201
|
Zhao B, Gao W, Hou J, Wu Y, Xia Z. Ischemic postconditioning enhances glycogen synthase kinase-3β expression and alleviates cerebral ischemia/reperfusion injury. Neural Regen Res 2015; 7:1507-12. [PMID: 25657687 PMCID: PMC4308783 DOI: 10.3969/j.issn.1673-5374.2012.19.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
The present study established global brain ischemia using the four-vessel occlusion method. Following three rounds of reperfusion for 30 seconds, and occlusion for 10 seconds, followed by reperfusion for 48 hours, infarct area, the number of TUNEL-positive cells and Bcl-2 expression were significantly reduced. However, glycogen synthase kinase-3β activity, cortical Bax and caspase-3 expression significantly increased, similar to results following ischemic postconditioning. Our results indicated that ischemic postconditioning may enhance glycogen synthase kinase-3β activity, a downstream molecule of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which reduces caspase-3 expression to protect the brain against ischemic injury.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wenwei Gao
- Department of Intensive Care Unit, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
202
|
Cermolacce M, Belzeaux R, Adida M, Azorin JM. [Affective disorders: endocrine and metabolic comorbidities]. Encephale 2015; 40 Suppl 3:S33-9. [PMID: 25550238 DOI: 10.1016/s0013-7006(14)70129-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Links between affective and endocrine-metabolic disorders are numerous and complex. In this review, we explore most frequent endocrine-metabolic comorbidities. On the one hand, these comorbidities imply numerous iatrogenic effects from antipsychotics (metabolic side-effects) or from lithium (endocrine side-effects). On the other hand, these comorbidities are also associated with affective disorders independently from medication. We will successively examine metabolic syndrome, glycemic disturbances, obesity and thyroid disorders among patients with affective disorders. Endocrinemetabolic comorbidities can be individually encountered, but can also be associated. Therefore, they substantially impact morbidity and mortality by increasing cardiovascular risk factors. Two distinct approaches give an account of processes involved in these comorbidities: common environmental factors (iatrogenic effects, lifestyle), and/or shared physiological vulnerabilities. In conclusion, we provide a synthesis of important results and recommendations related to endocrine-metabolic comorbidities in affective disorders : heavy influence on morbidity and mortality, undertreatment of somatic diseases, importance of endocrine and metabolic side effects from main mood stabilizers, impact from sex and age on the prevalence of comorbidities, influence from previous depressive episodes in bipolar disorders, and relevance of systematic screening for subclinical (biological) disturbances.
Collapse
Affiliation(s)
- M Cermolacce
- Pôle universitaire de psychiatrie, CHU Sainte-Marguerite, 13274 Marseille cedex 9, France; Laboratoire de Neurosciences Cognitives, UMR CNRS 6155 & Aix-Marseille Université, Fédération 3C, Marseille, France.
| | - R Belzeaux
- Pôle universitaire de psychiatrie, CHU Sainte-Marguerite, 13274 Marseille cedex 9, France
| | - M Adida
- Pôle universitaire de psychiatrie, CHU Sainte-Marguerite, 13274 Marseille cedex 9, France
| | - J-M Azorin
- Pôle universitaire de psychiatrie, CHU Sainte-Marguerite, 13274 Marseille cedex 9, France
| |
Collapse
|
203
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
204
|
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy and nutrient status, expressed almost universally in eukaryotes as heterotrimeric complexes comprising catalytic (α) and regulatory (β and γ) subunits. Along with the mechanistic target of rapamycin complex-1 (mTORC1), AMPK may have been one of the earliest signaling pathways to have arisen during eukaryotic evolution. Recent crystal structures have provided insights into the mechanisms by which AMPK is regulated by phosphorylation and allosteric activators. Another recent development has been the realization that activation of AMPK by the upstream kinase LKB1 may primarily occur not in the cytoplasm, but at the surface of the lysosome, where AMPK and mTORC1 are regulated in a reciprocal manner by the availability of nutrients. It is also becoming clear that there is a substantial amount of crosstalk between the AMPK pathway and other signaling pathways that promote cell growth and proliferation, and this will be discussed.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, UK.
| |
Collapse
|
205
|
Beurel E, Jope RS. Inflammation and lithium: clues to mechanisms contributing to suicide-linked traits. Transl Psychiatry 2014; 4:e488. [PMID: 25514751 PMCID: PMC4270310 DOI: 10.1038/tp.2014.129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/21/2014] [Accepted: 10/26/2014] [Indexed: 12/15/2022] Open
Abstract
Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3). GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions, which may include inhibitors of GSK3.
Collapse
Affiliation(s)
- E Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - R S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA,Miller School of Medicine, University of Miami, 1011 NW 15th Street, Gautier Building Room 416, Miami, FL 33136, USA. E-mail:
| |
Collapse
|
206
|
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2014; 148:114-31. [PMID: 25435019 DOI: 10.1016/j.pharmthera.2014.11.016] [Citation(s) in RCA: 1233] [Impact Index Per Article: 112.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Collapse
Affiliation(s)
- Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
207
|
Bridges D, Saltiel AR. Phosphoinositides: Key modulators of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:857-66. [PMID: 25463477 DOI: 10.1016/j.bbalip.2014.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P₃levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Dave Bridges
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
208
|
Novel benzothiazinones (BTOs) as allosteric modulator or substrate competitive inhibitor of glycogen synthase kinase 3β (GSK-3β) with cellular activity of promoting glucose uptake. Bioorg Med Chem Lett 2014; 24:5639-5643. [PMID: 25467150 DOI: 10.1016/j.bmcl.2014.10.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/06/2014] [Accepted: 10/27/2014] [Indexed: 02/02/2023]
Abstract
Glycogen synthase kinase 3β (GSK-3β) plays a key role in insulin metabolizing pathway and therefore inhibition of the enzyme might provide an important therapeutic approach for treatment of insulin resistance and type 2 diabetes. Recently, discovery of ATP noncompetitive inhibitors is gaining importance not only due to their generally increased selectivity but also for the potentially subtle modulation of the target. These kinds of compounds include allosteric modulators and substrate competitive inhibitors. Here we reported two benzothiazinone compounds (BTO), named BTO-5h (IC50=8 μM) and BTO-5s (IC50=10 μM) as novel allosteric modulator and substrate competitive inhibitor of GSK-3β, respectively. Their different action modes were proved by kinetic experiments. Furthermore, BTO-5s was selected to check the kinases profile and showed little or even no activity to a panel of ten protein kinases at 100 μM, indicating it has good selectivity. Docking studies were performed to give suggesting binding modes which can well explain their impacts on the enzyme. Moreover, cell experiments displayed both compounds reduced the phosphorylation level of glycogen synthase in an intact cell, and greatly enhanced the glucose uptake in both HpG2 and 3T3-L1 cells. All of these results suggested BTO-5s and BTO-5h maybe have potentially therapeutic value for anti-diabetes. The results also offer a new scaffold for designing and developing selective inhibitors with novel mechanisms of action.
Collapse
|
209
|
Mariappan MM, Prasad S, D'Silva K, Cedillo E, Sataranatarajan K, Barnes JL, Choudhury GG, Kasinath BS. Activation of glycogen synthase kinase 3β ameliorates diabetes-induced kidney injury. J Biol Chem 2014; 289:35363-75. [PMID: 25339176 DOI: 10.1074/jbc.m114.587840] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3β (GSK3β) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3β by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3β and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3β, indicating that NO may mediate SNP stimulation of GSK3β. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3β by activation of Src, Pyk2, Akt, and ERK; GSK3β inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3β by SNP ameliorates kidney injury induced by diabetes.
Collapse
Affiliation(s)
- Meenalakshmi M Mariappan
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Sanjay Prasad
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Kristin D'Silva
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Esteban Cedillo
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | | | - Jeffrey L Barnes
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Goutam Ghosh Choudhury
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229 the Geriatric Research, Education, and Clinical Center and
| | - Balakuntalam S Kasinath
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229
| |
Collapse
|
210
|
Gao S, Bajrami I, Verrill C, Kigozi A, Ouaret D, Aleksic T, Asher R, Han C, Allen P, Bailey D, Feller S, Kashima T, Athanasou N, Blay JY, Schmitz S, Machiels JP, Upile N, Jones TM, Thalmann G, Ashraf SQ, Wilding JL, Bodmer WF, Middleton MR, Ashworth A, Lord CJ, Macaulay VM. Dsh homolog DVL3 mediates resistance to IGFIR inhibition by regulating IGF-RAS signaling. Cancer Res 2014; 74:5866-77. [PMID: 25168481 DOI: 10.1158/0008-5472.can-14-0806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drugs that inhibit insulin-like growth factor 1 (IGFI) receptor IGFIR were encouraging in early trials, but predictive biomarkers were lacking and the drugs provided insufficient benefit in unselected patients. In this study, we used genetic screening and downstream validation to identify the WNT pathway element DVL3 as a mediator of resistance to IGFIR inhibition. Sensitivity to IGFIR inhibition was enhanced specifically in vitro and in vivo by genetic or pharmacologic blockade of DVL3. In breast and prostate cancer cells, sensitization tracked with enhanced MEK-ERK activation and relied upon MEK activity and DVL3 expression. Mechanistic investigations showed that DVL3 is present in an adaptor complex that links IGFIR to RAS, which includes Shc, growth factor receptor-bound-2 (Grb2), son-of-sevenless (SOS), and the tumor suppressor DAB2. Dual DVL and DAB2 blockade synergized in activating ERKs and sensitizing cells to IGFIR inhibition, suggesting a nonredundant role for DVL3 in the Shc-Grb2-SOS complex. Clinically, tumors that responded to IGFIR inhibition contained relatively lower levels of DVL3 protein than resistant tumors, and DVL3 levels in tumors correlated inversely with progression-free survival in patients treated with IGFIR antibodies. Because IGFIR does not contain activating mutations analogous to EGFR variants associated with response to EGFR inhibitors, we suggest that IGF signaling achieves an equivalent integration at the postreceptor level through adaptor protein complexes, influencing cellular dependence on the IGF axis and identifying a patient population with potential to benefit from IGFIR inhibition.
