201
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
202
|
Serra I, Manusama OR, Kaiser FMP, Floriano II, Wahl L, van der Zalm C, IJspeert H, van Hagen PM, van Beveren NJM, Arend SM, Okkenhaug K, Pel JJM, Dalm VASH, Badura A. Activated PI3Kδ syndrome, an immunodeficiency disorder, leads to sensorimotor deficits recapitulated in a murine model. Brain Behav Immun Health 2021; 18:100377. [PMID: 34786564 PMCID: PMC8579111 DOI: 10.1016/j.bbih.2021.100377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
The phosphoinositide-3-kinase (PI3K) family plays a major role in cell signaling and is predominant in leukocytes. Gain-of-function (GOF) mutations in the PIK3CD gene lead to the development of activated PI3Kδ syndrome (APDS), a rare primary immunodeficiency disorder. A subset of APDS patients also displays neurodevelopmental delay symptoms, suggesting a potential role of PIK3CD in cognitive and behavioural function. However, the extent and nature of the neurodevelopmental deficits has not been previously quantified. Here, we assessed the cognitive functions of two APDS patients, and investigated the causal role of the PIK3CD GOF mutation in neurological deficits using a murine model of this disease. We used p110δE1020K knock-in mice, harbouring the most common APDS mutation in patients. We found that APDS patients present with visuomotor deficits, exacerbated by autism spectrum disorder comorbidity, whereas p110δE1020K mice exhibited impairments in motor behaviour, learning and repetitive behaviour patterning. Our data indicate that PIK3CD GOF mutations increase the risk for neurodevelopmental deficits, supporting previous findings on the interplay between the nervous and the immune system. Further, our results validate the knock-in mouse model, and offer an objective assessment tool for patients that could be incorporated in diagnosis and in the evaluation of treatments.
Collapse
Affiliation(s)
- Ines Serra
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Fabian M P Kaiser
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Hanna IJspeert
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Sandra M Arend
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
203
|
Maitre Y, Mahalli R, Micheneau P, Delpierre A, Amador G, Denis F. Evidence and Therapeutic Perspectives in the Relationship between the Oral Microbiome and Alzheimer's Disease: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111157. [PMID: 34769677 PMCID: PMC8583399 DOI: 10.3390/ijerph182111157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
This review aims to clarify the nature of the link between Alzheimer’s disease and the oral microbiome on an epidemiological and pathophysiological level, as well as to highlight new therapeutic perspectives that contribute to the management of this disease. We performed a systematic review, following the Preferred Reporting Items for Systematic Reviews checklist, from January 2000 to July 2021. The terms “plaque,” “saliva,” and “mouth” were associated with the search term “oral diseases” and used in combination with the Boolean operator “AND”/“OR”. We included experimental or clinical studies and excluded conferences, abstracts, reviews, and editorials. A total of 27 articles were selected. Evidence for the impact of the oral microbiome on the pathophysiological and immunoinflammatory mechanisms of Alzheimer’s disease is accumulating. The impact of the oral microbiome on the development of AD opens the door to complementary therapies such as phototherapy and/or the use of prebiotic compounds and probiotic strains for global or targeted modulation of the oral microbiome in order to have a favourable influence on the evolution of this pathology in the future.
Collapse
Affiliation(s)
- Yoann Maitre
- Emergency Department, Montpellier University Hospital, 34090 Montpellier, France;
- EA 2415, Aide à la Décision pour une Médecine Personnalisée, Université de Montpellier, 34093 Montpellier, France
| | - Rachid Mahalli
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Pierre Micheneau
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Alexis Delpierre
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Gilles Amador
- Faculty of Dentistry, Nantes University, 44000 Nantes, France;
| | - Frédéric Denis
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
- Faculty of Dentistry, Nantes University, 44000 Nantes, France;
- EA 75-05 Education, Ethique, Santé, Faculté de Médecine, Université François-Rabelais, 37044 Tours, France
- Correspondence: ; Tel.: +33-6-7715-6968
| |
Collapse
|
204
|
Li X, Liu H, Yang Z, Duan H, Wang Z, Cheng Z, Song Z, Wu X. Study on the interaction of hyaluronidase with certain flavonoids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
205
|
Sewell MDE, Jiménez-Sánchez L, Shen X, Edmondson-Stait AJ, Green C, Adams MJ, Rifai OM, McIntosh AM, Lyall DM, Whalley HC, Lawrie SM. Associations between major psychiatric disorder polygenic risk scores and blood-based markers in UK biobank. Brain Behav Immun 2021; 97:32-41. [PMID: 34107350 DOI: 10.1016/j.bbi.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD), schizophrenia (SCZ), and bipolar disorder (BD) have both shared and discrete genetic risk factors, and are associated with peripheral abnormalities. The relationships between such genetic architectures and blood-based markers are, however, unclear. We investigated relationships between polygenic risk scores (PRS) for these disorders and peripheral markers in the UK Biobank cohort. We calculated polygenic risk scores for n = 367,329 (MDD PRS), n = 366,465 (SCZ PRS), and n = 366,383 (BD PRS) UK Biobank cohort subjects. We then examined associations between disorder PRS and 58 inflammatory/immune, hematological, bone, cardiovascular, hormone, liver, renal and diabetes-associated blood markers using two generalized linear regression models: 'minimally adjusted' controlling for variables such as age and sex, and 'fully adjusted' including additional lifestyle covariates: BMI, alcohol and smoking status, and medication intake. There were 38/58 MDD PRS, 32/58 SCZ PRS, and 20/58 BD PRS-blood marker associations detected for our minimally adjusted model. Of these, 13/38 (MDD PRS), 14/32 (SCZ PRS), and 10/20 (BD PRS) associations remained significant after controlling for lifestyle factors. Many were disorder-specific, with 8/13 unique MDD PRS associations identified. Several disorder-specific associations for MDD and SCZ were immune-related, with mostly positive and negative associations identified for MDD and SCZ PRS respectively. This study suggests that MDD, SCZ and BD have both shared and distinct peripheral markers associated with disorder-specific genetic risk. The results also implicate inflammatory dysfunction in MDD and SCZ, albeit with differences in patterns between the two conditions, and enrich our understanding of potential underlying pathophysiological mechanisms in major psychiatric disorders.
Collapse
Affiliation(s)
- Michael D E Sewell
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Lorena Jiménez-Sánchez
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Amelia J Edmondson-Stait
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Claire Green
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Olivia M Rifai
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Donald M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| |
Collapse
|
206
|
Foster JA, Baker GB, Dursun SM. The Relationship Between the Gut Microbiome-Immune System-Brain Axis and Major Depressive Disorder. Front Neurol 2021; 12:721126. [PMID: 34650506 PMCID: PMC8508781 DOI: 10.3389/fneur.2021.721126] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) is a prominent cause of disability worldwide. Current antidepressant drugs produce full remission in only about one-third of MDD patients and there are no biomarkers to guide physicians in selecting the best treatment for individuals. There is an urgency to learn more about the etiology of MDD and to identify new targets that will lead to improved therapy and hopefully aid in predicting and preventing MDD. There has been extensive interest in the roles of the immune system and the gut microbiome in MDD and in how these systems interact. Gut microbes can contribute to the nature of immune responses, and a chronic inflammatory state may lead to increased responsiveness to stress and to development of MDD. The gut microbiome-immune system-brain axis is bidirectional, is sensitive to stress and is important in development of stress-related disorders such as MDD. Communication between the gut and brain involves the enteric nervous system (ENS), the autonomic nervous system (ANS), neuroendocrine signaling systems and the immune system, and all of these can interact with the gut microbiota. Preclinical studies and preliminary clinical investigations have reported improved mood with administration of probiotics and prebiotics, but large, carefully controlled clinical trials are now necessary to evaluate their effectiveness in treating MDD. The roles that several gut microbe-derived molecules such as neurotransmitters, short chain fatty acids and tryptophan play in MDD are reviewed briefly. Challenges and potential future directions associated with studying this important axis as it relates to MDD are discussed.
Collapse
Affiliation(s)
- Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Glen B. Baker
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
207
|
Sullivan G, Galdi P, Borbye-Lorenzen N, Stoye DQ, Lamb GJ, Evans MJ, Skogstrand K, Chandran S, Boardman JP. Preterm Birth Is Associated With Immune Dysregulation Which Persists in Infants Exposed to Histologic Chorioamnionitis. Front Immunol 2021; 12:722489. [PMID: 34512648 PMCID: PMC8430209 DOI: 10.3389/fimmu.2021.722489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Preterm infants are at increased risk of exposure to histologic chorioamnionitis (HCA) when compared to term-born controls, and this is associated with several neonatal morbidities involving brain, lungs and gut. Preterm infants could benefit from immunomodulatory therapies in the perinatal period, but development of rational treatment strategies requires improved characterization of the perinatal response to HCA. We had two objectives: The first, to characterize the umbilical cord blood immune profile in preterm infants compared to term-born controls; the second, to investigate the postnatal immune response in preterm infants exposed to HCA versus those who were not. Population For objective one 59 term infants [mean gestational age (GA) 39+4 (37+3 to 42+0)] and 55 preterm infants [mean GA29+0(23+3 to 32+0)] with umbilical cord samples available were included; for objective two we studied 96 preterm infants [mean GA29+1(23+2 to 32+0)] for whom placental histology and postnatal blood samples were available. Methods Placental histopathology was used to identify reaction patterns indicative of HCA, and a customized immunoassay of 24 inflammatory markers and trophic proteins selected to reflect the perinatal immune response was performed on umbilical cord blood in term and preterm participants and postnatal day 5 blood in the preterm group. Results The umbilical cord blood immune profile classified gestational age category with 86% accuracy (95% CI 0.78-0.92), p-value=1.242x10-14. Pro-inflammatory proteins IL-6, MCP-1 and CRP were elevated in the cord blood of preterm infants whilst BDNF, C3, C9, IL-18, MMP-9 and RANTES were decreased, compared to infants born at term. In preterm infants, exposure to HCA was associated with elevations in 8 immune proteins on postnatal day 5 (BDNF, C3, C5a, C9, IL-8, MCP-1, MIP-1β and MMP-9) when compared to preterm infants who were not exposed. Conclusion Preterm birth is associated with a distinct immune profile in umbilical cord blood and preterm infants exposed to HCA with evidence of a fetal inflammatory response have specific alterations in immune function that are apparent on day 5 of postnatal life.
