X. A Single-Cell Characterization of Human Post-implantation Embryos Cultured In Vitro Delineates Morphogenesis in Primary Syncytialization. Front Cell Dev Biol 2022; 10:835445. [PMID: 35784461 PMCID: PMC9240912 DOI: 10.3389/fcell.2022.835445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Implantation of the human blastocyst is a milestone event in embryonic development. The trophoblast is the first cell lineage to differentiate during implantation. Failures in trophoblast differentiation during implantation are correlated to the defects of pregnancy and embryonic growth. However, many gaps remain in the knowledge of human embryonic development, especially regarding trophoblast morphogenesis and function. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on human post-implantation embryos cultured in vitro. A hierarchical model was established, which was characterized by the sequential development of two primitive cytotrophoblast cell (pCTB) subtypes, two primitive syncytiotrophoblast subtypes, and migrative trophoblast cells (MTB) after the trophectoderm . Further analysis characterized cytoskeleton transition of trophoblast cells and morphogenesis, such as irregular nuclei, cell cycle arrest, and cellular aging during implantation. Moreover, we found syncytialization of hTSCs could mimic the morphogenesis, serving as a powerful tool for further understanding of the mechanism during the implantation stage of pregnancy. Our work allows for the reconstruction of trophoblast cell transcriptional transition and morphogenesis during implantation and provides a valuable resource to study pathologies in early pregnancy, such as recurrent implantation failure.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiangxiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Lei Jia
- Reproductive Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xulun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| | - Zhenyu Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| | - Xiaoyan Liang
- Reproductive Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| |
Collapse
|
214
|
Nikitina TV, Lebedev IN. Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells 2022; 11:1923. [PMID: 35741051 PMCID: PMC9221414 DOI: 10.3390/cells11121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Miscarriage affects approximately 15% of clinically recognized pregnancies, and 1-3% of couples experience pregnancy loss recurrently. Approximately 50-60% of miscarriages result from chromosomal abnormalities, whereas up to 60% of euploid recurrent abortions harbor variants in candidate genes. The growing number of detected genetic variants requires an investigation into their role in adverse pregnancy outcomes. Since placental defects are the main cause of first-trimester miscarriages, the purpose of this review is to provide a survey of state-of-the-art human in vitro trophoblast models that can be used for the functional assessment of specific abnormalities/variants implicated in pregnancy loss. Since 2018, when primary human trophoblast stem cells were first derived, there has been rapid growth in models of trophoblast lineage. It has been found that a proper balance between self-renewal and differentiation in trophoblast progenitors is crucial for the maintenance of pregnancy. Different responses to aneuploidy have been shown in human embryonic and extra-embryonic lineages. Stem cell-based models provide a powerful tool to explore the effect of a specific aneuploidy/variant on the fetus through placental development, which is important, from a clinical point of view, for deciding on the suitability of embryos for transfer after preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Tatiana V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia;
| | | |
Collapse
|
215
|
Huang W, Yuan Z, Gu H. Exploring epigenomic mechanisms of neural tube defects using multi-omics methods and data. Ann N Y Acad Sci 2022; 1515:50-60. [PMID: 35666948 DOI: 10.1111/nyas.14802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neural tube defects (NTDs) are a heterogeneous set of malformations attributed to disruption in normal neural tube closure during early embryogenesis. An in-depth understanding of NTD etiology and mechanisms remains elusive, however. Among the proposed mechanisms, epigenetic changes are thought to play an important role in the formation of NTDs. Epigenomics covers a wide spectrum of genomic DNA sequence modifications that can be investigated via high-throughput techniques. Recent advances in epigenomic technologies have enabled epigenetic studies of congenital malformations and facilitated the integration of big data into the understanding of NTDs. Herein, we review clinical epigenomic data that focuses on DNA methylation, histone modification, and miRNA alterations in human neural tissues, placental tissues, and leukocytes to explore potential mechanisms by which candidate genes affect human NTD pathogenesis. We discuss the links between epigenomics and gene regulatory mechanisms, and the effects of epigenetic alterations in human tissues on neural tube closure.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
216
|
Lopez-Tello J, Jimenez-Martinez MA, Salazar-Petres E, Patel R, George AL, Kay RG, Sferruzzi-Perri AN. Identification of Structural and Molecular Signatures Mediating Adaptive Changes in the Mouse Kidney in Response to Pregnancy. Int J Mol Sci 2022; 23:6287. [PMID: 35682969 PMCID: PMC9181623 DOI: 10.3390/ijms23116287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pregnancy is characterized by adaptations in the function of several maternal body systems that ensure the development of the fetus whilst maintaining health of the mother. The renal system is responsible for water and electrolyte balance, as well as waste removal. Thus, it is imperative that structural and functional changes occur in the kidney during pregnancy. However, our knowledge of the precise morphological and molecular mechanisms occurring in the kidney during pregnancy is still very limited. Here, we investigated the changes occurring in the mouse kidney during pregnancy by performing an integrated analysis involving histology, gene and protein expression assays, mass spectrometry profiling and bioinformatics. Data from non-pregnant and pregnant mice were used to identify critical signalling pathways mediating changes in the maternal kidneys. We observed an expansion of renal medulla due to proliferation and infiltration of interstitial cellular constituents, as well as alterations in the activity of key cellular signalling pathways (e.g., AKT, AMPK and MAPKs) and genes involved in cell growth/metabolism (e.g., Cdc6, Foxm1 and Rb1) in the kidneys during pregnancy. We also generated plasma and urine proteomic profiles, identifying unique proteins in pregnancy. These proteins could be used to monitor and study potential mechanisms of renal adaptations during pregnancy and disease.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ritik Patel
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amy L George
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Richard G Kay
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
217
|
Transcription factor networks in trophoblast development. Cell Mol Life Sci 2022; 79:337. [PMID: 35657505 PMCID: PMC9166831 DOI: 10.1007/s00018-022-04363-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022]
Abstract
The placenta sustains embryonic development and is critical for a successful pregnancy outcome. It provides the site of exchange between the mother and the embryo, has immunological functions and is a vital endocrine organ. To perform these diverse roles, the placenta comprises highly specialized trophoblast cell types, including syncytiotrophoblast and extravillous trophoblast. The coordinated actions of transcription factors (TFs) regulate their emergence during development, subsequent specialization, and identity. These TFs integrate diverse signaling cues, form TF networks, associate with chromatin remodeling and modifying factors, and collectively determine the cell type-specific characteristics. Here, we summarize the general properties of TFs, provide an overview of TFs involved in the development and function of the human trophoblast, and address similarities and differences to their murine orthologs. In addition, we discuss how the recent establishment of human in vitro models combined with -omics approaches propel our knowledge and transform the human trophoblast field.
Collapse
|
218
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
219
|
Schroeder M, Badini G, Sferruzzi-Perri AN, Albrecht C. The Consequences of Assisted Reproduction Technologies on the Offspring Health Throughout Life: A Placental Contribution. Front Cell Dev Biol 2022; 10:906240. [PMID: 35747691 PMCID: PMC9210138 DOI: 10.3389/fcell.2022.906240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The use of assisted reproductive technologies (ART) worldwide has led to the conception and birth of over eight million babies since being implemented in 1978. ART use is currently on the rise, given growing infertility and the increase in conception age among men and women in industrialized countries. Though obstetric and perinatal outcomes have improved over the years, pregnancies achieved by ART still bear increased risks for the mother and the unborn child. Moreover, given that the first generation of ART offspring is now only reaching their forties, the long-term effects of ART are currently unknown. This is important, as there is a wealth of data showing that life-long health can be predetermined by poor conditions during intrauterine development, including irregularities in the structure and functioning of the placenta. In the current review, we aim to summarize the latest available findings examining the effects of ART on the cardiometabolic, cognitive/neurodevelopmental, and behavioral outcomes in the perinatal period, childhood and adolescence/adulthood; and to examine placental intrinsic factors that may contribute to the developmental outcomes of ART offspring. Altogether, the latest knowledge about life outcomes beyond adolescence for those conceived by ART appears to suggest a better long-term outcome than previously predicted. There are also changes in placenta structure and functional capacity with ART. However, more work in this area is critically required, since the potential consequences of ART may still emerge as the offspring gets older. In addition, knowledge of the placenta may help to foresee and mitigate any adverse outcomes in the offspring.