Collapse
Affiliation(s)
- Shan Gao
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ilirjana Bajrami
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Asha Kigozi
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Djamila Ouaret
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tamara Aleksic
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ruth Asher
- Department of Cellular Pathology and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Paul Allen
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Deborah Bailey
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stephan Feller
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Takeshi Kashima
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Department of Pathology, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Jean-Yves Blay
- University Claude Bernard Lyon I, Centre Léon Bérard, Department of Medicine, Lyon, France
| | - Sandra Schmitz
- Service d'oncologie médicale, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Pascal Machiels
- Service d'oncologie médicale, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Nav Upile
- Liverpool CR-UK Centre, Department of Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Terry M Jones
- Liverpool CR-UK Centre, Department of Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | | | - Shazad Q Ashraf
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jennifer L Wilding
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Walter F Bodmer
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mark R Middleton
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, Liverpool, United Kingdom
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Lord
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom. Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, Liverpool, United Kingdom.
| |
Collapse
|
211
|
Shahab L, Plattner F, Irvine EE, Cummings DM, Edwards FA. Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal CA3-CA1 synapses. Hippocampus 2014; 24:1413-6. [PMID: 25208523 PMCID: PMC4258099 DOI: 10.1002/hipo.22362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Abstract
Glycogen synthase kinase-3 (GSK3), particularly the isoform GSK3β, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3β rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long-term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3β that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long-term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lion Shahab
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom; Department of Epidemiology and Public Health, University College London, London, WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
212
|
Liu B, Tang J, Li S, Zhang Y, Li Y, Dong X. Involvement of the Wnt signaling pathway and cell apoptosis in the rat hippocampus following cerebral ischemia/reperfusion injury. Neural Regen Res 2014; 8:70-5. [PMID: 25206374 PMCID: PMC4107493 DOI: 10.3969/j.issn.1673-5374.2013.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In addition, β-catenin and glycogen synthase kinase-3β protein expression gradually increases, peaking at 48 hours following reperfusion. Dickkopf-1 administration, after cerebral ischemia/reperfusion injury, results in decreased cell apoptosis, and β-catenin and glycogen synthase kinase-3β expression, in the CA1 region. This suggests that β-catenin and glycogen synthase kinase-3β, both components of the Wnt signaling pathway, participate in cell apoptosis following cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Bin Liu
- First Department of Neurology, Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Jing Tang
- First Department of Neurology, Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Shiying Li
- First Department of Neurology, Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Yuqin Zhang
- First Department of Neurology, Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Yan Li
- First Department of Neurology, Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Xiaoliu Dong
- First Department of Neurology, Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| |
Collapse
|
213
|
Voskas D, Ling LS, Woodgett JR. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway. J Cell Physiol 2014; 229:1312-22. [PMID: 24604594 PMCID: PMC4258093 DOI: 10.1002/jcp.24603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/23/2022]
Abstract
The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.
Collapse
Affiliation(s)
- Daniel Voskas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
214
|
Eukaryotic elongation factor 2 kinase activity is controlled by multiple inputs from oncogenic signaling. Mol Cell Biol 2014; 34:4088-103. [PMID: 25182533 DOI: 10.1128/mcb.01035-14] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K), an atypical calmodulin-dependent protein kinase, phosphorylates and inhibits eEF2, slowing down translation elongation. eEF2K contains an N-terminal catalytic domain, a C-terminal α-helical region and a linker containing several regulatory phosphorylation sites. eEF2K is expressed at high levels in certain cancers, where it may act to help cell survival, e.g., during nutrient starvation. However, it is a negative regulator of protein synthesis and thus cell growth, suggesting that cancer cells may possess mechanisms to inhibit eEF2K under good growth conditions, to allow protein synthesis to proceed. We show here that the mTORC1 pathway and the oncogenic Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway cooperate to restrict eEF2K activity. We identify multiple sites in eEF2K whose phosphorylation is regulated by mTORC1 and/or ERK, including new ones in the linker region. We demonstrate that certain sites are phosphorylated directly by mTOR or ERK. Our data reveal that glycogen synthase kinase 3 signaling also regulates eEF2 phosphorylation. In addition, we show that phosphorylation sites remote from the N-terminal calmodulin-binding motif regulate the phosphorylation of N-terminal sites that control CaM binding. Mutations in the former sites, which occur in cancer cells, cause the activation of eEF2K. eEF2K is thus regulated by a network of oncogenic signaling pathways.
Collapse
|
215
|
García-Martínez JM, Chocarro-Calvo A, De la Vieja A, García-Jiménez C. Insulin drives glucose-dependent insulinotropic peptide expression via glucose-dependent regulation of FoxO1 and LEF1/β-catenin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1141-50. [PMID: 25091498 DOI: 10.1016/j.bbagrm.2014.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/19/2014] [Accepted: 07/25/2014] [Indexed: 11/15/2022]
Abstract
Minutes after ingestion of fat or carbohydrates, vesicles stored in enteroendocrine cells release their content of incretin peptide hormones that, together with absorbed glucose, enhance insulin secretion by beta-pancreatic cells. Freshly-made incretins must therefore be packed into new vesicles in anticipation of the next meal with cells adjusting new incretin production to be proportional to the level of previous insulin release and absorbed blood glucose. Here we show that insulin stimulates the expression of the major human incretin, glucose-dependent insulinotropic peptide (GIP) in enteroendocrine cells but requires glucose to do it. Akt-dependent release of FoxO1 and glucose-dependent binding of LEF1/β-catenin mediate induction of Gip expression while insulin-induced phosphorylation of β-catenin does not alter its localization or transcriptional activity in enteroendocrine cells. Our results reveal a glucose-regulated feedback loop at the entero-insular axis, where glucose levels determine basal and insulin-induced Gip expression; GIP stimulation of insulin release, physiologically ensures a fine control of glucose homeostasis. How enteroendocrine cells adjust incretin production to replace incretin stores for future use is a key issue because GIP malfunction is linked to all forms of diabetes.
Collapse
Affiliation(s)
- Jose Manuel García-Martínez
- Department of Physiology, Biochemistry and Human Genetics, Faculty of Health Science, Rey Juan Carlos University, 28922 Alcorcon, Madrid, Spain
| | - Ana Chocarro-Calvo
- Department of Physiology, Biochemistry and Human Genetics, Faculty of Health Science, Rey Juan Carlos University, 28922 Alcorcon, Madrid, Spain
| | - Antonio De la Vieja
- Endocrine Tumor Unit (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Custodia García-Jiménez
- Department of Physiology, Biochemistry and Human Genetics, Faculty of Health Science, Rey Juan Carlos University, 28922 Alcorcon, Madrid, Spain.
| |
Collapse
|
216
|
Gobrecht P, Leibinger M, Andreadaki A, Fischer D. Sustained GSK3 activity markedly facilitates nerve regeneration. Nat Commun 2014; 5:4561. [PMID: 25078444 DOI: 10.1038/ncomms5561] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/30/2014] [Indexed: 12/16/2022] Open
Abstract
Promotion of axonal growth of injured DRG neurons improves the functional recovery associated with peripheral nerve regeneration. Both isoforms of glycogen synthase kinase 3 (GSK3; α and β) are phosphorylated and inactivated via phosphatidylinositide 3-kinase (PI3K)/AKT signalling upon sciatic nerve crush (SNC). However, the role of GSK3 phosphorylation in this context is highly controversial. Here we use knock-in mice expressing GSK3 isoforms resistant to inhibitory PI3K/AKT phosphorylation, and unexpectedly find markedly accelerated axon growth of DRG neurons in culture and in vivo after SNC compared with controls. Moreover, this enhanced regeneration strikingly accelerates functional recovery after SNC. These effects are GSK3 activity dependent and associated with elevated MAP1B phosphorylation. Altogether, our data suggest that PI3K/AKT-mediated inhibitory phosphorylation of GSK3 limits the regenerative outcome after peripheral nerve injury. Therefore, suppression of this internal 'regenerative break' may potentially provide a new perspective for the clinical treatment of nerve injuries.