Collapse
Affiliation(s)
- Gemma Sullivan
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Paola Galdi
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Nis Borbye-Lorenzen
- Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - David Q Stoye
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian J Lamb
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret J Evans
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Kristin Skogstrand
- Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
208
|
Wu C, Zhou Z, Ni L, Cao J, Tan M, Wu X, Xu Y, Hu J. Correlation between anxiety-depression symptoms and immune characteristics in inpatients with 2019 novel coronavirus in Wuhan, China. J Psychiatr Res 2021; 141:378-384. [PMID: 34325347 PMCID: PMC8279890 DOI: 10.1016/j.jpsychires.2021.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is widely acknowledged as a severe traumatic event, and depression, anxiety, and psychological distress are common in diagnosed patients. However, the correlations of biological indicators with emotion are rarely reported. The primary objective of this study was to explore the dysfunction of immune-inflammatory characteristics in patients with depression-anxiety symptoms. METHODS We investigated the mental status of inpatients with COVID-19 in Wuhan and compared the differences in cytokines and lymphocytes between patients with and without depression-anxiety symptoms at admission. After two weeks of treatment, we evaluated the mental conditions and measured the cytokines and lymphocytes of the patients with depression and anxiety symptoms and explored the changes and their associations. RESULTS Approximately half of the patients with COVID-19 had depression and anxiety symptoms, and the symptoms were related to the ratio of CD4+/CD8+ and the level of CD4+T lymphocytes. When compared with patients without depression-anxiety symptoms, CD4+T lymphocytes level was significantly higher in COVID-19 patients with depression-anxiety symptoms. CONCLUSION This study provided novel evidence regarding the association between depression and anxiety symptoms and immune characteristics, especially CD4+T lymphocyte levels, in COVID-19 patients. We emphasized the importance of paying attention to the dynamic immune process of patients diagnosed with COVID-19 with depression/anxiety.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou, 310003, China
| | - Zhiying Zhou
- Department of Emergency, The First Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou, 310003, China
| | - Li Ni
- Department of Psychiatry, The Third People's Hospital of Fuyang; Hangzhou, 311402, China
| | - Jiang Cao
- Department of Psychiatry, The Second People's Hospital of Lishui; Lishui, 323000, China
| | - Meifang Tan
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou, 310003, China
| | - Xiu Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou, 310003, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou, 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province; Hangzhou, 310003, China; Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou, 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province; Hangzhou, 310003, China; Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
209
|
Deng Y, Li W, Niu L, Luo X, Li J, Zhang Y, Liu H, He J, Wan W. Amelioration of Scopolamine-induced Learning and Memory Impairment by the TRPV4 Inhibitor HC067047 in ICR Mice. Neurosci Lett 2021; 767:136209. [PMID: 34480999 DOI: 10.1016/j.neulet.2021.136209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. Cholinergic dysfunction is one of the pathological hallmarks of AD and leads to learning and memory impairment. Transient receptor potential vanilloid 4(TRPV4), a nonselective cation channel, is involved in learning and memory functions. HC067047, a TRPV4 specific inhibitor, has been reported to protect neurons against cerebral ischemic injury and amyloid-β -(Aβ) 40-induced hippocampal cell death. However, whether HC067047 could improve scopolamine (SCP)-induced cognitive dysfunction in mice is still unknown. The aims of this study were to verify whether HC067047 could ameliorate the SCP-induced learning and memory impairments in mice and to elucidate its underlying mechanisms of action. In this study, we examined the neuroprotective effect of the HC067047 against cognitive dysfunction induced by SCP (5 mg/kg, i.p.), a muscarinic receptor antagonist. The results showed that administration of HC067047(10 mg/kg, i.p.) significantly ameliorated SCP-induced cognitive dysfunction as assessed by the novel place recognition test (NPRT) and novel object recognition test (NORT). In the Y-maze test, HC067047 significantly enhanced the time spent in the novel arm in SCP mice. To further investigate the molecular mechanisms underlying the neuroprotective effect of HC067047, expression of several proteins involved in apoptosis was examined. The results demonstrated that HC067047 treatment decreased the protein levels of proapoptotic proteins such as Bax and caspase-3 in the hippocampus of SCP mice. In addition, HC067047 enhanced expression of the neurogenesis marker DCX and improved levels of the mature neuronal marker NeuN in SCP mice. These findings suggest the neuroprotective potential of the TRPV4 inhibitor HC067047 for the management of dementia with learning and memory loss.
Collapse
Affiliation(s)
- Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Lei Niu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China; Liuyang Traditional Chinese Medicine Hospital, 410300, Liuyang, Hunan, China
| | - Xianglin Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Yuan Zhang
- Department of Pathology, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Hong Liu
- Department of Orthopedics, 922Hospital of PLA Joint Logistics Support Force
| | - Jie He
- Department of Pathology, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Wan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China; China Key Laboratory Of Brain Science Research & Transformation In Tropical Environment Of Hainan Province, Hainan Medical University, 571199, Haikou, Hai nan China.
| |
Collapse
|
210
|
Yamauchi T, Makinodan M, Toritsuka M, Okumura K, Kayashima Y, Ishida R, Kishimoto N, Takahashi M, Komori T, Yamaguchi Y, Takada R, Yamamuro K, Kimoto S, Yasuda Y, Hashimoto R, Kishimoto T. Tumor necrosis factor-α expression aberration of M1/M2 macrophages in adult high-functioning autism spectrum disorder. Autism Res 2021; 14:2330-2341. [PMID: 34374213 DOI: 10.1002/aur.2585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
The etiology of autism spectrum disorder (ASD) is complex, and its pathobiology is characterized by enhanced inflammatory activities; however, the precise pathobiology and underlying causes of ASD remain unclear. This study was performed to identify inflammatory indicators useful for diagnosing ASD. The mRNA expression of cytokines, including tumor necrosis factor-α (TNF-α), was measured in cultured M1 and M2 macrophages from patients with ASD (n = 29) and typically developed (TD) individuals (n = 30). Additionally, TNF-α expression in the monocytes of patients with ASD (n = 7), showing aberrations in TNF-α expression in M1/M2 macrophages and TD individuals (n = 6), was measured. TNF-α expression in M1 macrophages and the TNF-α expression ratio in M1/M2 macrophages were markedly higher in patients with ASD than in TD individuals; however, this increase was not observed in M2 macrophages (M1: sensitivity = 34.5%, specificity = 96.7%, area under the curve = 0.74, positive likelihood ratio = 10.34; ratio of M1/M2: sensitivity = 55.2%, specificity = 96.7%, area under the curve = 0.79, positive likelihood ratio = 16.55). Additionally, TNF-α expression in monocytes did not significantly differ between patients with ASD and TD individuals. In conclusion, further studies on TNF-α expression in cultured macrophages may improve the understanding of ASD pathobiology. LAY SUMMARY: TNF-α expression in differentiated M1 macrophages and TNF-α expression ratio in differentiated M1/M2 macrophages were markedly higher in patients with ASD than in TD individuals, while no difference in TNF-α expression was found in pre-differentiation cells such as monocytes. These measurements allow elucidation of the novel pathobiology of ASD and can contribute to biomarker implementation for the diagnosis of adult high-functioning ASD.
Collapse
Affiliation(s)
- Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yasunari Yamaguchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yuka Yasuda
- Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
211
|
Prados-Ojeda JL, Luque-Luque R, Gordillo-Urbano RM, Guler I, López-Medina C, Collantes-Estévez E, Escudero-Contreras A. Assessment of Subclinical Psychotic Symptoms in Patients with Rheumatoid Arthritis and Spondyloarthritis. J Clin Med 2021; 10:jcm10163461. [PMID: 34441756 PMCID: PMC8396915 DOI: 10.3390/jcm10163461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory and autoimmune processes have been associated with the onset of depressive and psychotic symptoms. Rheumatoid arthritis (RA) and spondyloarthritis (SpA) are rheumatic diseases with an inflammatory etiology. A high prevalence of depressive and anxiety-related comorbidity has been reported for both diseases, with no evidence of a greater prevalence of psychosis. The objective of the present study was to evaluate for the first time subclinical psychotic symptoms in patients with RA and SpA. This is a cross-sectional, single-center study including RA and SpA patients, as well as healthy controls. Abnormal psychotic experiences (positive, negative, and depressive symptoms) were evaluated using the Community Assessment of Psychic Experiences (CAPE-42). Functional capacity was evaluated using the Short-Form Health Survey SF-12. We compared the CAPE and SF-12 scores between the three groups. We recruited 385 individuals: 218 with RA, 100 with SpA, and 67 healthy controls. According to the CAPE scale, the frequency of subclinical psychotic symptoms was greater in patients than in healthy controls (RA, 1.90 vs. 1.63, p < 0.001; SpA, 1.88 vs. 1.63, p = 0.001). Distress was also greater in patients than in controls owing to the presence of symptoms. No differences were observed between the three groups for the mental dimension scores in the SF-12 Health Survey (43.75 in RA, 45.54 in SpA, and 43.19 in healthy controls). Our findings point to a greater prevalence of subclinical psychotic symptoms in patients with RA and patients with SpA than in the general population. The results suggest an association between inflammation and depression/subclinical psychotic symptoms.
Collapse
Affiliation(s)
- Juan L. Prados-Ojeda
- Mental Health Department, Reina Sofia University Hospital, 14004 Cordoba, Spain; (J.L.P.-O.); (R.L.-L.); (R.M.G.-U.)
- Morphological and Socio-Sanitary Sciences, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (I.G.); (E.C.-E.); (A.E.-C.)
| | - Rogelio Luque-Luque
- Mental Health Department, Reina Sofia University Hospital, 14004 Cordoba, Spain; (J.L.P.-O.); (R.L.-L.); (R.M.G.-U.)