Collapse
Affiliation(s)
- Mariana Schroeder
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Gina Badini
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christiane Albrecht
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
220
|
Avci S, Kuscu N, Durkut B, Kilinc L, Ustunel I, Celik-Ozenci C. Altered expression of Notch signaling, Tlr receptors, and surfactant protein expression after prostaglandin inhibition may be associated with the delayed labor in LPS-induced mice. J Assist Reprod Genet 2022; 39:1531-1544. [PMID: 35538257 DOI: 10.1007/s10815-022-02515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aims to investigate whether indomethacin (IND) delays preterm birth by regulating the Notch pathway, Tlr receptors, and Sp-A in the placenta in lipopolysaccharide (LPS)-induced preterm labor (PTL) model. METHODS CD-1 mice were distributed to the pregnant control (PC), Sham, PBS, IND (2 mg/kg; i.p.), LPS (25 μg/100 μl; intrauterine), and LPS + IND groups. The injections were performed on day 14.5 of pregnancy. Placentae were collected on day 15.5 of pregnancy, and immunohistochemical analyzes were performed. Differences in staining intensities between the Cox-1, Notch-1 (N1), Dll-1, Jagged-2 (Jag-2), Tlr-2, and Tlr-4 proteins were compared. RESULTS Preterm labor rates were 100% and 66% (preterm delivery delayed 5 h) in the LPS and LPS + IND groups, respectively. In LPS-treated mice, a general morphological deterioration was observed in the placenta. Total placental mid-sagittal measurement was significantly reduced in the LPS-treated group, while it was similar to the PC group in the LPS + IND group. Cox-1 expression in the LZ increased, and Sp-A expression decreased after LPS injection, and IND administration diminished this increase. N1 expression increased in the labyrinth zone (LZ) and the junctional zone (JZ). Dll-1 and Jag-2 expression increased in the JZ after LPS injection (p < 0.0001). IND administration diminished Tlr-2 expression in the LZ and Tlr-4 expression in the JZ after LPS injection. CONCLUSION In conclusion, PG (prostaglandin) inhibition may alter Notch signaling, Tlr, and Sp-A protein expression and may be associated with delayed labor in LPS-induced mice.
Collapse
Affiliation(s)
- Sema Avci
- Department of Histology and Embryology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Nilay Kuscu
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Begum Durkut
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Leyla Kilinc
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University, Istanbul, Turkey. .,Koç University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey.
| |
Collapse
|
221
|
Tekola-Ayele F, Zeng X, Chatterjee S, Ouidir M, Lesseur C, Hao K, Chen J, Tesfaye M, Marsit CJ, Workalemahu T, Wapner R. Placental multi-omics integration identifies candidate functional genes for birthweight. Nat Commun 2022; 13:2384. [PMID: 35501330 PMCID: PMC9061712 DOI: 10.1038/s41467-022-30007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Abnormal birthweight is associated with increased risk for cardiometabolic diseases in later life. Although the placenta is critical to fetal development and later life health, it has not been integrated into largescale functional genomics initiatives, and mechanisms of birthweight-associated variants identified by genome wide association studies (GWAS) are unclear. The goal of this study is to provide functional mechanistic insight into the causal pathway from a genetic variant to birthweight by integrating placental methylation and gene expression with established GWAS loci for birthweight. We identify placental DNA methylation and gene expression targets for several birthweight GWAS loci. The target genes are broadly enriched in cardiometabolic, immune response, and hormonal pathways. We find that methylation causally influences WNT3A, CTDNEP1, and RANBP2 expression in placenta. Multi-trait colocalization identifies PLEKHA1, FES, CTDNEP1, and PRMT7 as likely functional effector genes. These findings reveal candidate functional pathways that underpin the genetic regulation of birthweight via placental epigenetic and transcriptomic mechanisms. Clinical trial registration; ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Xuehuo Zeng
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Suvo Chatterjee
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Tsegaselassie Workalemahu
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
222
|
Wang J, Noguchi S, Takizawa T, Negishi Y, Morita R, Luo SS, Takizawa T. Placenta-specific lncRNA 1600012P17Rik is expressed in spongiotrophoblast and glycogen trophoblast cells of mouse placenta. Histochem Cell Biol 2022; 158:65-78. [PMID: 35486179 DOI: 10.1007/s00418-022-02109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
A few long noncoding RNAs (long ncRNAs, lncRNAs) exhibit trophoblast cell type-specific expression patterns and functional roles in mouse placenta. However, the cell- and stage-specific expression patterns and functions of most placenta-derived lncRNAs remain unclear. In this study, we explored mouse placenta-associated lncRNAs using a combined bioinformatic and experimental approach. We used the FANTOM5 database to survey lncRNA expression in mouse placenta and found that 1600012P17Rik (MGI: 1919275, designated P17Rik), a long intergenic ncRNA, was the most highly expressed lncRNA at gestational day 17. Polymerase chain reaction analysis confirmed that P17Rik was exclusively expressed in placenta and not in any of the adult organs examined in this study. In situ hybridization analysis revealed that it was highly expressed in spongiotrophoblast cells and to a lesser extent in glycogen trophoblast cells, including migratory glycogen trophoblast cells invading the decidua. Moreover, we found that it is a polyadenylated lncRNA localized mainly to the cytoplasm of these trophoblast cells. As these trophoblast cells also expressed the neighboring protein-coding gene, pappalysin 2 (Pappa2), we investigated the effects of P17Rik on Pappa2 expression using Pappa2-expressing MC3T3-E1 cells and found that P17Rik transfection increased the messenger RNA (mRNA) and protein levels of Pappa2. These results indicate that mouse placenta-specific lncRNA P17Rik modulates the expression of the neighboring protein-coding gene Pappa2 in spongiotrophoblast and glycogen trophoblast cells of mouse placenta during late gestation.
Collapse
Affiliation(s)
- Junxiao Wang
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Shan-Shun Luo
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan.
| |
Collapse
|
223
|
Li Q, Wu H, Wang Y, Wang H. Current understanding in deciphering trophoblast cell differentiation during human placentation. Biol Reprod 2022; 107:317-326. [PMID: 35478014 DOI: 10.1093/biolre/ioac083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
The placenta is a unique organ that forms during gestation and supports fetus survival and communication with the mother. However, of such an arguably essential organ for a successful pregnancy, our knowledge is limited. New progress has been made for human placenta study in recent years. We herein summarize the current understanding of human placental trophoblast differentiation and the molecules that govern trophoblast cell lineage specification. More importantly, the powerful tools for placental studies are also explained, such as human trophoblast stem cells (hTSCs), 3-dimensional (3D) trophoblast organoids, engineering-based placental devices, and single-cell RNA sequencing (sc-RNAseq). These advances have brought us new insights into placental development and provided multiple investigation strategies for deciphering molecular mechanisms.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
224
|
Postnikova LA, Patkin EL. The possible effect of lactoferrin on the epigenetic characteristics of early mammalian embryos exposed to bisphenol A. Birth Defects Res 2022; 114:1199-1209. [PMID: 35451577 DOI: 10.1002/bdr2.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The main objective of this review was to state a hypothetical mechanism of the antitoxic effect of lactoferrin (Lf) on embryos exposed to bisphenol A (BPA). On this basis, it is possible to suggest Lf as a potential protective health component before conception upon toxic effects and viral infections. METHODS The narrative review was performed using systematic review methods to identify relevant literature. The resources required for this study were obtained by searching the electronic database PubMed (MEDLINE). Articles were searched using the keywords "BPA," "lactoferrin," "DNA-methylation," "epigenetic," "mammals," "human," and "mouse." The inclusion criteria were as follows: (a) primary or original research; (b) study of epigenetic modification; and (c) study focuses on early mammalian development. RESULTS Presented data demonstrate that Lf can modulate epigenetical characteristic, such as DNA methylation and reactive oxygen species (ROS), and, thereby, may serve as a potential readily available pharmaceutical product. CONCLUSION Suggested hypothesis is based on the important interrelated role of changes in epigenetic modifications and oxidative stress in early embryogenesis under the influence of BPA and virus infection as a cause of the development of pathologies in the adult organism.
Collapse
Affiliation(s)
- Liubov A Postnikova
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Eugene L Patkin
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
225
|
Freyer L, Lallemand Y, Dardenne P, Sommer A, Biton A, Gomez Perdiguero E. Erythro-myeloid progenitor origin of Hofbauer cells in the early mouse placenta. Development 2022; 149:dev200104. [PMID: 35438172 PMCID: PMC9124577 DOI: 10.1242/dev.200104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/31/2022] [Indexed: 12/17/2022]
Abstract
Hofbauer cells (HBCs) are tissue macrophages of the placenta thought to be important for fetoplacental vascular development and innate immune protection. The developmental origins of HBCs remain unresolved and could implicate functional diversity of HBCs in placenta development and disease. In this study, we used flow cytometry and paternally inherited reporters to phenotype placenta macrophages and to identify fetal-derived HBCs and placenta-associated maternal macrophages in the mouse. In vivo pulse-labeling traced the ontogeny of HBCs from yolk sac-derived erythro-myeloid progenitors, with a minor contribution from fetal hematopoietic stem cells later on. Single-cell RNA-sequencing revealed transcriptional similarities between placenta macrophages and erythro-myeloid progenitor-derived fetal liver macrophages and microglia. As with other fetal tissue macrophages, HBCs were dependent on the transcription factor Pu.1, the loss-of-function of which in embryos disrupted fetoplacental labyrinth morphology, supporting a role for HBC in labyrinth angiogenesis and/or remodeling. HBC were also sensitive to Pu.1 (Spi1) haploinsufficiency, which caused an initial deficiency in the numbers of macrophages in the early mouse placenta. These results provide groundwork for future investigation into the relationship between HBC ontogeny and function in placenta pathophysiology.