Collapse
Affiliation(s)
- Philipp Gobrecht
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Marco Leibinger
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Anastasia Andreadaki
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Dietmar Fischer
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| |
Collapse
|
217
|
Morgan-Smith M, Wu Y, Zhu X, Pringle J, Snider WD. GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation. eLife 2014; 3:e02663. [PMID: 25073924 PMCID: PMC4109311 DOI: 10.7554/elife.02663] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GSK-3 is an essential mediator of several signaling pathways that regulate cortical development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins. DOI:http://dx.doi.org/10.7554/eLife.02663.001 In the brain, one of the most striking features of the cerebral cortex is that its neurons are organized into different layers that are specifically connected to one another and to other regions of the brain. How newly generated neurons find their appropriate layer during the development of the brain is an important question; and, in humans, when this process goes awry, it can often result in seizures and mental retardation. An enzyme called GSK-3 regulates several major signaling pathways important to brain development. The GSK-3 enzyme switches other proteins on or off by adding phosphate groups to them. Morgan-Smith et al. set out to better understand the role of GSK-3 in brain development by deleting the genes for this enzyme specifically in the cerebral cortex of mice. Mice have two genes that encode slightly different forms of the GSK-3 enzyme. Deleting both of these in different groups of neurons during brain development revealed that a major group of neurons need GSK-3 in order to migrate to the correct layer. Specifically, the movement of neurons from where they arise in the central region of the brain to the outermost layer (a process called radial migration) was disrupted when the GSK-3 genes were deleted. Morgan-Smith et al. further found that cortical neurons without GSK-3 were unable to develop the shape needed to undertake radial migration because they failed to switch from having many branches to having just two main branches. Additional experiments revealed that these abnormalities did not depend on certain signaling pathways, such as the Wnt-signaling pathway or the PI3K signaling pathway that can control GSK-3 activity. Instead, Morgan-Smith et al. found that two proteins that are normally targeted by the GSK-3 enzyme have fewer phosphate groups than normal in the cortical neurons that did not contain the enzyme: both of these proteins regulate the shape of neurons by interacting with the molecular ‘scaffolding’ within the cell. The GSK-3 enzyme was already known to modify the activities of many other proteins that affect the migration of cells. Thus, the findings of Morgan-Smith et al. suggest that this enzyme may coordinate many of the mechanisms thought to underlie this process during brain development. DOI:http://dx.doi.org/10.7554/eLife.02663.002
Collapse
Affiliation(s)
- Meghan Morgan-Smith
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States Neurobiology Curriculum, University of North Carolina, Chapel Hill, United States
| | - Yaohong Wu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States
| | - Xiaoqin Zhu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States
| | - Julia Pringle
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States Neurobiology Curriculum, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
218
|
Bajpai S, Feng Y, Wirtz D, Longmore GD. β-Catenin serves as a clutch between low and high intercellular E-cadherin bond strengths. Biophys J 2014; 105:2289-300. [PMID: 24268141 DOI: 10.1016/j.bpj.2013.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
A wide range of invasive pathological outcomes originate from the loss of epithelial phenotype and involve either loss of function or downregulation of transmembrane adhesive receptor complexes, including Ecadherin (Ecad) and binding partners β-catenin and α-catenin at adherens junctions. Cellular pathways regulating wild-type β-catenin level, or direct mutations in β-catenin that affect the turnover of the protein have been shown to contribute to cancer development, through induction of uncontrolled proliferation of transformed tumor cells, particularly in colon cancer. Using single-molecule force spectroscopy, we show that depletion of β-catenin or the prominent cancer-related S45 deletion mutation in β-catenin present in human colon cancers both weaken tumor intercellular Ecad/Ecad bond strength and diminishes the capacity of specific extracellular matrix proteins-including collagen I, collagen IV, and laminin V-to modulate intercellular Ecad/Ecad bond strength through α-catenin and the kinase activity of glycogen synthase kinase 3 (GSK-3β). Thus, in addition to regulating tumor cell proliferation, cancer-related mutations in β-catenin can influence tumor progression by weakening the adhesion of tumor cells to one another through reduced individual Ecad/Ecad bond strength and cellular adhesion to specific components of the extracellular matrix and the basement membrane.
Collapse
Affiliation(s)
- Saumendra Bajpai
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | |
Collapse
|
219
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
220
|
Liz MA, Mar FM, Santos TE, Pimentel HI, Marques AM, Morgado MM, Vieira S, Sousa VF, Pemble H, Wittmann T, Sutherland C, Woodgett JR, Sousa MM. Neuronal deletion of GSK3β increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2. BMC Biol 2014; 12:47. [PMID: 24923837 PMCID: PMC4229956 DOI: 10.1186/1741-7007-12-47] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/07/2014] [Indexed: 02/08/2023] Open
Abstract
Background In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal mechanisms that might be involved in the gain of intrinsic axon growth capacity. Results Following a phospho-site broad signaling pathway screen, we found that in conditioned neurons with high regenerative capacity, decreased glycogen synthase kinase 3β (GSK3β) activity and increased microtubule growth speed in the growth cone were present. To investigate the importance of GSK3β regulation during axonal regeneration in vivo, we used three genetic mouse models with high, intermediate or no GSK3β activity in neurons. Following spinal cord injury, reduced GSK3β levels or complete neuronal deletion of GSK3β led to increased growth cone microtubule growth speed and promoted axon regeneration. While several microtubule-interacting proteins are GSK3β substrates, phospho-mimetic collapsin response mediator protein 2 (T/D-CRMP-2) was sufficient to decrease microtubule growth speed and neurite outgrowth of conditioned neurons and of GSK3β-depleted neurons, prevailing over the effect of decreased levels of phosphorylated microtubule-associated protein 1B (MAP1B) and through a mechanism unrelated to decreased levels of phosphorylated cytoplasmic linker associated protein 2 (CLASP2). In addition, phospho-resistant T/A-CRMP-2 counteracted the inhibitory myelin effect on neurite growth, further supporting the GSK3β-CRMP-2 relevance during axon regeneration. Conclusions Our work shows that increased microtubule growth speed in the growth cone is present in conditions of increased axonal growth, and is achieved following inactivation of the GSK3β-CRMP-2 pathway, enhancing axon regeneration through the glial scar. In this context, our results support that a precise control of microtubule dynamics, specifically in the growth cone, is required to optimize axon regrowth.
Collapse
|
221
|
Hong HJ, Kang W, Kim DG, Lee DH, Lee Y, Han CH. Effects of resveratrol on the insulin signaling pathway of obese mice. J Vet Sci 2014; 15:179-85. [PMID: 24675832 PMCID: PMC4087218 DOI: 10.4142/jvs.2014.15.2.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/21/2014] [Indexed: 01/04/2023] Open
Abstract
The present study was conducted to investigate the effects of resveratrol on the insulin signaling pathway in the liver of obese mice. To accomplish this, we administered resveratrol to high fat diet-induced obese mice and examined the levels of protein phosphorylation in the liver using an antibody array. The phosphorylation levels of 10 proteins were decreased in the high fat diet and resveratrol (HFR) fed group relative to the levels in the high fat diet (HF) fed group. In contrast, the phosphorylation levels of more than 20 proteins were increased in the HFR group when compared with the levels of proteins in the HF group. Specifically, the phosphorylation levels of Akt (The308, Tyr326, Ser473) were restored to normal by resveratrol when compared with the levels in the HF group. In addition, the phosphorylation levels of IRS-1 (Ser636/Ser639), PI-3K p85-subunit α/γ(Tyr467/Tyr199), PDK1 (Ser241), GSK-3α (S21) and GSK-3 (Ser9), which are involved in the insulin signaling pathway, were decreased in the HF group, whereas the levels were restored to normal in the HFR group. Overall, the results show that resveratrol restores the phosphorylation levels of proteins involved in the insulin signaling pathway, which were decreased by a high fat diet.