- Morphological and Socio-Sanitary Sciences, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (I.G.); (E.C.-E.); (A.E.-C.)
| | - Rafael M. Gordillo-Urbano
- Mental Health Department, Reina Sofia University Hospital, 14004 Cordoba, Spain; (J.L.P.-O.); (R.L.-L.); (R.M.G.-U.)
| | - Ipek Guler
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (I.G.); (E.C.-E.); (A.E.-C.)
| | - Clementina López-Medina
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (I.G.); (E.C.-E.); (A.E.-C.)
- Medical and Surgical Sciences Department, University of Cordoba, 14004 Cordoba, Spain
- Rheumatology Department, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Correspondence:
| | - Eduardo Collantes-Estévez
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (I.G.); (E.C.-E.); (A.E.-C.)
- Medical and Surgical Sciences Department, University of Cordoba, 14004 Cordoba, Spain
- Rheumatology Department, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (I.G.); (E.C.-E.); (A.E.-C.)
- Medical and Surgical Sciences Department, University of Cordoba, 14004 Cordoba, Spain
- Rheumatology Department, Reina Sofia University Hospital, 14004 Cordoba, Spain
| |
Collapse
|
212
|
Pan X, Liu F, Song Y, Wang H, Wang L, Qiu H, Price M, Li J. Motor Stereotypic Behavior Was Associated With Immune Response in Macaques: Insight From Transcriptome and Gut Microbiota Analysis. Front Microbiol 2021; 12:644540. [PMID: 34394017 PMCID: PMC8360393 DOI: 10.3389/fmicb.2021.644540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 01/03/2023] Open
Abstract
Motor stereotypic behaviors (MSBs) are common in captive rhesus macaques (Macaca mulatta) and human with psychiatric diseases. However, large gaps remain in our understanding of the molecular mechanisms that mediate this behavior and whether there are similarities between human and non-human primates that exhibit this behavior, especially at gene expression and gut microbiota levels. The present study combined behavior, blood transcriptome, and gut microbiota data of two groups of captive macaques to explore this issue (i.e., MSB macaques with high MSB exhibition and those with low: control macaques). Observation data showed that MSB macaques spent the most time on MSB (33.95%), while the CONTROL macaques allocated more time to active (30.99%) and general behavior (30.0%), and only 0.97% of their time for MSB. Blood transcriptome analysis revealed 382 differentially expressed genes between the two groups, with 339 upregulated genes significantly enriched in inflammation/immune response-related pathway. We also identified upregulated pro-inflammatory genes TNFRSF1A, IL1R1, and IL6R. Protein–protein interaction network analysis screened nine hub genes that were all related to innate immune response, and our transcriptomic results were highly similar to findings in human psychiatric disorders. We found that there were significant differences in the beta-diversity of gut microbiota between MSB and CONTROL macaques. Of which Phascolarctobacterium, the producer of short chain fatty acids (SCFAs), was less abundant in MSB macaques. Meanwhile, PICRUSTs predicted that SCFAs intermediates biosynthesis and metabolic pathways were significantly downregulated in MSB macaques. Together, our study revealed that the behavioral, gene expression levels, and gut microbiota composition in MSB macaques was different to controls, and MSB was closely linked with inflammation and immune response. This work provides valuable information for future in-depth investigation of MSB and human psychiatric diseases.
Collapse
Affiliation(s)
- Xuan Pan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Fangyuan Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Song
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongrun Wang
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin, China
| | - Lingyun Wang
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin, China
| | - Hong Qiu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
213
|
Abstract
BACKGROUND Psychosocial and physical stressors can elicit the stress response, co-ordinated by interactions between neuroendocrine and inflammatory processes. The central role of the immune system, specifically low-grade systemic inflammation, is sometimes overlooked in work-related stress research. OBJECTIVE To review evidence that work-related psychosocial and physical stressors can stimulate a low-grade systemic inflammation which, through interactions with the neurohormonal systems, may impact on the well-being and productivity of workers. METHODS Literature searches were performed by databases and by hand. Databases used included Interface - EBSCOhost Research Databases; PsycINFO; Academic Search Complete; Africa-Wide Information; CINAHL; E-Journals; MEDLINE and PsycARTICLES. RESULTS Psychosocial stressors, infections, poor indoor air quality, musculoskeletal injuries and chemicals can stimulate a low-grade systemic inflammation that may adversely affect workers' mental and physical health, as well as productivity. The psychological and physical effects caused by infection-induced inflammation are generally referred to as sickness behaviour and those caused by poor indoor air quality as sick building syndrome. CONCLUSIONS Stressor-induced low-grade systemic inflammation can be a causal factor in the physical and behavioural symptoms of work-related stress. It is therefore important that those involved with the health of workers be cognisant of inappropriate or chronic low-grade inflammation as a potential health hazard.
Collapse
Affiliation(s)
- Margaretha Viljoen
- Department of Psychiatry, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
214
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
215
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
216
|
Enrico P, Delvecchio G, Turtulici N, Pigoni A, Villa FM, Perlini C, Rossetti MG, Bellani M, Lasalvia A, Bonetto C, Scocco P, D’Agostino A, Torresani S, Imbesi M, Bellini F, Veronese A, Bocchio-Chiavetto L, Gennarelli M, Balestrieri M, Colombo GI, Finardi A, Ruggeri M, Furlan R, Brambilla P. Classification of Psychoses Based on Immunological Features: A Machine Learning Study in a Large Cohort of First-Episode and Chronic Patients. Schizophr Bull 2021; 47:1141-1155. [PMID: 33561292 PMCID: PMC8266656 DOI: 10.1093/schbul/sbaa190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For several years, the role of immune system in the pathophysiology of psychosis has been well-recognized, showing differences from the onset to chronic phases. Our study aims to implement a biomarker-based classification model suitable for the clinical management of psychotic patients. A machine learning algorithm was used to classify a cohort of 362 subjects, including 160 first-episode psychosis patients (FEP), 70 patients affected by chronic psychiatric disorders (schizophrenia, bipolar disorder, and major depressive disorder) with psychosis (CRO) and 132 health controls (HC), based on mRNA transcript levels of 56 immune genes. Models distinguished between FEP, CRO, and HC and between the subgroup of drug-free FEP and HC with a mean accuracy of 80.8% and 90.4%, respectively. Interestingly, by using the feature importance method, we identified some immune gene transcripts that contribute most to the classification accuracy, possibly giving new insights on the immunopathogenesis of psychosis. Therefore, our results suggest that our classification model has a high translational potential, which may pave the way for a personalized management of psychosis.
Collapse
Affiliation(s)
- Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nunzio Turtulici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandro Pigoni
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- AOUI – Verona Hospital Trust, Verona, Italy
| | - Antonio Lasalvia
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- AOUI – Verona Hospital Trust, Verona, Italy
| | - Chiara Bonetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Paolo Scocco
- Department of Mental Health, AULSS 6 Euganea, Padua, Italy
| | - Armando D’Agostino
- Department of Health Sciences, San Paolo University Hospital, University of Milan, Milan, Italy
| | - Stefano Torresani
- Department of Psychiatry, ULSS, Bolzano Suedtiroler Sanitaetbetrieb- Azienda Sanitaria dell’Alto Adige, Bolzano, Italy
| | | | | | | | - Luisella Bocchio-Chiavetto
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Faculty of Psychology, eCampus University, Novedrate, Como, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gualtiero I Colombo
- Centro Cardiologico Monzino IRCCS, Immunology and Functional Genomics Unit, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Mirella Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- AOUI – Verona Hospital Trust, Verona, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
217
|
Maitre Y, Mahalli R, Micheneau P, Delpierre A, Guerin M, Amador G, Denis F. Pre and Probiotics Involved in the Modulation of Oral Bacterial Species: New Therapeutic Leads in Mental Disorders? Microorganisms 2021; 9:1450. [PMID: 34361886 PMCID: PMC8306040 DOI: 10.3390/microorganisms9071450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
This systematic review aims to identify probiotics and prebiotics for modulating oral bacterial species associated with mental disorders. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guideline, we search the electronic MEDLINE database published till January 2021 to identify the studies on probiotics and/or prebiotics for preventing and treating major oral dysbiosis that provokes mental disorders. The outcome of the search produces 374 records. After excluding non-relevant studies, 38 papers were included in the present review. While many studies suggest the potential effects of the oral microbiota on the biochemical signalling events between the oral microbiota and central nervous system, our review highlights the limited development concerning the use of prebiotics and/or probiotics in modulating oral dysbiosis potentially involved in the development of mental disorders. However, the collected studies confirm prebiotics and/or probiotics interest for a global or targeted modulation of the oral microbiome in preventing or treating mental disorders. These outcomes also offer exciting prospects for improving the oral health of people with mental disorders in the future.
Collapse
Affiliation(s)
- Yoann Maitre
- Emergency Department, Montpellier University Hospital, 2415 Montpellier, France;
- Aide à la Décision pour une Médecine Personnalisée, Université de Montpellier, 2415 Montpellier, France
| | - Rachid Mahalli
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Pierre Micheneau
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Alexis Delpierre
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Marie Guerin
- Faculty of Dentistry, Clermont-Ferrand University, 63000 Clermont-Ferrand, France;
| | - Gilles Amador
- Faculty of Dentistry, Nantes University, 44035 Nantes, France;
| | - Frédéric Denis
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
- Faculty of Dentistry, Nantes University, 44035 Nantes, France;
- Faculté de Médecine, Education, Ethique, Santé, Université François-Rabelais, 7505 Tours, France
| |
Collapse
|
218
|
Zhao H, Zhang H, Liu S, Luo W, Jiang Y, Gao J. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front Psychiatry 2021; 12:670200. [PMID: 34276441 PMCID: PMC8283413 DOI: 10.3389/fpsyt.2021.670200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Although increasing evidence suggests an association between alterations in peripheral cytokines and autism spectrum disorder (ASD), a consensus is lacking. To determine whether abnormal cytokine profiles in peripheral blood were associated with ASD, we performed this systemic review and meta-analysis. Methods: A systematic literature search was conducted through the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases up to 4 June 2020. Clinical studies exploring the aberration of peripheral cytokines of autistic patients and controls were included in our meta-analysis. We pooled extracted data using fixed- or random-effects models based on heterogeneity tests with Comprehensive Meta-analysis software. We converted standardized mean differences to Hedges' g statistic to obtain the effect sizes adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also carried out. Results: Sixty-one articles (326 studies) were included to assess the association between 76 cytokines and ASD. We conducted our meta-analysis based on 37 cytokines with 289 studies. Since there were fewer than three studies on any of the other 39 cytokines, we only provided basic information for them. The levels of peripheral IL-6, IL-1β, IL-12p70, macrophage migration inhibitory factor (MIF), eotaxin-1, monocyte chemotactic protein-1 (MCP-1), IL-8, IL-7, IL-2, IL-12, tumor necrosis factor-α (TNF-α), IL-17, and IL-4 were defined as abnormal cytokines in the peripheral blood of ASD patients compared with controls. The other 24 cytokines did not obviously change in ASD patients compared with the controls. Conclusions: The findings of our meta-analysis strengthen the evidence for an abnormal cytokine profile in ASD. These abnormal cytokines may be potential biomarkers for the diagnosis and treatment of ASD in the future.