Collapse
Affiliation(s)
- Laina Freyer
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Yvan Lallemand
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Pascal Dardenne
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Alina Sommer
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, 75015 Paris, France
| | - Elisa Gomez Perdiguero
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| |
Collapse
|
226
|
Zhang L, Wang Z, Wu H, Gao Y, Zheng J, Zhang J. Maternal High-Fat Diet Impairs Placental Fatty Acid β-Oxidation and Metabolic Homeostasis in the Offspring. Front Nutr 2022; 9:849684. [PMID: 35495939 PMCID: PMC9050107 DOI: 10.3389/fnut.2022.849684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Maternal overnutrition can affect fetal growth and development, thus increasing susceptibility to obesity and diabetes in later life of the offspring. Placenta is the central organ connecting the developing fetus with the maternal environment. It is indicated placental fatty acid metabolism plays an essential role in affecting the outcome of the pregnancy and fetus. However, the role of placental fatty acid β-oxidation (FAO) in maternal overnutrition affecting glucose metabolism in the offspring remains unclear. In this study, C57BL/6J female mice were fed with normal chow or high-fat diet before and during pregnancy and lactation. The placenta and fetal liver were collected at gestation day 18.5, and the offspring's liver was collected at weaning. FAO-related genes and AMP-activated protein kinase (AMPK) signaling pathway were examined both in the placenta and in the human JEG-3 trophoblast cells. FAO-related genes were further examined in the liver of the fetuses and in the offspring at weaning. We found that dams fed with high-fat diet showed higher fasting blood glucose, impaired glucose tolerance at gestation day 14.5 and higher serum total cholesterol (T-CHO) at gestation day 18.5. The placental weight and lipid deposition were significantly increased in maternal high-fat diet group. At weaning, the offspring mice of high-fat diet group exhibited higher body weight, impaired glucose tolerance, insulin resistance and increased serum T-CHO, compared with control group. We further found that maternal high-fat diet downregulated mRNA and protein expressions of carnitine palmitoyltransferase 2 (CPT2), a key enzyme in FAO, by suppressing the AMPK/Sirt1/PGC1α signaling pathway in the placenta. In JEG-3 cells, protein expressions of CPT2 and CPT1b were both downregulated by suppressing the AMPK/Sirt1/PGC1α signaling pathway under glucolipotoxic condition, but were later restored by the AMPK agonist 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR). However, there was no difference in CPT2 and CPT1 gene expression in the liver of fetuses and offspring at weaning age. In conclusion, maternal high-fat diet can impair gene expression involved in FAO in the placenta by downregulating the AMPK signaling pathway, and can cause glucose and lipid dysfunction of offspring at weaning, indicating that placental FAO may play a crucial role in regulating maternal overnutrition and metabolic health in the offspring.
Collapse
|
227
|
Novel piRNA Regulates PIWIL1 to Modulate the Behavior of Placental Trophoblast Cells and Participates in Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7856290. [PMID: 35464758 PMCID: PMC9023172 DOI: 10.1155/2022/7856290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Objectives This study is aimed at investigating the role of PIWIL1/piRNA in the development of preeclampsia. Methods High-throughput sequencing was performed in 5 preeclampsia and 5 normal placentas to get a piRNA expression profile. WGCNA network was constructed to find hub piRNAs. Through target gene prediction and protein interaction network analysis, we found the potential relationship between the key genes and PIWIL1. Subsequently, we detected the expression of PIWIL1 in 35 preeclampsia and 29 normal placental tissues. Overexpression and inhibition of PIWIL1 in HTR-8/SVneo trophoblast cells were achieved by transfecting an overexpression vector and siRNAs, respectively. Cell proliferation, apoptosis, and invasion were assessed using CCK-8, flow cytometric, and transwell assays, respectively. Results It was found that a total of three piRNAs were upregulated in preeclampsia (pir-hsa-1256314, uniq_271431, and uniq_277797). And two target genes with the highest connectivity (FXR1 and DDX6) both pointed to PIWIL1. PIWIL1 expression was significantly lower in preeclampsia. In vitro studies linked PIWIL1 expression to trophoblast overgrowth. Overexpression of PIWIL1 remarkably promoted cell proliferation and invasion and inhibited apoptosis of HTR-8/SVneo cells and vice versa. Conclusions PIWIL1/piRNA may be involved in the pathogenesis of preeclampsia by inhibiting the proliferation and invasion and promoting the apoptosis of placental trophoblasts. This study was registered with the China Clinical Trials Registry (http://www.clinicaltrials.gov): registration number ChiCTR1900027479.
Collapse
|
228
|
Wang YN, Ye YX, Guo ZW, Xiong ZL, Sun QS, Zhou D, Jiang SW, Chen H. Inducible knockout of syncytin-a leads to poor placental glucose transport in mice. Placenta 2022; 121:155-163. [PMID: 35349915 DOI: 10.1016/j.placenta.2022.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Cell-cell fusion of cytotrophoblasts into the syncytiotrophoblast layer is a key process in placental development. Syncytin, an endogenous retroviral envelope protein, is expressed in placental trophoblasts and specifically mediates syncytiotrophoblast layer formation. Syncytin deficiency has been observed in fetal growth-restricted placentas. Abnormal fetal growth, especially fetal growth restriction, is associated with the decreased expression of glucose transporters. Here, we aimed to determine the role of syncytin in fetal growth restriction in placental glucose transport capacity. METHODS To better explore the function of syncytin in fetal growth-restricted placenta, we generated an inducible knockout mouse model of syncytin-a gene. The expression levels of glucose transporters in BeWo cells were measured before and after HERV-W knockdown. RESULTS Syncytin-A disruption was associated with significant abnormalities in placental and fetal development in mice. Syncytin-A destruction causes extensive abnormalities in the maternal-fetal exchange structures in the labyrinth, including an extremely reduced number and dramatically irregular distribution of fetal vessels. Moreover, glucose transporter 1, glucose transporters 3, and connexin 26 expression levels decreased after E14.5. Consistently, low glucose transporter 1, glucose transporter 3, and connexin 26 levels were observed in HERV-W-silenced BeWo cells. DISCUSSION Syncytin-A is crucial for both syncytiotrophoblast layer development and morphogenesis, suggesting that syncytin-A disruption leads to fetal growth restriction associated with abnormalities in the maternal-fetal exchange barrier and decreased glucose transport.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shantou University Medical College, China
| | - Yi-Xin Ye
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Ze-Wen Guo
- Department of Obstetrics and Gynecology, Shantou Central Hospital, China
| | - Zhe-Lei Xiong
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Qi-Si Sun
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Da Zhou
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214123, Jiangsu, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
229
|
Telkar N, Stewart GL, Pewarchuk ME, Cohn DE, Robinson WP, Lam WL. Small Non-Coding RNAs in the Human Placenta: Regulatory Roles and Clinical Utility. Front Genet 2022; 13:868598. [PMID: 35432451 PMCID: PMC9006164 DOI: 10.3389/fgene.2022.868598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
The placenta is a vital organ formed during pregnancy, and being the interface between the mother and fetus, it is paramount that placental functioning is strictly controlled. Gene expression in the placenta is finely tuned-with aberrant expression causing placental pathologies and inducing stress on both mother and fetus. Gene regulation is brought upon by several mechanisms, and small non-coding RNAs (sncRNAs) have recently been appreciated for their contribution in gene repression. Their dysregulation has been implicated in a range of somatic and inherited disorders, highlighting their importance in maintaining healthy organ function. Their specific roles within the placenta, however, are not well understood, and require further exploration. To this end, we summarize the mechanisms of microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and transfer RNAs (tRNAs), their known contributions to human placental health and disease, the relevance of sncRNAs as promising biomarkers throughout pregnancy, and the current challenges faced by placental sncRNA studies.