Collapse
Affiliation(s)
- Hyun Ju Hong
- Department of Toxicology & Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Korea
| | | | | | | | | | | |
Collapse
|
222
|
Stamos JL, Chu MLH, Enos MD, Shah N, Weis WI. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. eLife 2014; 3:e01998. [PMID: 24642411 PMCID: PMC3953950 DOI: 10.7554/elife.01998] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a key regulator of many cellular signaling pathways. Unlike most kinases, GSK-3 is controlled by inhibition rather than by specific activation. In the insulin and several other signaling pathways, phosphorylation of a serine present in a conserved sequence near the amino terminus of GSK-3 generates an auto-inhibitory peptide. In contrast, Wnt/β-catenin signal transduction requires phosphorylation of Ser/Pro rich sequences present in the Wnt co-receptors LRP5/6, and these motifs inhibit GSK-3 activity. We present crystal structures of GSK-3 bound to its phosphorylated N-terminus and to two of the phosphorylated LRP6 motifs. A conserved loop unique to GSK-3 undergoes a dramatic conformational change that clamps the bound pseudo-substrate peptides, and reveals the mechanism of primed substrate recognition. The structures rationalize target sequence preferences and suggest avenues for the design of inhibitors selective for a subset of pathways regulated by GSK-3. DOI: http://dx.doi.org/10.7554/eLife.01998.001.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Department of Structural Biology, Stanford University, Stanford, United States
| | | | | | | | | |
Collapse
|
223
|
Voelkl J, Mia S, Meissner A, Ahmed MS, Feger M, Elvira B, Walker B, Alessi DR, Alesutan I, Lang F. PKB/SGK-resistant GSK-3 signaling following unilateral ureteral obstruction. Kidney Blood Press Res 2014; 38:156-64. [PMID: 24685987 DOI: 10.1159/000355763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal tissue fibrosis contributes to the development of end-stage renal disease. Causes for renal tissue fibrosis include obstructive nephropathy. The development of renal fibrosis following unilateral ureteral obstruction (UUO) is blunted in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase SGK1. Similar to Akt isoforms, SGK1 phosphorylates and thus inactivates glycogen synthase kinase GSK-3. The present study explored whether PKB/SGK-dependent phoshorylation of GSK-3α/β impacts on pro-fibrotic signaling following UUO. METHODS UUO was induced in mice carrying a PKB/SGK-resistant GSK-3α/β (gsk-3(KI)) and corresponding wild-type mice (gsk-3(WT)). Three days after the obstructive injury, expression of fibrosis markers in kidney tissues was analyzed by quantitative RT-PCR and western blotting. RESULTS GSK-3α and GSK-3β phosphorylation was absent in both, the non-obstructed and the obstructed kidney tissues from gsk-3(KI) mice but was increased by UUO in kidney tissues from gsk-3(WT) mice. Expression of α-smooth muscle actin, type I collagen and type III collagen in the non-obstructed kidney tissues was not significantly different between gsk-3(KI) mice and gsk-3(WT) mice but was significantly less increased in the obstructed kidney tissues from gsk-3(KI) mice than from gsk-3(WT) mice. After UUO treatment, renal β-catenin protein abundance and renal expression of the β-catenin sensitive genes: c-Myc, Dkk1, Twist and Lef1 were again significantly less increased in kidney tissues from gsk-3(KI) mice than from gsk-3(WT) mice. CONCLUSIONS PKB/SGK-dependent phosphorylation of glycogen synthase kinase GSK-3 contributes to the pro-fibrotic signaling leading to renal tissue fibrosis in obstructive nephropathy.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Gao C, Xiao G, Hu J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci 2014; 4:13. [PMID: 24594309 PMCID: PMC3977945 DOI: 10.1186/2045-3701-4-13] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin.
Collapse
Affiliation(s)
| | | | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
225
|
Harmel E, Grenier E, Bendjoudi Ouadda A, El Chebly M, Ziv E, Beaulieu JF, Sané A, Spahis S, Laville M, Levy E. AMPK in the small intestine in normal and pathophysiological conditions. Endocrinology 2014; 155:873-88. [PMID: 24424053 DOI: 10.1210/en.2013-1750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of AMPK in regulating energy storage and depletion remains unexplored in the intestine. This study will to define its status, composition, regulation and lipid function, as well as to examine the impact of insulin resistance and type 2 diabetes on intestinal AMPK activation, insulin sensitivity, and lipid metabolism. Caco-2/15 cells and Psammomys obesus (P. obesus) animal models were experimented. We showed the predominance of AMPKα1 and the prevalence of α1/β2/γ1 heterotrimer in Caco-2/15 cells. The activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside and metformin resulted in increased phospho(p)-ACC. However, the down-regulation of p-AMPK by compound C and high glucose lowered p-ACC without affecting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Administration of metformin to P. obesus with insulin resistance and type 2 diabetes led to 1) an up-regulation of intestinal AMPK signaling pathway typified by ascending p-AMPKα(-Thr172); 2) a reduction in ACC activity; 3) an elevation of carnitine palmitoyltransferase 1; 4) a trend of increase in insulin sensitivity portrayed by augmentation of p-Akt and phospho-glycogen synthetase kinase 3β; 5) a reduced phosphorylation of p38-MAPK and ERK1/2; and 6) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. These data suggest that AMPK fulfills key functions in metabolic processes in the small intestine.
Collapse
Affiliation(s)
- Elodie Harmel
- Research Center (E.H., E.G., A.B.O., M.E.C., A.S., S.S., E.L.), Sainte-Justine MUHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition (E.H., E.G., S.S., E.L.) and Department of Biochemistry (M.E.C.), Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Diabetes Unit (E.Z.), Division of Internal Medicine, Hadassah Ein Kerem Hospital, 120 Jerusalem, Israel-91; Canadian Institutes for Health Research Team on the Digestive Epithelium (J.F.B., E.L.), Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4; and CRNH Rhône-Alpes (E.H., M.L.), Université Lyon 1, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1060, CENS, Centre Hospitalier Lyon-Sud, F-69310 Pierre Bénite, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Zhong CQ, Li Y, Yang D, Zhang N, Xu X, Wu Y, Chen J, Han J. Quantitative phosphoproteomic analysis of RIP3-dependent protein phosphorylation in the course of TNF-induced necroptosis. Proteomics 2014; 14:713-24. [PMID: 24453211 DOI: 10.1002/pmic.201300326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/24/2013] [Accepted: 01/08/2014] [Indexed: 11/06/2022]
Abstract
Tumor necrosis factor (TNF) induced cell death in murine fibrosarcoma L929 cells is a model system in studying programed necrosis (also known as necroptosis). Receptor interacting protein 3 (RIP3), a serine-threonine kinase, is known to play an essential role in TNF-induced necroptosis; however, the phosphorylation events initiated by RIP3 activation in necroptotic process is still largely unknown. Here, we performed a quantitative MS based analysis to compare TNF-induced changes in the global phosphoproteome of wild-type (RIP3(+/+) ) and RIP3-knockdown L929 cells at different time points after TNF treatment. A total of 8058 phosphopeptides spanning 6892 phosphorylation sites in 2762 proteins were identified in the three experiments, in which cells were treated with TNF for 0.5, 2, and 4 h. By comparing the phosphorylation sites in wild-type and RIP3-knockdown L929 cells, 174, 167, and 177 distinct phosphorylation sites were revealed to be dependent on RIP3 at the 0.5, 2, and 4 h time points after TNF treatment, respectively. Notably, most of them were not detected in a previous phosphoproteomic analysis of RIP3-dependent phosphorylation in lipopolysaccharide-stimulated peritoneal macrophages and TNF-treated murine embryonic fibroblasts (MEFs), suggesting that the data presented in this report are highly relevant to the study of TNF-induced necroptosis of L929 cells.
Collapse
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Wu YJ, Fang YH, Chi HC, Chang LC, Chung SY, Huang WC, Wang XW, Lee KW, Chen SL. Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One 2014; 9:e88450. [PMID: 24551104 PMCID: PMC3923792 DOI: 10.1371/journal.pone.0088450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Most recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT). The nuclear shuttling of FoxO1 in PMB could be prevented by leptomycin B and we further found that cytoplasmic accumulation of FoxO1 in myotubes was caused by the blockade of its nuclear import. Although over-expression of wildtype FoxO1 in C2C12 myoblasts significantly blocked their myogenic differentiation under serum withdrawal condition, application of insulin and LiCl, an activator of Wnt signaling pathway, to these cells successfully rescued their myogenic differentiation and generated myotubes with larger diameters. Interestingly, insulin treatment significantly reduced FoxO1 level and also delayed nuclear re-accumulation of FoxO1 triggered by mitogen deprivation. We further found that FoxO1 directly repressed the promoter activity of myogenic genes and this repression can be relieved by insulin and LiCl treatment. These results suggest that FoxO1 inhibits myogenesis in serum withdrawal condition but turns into a hypertrophy potentiator when other myogenic signals, such as Wnt and insulin, are available.