Collapse
Affiliation(s)
- Huaying Zhao
- Department of Rehabilitation Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Hongqi Zhang
- Department of Pulmonary and Critical Care Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Shijie Liu
- The 947th Hospital of Army, Kashi, China
| | - Wulin Luo
- Department of Medical Psychology and Neurology, The 947th Hospital of Army, Kashi, China
| | - Yongfeng Jiang
- Department of Rehabilitation Medicine, The 947th Hospital of Army, Kashi, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
219
|
Rescue of maternal immune activation-induced behavioral abnormalities in adult mouse offspring by pathogen-activated maternal T reg cells. Nat Neurosci 2021; 24:818-830. [PMID: 33859437 DOI: 10.1038/s41593-021-00837-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/10/2021] [Indexed: 02/01/2023]
Abstract
Maternal immune activation (MIA) induced by lipopolysaccharides or polyinosinic:polycytidylic acid injections can induce behavioral abnormalities in adult mouse offspring. Here, we used the soluble tachyzoite antigen from Toxoplasma gondii, a parasite that infects approximately two billion people, to induce MIA in mice. The adult male offspring showed autism-relevant behaviors and abnormal brain microstructure, along with a pro-inflammatory T-cell immune profile in the periphery and upregulation of interleukin-6 in brain astrocytes. We show that adoptive transfer of regulatory T (Treg) cells largely reversed these MIA-induced phenotypes. Notably, pathogen-activated maternal Treg cells showed greater rescue efficacy than those from control donors. Single-cell RNA sequencing identified and characterized a unique group of pathogen-activated Treg cells that constitute 32.6% of the pathogen-activated maternal Treg population. Our study establishes a new preclinical parasite-mimicking MIA model and suggests therapeutic potential of adoptive Treg cell transfer in neuropsychiatric disorders associated with immune alterations.
Collapse
|
220
|
Marrie RA, Bernstein CN. Psychiatric comorbidity in immune-mediated inflammatory diseases. World Psychiatry 2021; 20:298-299. [PMID: 34002519 PMCID: PMC8129838 DOI: 10.1002/wps.20873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ruth Ann Marrie
- Department of Internal MedicineMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada,Department of Community Health SciencesMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| | - Charles N. Bernstein
- Department of Internal MedicineMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| |
Collapse
|
221
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
222
|
Nkiliza A, Joshi U, Evans JE, Ait-Ghezala G, Parks M, Crawford F, Mullan M, Abdullah L. Adaptive Immune Responses Associated with the Central Nervous System Pathology of Gulf War Illness. Neurosci Insights 2021; 16:26331055211018458. [PMID: 34104887 PMCID: PMC8155779 DOI: 10.1177/26331055211018458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Gulf War Illness is a multisymptomatic condition which affects 30% of veterans
from the 1991 Gulf War. While there is evidence for a role of peripheral
cellular and humoral adaptive immune responses in Gulf War Illness, a potential
role of the adaptive immune system in the central nervous system pathology of
this condition remains unknown. Furthermore, many of the clinical features of
Gulf War Illness resembles those of autoimmune diseases, but the biological
processes are likely different as the etiology of Gulf War Illness is linked to
hazardous chemical exposures specific to the Gulf War theatre. This review
discusses Gulf War chemical–induced maladaptive immune responses and a potential
role of cellular and humoral immune responses that may be relevant to the
central nervous system symptoms and pathology of Gulf War Illness. The
discussion may stimulate investigations into adaptive immunity for developing
novel therapies for Gulf War Illness.
Collapse
|
223
|
Stefanovic N, Irvine AD, Flohr C. The Role of the Environment and Exposome in Atopic Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2021; 8:222-241. [PMID: 34055570 PMCID: PMC8139547 DOI: 10.1007/s40521-021-00289-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) is a chronic inflammatory skin disorder affecting up to 20% of children and up to 5% of adults worldwide, contributing to significant disease-related morbidity in this patient cohort. Its aetiopathogenesis is underpinned by multiple factors, including genetic susceptibility, skin barrier defects, a skewed cutaneous immune response and microbiome perturbation in both the skin and the gut. In this review, we aim to examine the biological effects of key environmental exposures (the sum of which is termed the "exposome") at the population, community and individual levels in order to describe their effect on AD pathogenesis. RECENT FINDINGS It is now understood that as well as considering the type of environmental exposure with regard to its effect on AD pathogenesis, the dosage and timing of the exposure are both critical domains that may lead to either exacerbation or amelioration of disease. In this review, we consider the effects of population-wide exposures such as climate change, migration and urbanization; community-specific exposures such as air pollution, water hardness and allergic sensitisation; and individual factors such as diet, microbiome alteration, psychosocial stress and the impact of topical and systemic therapy. SUMMARY This review summarises the interaction of the above environmental factors with the other domains of AD pathogenesis, namely, the inherent genetic defects, the skin barrier, the immune system and the cutaneous and gut microbiota. We specifically emphasise the timing and dosage of exposures and its effect on the cellular and molecular pathways implicated in AD.
Collapse
Affiliation(s)
| | - Alan D. Irvine
- Department of Paediatric Dermatology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- National Children’s Research Centre, Crumlin and Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Carsten Flohr
- Unit for Population-Based Dermatology Research, St John’s Institute of Dermatology, Guy’s & St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| |
Collapse
|
224
|
Nakamura K, Sakai S, Tsuyama J, Nakamura A, Otani K, Kurabayashi K, Yogiashi Y, Masai H, Shichita T. Extracellular DJ-1 induces sterile inflammation in the ischemic brain. PLoS Biol 2021; 19:e3000939. [PMID: 34014921 PMCID: PMC8136727 DOI: 10.1371/journal.pbio.3000939] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is implicated in the onset and progression of various diseases, including cerebral pathologies. Here, we report that DJ-1, which plays a role within cells as an antioxidant protein, functions as a damage-associated molecular pattern (DAMP) and triggers inflammation if released from dead cells into the extracellular space. We first found that recombinant DJ-1 protein induces the production of various inflammatory cytokines in bone marrow–derived macrophages (BMMs) and dendritic cells (BMDCs). We further identified a unique peptide sequence in the αG and αH helices of DJ-1 that activates Toll-like receptor 2 (TLR2) and TLR4. In the ischemic brain, DJ-1 is released into the extracellular space from necrotic neurons within 24 h after stroke onset and makes direct contact with TLR2 and TLR4 in infiltrating myeloid cells. Although DJ-1 deficiency in a murine model of middle cerebral artery occlusion did not attenuate neuronal injury, the inflammatory cytokine expression in infiltrating immune cells was significantly decreased. Next, we found that the administration of an antibody to neutralize extracellular DJ-1 suppressed cerebral post-ischemic inflammation and attenuated ischemic neuronal damage. Our results demonstrate a previously unknown function of DJ-1 as a DAMP and suggest that extracellular DJ-1 could be a therapeutic target to prevent inflammation in tissue injuries and neurodegenerative diseases. Intracellular expression of the antioxidant protein DJ-1 has previously been shown to be neuroprotective. This study reveals that extracellularly released DJ-1 from necrotic neurons is a trigger of sterile inflammation that promotes neuronal injury and neurological deficits after ischemic stroke.
Collapse
Affiliation(s)
- Koutarou Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kento Otani
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kumiko Kurabayashi
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoshiko Yogiashi
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hisao Masai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Precursory Research for Innovative Medical Care, Japan Agency for Medical Research and Development, Tokyo, Japan
- * E-mail:
| |
Collapse
|
225
|
Do Autism Spectrum and Autoimmune Disorders Share Predisposition Gene Signature Due to mTOR Signaling Pathway Controlling Expression? Int J Mol Sci 2021; 22:ijms22105248. [PMID: 34065644 PMCID: PMC8156237 DOI: 10.3390/ijms22105248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by uncommon genetic heterogeneity and a high heritability concurrently. Most autoimmune disorders (AID), similarly to ASD, are characterized by impressive genetic heterogeneity and heritability. We conducted gene-set analyses and revealed that 584 out of 992 genes (59%) included in a new release of the SFARI Gene database and 439 out of 871 AID-associated genes (50%) could be attributed to one of four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, and 4. vitamin D3-sensitive genes. With the exception of FMRP targets, which are obviously associated with the direct involvement of local translation disturbance in the pathological mechanisms of ASD, the remaining categories are represented among AID genes in a very similar percentage as among ASD predisposition genes. Thus, mTOR signaling pathway genes make up 4% of ASD and 3% of AID genes, mTOR-modulated genes-31% of both ASD and AID genes, and vitamin D-sensitive genes-20% of ASD and 23% of AID genes. The network analysis revealed 3124 interactions between 528 out of 729 AID genes for the 0.7 cutoff, so the great majority (up to 67%) of AID genes are related to the mTOR signaling pathway directly or indirectly. Our present research and available published data allow us to hypothesize that both a certain part of ASD and AID comprise a connected set of disorders sharing a common aberrant pathway (mTOR signaling) rather than a vast set of different disorders. Furthermore, an immune subtype of the autism spectrum might be a specific type of autoimmune disorder with an early manifestation of a unique set of predominantly behavioral symptoms.