Collapse
Affiliation(s)
- Nikita Telkar
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | - David E. Cohn
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
230
|
Andrew AK, Cooper CA, Moore JM. A novel murine model of post-implantation malaria-induced preterm birth. PLoS One 2022; 17:e0256060. [PMID: 35312688 PMCID: PMC8936457 DOI: 10.1371/journal.pone.0256060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Despite major advances made in malaria treatment and control over recent decades, the development of new models for studying disease pathogenesis remains a vital part of malaria research efforts. The study of malaria infection during pregnancy is particularly reliant on mouse models, as a means of circumventing many challenges and costs associated with pregnancy studies in endemic human populations. Here, we introduce a novel murine model that will further our understanding of how malaria infection affects pregnancy outcome. When C57BL/6J (B6) mice are infected with Plasmodium chabaudi chabaudi AS on either embryonic day (E) 6.5, 8.5, or 10.5, preterm birth occurs in all animals by E16.5, E17.5, or E18.5 respectively, with no evidence of intrauterine growth restriction. Despite having the same outcome, we found that the time to delivery, placental inflammatory and antioxidant transcript upregulation, and the relationships between parasitemia and transcript expression prior to preterm birth differed based on the embryonic day of infection. On the day before preterm delivery, E6.5 infected mice did not experience significant upregulation of the inflammatory or antioxidant gene transcripts examined; however, peripheral and placental parasitemia correlated positively with Il1β, Cox1, Cat, and Hmox1 placental transcript abundance. E8.5 infected mice had elevated transcripts for Ifnγ, Tnf, Il10, Cox1, Cox2, Sod1, Sod2, Cat, and Nrf2, while Sod3 was the only transcript that correlated with parasitemia. Finally, E10.5 infected mice had elevated transcripts for Ifnγ only, with a tendency for Tnf transcripts to correlate with peripheral parasitemia. Tumor necrosis factor deficient (TNF-/-) and TNF receptor 1 deficient (TNFR1-/-) mice infected on E8.5 experienced preterm birth at the same time as B6 controls. Further characterization of this model is necessary to discover the mechanism(s) and/or trigger(s) responsible for malaria-driven preterm birth caused by maternal infection during early pregnancy.
Collapse
Affiliation(s)
- Alicer K. Andrew
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Caitlin A. Cooper
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
231
|
Wen Y, Hu L, Li J, Geng Y, Yang Y, Wang J, Chen X, Yu L, Tang H, Han T, Yang Y, Liu X. Exposure to two-dimensional ultrathin Ti3C2 (MXene) nanosheets during early pregnancy impairs neurodevelopment of offspring in mice. J Nanobiotechnology 2022; 20:108. [PMID: 35248077 PMCID: PMC8898431 DOI: 10.1186/s12951-022-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have been extensively explored for various biomedical applications. However, safety issues and the effects of Ti3C2 on human health remain poorly understood. Results To explore the influence on foetal or offspring after exposure to Ti3C2 nanosheets, we established a mouse model exposed to different doses of Ti3C2 nanosheets during early pregnancy in this study. We found that Ti3C2 nanosheets had negligible effect on the reproductive ability of maternal mice, including average pregnancy days, number of new-borns, and neonatal weight, etc. Unexpectedly, abnormal neurobehavior and pathological changes in the cerebral hippocampus and cortex in adult offspring were observed following Ti3C2 nanosheet treatment. In further studies, it was found that Ti3C2 exposure led to developmental and functional defects in the placenta, including reduced area of labyrinth, disordered secretion of placental hormones, and metabolic function derailment. The long-chain unsaturated fatty acids were significantly higher in the placenta after Ti3C2 exposure, especially docosahexaenoic acid (DHA) and linoleic acid. The metabolic pathway analysis showed that biosynthesis of unsaturated fatty acids was upregulated while linoleic acid metabolism was downregulated. Conclusions These developmental and functional defects, particularly metabolic function derailment in placenta may be the cause for the neuropathology in the offspring. This is the first report about the effects of Ti3C2 nanosheet exposure on pregnancy and offspring. The data provides a better understanding of Ti3C2 nanosheets safety. It is suggested that future studies should pay more attention to the long-term effects of nanomaterials exposure, including the health of offspring in adulthood, rather than only focus on short-term effects, such as pregnancy outcomes. Metabolomics could provide clues for finding the prevention targets of the biological negative effect of Ti3C2 nanosheets. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01313-z.
Collapse
|
232
|
Zhu HL, Dai LM, Xiong YW, Shi XT, Liu WB, Fu YT, Zhou GX, Zhang S, Gao L, Zhang C, Zhao LL, Xu XF, Huang YC, Xu DX, Wang H. Gestational exposure to environmental cadmium induces placental apoptosis and fetal growth restriction via Parkin-modulated MCL-1 degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127268. [PMID: 34583167 DOI: 10.1016/j.jhazmat.2021.127268] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal cadmium (Cd), a classical environmental pollutant, causes placental apoptosis and fetal growth restriction (FGR), whereby the mechanism remains unclear. Here, our human case-control study firstly showed that there was a positive association of Parkin mitochondrial translocation, MCL-1 reduction, placental apoptosis, and all-cause FGR. Subsequently, Cd was administered to establish in vitro and in vivo models of placental apoptosis or FGR. Our models demonstrated that Parkin mitochondrial translocation was observed in Cd-administrated placental trophoblasts. Meaningfully, Parkin siRNA (siR) dramatically mitigated Cd-triggered apoptosis in placental trophoblasts. Mdivi-1 (M-1), an inhibitor for Parkin mitochondrial translocation, mitigated Cd-induced apoptosis in placental trophoblasts, which further ameliorated the effect of attenuated placental sizes in Cd-exposed mice. Furthermore, the interaction of MCL-1 with Parkin or Ub in Cd-stimulated cells was stronger than that in controls. MG132, an inhibitor for proteasome, abolished MCL-1 degradation in Cd-stimulated cells. Importantly, Parkin siR and M-1 memorably abolished the ubiquitin-dependent degradation of MCL-1 in placental trophoblasts. Interestingly, mito-TEMPO and melatonin, two mitochondria-targeted antioxidants, obviously rescued Cd-caused mitochondrial membrane potential (MMP) decrease, Parkin mitochondrial translocation, MCL-1 degradation, and apoptosis in placental trophoblasts. In conclusion, cadmium induces placental apoptosis and FGR via mtROS-mediated Parkin-modulated degradation of MCL-1.
Collapse
Affiliation(s)
- Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Ting Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shuang Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xiao-Feng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
233
|
Ichikawa T, Zhang HT, Panavaite L, Erzberger A, Fabrèges D, Snajder R, Wolny A, Korotkevich E, Tsuchida-Straeten N, Hufnagel L, Kreshuk A, Hiiragi T. An ex vivo system to study cellular dynamics underlying mouse peri-implantation development. Dev Cell 2022; 57:373-386.e9. [PMID: 35063082 PMCID: PMC8826647 DOI: 10.1016/j.devcel.2021.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/23/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hui Ting Zhang
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Laura Panavaite
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Anna Erzberger
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Dimitri Fabrèges
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rene Snajder
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Adrian Wolny
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | - Lars Hufnagel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anna Kreshuk
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, 606-8501 Kyoto, Japan.
| |
Collapse
|
234
|
Cao C, Dai Y, Wang Z, Zhao G, Duan H, Zhu X, Wang J, Zheng M, Weng Q, Wang L, Gou W, Zhang H, Li C, Liu D, Hu Y. The role of junctional adhesion molecule-C in trophoblast differentiation and function during normal pregnancy and preeclampsia. Placenta 2022; 118:55-65. [PMID: 35032792 DOI: 10.1016/j.placenta.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Junctional adhesion molecule-C (JAM-C) is an important regulator of many physiological processes, ranging from maintenance of tight junction integrity of epithelia to regulation of cell migration, homing and proliferation. Preeclampsia (PE) is a trophoblast-related syndrome with abnormal placentation and insufficient trophoblast invasion. However, the role of JAM-C in normal pregnancy and PE pathogenesis is unknown. METHODS The expression and location of JAM-C in placentas were determined by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. The expression of differentiation and invasion markers were detected by qRT-PCR or western blot. The effects of JAM-C on migration and invasion of trophoblasts were examined using wound-healing and invasion assays. Additionally, a mouse model was established by injection of JAM-C-positive adenovirus to explore the effects of JAM-C in vivo. RESULTS In normal pregnancy, JAM-C was preferentially expressed on cytotrophoblast (CTB) progenitors and progressively decreased when acquiring invasion properties with gestation advance. However, in PE patients, the expression of JAM-C was upregulated in extravillous trophoblasts (EVTs) and syncytiotrophoblasts (SynTs) of placentas. It was also demonstrated that JAM-C suppressed the differentiation of CTBs into EVTs in vitro. Consistently, JAM-C inhibited the migration and invasion capacities of EVTs through GSK3β/β-catenin signaling pathway. Importantly, Ad-JAMC-infected mouse model mimicked the phenotype of human PE. DISCUSSION JAM-C plays an important role in normal placentation and upregulated JAM-C in placentas contributes to PE development.