Collapse
Affiliation(s)
- Yi Ju Wu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Yen Hsin Fang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Hsiang Cheng Chi
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li Chiung Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shih Ying Chung
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Wei Chieh Huang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Xiao Wen Wang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Kuan Wei Lee
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
- * E-mail:
| |
Collapse
|
228
|
Schmid E, Yan J, Nurbaeva MK, Russo A, Yang W, Faggio C, Shumilina E, Lang F. Decreased store operated Ca2+ entry in dendritic cells isolated from mice expressing PKB/SGK-resistant GSK3. PLoS One 2014; 9:e88637. [PMID: 24523925 PMCID: PMC3921210 DOI: 10.1371/journal.pone.0088637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs), key players of immunity, are regulated by glycogen synthase kinase GSK3. GSK3 activity is suppressed by PKB/Akt and SGK isoforms, which are in turn stimulated by the PI3K pathway. Exposure to bacterial lipopolysaccharides increases cytosolic Ca2+-concentration ([Ca2+]i), an effect augmented in DCs isolated from mutant mice expressing PKB/SGK-resistant GSK3α,β (gsk3KI). Factors affecting [Ca2+]i include Ca2+-release from intracellular stores (CRIS), store-operated Ca2+-entry (SOCE) through STIM1/STIM2-regulated Orai1, K+-dependent Na+/Ca2+-exchangers (NCKX), K+-independent Na+/Ca2+-exchangers (NCX) and calbindin-D28k. The present study explored whether PKB/SGK-dependent GSK3α, β-activity impacts on CRIS, SOCE, NCKX, NCX or calbindin. DCs were isolated from gsk3KI mice and respective wild-type mice (gsk3WT), [Ca2+]i estimated from Fura2 fluorescence, Orai1, STIM1, STIM2 as well as calbindin-D28k protein abundance determined by Western blotting and mRNA levels quantified by real time PCR. As a result, thapsigargin-induced CRIS and SOCE were significantly blunted by GSK3-inhibitors SB216763 (1–10 µM, 30 min) or GSK-XIII (10 µM, 30 min) but were significantly lower in gsk3WT than in gsk3KIDCs. Orai1, STIM1 and STIM2 protein abundance was significantly lower and calbindin-D28k abundance significantly higher in gsk3KI than in gsk3WTDCs. Activity of NCKX and NCX was significantly higher in gsk3KI than in gsk3WTDCs and was significantly increased by SB216763 (1 µM, 30 min) or GSK-XIII (10 µM, 30 min). Treatment of gsk3WT DCs with SB216763 (1 µM, 4–24 h) or GSK-XIII (10 µM, 4–24 h) did not significantly modify the protein abundance of Orai1, STIM1 and STIM2. The present observations point to a dual role of GSK3 in the regulation of Ca2+ in DCs. Acute inhibition of GSK3 blunted the increase of [Ca2+]i following CRIS and SOCE and stimulated NCKX/NCX activity. However, expression of PKB/SGK-resistant GSK3α, β downregulated the increase of [Ca2+]i following CRIS and SOCE, an effect at least partially due to downregulation of Orai1, STIM1 and STIM2 expression as well as upregulation of Na+/Ca2+-exchanger activity and calbindin D28k expression.
Collapse
Affiliation(s)
- Evi Schmid
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Jing Yan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | - Antonella Russo
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Wenting Yang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences, University of Messina, S.Agata-Messina, Italy
| | | | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
229
|
Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LKS, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathi A, Chaturvedi RK, Gupta KC. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS NANO 2014; 8:76-103. [PMID: 24467380 DOI: 10.1021/nn405077y] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimer's disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Beurel E. Regulation of inflammation and T cells by glycogen synthase kinase-3: links to mood disorders. Neuroimmunomodulation 2014; 21:140-4. [PMID: 24557047 PMCID: PMC4136426 DOI: 10.1159/000356550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Accumulative evidence shows a role of the immune system in susceptibility to depression. Proinflammatory cytokines have been shown to be involved in the induction of depressive behavior both in humans and mice, opening a new avenue of therapeutic strategy. Because glycogen synthase kinase-3 (GSK3) was recently identified to be controlling the production of proinflammatory cytokines, and GSK3 has been shown to be implicated in mood disorders for many years, it has been proposed that the proinflammatory action of GSK3 could be responsible for the increased susceptibility to depressive behavior. Moreover, besides regulating cytokines, GSK3 also promotes differentiation of proinflammatory subtypes of Th cells, which are sufficient to induce depressive behavior in mice. Although the clear involvement of the immune system during depressive behavior still needs to be firmly demonstrated, there is growing evidence for the involvement of inflammation in the induction of depressive behavior.
Collapse
Affiliation(s)
- Eleonore Beurel
- University of Miami, Departments of Psychiatry and Biochemistry, 1011 NW 15th Street, Gautier room 415, Miami, FL 33136, phone: 305-243-0263
| |
Collapse
|
231
|
Bartman CM, Egelston J, Kattula S, Zeidner LC, D’Ippolito A, Doble BW, Phiel CJ. Gene Expression Profiling in Mouse Embryonic Stem Cells Reveals Glycogen Synthase Kinase-3-Dependent Targets of Phosphatidylinositol 3-Kinase and Wnt/β-Catenin Signaling Pathways. Front Endocrinol (Lausanne) 2014; 5:133. [PMID: 25165462 PMCID: PMC4131280 DOI: 10.3389/fendo.2014.00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/28/2014] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3 (Gsk-3) activity is an important regulator of numerous signal transduction pathways. Gsk-3 activity is the sum of two largely redundant proteins, Gsk-3α and Gsk-3β, and in general, Gsk-3 is a negative regulator of cellular signaling. Genetic deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells (ESCs) has previously been shown to lead to the constitutive activation of the Wnt/β-catenin signaling pathway. However, in addition to Wnt signaling, all Gsk-3-regulated pathways, such as insulin signaling, are also affected simultaneously in Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-)ESCs. In an effort to better understand how specific signaling pathways contribute to the global pattern of gene expression in Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-)ESCs, we compared the gene expression profiles in Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-) ESCs to mouse ESCs in which either Wnt/β-catenin signaling or phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling are constitutively active. Our results show that Wnt signaling has a greater effect on up-regulated genes in the Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-)ESCs, whereas PI3K-dependent insulin signaling is more responsible for the down-regulation of genes in the same cells. These data show the importance of Gsk-3 activity on gene expression in mouse ESCs, and that these effects are due to the combined effects of multiple signaling pathways.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Jennifer Egelston
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Sravya Kattula
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Leigh C. Zeidner
- Center for Human and Molecular Genetics, Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Anthony D’Ippolito
- Center for Human and Molecular Genetics, Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Bradley W. Doble
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Christopher J. Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
- *Correspondence: Christopher J. Phiel, Department of Integrative Biology, University of Colorado Denver, Campus Box 171, P.O. Box 173364, Denver, CO 80217-3364, USA e-mail:
| |
Collapse
|
232
|
Dangelmaier C, Manne BK, Liverani E, Jin J, Bray P, Kunapuli SP. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb Haemost 2013; 111:508-17. [PMID: 24352480 DOI: 10.1160/th13-06-0484] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/14/2013] [Indexed: 11/05/2022]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1), a member of the protein A,G and C (AGC) family of proteins, is a Ser/Thr protein kinase that can phosphorylate and activate other protein kinases from the AGC family, including Akt at Thr308, all of which play important roles in mediating cellular responses. The functional role of PDK1 or the importance of phosphorylation of Akt on Thr308 for its activity has not been investigated in human platelets. In this study, we tested two pharmacological inhibitors of PDK1, BX795 and BX912, to assess the role of Thr308 phosphorylation on Akt. PAR4-induced phosphorylation of Akt on Thr308 was inhibited by BX795 without affecting phosphorylation of Akt on Ser473. The lack of Thr308 phosphorylation on Akt also led to the inhibition of PAR4-induced phosphorylation of two downstream substrates of Akt, viz. GSK3β and PRAS40. In vitro kinase activity of Akt was completely abolished if Thr308 on Akt was not phosphorylated. BX795 caused inhibition of 2-MeSADP-induced or collagen-induced aggregation, ATP secretion and thromboxane generation. Primary aggregation induced by 2-MeSADP was also inhibited in the presence of BX795. PDK1 inhibition also resulted in reduced clot retraction indicating its role in outside-in signalling. These results demonstrate that PDK1 selectively phosphorylates Thr308 on Akt thereby regulating its activity and plays a positive regulatory role in platelet physiological responses.
Collapse
Affiliation(s)
| | | | | | | | | | - S P Kunapuli
- Satya P. Kunapuli, PhD, Department of Physiology, Temple University, Rm. 217 MRB, 3420 N. Broad Street, Philadelphia, Pennsylvania 19140, USA, Tel.: +1 215 707 4615, Fax: +1 215 707 4003, E-mail:
| |
Collapse
|
233
|
Zhang BY, Saijilafu, Liu CM, Wang RY, Zhu Q, Jiao Z, Zhou FQ. Akt-independent GSK3 inactivation downstream of PI3K signaling regulates mammalian axon regeneration. Biochem Biophys Res Commun 2013; 443:743-8. [PMID: 24333443 DOI: 10.1016/j.bbrc.2013.12.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/06/2013] [Indexed: 11/26/2022]
Abstract
Inactivation of glycogen synthase kinase 3 (GSK3) has been shown to mediate axon growth during development and regeneration. Phosphorylation of GSK3 by the kinase Akt is well known to be the major mechanism by which GSK3 is inactivated. However, whether such regulatory mechanism of GSK3 inactivation is used in neurons to control axon growth has not been directly studied. Here by using GSK3 mutant mice, in which GSK3 is insensitive to Akt-mediated inactivation, we show that sensory axons regenerate normally in vitro and in vivo after peripheral axotomy. We also find that GSK3 in sensory neurons of the mutant mice is still inactivated in response to peripheral axotomy and such inactivation is required for sensory axon regeneration. Lastly, we provide evidence that GSK3 activity is negatively regulated by PI3K signaling in the mutant mice upon peripheral axotomy, and the PI3K-GSK3 pathway is functionally required for sensory axon regeneration. Together, these results indicate that in response to peripheral nerve injury GSK3 inactivation, regulated by an alternative mechanism independent of Akt-mediated phosphorylation, controls sensory axon regeneration.