Collapse
|
226
|
Irani SR, Nath A, Zipp F. The neuroinflammation collection: a vision for expanding neuro-immune crosstalk in Brain. Brain 2021; 144:e59. [PMID: 33983376 PMCID: PMC8370408 DOI: 10.1093/brain/awab187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Department of Neurology, Oxford University Hospital, NHS Foundation Trust, Oxford, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, Johannes Gutenberg University Medical Center Mainz, Germany
| |
Collapse
|
227
|
Wang Y, Zhang J, Song W, Tian X, Liu Y, Wang Y, Ma J, Wang C, Yan G. A proteomic analysis of urine biomarkers in autism spectrum disorder. J Proteomics 2021; 242:104259. [PMID: 33957315 DOI: 10.1016/j.jprot.2021.104259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by early-onset social-communication challenges, restricted and repetitive behaviors, or unusual sensory-motor behaviors. A lack of specific biomarkers hinders the early diagnosis and treatment of this disease in many children. This study analyzes and validates potential urinary biomarkers using mass spectrometry proteomics. Global proteomics profiles of urine from 19 ASD patients and 19 healthy control subjects were compared to identify significantly changed proteins. These proteins were validated with targeted proteomics using parallel reaction monitoring (PRM) in an independent validation set consisting of samples from 40 ASD patients and 38 healthy controls. A total of 34 significantly changed proteins were found in the discovery set, among which seven proteins were identified as potential biomarkers for ASD through PRM assays in the validation set. Of these seven proteins, immunoglobulin kappa variable 4-1, immunoglobulin kappa variable 3-20, and immunoglobulin lambda variable 1-51 were up-regulated, while ATP synthase F1 subunit alpha, 10 kDa heat shock protein, apolipoprotein C-III, and arylsulfatase F were down-regulated. Six of these seven proteins support previous findings that ASD is accompanied by altered immune response and lipid metabolism, as well as mitochondrial dysfunction. This study lays the groundwork for additional research using biomarkers to clinically diagnose ASD. The proteomics and PRM raw data of this study have been deposited under the accession number IPX0002592000 at iProX. SIGNIFICANCE: This study identified 34 proteins in urine of ASD patients that were significantly changed from the urinary proteins of healthy subjects using LC-MS/MS-based proteomics in a discovery set. Seven of these proteins were validated by PRM analysis in an independent validation set. This report represents the first description of combined label-free quantitative proteomics and PRM analysis of targeted proteins for discovery of ASD urinary biomarkers. The results will be helpful for early diagnosis and can provide additional insight into the molecular mechanisms of ASD.
Collapse
Affiliation(s)
- Yan Wang
- Medical School of Chinese PLA, Beijing, China; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jishui Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenqi Song
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoyi Tian
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Liu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yanfei Wang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Ma
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chengbin Wang
- Medical School of Chinese PLA, Beijing, China; Department of Laboratory Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Guangtao Yan
- Medical School of Chinese PLA, Beijing, China; Department of Laboratory Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
228
|
Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. Int J Mol Sci 2021; 22:ijms22094440. [PMID: 33922780 PMCID: PMC8123079 DOI: 10.3390/ijms22094440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer’s disease, fronto-temporal dementia, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.
Collapse
|
229
|
Song Z, Feng J, Zhang Q, Deng S, Yu D, Zhang Y, Li T. Tanshinone IIA Protects Against Cerebral Ischemia Reperfusion Injury by Regulating Microglial Activation and Polarization via NF-κB Pathway. Front Pharmacol 2021; 12:641848. [PMID: 33953677 PMCID: PMC8090935 DOI: 10.3389/fphar.2021.641848] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tanshinone IIA, a fat-soluble diterpenoid isolated from Salvia miltiorrhiza Bunge, has been shown to attenuate the cerebral ischemic injury. The aim of this study was to examine the effects on neuroprotection and microglia activation of Tanshinone IIA. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO). We found that Tanshinone IIA significantly reduced infarction volume, alleviated neuronal injuries, reduced the release of TNF-α, IL-1β, and IL-6, increased SOD activity, and decrease the content of MDA in MCAO rats. Hematoxylin and eosin staining, Nissl staining, TUNEL staining and immunofluorescence staining showed that Tanshinone IIA improved the distribution and morphology of neurons in brain tissues and reduced apoptosis. In addition, Co-immunofluorescence staining of rat brain tissues and the mRNA expression levels of CD11b, CD32, iNOS, and Arg-1, CD206, IL-10 in BV2 cells indicated that Tanshinone IIA can downregulate M1 microglia and upregulate M2 microglia in MCAO rats. Further, BV2 microglial cells were subjected to oxygen-glucose deprivation, the protein expression levels were detected by western blot. Tanshinone IIA inhibited the expression levels of NF-κB signaling pathway related proteins. Taken together, this study suggested that Tanshinone IIA modulated microglial M1/M2 polarization via the NF-κB signaling pathway to confer anti-neuroinflammatory effects.
Collapse
Affiliation(s)
- Zhibing Song
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China.,College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Feng
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Qian Zhang
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China
| | - Shanshan Deng
- School of Medicine, Shanghai University, Shanghai, China
| | | | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China
| |
Collapse
|
230
|
Coppens V, De Wachter O, Goossens J, Hendrix J, Maudsley S, Azmi A, van Gastel J, Van Saet A, Lauwers T, Morrens M. Profiling of the Peripheral Blood Mononuclear Cell Proteome in Schizophrenia and Mood Disorders for the Discovery of Discriminatory Biomarkers: A Proof-of-Concept Study. Neuropsychobiology 2021; 79:324-334. [PMID: 32392557 DOI: 10.1159/000507631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 03/29/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Current diagnoses in psychiatry are solely based on the evaluation of clinical presentation by the treating psychiatrist. This results in a high percentage of misdiagnosis and consequential inefficient treatment; especially regarding major depressive disorder (MDD), depression in the context of bipolar disorder (BD-D), bipolar disorder with manic symptoms (BD-M), and psychosis in the context of schizophrenia (SZ). Objective biomarkers allowing for accurate discriminatory diagnostics are therefore urgently needed. METHODS Peripheral blood mononuclear cell (PBMC) proteomes of patients with MDD (n = 5) , BD-D (n = 3), BD-M (n = 4), and SZ (n = 4), and also of healthy controls (HC; n = 6) were analyzed by state-of-the-art mass spectrometry. Proteins with a differential expression of a >2 standard deviation (SD) expression fold change from that of the HC and between either MDD versus BD-D or BD-M versus SZ were subsequently identified as potential discriminatory biomarkers. RESULTS In total, 4,271 individual proteins were retrieved from the HC. Of these, about 2,800 were detected in all patient and HC samples. For objective discrimination between MDD and BD-D, 66 candidate biomarkers were found. In parallel, 72 proteins might harbor a biomarker capacity for differential diagnostics of BD-M and SZ. A single biomarker was contraregulated versus HC in each pair of comparisons. DISCUSSION With this work, we provide a register of candidate biomarkers with the potential to objectively discriminate MDD from BD-D, and BD-M from SZ. Although concerning a proof-of-concept study with limited sample size, these data provide a stepping-stone for follow-up research on the validation of the true discriminatory potential and feasibility of clinical implementation of the discovered biomarker candidates.
Collapse
Affiliation(s)
- Violette Coppens
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium, .,Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Center Duffel, Duffel, Belgium,
| | - Oskar De Wachter
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Center Duffel, Duffel, Belgium
| | - Jobbe Goossens
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Center Duffel, Duffel, Belgium
| | - Jolien Hendrix
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Abdelkrim Azmi
- Center for Molecular Neurology, VIB, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alysia Van Saet
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Center Duffel, Duffel, Belgium
| | - Tina Lauwers
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Center Duffel, Duffel, Belgium
| | - Manuel Morrens
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Center Duffel, Duffel, Belgium
| |
Collapse
|
231
|
Moisan MP, Foury A, Dexpert S, Cole SW, Beau C, Forestier D, Ledaguenel P, Magne E, Capuron L. Transcriptomic signaling pathways involved in a naturalistic model of inflammation-related depression and its remission. Transl Psychiatry 2021; 11:203. [PMID: 33824279 PMCID: PMC8024399 DOI: 10.1038/s41398-021-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed at identifying molecular biomarkers of inflammation-related depression in order to improve diagnosis and treatment. For this, we performed whole-genome expression profiling from peripheral blood in a naturalistic model of inflammation-associated major depressive disorder (MDD) represented by comorbid depression in obese patients. We took advantage of the marked reduction of depressive symptoms and inflammation following bariatric surgery to test the robustness of the identified biomarkers. Depression was assessed during a clinical interview using Mini-International Neuropsychiatric Interview and the 10-item, clinician-administered, Montgomery-Asberg Depression Rating Scale. From a cohort of 100 massively obese patients, we selected 33 of them for transcriptomic analysis. Twenty-four of them were again analyzed 4-12 months after bariatric surgery. We conducted differential gene expression analyses before and after surgery in unmedicated MDD and non-depressed obese subjects. We found that TP53 (Tumor Protein 53), GR (Glucocorticoid Receptor), and NFκB (Nuclear Factor kappa B) pathways were the most discriminating pathways associated with inflammation-related MDD. These signaling pathways were processed in composite z-scores of gene expression that were used as biomarkers in regression analyses. Results showed that these transcriptomic biomarkers highly predicted depressive symptom intensity at baseline and their remission after bariatric surgery. While inflammation was present in all patients, GR signaling over-activation was found only in depressed ones where it may further increase inflammatory and apoptosis pathways. In conclusion, using an original model of inflammation-related depression and its remission without antidepressants, we provide molecular predictors of inflammation-related MDD and new insights in the molecular pathways involved.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| | - Aline Foury
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Sandra Dexpert
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Steve W. Cole
- grid.19006.3e0000 0000 9632 6718Division of Hematology-Oncology, Department of Psychiatry & Biobehavioral Sciences and Department of Medicine, UCLA School of Medicine, Los Angeles, CA USA
| | - Cédric Beau
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Damien Forestier
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Patrick Ledaguenel
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Eric Magne
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| |
Collapse
|
232
|
Vaht M. Variation rs6971 in the Translocator Protein Gene ( TSPO) is Associated with Aggressiveness and Impulsivity but Not with Anxiety in a Population-Representative Sample of Young Adults. The Journal of Genetic Psychology 2021; 182:149-162. [PMID: 33769215 DOI: 10.1080/00221325.2021.1896470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of the 18-kDa translocator protein (TSPO), originally identified as a peripheral benzodiazepine receptor, has been found to be altered in several psychiatric disorders. A common single nucleotide polymorphism (rs6971) in the TSPO gene leads to an amino acid substitution, Ala147Thr, which dramatically alters the affinity with which TSPO binds drug ligands. As cholesterol also binds TSPO in the same transmembrane domain, it is suggested that this substitution may impair the ability of TSPO to bind or import cholesterol, and hence may affect steroid synthesis and hypothalamic-pituitary-adrenal function. The analysis was carried out on older birth cohort (n = 655) of the longitudinal Estonian Children Personality, Behavior and Health Study sample. Anxiety, aggressive behavior, impulsiveness, and history of stressful life events were self-reported in various data collection waves. Psychiatric assessment of lifetime prevalence of anxiety disorders was carried out at 25 years of age by experienced clinical psychologists. TSPO rs6971 was genotyped in all participants. TSPO rs6971 was not associated with self-reported levels of anxiety or lifetime prevalence of anxiety disorders. However, participants homozygous for the minor A allele displayed the highest aggressiveness and dysfunctional impulsivity scores. The positive, adaptive aspect of impulsivity was sensitive to stressful life events, as the AA genotype was associated with functional impulsivity only when the participants had experienced a low number of stressful life events during childhood. TSPO rs6971 polymorphism may be related to development of aggressiveness and impulsivity by adulthood, regardless of the participants' gender.