Collapse
Affiliation(s)
- Chenrui Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Honglei Duan
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangyu Zhu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingmei Wang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiao Weng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Limin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjing Gou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haili Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Mangya, Qinghai, China
| | - Chanjuan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Heath Care Hospital, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
235
|
Zhao Z, Zhu D, Liu Y, Zhou Q, Qiu J, Xu C, He Y, Zeng W, Yang Y. Embryotoxic effects of tribromophenol on early post-implantation development of mouse embryos in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12085-12099. [PMID: 34558051 DOI: 10.1007/s11356-021-16614-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
2,4,6-Tribromophenol (TBP, CAS No. 118-79-6), the most widely produced brominated phenol, is frequently detected in environmental components. The detection of TBP in human bodies has earned great concerns about its adverse effects on human beings, especially for early embryonic development. Here, we optimized the mouse embryo in vitro culture (IVC) system for early post-implantation embryos and employed it to determine the embryotoxicity of TBP. With this new research model, we revealed the dose-dependent toxic effects of TBP on mouse embryos from peri-implantation to egg cylinder stages. Furthermore, TBP exposure inhibited the differentiation and survival of epiblast (EPI) cells and extraembryonic endoderm (ExEn) cells, while those of extraembryonic ectoderm (ExEc) cells were not influenced. These results implied that TBP might inhibit embryonic development by influencing the generation of three primary germ layers and fetal membranes (the amnion, chorionic disk, umbilical cord, and yolk sac). In summary, we showed a proof of concept for applying mouse embryo IVC system as a novel research model for studying mammalian embryonic toxicology of environmental pollutants. This study also demonstrated the toxicity of TBP on early embryonic development of mammals.
Collapse
Affiliation(s)
- Zhihua Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Dicong Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yujie Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Wentao Zeng
- Animal Core Facility, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
236
|
Romberg SI, Kreis NN, Friemel A, Roth S, Souto AS, Hoock SC, Fischer K, Nowak T, Solbach C, Louwen F, Ritter A, Yuan J. Human placental mesenchymal stromal cells are ciliated and their ciliation is compromised in preeclampsia. BMC Med 2022; 20:35. [PMID: 35081949 PMCID: PMC8793243 DOI: 10.1186/s12916-021-02203-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The development of the human placenta is tightly coordinated by a multitude of placental cell types, including human chorionic villi mesenchymal stromal cells (hCV-MSCs). Defective hCV-MSCs have been reported in preeclampsia (PE), a gestational hypertensive disease characterized by maternal endothelial dysfunction and systemic inflammation. Our goal was to determine whether hCV-MSCs are ciliated and whether altered ciliation is responsible for defective hCV-MSCs in preeclamptic placentas, as the primary cilium is a hub for signal transduction, which is important for various cellular activities. METHODS In the present work, we collected placental tissues from different gestational stages and we isolated hCV-MSCs from 1st trimester, term control, and preeclamptic placentas. We studied their ciliation, functionality, and impact on trophoblastic cell lines and organoids formed from human trophoblast stem cells (hTSCs) and from the trophoblastic cell line JEG-3 with various cellular and molecular methods, including immunofluorescence staining, gene analysis, spheroid/organoid formation, motility, and cellular network formation assay. The statistical evaluation was performed using a Student's t test (two-tailed and paired or homoscedastic) or an unpaired Mann-Whitney U test (two-tailed). RESULTS The results show that primary cilia appeared abundantly in normal hCV-MSCs, especially in the early development of the placenta. Compared to control hCV-MSCs, the primary cilia were truncated, and there were fewer ciliated hCV-MSCs derived from preeclamptic placentas with impaired hedgehog signaling. Primary cilia are necessary for hCV-MSCs' proper signal transduction, motility, homing, and differentiation, which are impaired in preeclamptic hCV-MSCs. Moreover, hCV-MSCs derived from preeclamptic placentas are significantly less capable of promoting growth and differentiation of placental organoids, as well as cellular network formation. CONCLUSIONS These data suggest that the primary cilium is required for the functionality of hCV-MSCs and primary cilia are impaired in hCV-MSCs from preeclamptic placentas.
Collapse
Affiliation(s)
- Sophia Indira Romberg
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Susanne Roth
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Alice Steglich Souto
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Samira Catharina Hoock
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Kyra Fischer
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Thorsten Nowak
- Medical practice for Gynecology, Mainzer Landstraße 265, D-60326, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany.
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe- University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany.
| |
Collapse
|
237
|
Ruane PT, Garner T, Parsons L, Babbington PA, Wangsaputra I, Kimber SJ, Stevens A, Westwood M, Brison DR, Aplin JD. Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial cells during human embryo implantation. Hum Reprod 2022; 37:777-792. [PMID: 35079788 PMCID: PMC9398450 DOI: 10.1093/humrep/deac008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/24/2021] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION How does the human embryo breach the endometrial epithelium at implantation? SUMMARY ANSWER Embryo attachment to the endometrial epithelium promotes the formation of multinuclear syncytiotrophoblast from trophectoderm, which goes on to breach the epithelial layer. WHAT IS KNOWN ALREADY A significant proportion of natural conceptions and assisted reproduction treatments fail due to unsuccessful implantation. The trophectoderm lineage of the embryo attaches to the endometrial epithelium before breaching this barrier to implant into the endometrium. Trophectoderm-derived syncytiotrophoblast has been observed in recent in vitro cultures of peri-implantation embryos, and historical histology has shown invasive syncytiotrophoblast in embryos that have invaded beyond the epithelium, but the cell type mediating invasion of the epithelial layer at implantation is unknown. STUDY DESIGN, SIZE, DURATION Fresh and frozen human blastocyst-stage embryos (n = 46) or human trophoblast stem cell (TSC) spheroids were co-cultured with confluent monolayers of the Ishikawa endometrial epithelial cell line to model the epithelial phase of implantation in vitro. Systems biology approaches with published transcriptomic datasets were used to model the epithelial phase of implantation in silico. PARTICIPANTS/MATERIALS, SETTING, METHODS Human embryos surplus to treatment requirements were consented for research. Day 6 blastocysts were co-cultured with Ishikawa cell layers until Day 8, and human TSC spheroids modelling blastocyst trophectoderm were co-cultured with Ishikawa cell layers for 48 h. Embryo and TSC morphology was assessed by immunofluorescence microscopy, and TSC differentiation by real-time quantitative PCR (RT-qPCR) and ELISA. Single-cell human blastocyst transcriptomes, and bulk transcriptomes of TSC and primary human endometrial epithelium were used to model the trophectoderm-epithelium interaction in silico. Hypernetworks, pathway analysis, random forest machine learning and RNA velocity were employed to identify gene networks associated with implantation. MAIN RESULTS AND THE ROLE OF CHANCE The majority of embryos co-cultured with Ishikawa cell layers from Day 6 to 8 breached the epithelial layer (37/46), and syncytiotrophoblast was seen in all of these. Syncytiotrophoblast was observed at the embryo-epithelium interface before breaching, and syncytiotrophoblast mediated all pioneering breaching events observed (7/7 events). Multiple independent syncytiotrophoblast regions were seen in 26/46 embryos, suggesting derivation from different regions of trophectoderm. Human TSC spheroids co-cultured with Ishikawa layers also exhibited syncytiotrophoblast formation upon invasion into the epithelium. RT-qPCR comparison of TSC spheroids in isolated culture and co-culture demonstrated epithelium-induced upregulation of syncytiotrophoblast genes CGB (P = 0.03) and SDC1 (P = 0.008), and ELISA revealed the induction of hCGβ secretion (P = 0.03). Secretory-phase primary endometrial epithelium surface transcriptomes were used to identify trophectoderm surface binding partners to model the embryo-epithelium interface. Hypernetwork analysis established a group of 25 epithelium-interacting trophectoderm genes that were highly connected to the rest of the trophectoderm transcriptome, and epithelium-coupled gene networks in cells of the polar region of the trophectoderm exhibited greater connectivity (P < 0.001) and more organized connections (P < 0.0001) than those in the mural region. Pathway analysis revealed a striking similarity with syncytiotrophoblast differentiation, as 4/6 most highly activated pathways upon TSC-syncytiotrophoblast differentiation (false discovery rate (FDR < 0.026)) were represented in the most enriched pathways of epithelium-coupled gene networks in both polar and mural trophectoderm (FDR < 0.001). Random forest machine learning also showed that 80% of the endometrial epithelium-interacting trophectoderm genes identified in the hypernetwork could be quantified as classifiers of TSC-syncytiotrophoblast differentiation. This multi-model approach suggests that invasive syncytiotrophoblast formation from both polar and mural trophectoderm is promoted by attachment to the endometrial epithelium to enable embryonic invasion. LARGE SCALE DATA No omics datasets were generated in this study, and those used from previously published studies are cited. LIMITATIONS, REASONS FOR CAUTION In vitro and in silico models may not recapitulate the dynamic embryo-endometrial interactions that occur in vivo. The influence of other cellular compartments in the endometrium, including decidual stromal cells and leukocytes, was not represented in these models. WIDER IMPLICATIONS OF THE FINDINGS Understanding the mechanism of human embryo breaching of the epithelium and the gene networks involved is crucial to improve implantation success rates after assisted reproduction. Moreover, early trophoblast lineages arising at the epithelial phase of implantation form the blueprint for the placenta and thus underpin foetal growth trajectories, pregnancy health and offspring health. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by grants from Wellbeing of Women, Diabetes UK, the NIHR Local Comprehensive Research Network and Manchester Clinical Research Facility, and the Department of Health Scientist Practitioner Training Scheme. None of the authors has any conflict of interest to declare.