Collapse
Affiliation(s)
- Bo-Yin Zhang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Saijilafu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Chang-Mei Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Rui-Ying Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Qingsan Zhu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Zhongxian Jiao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
234
|
von Wilamowitz-Moellendorff A, Hunter RW, García-Rocha M, Kang L, López-Soldado I, Lantier L, Patel K, Peggie MW, Martínez-Pons C, Voss M, Calbó J, Cohen PT, Wasserman DH, Guinovart JJ, Sakamoto K. Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes 2013; 62:4070-82. [PMID: 23990365 PMCID: PMC3837029 DOI: 10.2337/db13-0880] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022]
Abstract
The liver responds to an increase in blood glucose levels in the postprandial state by uptake of glucose and conversion to glycogen. Liver glycogen synthase (GYS2), a key enzyme in glycogen synthesis, is controlled by a complex interplay between the allosteric activator glucose-6-phosphate (G6P) and reversible phosphorylation through glycogen synthase kinase-3 and the glycogen-associated form of protein phosphatase 1. Here, we initially performed mutagenesis analysis and identified a key residue (Arg(582)) required for activation of GYS2 by G6P. We then used GYS2 Arg(582)Ala knockin (+/R582A) mice in which G6P-mediated GYS2 activation had been profoundly impaired (60-70%), while sparing regulation through reversible phosphorylation. R582A mutant-expressing hepatocytes showed significantly reduced glycogen synthesis with glucose and insulin or glucokinase activator, which resulted in channeling glucose/G6P toward glycolysis and lipid synthesis. GYS2(+/R582A) mice were modestly glucose intolerant and displayed significantly reduced glycogen accumulation with feeding or glucose load in vivo. These data show that G6P-mediated activation of GYS2 plays a key role in controlling glycogen synthesis and hepatic glucose-G6P flux control and thus whole-body glucose homeostasis.
Collapse
Affiliation(s)
| | - Roger W. Hunter
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| | - Mar García-Rocha
- Institute for Research in Biomedicine and Department of Biochemistry and Molecular Biology, University of Barcelona, and CIBERDEM, Barcelona, Spain
| | - Li Kang
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Iliana López-Soldado
- Institute for Research in Biomedicine and Department of Biochemistry and Molecular Biology, University of Barcelona, and CIBERDEM, Barcelona, Spain
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kashyap Patel
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| | - Mark W. Peggie
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| | - Carlos Martínez-Pons
- Institute for Research in Biomedicine and Department of Biochemistry and Molecular Biology, University of Barcelona, and CIBERDEM, Barcelona, Spain
| | - Martin Voss
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| | - Joaquim Calbó
- Institute for Research in Biomedicine and Department of Biochemistry and Molecular Biology, University of Barcelona, and CIBERDEM, Barcelona, Spain
| | - Patricia T.W. Cohen
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joan J. Guinovart
- Institute for Research in Biomedicine and Department of Biochemistry and Molecular Biology, University of Barcelona, and CIBERDEM, Barcelona, Spain
| | - Kei Sakamoto
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| |
Collapse
|
235
|
Crescioli C, Sturli N, Sottili M, Bonini P, Lenzi A, Di Luigi L. Insulin-like effect of the phosphodiesterase type 5 inhibitor tadalafil onto male human skeletal muscle cells. J Endocrinol Invest 2013; 36:1020-6. [PMID: 23873283 DOI: 10.3275/9034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Phosphodiesterase type 5 inhibitors (PDE5i), widely used to treat male erectile dysfunction, seem to counteract insulin resistance (IR) in animals and humans. IR, primarily manifest in peripheral tissues and particularly in skeletal muscle, is due to impaired insulin signal transduction. Investigators have been focusing onto intracellular defects responsible for IR to identify suitable pharmacological tools targeted toward the specific defects. Albeit some effects of PDE5i have been reported onto animal muscular tissues or cells, whether and how they might affect metabolic processes directly in human skeletal muscle still remains unclear. AIM We aimed to investigate in human fetal skeletal muscle cells (Hfsmc) the effect of tadalafil, one of PDE5i, onto some intracellular factors involved in response to insulin, such as ras-raf mitogen activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt), glycogen synthase kinase 3β (GSK-3β), and the transcriptional factor c-Myc; proliferation rate; lactate (lact) and free fatty acid (ffa) release; activity of citrate synthase (CS) and succinate dehydrogenase (SDH), both enzymes of Kreb's cycle; PDE5 gene expression. MATERIALS AND METHODS Western blot analysis, enzyme-linked immunosorbent assay, enzymatic assays, cell count, MTT assay and Real Time PCR were performed in Hfsmc with and without tadalafil. RESULTS In Hfsmc tadalafil affected the insulin-related intracellular cascade, by increasing MAPK, PKB/Akt, GSK-3β phosphorylation and c-Myc expression. ffa release and CS activity also significantly increased, with no changes in SDH activity and lact release. CONCLUSIONS Tadalafil, like insulin, targeted part of the machinery dedicated to energy management and metabolic control in human skeletal muscle cells.
Collapse
Affiliation(s)
- C Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
236
|
Zhao L, Chu CB, Li JF, Yang YT, Niu SQ, Qin W, Hao YG, Dong Q, Guan R, Hu WL, Wang Y. Glycogen synthase kinase-3 reduces acetylcholine level in striatum via disturbing cellular distribution of choline acetyltransferase in cholinergic interneurons in rats. Neuroscience 2013; 255:203-11. [PMID: 24121130 DOI: 10.1016/j.neuroscience.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022]
Abstract
Cholinergic interneurons, which provide the main source of acetylcholine (ACh) in the striatum, control the striatal local circuits and deeply involve in the pathogenesis of neurodegenerative diseases. Glycogen synthase kinase-3 (GSK-3) is a crucial kinase with diverse fundamental functions and accepted that deregulation of GSK-3 activity also plays important roles in diverse neurodegenerative diseases. However, up to now, there is no direct proof indicating whether GSK-3 activation is responsible for cholinergic dysfunction. In the present study, with combined intracerebroventricular injection of Wortmannin and GF-109203X, we activated GSK-3 and demonstrated the increased phosphorylation level of microtubule-associated protein tau and neurofilaments (NFs) in the rat striatum. The activated GSK-3 consequently decreased ACh level in the striatum as a result of the reduction of choline acetyltransferase (ChAT) activity. The alteration of ChAT activity was due to impaired ChAT distribution rather than its expression. Furthermore, we proved that cellular ChAT distribution was dependent on low phosphorylation level of NFs. Nevertheless, the cholinergic dysfunction in the striatum failed to induce significant neuronal number reduction. In summary, our data demonstrates the link between GSK-3 activation and cholinergic dysfunction in the striatum and provided beneficial evidence for the pathogenesis study of relevant neurodegenerative diseases.
Collapse
Affiliation(s)
- L Zhao
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Gillespie JR, Bush JR, Bell GI, Aubrey LA, Dupuis H, Ferron M, Kream B, DiMattia G, Patel S, Woodgett JR, Karsenty G, Hess DA, Beier F. GSK-3β function in bone regulates skeletal development, whole-body metabolism, and male life span. Endocrinology 2013; 154:3702-18. [PMID: 23904355 PMCID: PMC5053811 DOI: 10.1210/en.2013-1155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycogen synthase kinase 3 β (GSK-3β) is an essential negative regulator or "brake" on many anabolic-signaling pathways including Wnt and insulin. Global deletion of GSK-3β results in perinatal lethality and various skeletal defects. The goal of our research was to determine GSK-3β cell-autonomous effects and postnatal roles in the skeleton. We used the 3.6-kb Col1a1 promoter to inactivate the Gsk3b gene (Col1a1-Gsk3b knockout) in skeletal cells. Mutant mice exhibit decreased body fat and postnatal bone growth, as well as delayed development of several skeletal elements. Surprisingly, the mutant mice display decreased circulating glucose and insulin levels despite normal expression of GSK-3β in metabolic tissues. We showed that these effects are due to an increase in global insulin sensitivity. Most of the male mutant mice died after weaning. Prior to death, blood glucose changed from low to high, suggesting a possible switch from insulin sensitivity to resistance. These male mice die with extremely large bladders that are preceded by damage to the urogenital tract, defects that are also seen type 2 diabetes. Our data suggest that skeletal-specific deletion of GSK-3β affects global metabolism and sensitizes male mice to developing type 2 diabetes.