Collapse
Affiliation(s)
- Mariliis Vaht
- Institute of Psychology, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
233
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
234
|
Qu S, Liu M, Cao C, Wei C, Meng XE, Lou Q, Wang B, Li X, She Y, Wang Q, Song Z, Han Z, Zhu Y, Huang F, Duan JA. Chinese Medicine Formula Kai-Xin-San Ameliorates Neuronal Inflammation of CUMS-Induced Depression-like Mice and Reduces the Expressions of Inflammatory Factors via Inhibiting TLR4/IKK/NF-κB Pathways on BV2 Cells. Front Pharmacol 2021; 12:626949. [PMID: 33790789 PMCID: PMC8006317 DOI: 10.3389/fphar.2021.626949] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Kai-Xin-San (KXS) is a traditional Chinese medicinal formula composed of Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria for relieving major depressive disorder and Alzheimer's disease in traditional Chinese medicine (TCM) clinics. Previous studies on the antidepressant mechanism of KXS mainly focused on neurotransmitter and neurotrophic factor regulation, but few reports exist on neuronal inflammation regulation. In the current study, we found that KXS exerted antidepressant effects in chronic unpredictable mild stress-induced depression-like mice according to the results of behavioral tests. Meanwhile, KXS also inhibited the activation of microglia and significantly reduced the expression of pro-inflammatory cytokines such as IL-1β, IL-2, and TNF-α in the hippocampus of mice. In mice BV2 microglia cell lines, KXS extract reduced the expression of inflammatory factors in BV2 cells induced by lipopolysaccharide via inhibiting TLR4/IKK/NF-κB pathways, which was also validated by the treatment of signaling pathway inhibitors such as TAK-242 and JSH-23. T0hese data implied that the regulation of pro-inflammatory cytokines in microglia might account for the antidepressant effect of KXS, thereby providing more scientific information for the development of KXS as an alternative therapy for major depressive disorder.
Collapse
Affiliation(s)
- Suchen Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengqiu Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chongqi Wei
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-Er Meng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianyin Lou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuyan She
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingqing Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Song
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengxiang Han
- Department of Neurology and Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of TCM, Shanghai, China
| | - Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Huang
- Department of Endocrinology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
235
|
Nobile B, Durand M, Olié E, Guillaume S, Molès JP, Haffen E, Courtet P. The Anti-inflammatory Effect of the Tricyclic Antidepressant Clomipramine and Its High Penetration in the Brain Might Be Useful to Prevent the Psychiatric Consequences of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:615695. [PMID: 33767623 PMCID: PMC7985338 DOI: 10.3389/fphar.2021.615695] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
At the time of writing (December 2020), coronavirus disease 2019 (COVID-19) has already caused more than one million deaths worldwide, and therefore, it is imperative to find effective treatments. The “cytokine storm” induced by Severe Acute Respiratory Syndrome-Coronavirus type 2 (SARS-CoV-2) is a good target to prevent disease worsening, as indicated by the results obtained with tocilizumab and dexamethasone. SARS-CoV-2 can also invade the brain and cause neuro-inflammation with dramatic neurological manifestations, such as viral encephalitis. This could lead to potentially incapacitating long-term consequences, such as the development of psychiatric disorders, as previously observed with SARS-CoV. Several pathways/mechanisms could explain the link between viral infection and development of psychiatric diseases, especially neuro-inflammation induced by SARS-CoV-2. Therefore, it is important to find molecules with anti-inflammatory properties that penetrate easily into the brain. For instance, some antidepressants have anti-inflammatory action and pass easily through the blood brain barrier. Among them, clomipramine has shown very strong anti-inflammatory properties in vitro, in vivo (animal models) and human studies, especially in the brain. The aim of this review is to discuss the potential application of clomipramine to prevent post-infectious mental complications. Repositioning and testing antidepressants for COVID-19 management could help to reduce peripheral and especially central inflammation and to prevent the acute and particularly the long-term consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- B Nobile
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - M Durand
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Olié
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - S Guillaume
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - J P Molès
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Haffen
- FondaMental Foundation, Créteil, France.,Service de Psychiatrie de l'Adulte, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, Université de Franche-Comté, Besancon, France
| | - P Courtet
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| |
Collapse
|
236
|
Abstract
PURPOSE OF REVIEW The aim of this review was to analyze COVID-19 effect on the biological features of suicidal vulnerability and its interaction with suicide-related biological pathways. We carried out a narrative review of international publications on the interactions of COVID-19 with the biological bases of suicide. RECENT FINDINGS We hypothesize that SARS-CoV-2 interacts with multiple biological processes that underlie suicidal behavior, such as the renin-angiotensin system, nicotinic receptors, and central and systemic inflammation. Social distancing measures may also worsen subjective or objective social disconnection, thus increasing the risk of suicide. Interestingly, the drugs used to prevent suicide could be promising options to counteract brain damage caused by this coronavirus. SARS-CoV-2 interacts with multiple biological pathways involved in suicide and opens a new window for understanding the suicidal process. The development of suicide prevention treatments in the context of a pandemic may benefit from knowledge on these interactions.
Collapse
Affiliation(s)
- I Conejero
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France.
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France.
| | - B Nobile
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - E Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
- FondaMental Foundation, Créteil, France
| | - Ph Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
- FondaMental Foundation, Créteil, France
| |
Collapse
|
237
|
Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, Herbert DR. Immune System Investigation Using Parasitic Helminths. Annu Rev Immunol 2021; 39:639-665. [PMID: 33646858 DOI: 10.1146/annurev-immunol-093019-122827] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Oyebola Oyesola
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - Avery Posey
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Elia Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
238
|
Simmons JM, Winsky L, Zehr JL, Gordon JA. Priorities in stress research: a view from the U.S. National Institute of Mental Health. Stress 2021; 24:123-129. [PMID: 32608314 DOI: 10.1080/10253890.2020.1781084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mission of the National Institute of Mental Health is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery, and cure. In consultation with a broad range of experts, the NIMH has identified a set of priorities for stress biology research aimed squarely at creating the basic and clinical knowledge bases for reducing and alleviating mental health burden across the lifespan. Here, we discuss these priority areas in stress biology research, which include: understanding the heterogeneity of stressors and outcomes; refining and expanding the experimental systems used to study stress and its effects; embracing and exploiting the complexity of the stress response; and prioritizing translational studies that seek to test mechanistic hypotheses in human beings. We emphasize the challenge of establishing mechanistic links across levels of analysis to explain how and when specific and diverse stressors lead to enduring changes in neural systems and produce lasting functional deficits in mental health relevant behaviors. An improved understanding of mechanisms underlying stress responses and the functional consequences of stress can and will speed translation from basic research to predictive markers of risk and to improved, personalized interventions for mental illness.
Collapse
Affiliation(s)
| | - Lois Winsky
- National Institute of Mental Health, Bethesda, MD, USA
| | - Julia L Zehr
- National Institute of Mental Health, Bethesda, MD, USA
| | | |
Collapse
|
239
|
Affiliation(s)
- Akira Monji
- Department of Psychiatry Faculty of Medicine Saga University Saga City, Saga Prefecture Japan
| |
Collapse
|
240
|
Ramesh R, Sundaresh A, Rajkumar RP, Negi VS, Vijayalakshmi MA, Krishnamoorthy R, Tamouza R, Leboyer M, Kamalanathan AS. DNA hydrolysing IgG catalytic antibodies: an emerging link between psychoses and autoimmunity. NPJ SCHIZOPHRENIA 2021; 7:13. [PMID: 33637732 PMCID: PMC7910540 DOI: 10.1038/s41537-021-00143-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/15/2021] [Indexed: 11/09/2022]
Abstract
It is not uncommon to observe autoimmune comorbidities in a significant subset of patients with psychotic disorders, namely schizophrenia (SCZ) and bipolar disorder (BPD). To understand the autoimmune basis, the DNA abyzme activity mediated by serum polyclonal IgG Abs were examined in psychoses patients, quantitatively, by an in-house optimized DNase assay. A similar activity exhibited by IgG Abs from neuropsychiatric-systemic lupus erythematosus (NP-SLE) patients was used as a comparator. Our data revealed that the IgG DNase activity of SCZ was close to that of NP-SLE and it was twofold higher than the healthy controls. Interestingly, the association between DNase activity with PANSS (positive, general and total scores) and MADRS were noted in a subgroup of SCZ and BPD patients, respectively. In our study group, the levels of IL-6 and total IgG in BPD patients were higher than SCZ and healthy controls, indicating a relatively inflammatory nature in BPD, while autoimmune comorbidity was mainly observed in SCZ patients.