Collapse
Affiliation(s)
- Peter T Ruane
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK,Correspondence address. Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, School of Medical Sciences, Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9WL, UK. E-mail: https://orcid.org/0000-0002-1476-1666
| | - Terence Garner
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Lydia Parsons
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Phoebe A Babbington
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ivan Wangsaputra
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan J Kimber
- Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Adam Stevens
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Melissa Westwood
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK,Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - John D Aplin
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
238
|
Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta. Genes (Basel) 2022; 13:genes13010130. [PMID: 35052470 PMCID: PMC8775503 DOI: 10.3390/genes13010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adverse exposures during pregnancy have been shown to contribute to susceptibility for chronic diseases in offspring. Maternal diabetes during pregnancy is associated with higher risk of pregnancy complications, structural birth defects, and cardiometabolic health impairments later in life. We showed previously in a mouse model that the placenta is smaller in diabetic pregnancies, with reduced size of the junctional zone and labyrinth. In addition, cell migration is impaired, resulting in ectopic accumulation of spongiotrophoblasts within the labyrinth. The present study had the goal to identify the mechanisms underlying the growth defects and trophoblast migration abnormalities. Based upon gene expression assays of 47 candidate genes, we were able to attribute the reduced growth of diabetic placenta to alterations in the Insulin growth factor and Serotonin signaling pathways, and provide evidence for Prostaglandin signaling deficiencies as the possible cause for abnormal trophoblast migration. Furthermore, our results reinforce the notion that the exposure to maternal diabetes has particularly pronounced effects on gene expression at midgestation time points. An implication of these findings is that mechanisms underlying developmental programming act early in pregnancy, during placenta morphogenesis, and before the conceptus switches from histiotrophic to hemotrophic nutrition.
Collapse
|
239
|
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol a (BPA) on the placenta. Biol Reprod 2022; 106:826-834. [PMID: 35020819 DOI: 10.1093/biolre/ioac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.
Collapse
Affiliation(s)
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
240
|
Amarachintha SP, Mourya R, Ayabe H, Yang L, Luo Z, Li X, Thanekar U, Shivakumar P, Bezerra JA. Biliary organoids uncover delayed epithelial development and barrier function in biliary atresia. Hepatology 2022; 75:89-103. [PMID: 34392560 PMCID: PMC9983428 DOI: 10.1002/hep.32107] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Biliary atresia is a severe inflammatory and fibrosing cholangiopathy of neonates of unknown etiology. The onset of cholestasis at birth implies a prenatal onset of liver dysfunction. Our aim was to investigate the mechanisms linked to abnormal cholangiocyte development. APPROACH AND RESULTS We generated biliary organoids from liver biopsies of infants with biliary atresia and normal and diseased controls. Organoids emerged from biliary atresia livers and controls and grew as lumen-containing spheres with an epithelial lining of cytokeratin-19pos albuminneg SOX17neg cholangiocyte-like cells. Spheres had similar gross morphology in all three groups and expressed cholangiocyte-enriched genes. In biliary atresia, cholangiocyte-like cells lacked a basal positioning of the nucleus, expressed fewer developmental and functional markers, and displayed misorientation of cilia. They aberrantly expressed F-actin, β-catenin, and Ezrin, had low signals for the tight junction protein zonula occludens-1 (ZO-1), and displayed increased permeability as evidenced by a higher Rhodamine-123 (R123) signal inside organoids after verapamil treatment. Biliary atresia organoids had decreased expression of genes related to EGF signaling and FGF2 signaling. When treated with EGF+FGF2, biliary atresia organoids expressed differentiation (cytokeratin 7 and hepatocyte nuclear factor 1 homeobox B) and functional (somatostatin receptor 2, cystic fibrosis transmembrane conductance regulator [CFTR], aquaporin 1) markers, restored polarity with improved localization of F-actin, β-catenin and ZO-1, increased CFTR function, and decreased uptake of R123. CONCLUSIONS Organoids from biliary atresia are viable and have evidence of halted epithelial development. The induction of developmental markers, improved cell-cell junction, and decreased epithelial permeability by EGF and FGF2 identifies potential strategies to promote epithelial maturation and function.
Collapse
Affiliation(s)
- Surya P. Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hiroaki Ayabe
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Li Yang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Li
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jorge A. Bezerra
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
241
|
Dietrich B, Haider S, Meinhardt G, Pollheimer J, Knöfler M. WNT and NOTCH signaling in human trophoblast development and differentiation. Cell Mol Life Sci 2022; 79:292. [PMID: 35562545 PMCID: PMC9106601 DOI: 10.1007/s00018-022-04285-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
Abstract
Correct development of the human placenta and its differentiated epithelial cells, syncytial trophoblasts (STBs) and extravillous trophoblasts (EVTs), is crucial for a successful pregnancy outcome. STBs develop by cell fusion of mononuclear cytotrophoblasts (CTBs) in placental floating villi, whereas migratory EVTs originate from specialized villi anchoring to the maternal decidua. Defects in trophoblast differentiation have been associated with severe pregnancy disorders such as early-onset preeclampsia and fetal growth restriction. However, the evolutionary pathways underlying normal and adverse placentation are poorly understood. Herein, we discuss Wingless (WNT) and NOTCH signaling, two pathways that play pivotal roles in human placenta and trophoblast development. Whereas WNT is necessary for expansion of trophoblast progenitors and stem cells, NOTCH1 is required for proliferation and survival of EVT precursors. Differentiation of the latter is orchestrated by a switch in NOTCH receptor expression as well as by changes in WNT ligands and their downstream effectors.