Collapse
MESH Headings
- Animals
- Bone Development
- Bone and Bones/enzymology
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Crosses, Genetic
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Susceptibility
- Energy Metabolism
- Female
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Insulin Resistance
- Male
- Male Urogenital Diseases/complications
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Promoter Regions, Genetic
- Sex Characteristics
- Survival Analysis
- Urogenital System/pathology
- Weaning
Collapse
Affiliation(s)
- J R Gillespie
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada; N6A 5C1.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Cichoń MA, Szentpetery Z, Caley MP, Papadakis ES, Mackenzie IC, Brennan CH, O'Toole EA. The receptor tyrosine kinase Axl regulates cell-cell adhesion and stemness in cutaneous squamous cell carcinoma. Oncogene 2013; 33:4185-92. [PMID: 24056961 DOI: 10.1038/onc.2013.388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022]
Abstract
Axl is a receptor tyrosine kinase (RTK) upregulated in various tumors including cutaneous squamous cell carcinoma (SCC). Axl expression correlates with poor prognosis and induction of epithelial-mesenchymal transition (EMT), hence we hypothesized that Axl is involved in the disruption of cell-cell adhesion to allow invasion and chemotherapy resistance of the cancer stem cell population. Cutaneous SCC cell lines with stable knockdown of Axl were generated using retroviral vectors. Axl depletion altered expression of intercellular junction molecules increasing cell-cell adhesion with downregulation of Wnt and TGFβR signaling. Furthermore, Axl expression correlated with the expression of putative cancer stem cell markers, CD44 and ALDH1, increased resistance to chemotherapy drugs, enhanced sphere formation ability and expression of EMT features by cancer stem cells. Axl depletion resulted in loss of tumor formation in an in vivo zebrafish xenograft model. In conclusion, these data suggest that abrogation of Axl results in loss of cancer stem cell properties indicating a role for Axl as a therapeutic target in chemotherapy-resistant cancer.
Collapse
Affiliation(s)
- M A Cichoń
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Z Szentpetery
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M P Caley
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E S Papadakis
- Cancer Sciences Division, Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - I C Mackenzie
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - C H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - E A O'Toole
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
239
|
Kang KA, Kim KC, Bae SC, Hyun JW. Oxidative stress induces proliferation of colorectal cancer cells by inhibiting RUNX3 and activating the Akt signaling pathway. Int J Oncol 2013; 43:1511-6. [PMID: 24042352 DOI: 10.3892/ijo.2013.2102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022] Open
Abstract
We recently reported that the tumor suppressor Runt-related transcription factor 3 (RUNX3) is silenced in colorectal cancer cells via oxidative stress-induced hypermethylation of its promoter. The resulting downregulation of RUNX3 expression influences cell proliferation. Activation of the Akt signaling pathway is also associated with cell survival and proliferation; however, the effects of oxidative stress on the relationship between RUNX3 and Akt signaling are largely unknown. Therefore, this study investigated the mechanisms involved in cell proliferation caused by oxidative stress-induced silencing of RUNX3. The levels of RUNX3 mRNA and protein were downregulated in response to treatment of the human colorectal cancer cell line SNU-407 with H2O2. Treatment of the cells with H2O2 also upregulated Akt mRNA and protein expression, and inhibited the binding of RUNX3 to the Akt promoter. The inverse correlation between the expression levels of RUNX3 and Akt in H2O2-treated cells was also associated with nuclear translocation of β-catenin and upregulation of cyclin D1 expression, which induced cell proliferation. H2O2 treatment also increased the binding of β-catenin to the cyclin D1 promoter. The results presented here demonstrate that reactive oxygen species silence the tumor suppressor RUNX3, enhance the Akt-mediated signaling pathway, and promote the proliferation of colorectal cancer cells.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- School of Medicine, and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | |
Collapse
|
240
|
Broholm C, Mathur N, Hvid T, Grøndahl TS, Frøsig C, Pedersen BK, Lindegaard B. Insulin signaling in skeletal muscle of HIV-infected patients in response to endurance and strength training. Physiol Rep 2013; 1:e00060. [PMID: 24303139 PMCID: PMC3835015 DOI: 10.1002/phy2.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV)-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake. Both endurance and resistance training improve insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients, but the mechanisms are unknown. This study aims to identify the molecular pathways involved in the beneficial effects of training on insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients. Eighteen sedentary male HIV-infected patients underwent a 16 week supervised training intervention, either resistance or strength training. Euglycemic-hyperinsulinemic clamps with muscle biopsies were performed before and after the training interventions. Fifteen age- and body mass index (BMI)-matched HIV-negative men served as a sedentary baseline group. Phosphorylation and total protein expression of insulin signaling molecules as well as glycogen synthase (GS) activity were analyzed in skeletal muscle biopsies in relation to insulin stimulation before and after training. HIV-infected patients had reduced basal and insulin-stimulated GS activity (%fractional velocity, [FV]) as well as impaired insulin-stimulated Akt(thr308) phosphorylation. Despite improving insulin-stimulated glucose uptake, neither endurance nor strength training changed the phosphorylation status of insulin signaling proteins or affected GS activity. However; endurance training markedly increased the total Akt protein expression, and both training modalities increased hexokinase II (HKII) protein. HIV-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake in skeletal muscle and defects in insulin-stimulated phosphorylation of Akt(thr308). Endurance and strength training increase insulin-stimulated glucose uptake in these patients, and the muscular training adaptation is associated with improved capacity for phosphorylation of glucose by HKII, rather than changes in markers of insulin signaling to glucose uptake or glycogen synthesis.
Collapse
Affiliation(s)
- Christa Broholm
- Department of Infectious Diseases, Centre of Inflammation and Metabolism, Rigshospitalet Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
241
|
Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, Kobayashi M, Hirofuji T, Hirata M, Maeda K. Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone 2013; 55:315-24. [PMID: 23612487 DOI: 10.1016/j.bone.2013.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a well-known signaling sphingolipid and bioactive lipid mediator. Recently, it was reported that S1P inhibits osteoclast differentiation and bone resorption. On the other hand, S1P effects on osteoblasts and bone formation are little known. In this study, we investigated the effects of S1P on osteoblasts, using two osteoblast-like cell lines, SaOS-2 and MC3T3-E1. S1P activated phosphatidylinositol 3-kinase (PI3K)/Akt signaling, leading to the inhibition of glycogen synthase kinase-3β and the nuclear translocation of β-catenin, followed by the increase of the transcriptional activity by β-catenin/T-cell factor complex formation in both SaOS-2 cells and MC3T3-E1 cells. The inhibitors of PI3K and Akt suppressed S1P-induced nuclear localization of β-catenin. We further investigated the effects of PI3K/Akt signaling on the Wnt/β-catenin signaling pathway, since β-catenin takes a central role in this signaling pathway. Both inhibitors for PI3K and Akt suppressed the nuclear localization of β-catenin and T-cell factor transcriptional activity induced by Wnt-3a. S1P increased the amount of osteoprotegerin at both mRNA and protein levels, and increased the activity of alkaline phosphatase, leading to the mineralization. These findings suggest that S1P activates the PI3K/Akt signaling pathway leading to the promotion of nuclear translocation of β-catenin in osteoblast-like cells, resulting in the upregulation of osteoptotegerin and osteoblast differentiation markers including alkaline phosphatase, probably relating to the inhibition of osteoclast formation and the mineralization, respectively.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Wan M, Leavens KF, Hunter RW, Koren S, von Wilamowitz-Moellendorff A, Lu M, Satapati S, Chu Q, Sakamoto K, Burgess SC, Birnbaum MJ. A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition. Cell Metab 2013; 18:99-105. [PMID: 23823480 PMCID: PMC3725134 DOI: 10.1016/j.cmet.2013.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/02/2013] [Accepted: 05/21/2013] [Indexed: 01/19/2023]
Abstract
Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogenolysis in the perfused mouse liver, elevated hepatic glucose production during a euglycemic-hyperinsulinemic clamp, or diminished glycogen accumulation during clamp or refeeding in mice without hepatic Akt2. Surprisingly, the absence of Akt2 disrupted glycogen metabolism independent of GSK3α and GSK3β phosphorylation, which is thought to be an essential step in the pathway by which insulin regulates glycogen synthesis through Akt. These data show that (1) the immediate action of insulin to suppress hepatic glucose production functions via an Akt2-dependent redirection of glucose-6-phosphate to glycogen, and (2) insulin increases glucose phosphorylation and conversion to glycogen independent of GSK3.