Collapse
Affiliation(s)
- Rajendran Ramesh
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Aparna Sundaresh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - M A Vijayalakshmi
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | | | - Ryad Tamouza
- Fondation FondaMental, Créteil, France.,Department of Psychiatry and Addictology, Mondor University Hospital, AP-HP, DMU IMPACT, Créteil, France.,University Paris-Est-Créteil, UPEC, Creteil, France.,INSERM, U955, Mondor Institute for Biomedical Research, IMRB, Translational Psychiatry, Créteil, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France.,Department of Psychiatry and Addictology, Mondor University Hospital, AP-HP, DMU IMPACT, Créteil, France.,University Paris-Est-Créteil, UPEC, Creteil, France.,INSERM, U955, Mondor Institute for Biomedical Research, IMRB, Translational Psychiatry, Créteil, France
| | - A S Kamalanathan
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
241
|
Pillai JA, Bebek G, Khrestian M, Bena J, Bergmann CC, Bush WS, Leverenz JB, Bekris LM. TNFRSF1B Gene Variants and Related Soluble TNFR2 Levels Impact Resilience in Alzheimer's Disease. Front Aging Neurosci 2021; 13:638922. [PMID: 33716716 PMCID: PMC7947258 DOI: 10.3389/fnagi.2021.638922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) promotes neuronal survival downstream. This longitudinal study evaluated whether the TNFRSF1B gene encoding TNFR2 and levels of its soluble form (sTNFR2) affect Alzheimer disease (AD) biomarkers and clinical outcomes. Data analyzed included 188 patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had mild cognitive impairment (MCI) and AD dementia. Further, a replication study was performed in 48 patients with MCI with positive AD biomarkers who were treated at a memory clinic. Cerebrospinal fluid (CSF) sTNFR2 levels along with two related TNFRSF1B gene single nucleotide polymorphisms (SNPs) rs976881 and rs1061622 were assessed. General linear models were used to evaluate the effect of CSF sTNFR2 levels and each SNP in relationship to CSF t-tau and p-tau, cognitive domains, MRI brain measures, and longitudinal cognitive changes after adjustments were made for covariates such as APOE ε4 status. In the ADNI cohort, a significant interaction between rs976881 and CSF sTNFR2 modulates CSF t-tau and p-tau levels; hippocampal and whole brain volumes; and Digit Span Forwards subtest scores. In the replication cohort, a significant interaction between rs976881 and CSF sTNFR2 modulates CSF p-tau. A significant interaction between rs976881 and CSF sTNFR2 also impacts Clinical Dementia Rating Sum of Boxes scores over 12 months in the ADNI cohort. The interaction between TNFRSF1B variant rs976881 and CSF sTNFR2 levels was noted to modulate multiple AD-associated severity markers and cognitive domains. This interaction impacts resilience-related clinical outcomes in AD and lends support to sTNFR2 as a promising candidate for therapeutic targeting to improve clinical outcomes of interest.
Collapse
Affiliation(s)
- Jagan A. Pillai
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, United States
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Maria Khrestian
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - James Bena
- Department of Quantitative Health Science, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Cornelia C. Bergmann
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - James B. Leverenz
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, United States
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Lynn M. Bekris
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
242
|
Borah P, Deb PK, Chandrasekaran B, Goyal M, Bansal M, Hussain S, Shinu P, Venugopala KN, Al-Shar’i NA, Deka S, Singh V. Neurological Consequences of SARS-CoV-2 Infection and Concurrence of Treatment-Induced Neuropsychiatric Adverse Events in COVID-19 Patients: Navigating the Uncharted. Front Mol Biosci 2021; 8:627723. [PMID: 33681293 PMCID: PMC7930836 DOI: 10.3389/fmolb.2021.627723] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor and invade the human cells to cause COVID-19-related pneumonia. Despite an emphasis on respiratory complications, the evidence of neurological manifestations of SARS-CoV-2 infection is rapidly growing, which is substantially contributing to morbidity and mortality. The neurological disorders associated with COVID-19 may have several pathophysiological underpinnings, which are yet to be explored. Hypothetically, SARS-CoV-2 may affect the central nervous system (CNS) either by direct mechanisms like neuronal retrograde dissemination and hematogenous dissemination, or via indirect pathways. CNS complications associated with COVID-19 include encephalitis, acute necrotizing encephalopathy, diffuse leukoencephalopathy, stroke (both ischemic and hemorrhagic), venous sinus thrombosis, meningitis, and neuroleptic malignant syndrome. These may result from different mechanisms, including direct virus infection of the CNS, virus-induced hyper-inflammatory states, and post-infection immune responses. On the other hand, the Guillain-Barre syndrome, hyposmia, hypogeusia, and myopathy are the outcomes of peripheral nervous system injury. Although the therapeutic potential of certain repurposed drugs has led to their off-label use against COVID-19, such as anti-retroviral drugs (remdesivir, favipiravir, and lopinavir-ritonavir combination), biologics (tocilizumab), antibiotics (azithromycin), antiparasitics (chloroquine and hydroxychloroquine), and corticosteroids (dexamethasone), unfortunately, the associated clinical neuropsychiatric adverse events remains a critical issue. Therefore, COVID-19 represents a major threat to the field of neuropsychiatry, as both the virus and the potential therapies may induce neurologic as well as psychiatric disorders. Notably, potential COVID-19 medications may also interact with the medications of pre-existing neuropsychiatric diseases, thereby further complicating the condition. From this perspective, this review will discuss the possible neurological manifestations and sequelae of SARS-CoV-2 infection with emphasis on the probable underlying neurotropic mechanisms. Additionally, we will highlight the concurrence of COVID-19 treatment-associated neuropsychiatric events and possible clinically relevant drug interactions, to provide a useful framework and help researchers, especially the neurologists in understanding the neurologic facets of the ongoing pandemic to control the morbidity and mortality.
Collapse
Affiliation(s)
- Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Monika Bansal
- Department of Neuroscience Technology College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati, India
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
243
|
Martínez M, Martín-Hernández D, Virto L, MacDowell KS, Montero E, González-Bris Á, Marín MJ, Ambrosio N, Herrera D, Leza JC, Sanz M, García-Bueno B, Figuero E. Periodontal diseases and depression: A pre-clinical in vivo study. J Clin Periodontol 2021; 48:503-527. [PMID: 33432590 DOI: 10.1111/jcpe.13420] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
AIM To analyse, through a pre-clinical in vivo model, the possible mechanisms linking depression and periodontitis at behavioural, microbiological and molecular levels. MATERIALS AND METHODS Periodontitis (P) was induced in Wistar:Han rats (oral gavages with Porphyromonas gingivalis and Fusobacterium nucleatum) during 12 weeks, followed by a 3-week period of Chronic Mild Stress (CMS) induction. Four groups (n = 12 rats/group) were obtained: periodontitis and CMS (P+CMS+); periodontitis without CMS; CMS without periodontitis; and control. Periodontal clinical variables, alveolar bone levels (ABL), depressive-like behaviour, microbial counts and expression of inflammatory mediators in plasma and brain frontal cortex (FC), were measured. ANOVA tests were applied. RESULTS The highest values for ABL occurred in the P+CMS+ group, which also presented the highest expression of pro-inflammatory mediators (TNF-α, IL-1β and NF-kB) in frontal cortex, related to the lipoprotein APOA1-mediated transport of bacterial lipopolysaccharide to the brain and the detection of F. nucleatum in the brain parenchyma. A dysregulation of the hypothalamic-pituitary-adrenal stress axis, reflected by the increase in plasma corticosterone and glucocorticoid receptor levels in FC, was also found in this group. CONCLUSIONS Neuroinflammation induced by F. nucleatum (through a leaky mouth) might act as the linking mechanism between periodontal diseases and depression.
Collapse
Affiliation(s)
- María Martínez
- Postgraduate program in Periodontology, Faculty of Dentistry, Complutense University, Madrid (UCM), Madrid, Spain
| | - David Martín-Hernández
- Department of Child and Adolescent Psychiatry, Hospital Gregorio Marañón Research Institute (IiSGM), Madrid, Spain.,Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Karina S MacDowell
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Álvaro González-Bris
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine UCM, Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM, IUIN, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group (UCM), Madrid, Spain
| |
Collapse
|
244
|
Inhibition of phosphodiesterase-4 suppresses HMGB1/RAGE signaling pathway and NLRP3 inflammasome activation in mice exposed to chronic unpredictable mild stress. Brain Behav Immun 2021; 92:67-77. [PMID: 33221489 DOI: 10.1016/j.bbi.2020.11.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Inhibition of phosphodiesterase-4 (PDE4) produces robust anti-inflammatory and antidepressant-like effects in multiple animal models. However, the detailed mechanisms have not been well studied. Receptor for advanced glycation endproducts (RAGE) and inflammasome activation are implicated in the etiology of depression. Here, we aimed to investigate the involvement of RAGE and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the antidepressant-like effects of PDE4 inhibition in mice. We found that inhibition of PDE4 by roflupram (ROF, 0.5, and 1.0 mg/kg, i.g.) exerted antidepressant-like effects in mice subjected to chronic unpredictable mild stress (CUMS). Simultaneously, ROF inhibited CUMS-induced microglial activation and restored the morphology of microglial cells in the hippocampus, as evidenced by reduced total process length, area, volume, number of branching points, number of terminal points and total sholl intersections of microglia. ROF also decreased the expression of ionized calcium-binding adapter molecule-1 and the level of interleukin-1β. Western blot analysis showed that PDE4 inhibition suppressed the high-mobility group box 1 protein (HMGB1)/RAGE signaling pathway, as the levels of HMGB1, RAGE, toll-like receptor 4, phosphorylated p38 mitogen-activated protein kinase, and nuclear factor κ-B were decreased in both hippocampus and cortex in mice after treatment with ROF. Moreover, ROF also attenuated the protein levels of NLRP3, the apoptosis-associated speck-like protein containing (ASC), and cysteine-requiring aspartate protease-1 (Caspase-1), which are key proteins in the NLRP3-mediated inflammasome signaling pathway. In summary, these results demonstrate that the down-regulation of HMGB1/RAGE signaling pathway and inflammasome suppression possibly contribute to the antidepressant-like effects of PDE4 inhibitors. And, ROF has potential as a candidate drug in the treatment of depression.