Collapse
Affiliation(s)
- Bianca Dietrich
- grid.22937.3d0000 0000 9259 8492Placental Development Group, Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Währinger Gürtel 18–20, 5Q, 1090 Vienna, Austria
| | - Sandra Haider
- grid.22937.3d0000 0000 9259 8492Placental Development Group, Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Währinger Gürtel 18–20, 5Q, 1090 Vienna, Austria
| | - Gudrun Meinhardt
- grid.22937.3d0000 0000 9259 8492Placental Development Group, Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Währinger Gürtel 18–20, 5Q, 1090 Vienna, Austria
| | - Jürgen Pollheimer
- grid.22937.3d0000 0000 9259 8492Maternal-Fetal Immunology Group, Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Währinger Gürtel 18–20, 5Q, 1090 Vienna, Austria
| | - Martin Knöfler
- grid.22937.3d0000 0000 9259 8492Placental Development Group, Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Währinger Gürtel 18–20, 5Q, 1090 Vienna, Austria
| |
Collapse
|
242
|
Suzuki D, Okura K, Nagakura S, Ogawa H. CDX2 downregulation in mouse mural trophectoderm during peri-implantation is heteronomous, dependent on the YAP-TEAD pathway and controlled by estrogen-induced factors. Reprod Med Biol 2022; 21:e12446. [PMID: 35386376 PMCID: PMC8967280 DOI: 10.1002/rmb2.12446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the transition of CDX2 expression patterns in mouse trophectoderm (TE) and its regulatory mechanisms during implantation. Methods Mouse E3.5-4.5 blastocysts were used to immunostain CDX2, YAP, TEAD4, and ESRRB. Endogenous estrogen signaling was perturbed by administrating estrogen receptor antagonist ICI 182,780 or ovariectomy followed by administration of progesterone and β-estradiol to elucidate the relationship between the transition of CDX2 expression patterns and ovarian estrogen-dependent change in the uterine environment. Results CDX2 expression was gradually downregulated in the mural TE from E4.0 in vivo, whereas CDX2 downregulation was not observed in blastocysts cultured in KSOM. Fetal bovine serum (FBS) supplementation in KSOM induced CDX2 downregulation independently of blastocyst attachment to dishes. CDX2 downregulation in the mural TE was repressed by administration of ICI 182,780 or by ovariectomy, and administration of β-estradiol into ovariectomized mice retriggered CDX2 downregulation. Furthermore, Cdx2 expression in the mural TE might be controlled by the YAP-TEAD pathway. Conclusions CDX2 downregulation was induced heteronomously in the mural TE from E4.0 by uterus-derived factors, the secretion of which was stimulated by ovarian estrogen.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of BioscienceTokyo University of AgricultureTokyoJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Keitaro Okura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Seina Nagakura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Hidehiko Ogawa
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| |
Collapse
|
243
|
Zhou H, Pan Y, Yang W, Zhao C, Sun X, Hong B, Jin X, Zhang T, Zhang Y, Liu N, Zhang S, Zhu H. S100P promotes trophoblast syncytialization during early placenta development by regulating YAP1. Front Endocrinol (Lausanne) 2022; 13:860261. [PMID: 36187124 PMCID: PMC9515983 DOI: 10.3389/fendo.2022.860261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a severe complication of pregnancy that is caused by genetic abnormalities, immune dysfunction, aberrant cell biology, and tissue structure destruction. Among which, placental dysfunction is crucial in the pathogenetic progression of RPL. Although some regulatory factors associated with RPL have been reported, the placental changes correlated with RPL still need to be elucidated. Here, we found that a portion of RPL patients presented with low serum and placental S100P expression. Using a human trophoblast stem cell model, we demonstrated that S100P was exclusively expressed in syncytiotrophoblast (ST)-like syncytia (ST(2D)-TSCT) and that loss of S100P expression in ST(2D)-TSCT cells impaired β-hCG secretion, leading to syncytialization failure during early placental development. Moreover, we found that S100P is involved in regulating trophoblast syncytialization by downregulating the protein level of Yes-associated protein 1 (YAP1), which plays a pivotal role in maintaining trophoblast stemness. Together, our findings suggest that S100P plays an essential role in regulating trophoblast syncytialization during early placental development in humans via YAP1. Additionally, lower serum S100P levels may predict poor pregnancy outcomes and represent a potentially useful marker for evaluating placental biological function during early pregnancy.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaohe Sun
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Binbin Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Tai Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Na Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Haiyan Zhu, ; Songying Zhang,
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Haiyan Zhu, ; Songying Zhang,
| |
Collapse
|
244
|
Moldovan GE, Miele L, Fazleabas AT. Notch signaling in reproduction. Trends Endocrinol Metab 2021; 32:1044-1057. [PMID: 34479767 PMCID: PMC8585702 DOI: 10.1016/j.tem.2021.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
The Notch signaling pathway is conserved among mammalian species and controls proliferation, differentiation, and cell death in many organs throughout the body including the reproductive tract. Notch signaling plays critical roles in the development and function of both the male and female reproductive systems. Specifically, within the female reproductive tract, Notch signaling is hormone regulated and mediates key reproductive events important for ovarian and uterine function. In this review, we highlight the tissues that express Notch receptors, ligands, and downstream effectors and distinguish how these molecules regulate reproductive function in male and female mice, non-human primates, and humans. Finally, we describe some of the aberrations in Notch signaling in female reproductive pathologies and identify opportunities for future investigation.
Collapse
Affiliation(s)
- Genna E Moldovan
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
245
|
Lee JG, Kim G, Park SG, Yon JM, Yeom J, Song HE, Cheong SA, Lim JS, Sung YH, Kim K, Yoo HJ, Hong EJ, Nam KH, Seong JK, Kim CJ, Nam SY, Baek IJ. Lipid signatures reflect the function of the murine primary placentation. Biol Reprod 2021; 106:583-596. [PMID: 34850819 DOI: 10.1093/biolre/ioab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The placenta regulates maternal-fetal communication, and its defect leads to significant pregnancy complications. The maternal and embryonic circulations are primitively connected in early placentation, but the function of the placenta during this developmentally essential period is relatively unknown. We thus performed a comparative proteomic analysis of the placenta before and after primary placentation and found that the metabolism and transport of lipids were characteristically activated in this period. The placental fatty acid (FA) carriers in specific placental compartments were upregulated according to gestational age, and metabolomic analysis also showed that the placental transport of FAs increased in a time-dependent manner. Further analysis of two mutant mice models with embryonic lethality revealed that lipid-related signatures could reflect the functional state of the placenta. Our findings highlight the importance of the nutrient transport function of the primary placenta in the early gestational period and the role of lipids in embryonic development.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Song
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
246
|
Li M, Cheng W, Zhang L. Maternal selenium deficiency suppresses proliferation, induces autophagy dysfunction and apoptosis in the placenta of mice. Metallomics 2021; 13:6406492. [PMID: 34669944 DOI: 10.1093/mtomcs/mfab058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Selenium deficiency is thought to be associated with the occurrence of gestational complications. However, the underlying mechanism of selenium deficiency impairs placental function remains unclear. In this study, female mice were separately supplemented with a Se-deficient (0.02 mg/kg Se) or control diet (0.2 mg/kg Se) for 12 weeks before mating and throughout gestation. Maternal liver and placentas were collected at embryonic day 15.5 and analyzed for Se content. Oxidative stress status, proliferation capability, autophagy, and apoptosis of the placenta were determined. We found that maternal selenium deficiency decreased placental Se concentration and some antioxidant selenoproteins expressions. The concentrations of catalase and glutathione in selenium-deficient placentas were reduced, along with an increase in hydrogen peroxide (H2O2) content. Selenium deficiency inhibited the expression of proliferating cell nuclear antigen. Autophagosomes, autophagolysosomes, and upregulation of autophagy-related protein microtubule-associated protein 1 light chain 3 alpha II (LC3B), Beclin1, PTEN-induced putative kinase 1 (PINK1), and Parkin were found in the selenium-deficient trophoblasts. Autophagic substrate p62/sequestosome 1 was surprisingly increased, indicating autophagy flux dysfunction. Selenium deficiency increased expressions of B cell leukemia/lymphoma 2 associated X protein (Bax), cleaved caspase-9/-3, and decreased the B cell leukemia/lymphoma 2 (Bcl2) level. Moreover, typical apoptotic ultrastructure and apoptosis-positive cells were observed in the selenium-deficient placenta. Our results suggested that maternal selenium deficiency impaired placental proliferation, induced autophagy dysfunction and apoptosis via increasing oxidative stress, and the Akt/mechanistic target of rapamycin (mTOR) pathway involved in this process. This study revealed a novel mechanism by which maternal selenium deficiency caused impairment of the placenta.