Collapse
Affiliation(s)
- Min Wan
- The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Lloyd-Lewis B, Fletcher AG, Dale TC, Byrne HM. Toward a quantitative understanding of the Wnt/β-catenin pathway through simulation and experiment. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:391-407. [PMID: 23554326 DOI: 10.1002/wsbm.1221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signaling regulates cell survival, proliferation, and differentiation throughout development and is aberrantly regulated in cancer. The pathway is activated when Wnt ligands bind to specific receptors on the cell surface, resulting in the stabilization and nuclear accumulation of the transcriptional co-activator β-catenin. Mathematical and computational models have been used to study the spatial and temporal regulation of the Wnt/β-catenin pathway and to investigate the functional impact of mutations in key components. Such models range in complexity, from time-dependent, ordinary differential equations that describe the biochemical interactions between key pathway components within a single cell, to complex, multiscale models that incorporate the role of the Wnt/β-catenin pathway target genes in tissue homeostasis and carcinogenesis. This review aims to summarize recent progress in mathematical modeling of the Wnt pathway and to highlight new biological results that could form the basis for future theoretical investigations designed to increase the utility of theoretical models of Wnt signaling in the biomedical arena.
Collapse
|
244
|
PKB/SGK-dependent GSK3-phosphorylation in the regulation of LPS-induced Ca2+ increase in mouse dendritic cells. Biochem Biophys Res Commun 2013; 437:336-41. [PMID: 23817039 DOI: 10.1016/j.bbrc.2013.06.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
The function of dendritic cells (DCs) is modified by glycogen synthase kinase GSK3 and GSK3 inhibitors have been shown to protect against inflammatory disease. Regulators of GSK3 include the phosphoinositide 3 kinase (PI3K) pathway leading to activation of protein kinase B (PKB/Akt) and serum and glucocorticoid inducible kinase (SGK) isoforms, which in turn phosphorylate and thus inhibit GSK3. The present study explored, whether PKB/SGK-dependent inhibition of GSK3 contributes to the regulation of cytosolic Ca(2+) concentration following stimulation with bacterial lipopolysaccharides (LPS). To this end DCs from mutant mice, in which PKB/SGK-dependent GSK3α,β regulation was disrupted by replacement of the serine residues in the respective SGK/PKB-phosphorylation consensus sequence by alanine (gsk3(KI)), were compared to DCs from respective wild type mice (gsk3(WT)). According to Western blotting, GSK3 phosphorylation was indeed absent in gsk3(KI) DCs. According to flow cytometry, expression of antigen-presenting molecule major histocompatibility complex II (MHCII) and costimulatory molecule CD86, was similar in unstimulated and LPS (1μg/ml, 24h)-stimulated gsk3(WT) and gsk3(KI) DCs. Moreover, production of cytokines IL-6, IL-10, IL-12 and TNFα was not significantly different in gsk3(KI) and gsk3(WT) DCs. In gsk3(WT) DCs, stimulation with LPS (1μg/ml) within 10min led to transient phosphorylation of GSK3. According to Fura2 fluorescence, LPS (1μg/ml) increased cytosolic Ca(2+) concentration, an effect significantly more pronounced in gsk3(KI) DCs than in gsk3(WT) DCs. Conversely, GSK3 inhibitor SB216763 (3-[2,4-Dichlorophenyl]-4-[1-methyl-1H-indol-3-yl]-1H-pyrrole-2,5-dione, 10μM, 30min) significantly blunted the increase of cytosolic Ca(2+) concentration following LPS exposure. In conclusion, PKB/SGK-dependent GSK3α,β activity participates in the regulation of Ca(2+) signaling in dendritic cells.
Collapse
|
245
|
Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000PRIME REPORTS 2013. [PMID: 23755364 DOI: 10.12703/p5‐17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complete sequences of animal genomes have revealed a remarkably small and conserved toolbox of signalling pathways, such as TGF-β and WNT that account for all biological diversity. This raises the question as to how such a limited set of cues elaborates so many diverse cell fates and behaviours. It is now clear that components of signalling pathways are physically assembled into higher order networks that ultimately dictate the biological output of pathway activity. Intertwining of pathways is thus emerging as a key feature of a large, integrated and coordinated signalling network that allows cells to read a limited set of extrinsic cues, but mount the diverse responses that underpin successful development and homeostasis. Moreover, this design principle confounds the development of effective therapeutic interventions in complex diseases, such as cancer.
Collapse
Affiliation(s)
- Liliana Attisano
- Department of Biochemistry and Donnelly CCBR, University of Toronto 160 College Street, Toronto, ON Canada, M5S 3E1
| | | |
Collapse
|
246
|
Atkins RJ, Stylli SS, Luwor RB, Kaye AH, Hovens CM. Glycogen synthase kinase-3β (GSK-3β) and its dysregulation in glioblastoma multiforme. J Clin Neurosci 2013; 20:1185-92. [PMID: 23768967 DOI: 10.1016/j.jocn.2013.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/09/2013] [Indexed: 01/10/2023]
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring and devastating human brain malignancy, retaining almost universal mortality and a median survival of only 14 months, even with recent advances in multimodal treatments. Gliomas are characterised as being both highly resistant to chemo- and radiotherapy and highly invasive, rendering conventional interventions palliative. The continual dismal prognosis for GBM patients identifies an urgent need for the evolutionary development of new treatment modalities. This includes molecular targeted therapies as many signaling molecules and associated pathways have been implicated in the development and survival of malignant gliomas including the protein kinase, glycogen synthase kinase 3 beta (GSK-3β). Here we review the activity and function of GSK-3β in a number of signaling pathways and its role in gliomagenesis.
Collapse
Affiliation(s)
- R J Atkins
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia.
| | | | | | | | | |
Collapse
|
247
|
Abstract
Complete sequences of animal genomes have revealed a remarkably small and conserved toolbox of signalling pathways, such as TGF-β and WNT that account for all biological diversity. This raises the question as to how such a limited set of cues elaborates so many diverse cell fates and behaviours. It is now clear that components of signalling pathways are physically assembled into higher order networks that ultimately dictate the biological output of pathway activity. Intertwining of pathways is thus emerging as a key feature of a large, integrated and coordinated signalling network that allows cells to read a limited set of extrinsic cues, but mount the diverse responses that underpin successful development and homeostasis. Moreover, this design principle confounds the development of effective therapeutic interventions in complex diseases, such as cancer.
Collapse
Affiliation(s)
- Liliana Attisano
- Department of Biochemistry and Donnelly CCBR, University of Toronto160 College Street, Toronto, ONCanada, M5S 3E1
| | - Jeffrey L. Wrana
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto600 University Avenue, Toronto, ONCanada, M5G 1X5
| |
Collapse
|
248
|
Kim JS, Sklarz T, Banks LB, Gohil M, Waickman AT, Skuli N, Krock BL, Luo CT, Hu W, Pollizzi KN, Li MO, Rathmell JC, Birnbaum MJ, Powell JD, Jordan MS, Koretzky GA. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nat Immunol 2013; 14:611-8. [PMID: 23644504 PMCID: PMC3711189 DOI: 10.1038/ni.2607] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/04/2013] [Indexed: 12/15/2022]
Abstract
Natural T helper 17 (nTH17) cells are a population of interleukin 17 (IL-17)-producing cells that acquire effector function in the thymus during development. Here we demonstrate that the serine/threonine kinase Akt has a critical role in regulating nTH17 cell development. Although Akt and the downstream mTORC1-ARNT-HIFα axis were required for generation of inducible TH17 (iTH17) cells, nTH17 cells developed independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins were critical for development of nTH17 cells. Moreover, distinct isoforms of Akt controlled the generation of TH17 cell subsets, as deletion of Akt2, but not of Akt1, led to defective generation of iTH17 cells. These findings define mechanisms regulating nTH17 cell development and reveal previously unknown roles of Akt and mTOR in shaping subsets of T cells.
Collapse
Affiliation(s)
- Jiyeon S Kim
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Harwood AJ, Forde-Thomas JE, Williams H, Samereier M, Müller-Taubenberger A. Aberrant spindle dynamics and cytokinesis in Dictyostelium discoideum cells that lack glycogen synthase kinase 3. Eur J Cell Biol 2013; 92:222-8. [PMID: 23787121 PMCID: PMC3776220 DOI: 10.1016/j.ejcb.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.
Collapse
Affiliation(s)
- Adrian J Harwood
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | |
Collapse
|
250
|
Beurel E, Kaidanovich-Beilin O, Yeh WI, Song L, Palomo V, Michalek SM, Woodgett JR, Harrington LE, Eldar-Finkelman H, Martinez A, Jope RS. Regulation of Th1 cells and experimental autoimmune encephalomyelitis by glycogen synthase kinase-3. THE JOURNAL OF IMMUNOLOGY 2013; 190:5000-11. [PMID: 23606540 DOI: 10.4049/jimmunol.1203057] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the CNS, for which only limited therapeutic interventions are available. Because MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the current study, we tested whether inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or alleviate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts significantly reduced the clinical symptoms of myelin oligodendrocyte glycoprotein35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode alleviated clinical symptoms in a relapsing-remitting model of proteolipid protein139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to alleviate myelin oligodendrocyte glycoprotein35-55-induced EAE. These results demonstrate the isoform-selective effects of GSK3 on T cell generation and the therapeutic effects of GSK3 inhibitors in EAE, as well as showing that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|