Collapse
|
245
|
Finke C. NMDAR antibodies in patients with psychosis. Lancet Psychiatry 2021; 8:88-89. [PMID: 33357498 DOI: 10.1016/s2215-0366(20)30514-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Carsten Finke
- Department of Neurology, Charité University Medicine Berlin, Berlin 10117, Germany; Berlin School of Mind and Brain, Humboldt University Berlin, Berlin, Germany.
| |
Collapse
|
246
|
Song Y, Yuan H, Chen T, Lu M, Lei S, Han X. An Shen Ding Zhi Ling Alleviates Symptoms of Attention Deficit Hyperactivity Disorder via Anti-Inflammatory Effects in Spontaneous Hypertensive Rats. Front Pharmacol 2021; 11:617581. [PMID: 33536923 PMCID: PMC7847841 DOI: 10.3389/fphar.2020.617581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 01/21/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a childhood-onset chronic neurobehavioral disorder, with multiple genetic and environmental risk factors. Chronic inflammation may be critical for the progression of ADHD. An Shen Ding Zhi Ling (ASDZL) decoction, a traditional Chinese medicine prescription, is clinically used in ADHD treatment. In this study, we investigated the effects and underlying anti-inflammatory mechanisms of ASDZL in young spontaneously hypertensive rats (SHRs), a widely used model of ADHD. SHRs were divided into the SHR model group (vehicle), atomoxetine group (4.56 mg/kg/day) and ASDZL group (21.25 g/kg/day), and orally administered for four weeks. Wistar Kyoto rats were used as controls (vehicle). We found that ASDZL significantly controlled hyperactivity and impulsivity, and improved spatial memory of SHRs in the open field test and Morris water maze test. ASDZL reduced the pro-inflammatory factors interleukin (IL)-1β, IL-4, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 and increased anti-inflammatory factor IL-10 in SHRs, and decreased the activation of microglia, astrocytes and mast cells in the prefrontal cortex (PFC) and hippocampus. Furthermore, the results indicated that ASDZL inhibited the neuroinflammatory response by protecting the integrity of the blood-brain barrier and suppressing the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB signaling pathways of SHRs. In conclusion, these findings revealed that ASDZL attenuated ADHD symptoms in SHRs by reducing neuroinflammation.
Collapse
Affiliation(s)
- Yuchen Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Haixia Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manqi Lu
- College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Shuang Lei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmin Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
247
|
Cereda G, Enrico P, Ciappolino V, Delvecchio G, Brambilla P. The role of vitamin D in bipolar disorder: Epidemiology and influence on disease activity. J Affect Disord 2021; 278:209-217. [PMID: 32971313 DOI: 10.1016/j.jad.2020.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although many studies found an association between psychiatric disorders, especially major depressive disorder, and vitamin D deficiency, little is still known about the association between vitamin D and bipolar disorder (BD). Therefore, the present review aims at providing an overview of the available literature exploring the role of vitamin D in BD patients in different phases of the disease. METHODS From a bibliographic research in PubMed until April 2020, we collected ten original studies that fulfilled our inclusion criteria. RESULTS No significant differences in vitamin D levels between BD patients and other psychiatric disorders were found by most of the studies. In the majority of the studies, the average values of vitamin D in BD population were sub-threshold for vitamin D deficiency. Moreover, although an association between vitamin D levels and clinical symptomatology was observed in BD patients, it cannot be considered a specific marker of this disorder but a common characteristic shared with other psychiatric disorders, including schizophrenia and major depressive disorder. Finally, vitamin D supplementation was associated with a reduction in both depressive and manic symptoms. LIMITATIONS Few studies with small and heterogeneous populations. Methodological heterogeneity in terms of vitamin D measurement and threshold. CONCLUSIONS The results showed that vitamin D status does not differ between BD and other psychiatric conditions. However, given the correlation between vitamin D levels and depressive or manic symptoms, we could hypothesize that an adequate vitamin D status could positively affect the mood balance thanks to its immunomodulatory activity.
Collapse
Affiliation(s)
- Guido Cereda
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
248
|
Sellgren CM, Imbeault S, Larsson MK, Oliveros A, Nilsson IAK, Codeluppi S, Orhan F, Bhat M, Tufvesson-Alm M, Gracias J, Kegel ME, Zheng Y, Faka A, Svedberg M, Powell SB, Caldwell S, Kamenski ME, Vawter MP, Schulmann A, Goiny M, Svensson CI, Hökfelt T, Schalling M, Schwieler L, Cervenka S, Choi DS, Landén M, Engberg G, Erhardt S. GRK3 deficiency elicits brain immune activation and psychosis. Mol Psychiatry 2021; 26:6820-6832. [PMID: 33976392 PMCID: PMC8760053 DOI: 10.1038/s41380-021-01106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3-/- mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1β, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3-/- mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.
Collapse
Affiliation(s)
- Carl M. Sellgren
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Sophie Imbeault
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus K. Larsson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Oliveros
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Ida A. K. Nilsson
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Simone Codeluppi
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Funda Orhan
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bhat
- grid.418151.80000 0001 1519 6403Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, Solna, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Tufvesson-Alm
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Gracias
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena E. Kegel
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yiran Zheng
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anthi Faka
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Susan B. Powell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Sorana Caldwell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Mary E. Kamenski
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Marquis P. Vawter
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Irvine, CA USA
| | - Anton Schulmann
- grid.416868.50000 0004 0464 0574Human Genetics Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Michel Goiny
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I. Svensson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hökfelt
- grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lilly Schwieler
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Doo-Sup Choi
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Mikael Landén
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
249
|
Hu Y, Sun X, Wang S, Zhou C, Lin L, Ding X, Han J, Zhou Y, Jin G, Wang Y, Zhang W, Shi H, Zhang Z, Yang X, Hua F. Toll-like receptor-2 gene knockout results in neurobehavioral dysfunctions and multiple brain structural and functional abnormalities in mice. Brain Behav Immun 2021; 91:257-266. [PMID: 33069798 DOI: 10.1016/j.bbi.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Toll-like receptor-2 (TLR2), a member of TLR family, plays an important role in the induction and regulation of immune/inflammation. TLR2 gene knockout (TLR2KO) mice have been widely used for animal models of neurological diseases. Since there is close relationship between immune system and neurobehavioral functions, it is important to clarify the exact role of TLR2 defect itself in neurobehavioral functions. The present study aimed to investigate the effect of TLR2KO on neurobehavioral functions in mice and the mechanisms underlying the observed changes. METHODS Male TLR2KO and wild type (WT) mice aged 3, 7, and 12 months were used for neurobehavioral testing and detection of protein expression by Western blot. Brain magnetic resonance imaging (MRI), electrophysiological recording, and Evans blue (EB) assay were applied to evaluate regional cerebral blood flow (rCBF), synaptic function, and blood-brain barrier (BBB) integrity in 12-month-old TLR2KO and age-matched WT mice. RESULTS Compared to WT mice, TLR2KO mice showed decreased cognitive function and locomotor activity, as well as increased anxiety, which developed from middle age (before 7-month-old) to old age. In addition, significantly reduced regional cerebral blood flow (rCBF), inhibited long-term potentiation (LTP), and increased blood-brain barrier (BBB) permeability were observed in 12-month-old TLR2KO mice. Furthermore, compared with age-matched WT mice, significant reduction in protein levels of tight junction proteins (ZO-1, Occludin, and Claudin-5) and increased neurofilament protein (SMI32) were observed in 7 and 12-month-old TLR2KO mice, and that myelin basic protein (MBP) decreased in 12-month-old TLR2KO mice. CONCLUSION Our data demonstrated that TLR2 defect resulted in significantly observable neurobehavioral dysfunctions in mice starting from middle age, as well as multiple abnormalities in brain structure, function, and molecular metabolism.
Collapse
Affiliation(s)
- Yuting Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Xiaoyu Sun
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Shang Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Chao Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Li Lin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Xiaohui Ding
- Department of Histology and Embryology, Shenyang Medical College, China
| | - Jingjing Han
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Yan Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Yuqiao Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Wei Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Hongjuan Shi
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Zuohui Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Xinxin Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Fang Hua
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China.
| |
Collapse
|
250
|
MacDowell KS, Martín-Hernández D, Ulecia-Morón C, Bris ÁG, Madrigal JLM, García-Bueno B, Caso JR. Paliperidone attenuates chronic stress-induced changes in the expression of inflammasomes-related protein in the frontal cortex of male rats. Int Immunopharmacol 2021; 90:107217. [PMID: 33290967 DOI: 10.1016/j.intimp.2020.107217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023]
Abstract
Several stress-related neuropsychiatric diseases are related to inflammatory phenomena. Thus, a better understanding of stress-induced immune responses could lead to enhanced treatment alternatives. Little is known about the possible involvement of inflammasomes in the stress-induced proinflammatory response. Antipsychotics have anti-inflammatory effects, but the possible antipsychotic treatment actions on inflammasomes remain unexplored. Our aim was to study whether inflammasomes are involved in the neuroinflammation induced by a paradigmatic model of chronic stress and whether the monoamine receptor antagonist paliperidone can modulate the possible stress-induced inflammasomes activation in the frontal cortex (FC). Thus, the effects of paliperidone (1 mg/Kg, oral gavage) administered during a chronic restraint stress protocol (6 h/day for 21 days) on the possible stress-related inflammasomes protein induction were evaluated through Western blot in the FC of male Wistar rats. Stress increased protein expression levels of the inflammasome complexes NALP1, NLRP3 and AIM2 and augmented caspase-1 and mature interleukin (IL)-1β protein levels. Paliperidone pre-treatment normalized the protein expression of the inflammasome pathway. In conclusion, our data indicate an induction of inflammasome complexes by chronic restraint stress in the FC of rats. The antipsychotic paliperidone has an inhibitory action on some of the stress-induced inflammasomes stimulation trying to normalize the neuroinflammatory scenario caused by stress. Considering the emerging role of inflammation in neuropsychiatric diseases, the development of new drugs targeting inflammasome pathways is a promising approach for future therapeutic interventions.
Collapse
Affiliation(s)
- Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Cristina Ulecia-Morón
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Álvaro G Bris
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|