Collapse
Affiliation(s)
- Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lantian Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
247
|
Asano Y, Iwaki T, Umemura K, Kanayama N, Itoh H. Fibrin-mediated growth restriction of early-stage human trophoblasts is switched to growth promotion through fibrinolysis. Hum Reprod 2021; 36:3108-3121. [PMID: 34597378 DOI: 10.1093/humrep/deab223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does fibrin promote trophoblast growth in human and mouse blastocysts during early embryo implantation? SUMMARY ANSWER Mouse blastocysts were unaffected by fibrin; however, human blastocysts were significantly suppressed by fibrin in trophoblast growth and then switched to growth promotion through increased fibrinolysis with urokinase-type plasminogen activator (uPA) activity. WHAT IS KNOWN ALREADY Fibrin(ogen) plays an important role in various physiological processes and is also critical for maintaining feto-maternal attachment during pregnancy. The addition of fibrin to embryo transfer media has been used to increase implantation rates in human ART; however, its mechanism of action' in vitro has not yet been characterized. STUDY DESIGN, SIZE, DURATION Vitrified mouse and human blastocysts were warmed and individually cultured in vitro for up to 120 and 168 h, respectively, on a fibrin substrate. Blastocysts were cultured at 37°C in 6% CO2, 5% O2 and 89% N2. Blastocyst development and related fibrinolytic factors were analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR strain mouse embryos were purchased from a commercial supplier. Human blastocysts were donated with informed consent from two fertility centers. Mouse and human blastocysts cultured on fibrin-coated plates were compared to those on non-coated and collagen-coated plates in vitro. Trophoblast growth and fibrin degradation were assessed based on the cell area and fibrin-free area, respectively. Fibrinolytic factors were detected in supernatants using plasminogen-casein zymography. The fibrinolytic activity of blastocysts was investigated using a selective uPA inhibitor, exogenous uPA, plasminogen activator inhibitor-1 (PAI-1) inhibitor and fibrin degradation products (FDPs). Fibrinolysis-related mRNA expression level was detected using quantitative real-time PCR. MAIN RESULTS AND THE ROLE OF CHANCE Fibrin did not affect the developmental speed or morphology of mouse blastocysts, and a large fibrin-degrading region was observed in the attachment stage. In contrast, fibrin significantly suppressed the outgrowth of trophoblasts in human blastocysts, and trophoblasts grew after the appearance of small fibrin-degrading regions. uPA was identified as a fibrinolytic factor in the conditioned medium, and uPA activity was significantly weaker in human blastocysts than in mouse blastocysts. The inhibition of uPA significantly reduced the outgrowth of trophoblasts in mouse and human blastocysts. Human blastocysts expressed PLAU (uPA), PLAUR (uPA receptor), SERPINE1 (PAI-1) and SERPINB2 (PAI-2), whereas mouse blastocysts were limited to Plau, Plaur and Serpine1. In a subsequent experiment on human blastocysts, the addition of exogenous uPA and the PAI-1 inhibitor promoted trophoblast growth in the presence of fibrin, as did the addition of FDPs. LIMITATIONS, REASONS FOR CAUTION This model excludes maternal factors and may not be fully reproduced in vivo. Donated human embryos are surplus embryos that may inherently exhibit reduced embryonic development. In addition, donated ART-derived embryos may exhibit weak uPA activity, because women with sufficient uPA-active embryos may not originally require ART. The present study used orthodox culture methods, and results may change with the application of recently developed protocols for culture blastocysts beyond the implantation stage. WIDER IMPLICATIONS OF THE FINDINGS The present results suggest that the distinct features of trophoblast outgrowth in human blastocysts observed in the presence of fibrin are regulated by a phenotypic conversion induced by contact with fibrin and FDPs. Mouse embryos did not exhibit the human phenomenon, indicating that the present results may be limited to humans. STUDY FUNDING/COMPETING INTEREST(S) The present study was supported by the Department of Obstetrics and Gynecology at the Hamamatsu University School of Medicine and Kishokai Medical Corporation. None of the authors have any conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yukiko Asano
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Infertility, Royal Bell Clinic, Nagoya, Japan
| | - Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
248
|
Zhuang B, Shang J, Yao Y. HLA-G: An Important Mediator of Maternal-Fetal Immune-Tolerance. Front Immunol 2021; 12:744324. [PMID: 34777357 PMCID: PMC8586502 DOI: 10.3389/fimmu.2021.744324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Maternal-fetal immune-tolerance occurs throughout the whole gestational trimester, thus a mother can accept a genetically distinct fetus without immunological aggressive behavior. HLA-G, one of the non-classical HLA class I molecules, is restricted-expression at extravillous trophoblast. It can concordantly interact with various kinds of receptors mounted on maternally immune cells residing in the uterus (e.g. CD4+ T cells, CD8+ T cells, natural killer cells, macrophages, and dendritic cells) for maintaining immune homeostasis of the maternal-fetus interface. HLA-G is widely regarded as the pivotal protective factor for successful pregnancies. In the past 20 years, researches associated with HLA-G have been continually published. Indeed, HLA-G plays a mysterious role in the mechanism of maternal-fetal immune-tolerance. It can also be ectopically expressed on tumor cells, infected sites and other pathologic microenvironments to confer a significant local tolerance. Understanding the characteristics of HLA-G in immunologic tolerance is not only beneficial for pathological pregnancy, but also helpful to the therapy of other immune-related diseases, such as organ transplant rejection, tumor migration, and autoimmune disease. In this review, we describe the biological properties of HLA-G, then summarize our understanding of the mechanisms of fetomaternal immunologic tolerance and the difference from transplant tolerance. Furthermore, we will discuss how HLA-G contributes to the tolerogenic microenvironment during pregnancy. Finally, we hope to find some new aspects of HLA-G in fundamental research or clinical application for the future.
Collapse
Affiliation(s)
- Baimei Zhuang
- Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jin Shang
- Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
249
|
Starks RR, Kaur H, Tuteja G. Mapping cis-regulatory elements in the midgestation mouse placenta. Sci Rep 2021; 11:22331. [PMID: 34785717 PMCID: PMC8595355 DOI: 10.1038/s41598-021-01664-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The placenta is a temporary organ that provides the developing fetus with nutrients, oxygen, and protection in utero. Defects in its development, which may be caused by misregulated gene expression, can lead to devastating outcomes for the mother and fetus. In mouse, placental defects during midgestation commonly lead to embryonic lethality. However, the regulatory mechanisms controlling expression of genes during this period have not been thoroughly investigated. Therefore, we generated and analyzed ChIP-seq data for multiple histone modifications known to mark cis-regulatory regions. We annotated active and poised promoters and enhancers, as well as regions generally associated with repressed gene expression. We found that poised promoters were associated with neuronal development genes, while active promoters were largely associated with housekeeping genes. Active and poised enhancers were associated with placental development genes, though only active enhancers were associated with genes that have placenta-specific expression. Motif analysis within active enhancers identified a large network of transcription factors, including those that have not been previously studied in the placenta and are candidates for future studies. The data generated and genomic regions annotated provide researchers with a foundation for future studies, aimed at understanding how specific genes in the midgestation mouse placenta are regulated.
Collapse
Affiliation(s)
- Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
250
|
Tran V, Weckman AM, Crowley VM, Cahill LS, Zhong K, Cabrera A, Elphinstone RE, Pearce V, Madanitsa M, Kalilani-Phiri L, Mwapasa V, Khairallah C, Conroy AL, Ter Kuile FO, Sled JG, Kain KC. The Angiopoietin-Tie2 axis contributes to placental vascular disruption and adverse birth outcomes in malaria in pregnancy. EBioMedicine 2021; 73:103683. [PMID: 34758414 PMCID: PMC8590041 DOI: 10.1016/j.ebiom.2021.103683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background Malaria during pregnancy is a major contributor to the global burden of adverse birth outcomes including fetal growth restriction, preterm birth, and fetal loss. Recent evidence supports a role for angiogenic dysregulation and perturbations to placental vascular development in the pathobiology of malaria in pregnancy. The Angiopoietin-Tie2 axis is critical for placental vascularization and remodeling. We hypothesized that disruption of this pathway would contribute to malaria-induced adverse birth outcomes. Methods Using samples from a previously conducted prospective cohort study of pregnant women in Malawi, we measured circulating levels of angiopoietin-1 (Angpt-1) and Angpt-2 by Luminex (n=1392). We used a preclinical model of malaria in pregnancy (Plasmodium berghei ANKA [PbA] in pregnant BALB/c mice), genetic disruption of Angpt-1 (Angpt1+/− mice), and micro-CT analysis of placental vasculature to test the hypothesis that disruptions to the Angpt-Tie2 axis by malaria during pregnancy would result in aberrant placental vasculature and adverse birth outcomes. Findings Decreased circulating levels of Angpt-1 and an increased ratio of Angpt-2/Angpt-1 across pregnancy were associated with malaria in pregnancy. In the preclinical model, PbA infection recapitulated disruptions to the Angiopoietin-Tie2 axis resulting in reduced fetal growth and viability. Malaria decreased placental Angpt-1 and Tie2 expression and acted synergistically with reduced Angpt-1 in heterozygous dams (Angpt1+/−), to worsen birth outcomes by impeding vascular remodeling required for placental function. Interpretation Collectively, these data support a mechanistic role for the Angpt-Tie2 axis in malaria in pregnancy, including a potential protective role for Angpt-1 in mitigating infection-associated adverse birth outcomes. Funding This work was supported by the Canadian Institutes of Health Research (CIHR), Canada Research Chair, and Toronto General Research Institute Postdoctoral Fellowship Award. The parent trial was supported by the European & Developing Countries Clinical Trials Partnership and the Malaria in Pregnancy Consortium, which was funded by the Bill & Melinda Gates Foundation. The funders had no role in design, analysis, or reporting of these studies.
Collapse
Affiliation(s)
- Vanessa Tran
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Andrea M Weckman
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Valerie M Crowley
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Kathleen Zhong
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Ana Cabrera
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Robyn E Elphinstone
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Victoria Pearce
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Mwayiwawo Madanitsa
- Department of Clinical Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | | - Victor Mwapasa
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Carole Khairallah
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, United States
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Kevin C Kain
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|