201
|
McRose DL, Zhang X, Kraepiel AML, Morel FMM. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments. Front Microbiol 2017; 8:267. [PMID: 28293220 PMCID: PMC5328986 DOI: 10.3389/fmicb.2017.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The nitrogenase enzyme, which catalyzes the reduction of N2 gas to NH4+, occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient 'canonical' Mo-nitrogenase, whereas Fe-only and V-('alternative') nitrogenases are often considered 'backup' enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical (nifD) and alternative (anfD and vnfD) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation.
Collapse
Affiliation(s)
- Darcy L McRose
- Department of Geosciences, Princeton University, Princeton NJ, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton NJ, USA
| | | | | |
Collapse
|
202
|
Nitrogen fixing bacterial diversity in a tropical estuarine sediments. World J Microbiol Biotechnol 2017; 33:41. [DOI: 10.1007/s11274-017-2205-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
|
203
|
Xu L, Shi J, Li C, Zhu S, Li B. Rhizobium hedysari sp. nov., a novel species isolated from a root nodule of Hedysarum multijugum in China. Antonie van Leeuwenhoek 2017; 110:479-488. [DOI: 10.1007/s10482-016-0817-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
|
204
|
Dahal B, NandaKafle G, Perkins L, Brözel VS. Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol Res 2017; 195:31-39. [DOI: 10.1016/j.micres.2016.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/04/2016] [Accepted: 11/12/2016] [Indexed: 11/25/2022]
|
205
|
Romanazzi V, Bonetta S, Fornasero S, De Ceglia M, Gilli G, Traversi D. Assessing Methanobrevibacter smithii and Clostridium difficile as not conventional faecal indicators in effluents of a wastewater treatment plant integrated with sludge anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:170-177. [PMID: 27697372 DOI: 10.1016/j.jenvman.2016.09.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plants (WWTP) are an important source of surface water contamination by enteric pathogens, affecting the role of environmental water as a microbial reservoir. We describe the release to the environment of certain anaerobes of human and environmental concern. The work was focused on emerging microbial targets. They are tracing, by RT-qPCR, on WWTP effluents, both liquid and solid, when an anaerobic digestion step is included. The focus is placed on Clostridium spp. with the specific quantification of Clostridium perfringens, as typical bioindicator, and Clostridium difficile, as emerging pathogen not only confined into nosocomial infection. Moreover methanogens were quantified for their involvement in the anaerobic digestion, and in particular on Methanobrevibacter smithii as major methanogenic component of the human gut microbiome and as not conventional faecal indicator. In the water samples, a reduction, statistically significant, in all microbial targets was observed (p < 0.01), 2 log for the total bacteria, 1.4 log for the Clostridium spp. and M. smithii, 1 log for total methanogens, C. perfringens and C. difficile. The AD process contribute to a significant change in microbial levels into the sludge for total bacteria and total methanogens (p < 0.01), both when the input sludge are primary and secondary, while for the presence of Clostridium spp. and C. difficile there was not a significant change. The produced data are innovative showing which is the diffusion of such anaerobic microorganisms throughout the WWTP and opening a discussion on the implementation of possible techniques for a more efficient microbial removal from effluents, particularly bio-solids, to reduce the potential release of pathogens into the environment.
Collapse
Affiliation(s)
- Valeria Romanazzi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Silvia Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Stefania Fornasero
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Margherita De Ceglia
- SMAT - Depuratore di Castiglione Torinese, Società Metropolitana Acque Torino S.p.A., Corso XI Febbraio 14, 10152 Torino, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| |
Collapse
|
206
|
Penton CR, Yang C, Wu L, Wang Q, Zhang J, Liu F, Qin Y, Deng Y, Hemme CL, Zheng T, Schuur EAG, Tiedje J, Zhou J. NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient. Front Microbiol 2016; 7:1894. [PMID: 27933054 PMCID: PMC5121533 DOI: 10.3389/fmicb.2016.01894] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Since nitrogen (N) is often limiting in permafrost soils, we investigated the N2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.
Collapse
Affiliation(s)
- C. Ryan Penton
- College of Integrative Sciences and Arts, Arizona State UniversityMesa, AZ, USA
- Arizona State University, Center for Fundamental and Applied Microbiomics, Biodesign InstituteTempe, AZ, USA
| | - Caiyun Yang
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
- Key Lab of the Ministry of Education for Coastal and Wetland Ecosystems, School of Environmental Sciences, Xiamen UniversityXiamen, China
| | - Liyou Wu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
| | - Qiong Wang
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - Jin Zhang
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
| | - Feifei Liu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
| | - Yujia Qin
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
| | - Ye Deng
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
| | - Christopher L. Hemme
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
| | - Tianling Zheng
- Key Lab of the Ministry of Education for Coastal and Wetland Ecosystems, School of Environmental Sciences, Xiamen UniversityXiamen, China
| | - Edward A. G. Schuur
- Department of Biological Sciences, Northern Arizona UniversityFlagstaff, AZ, USA
| | - James Tiedje
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of OklahomaNorman, OK, USA
- Earth Sciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| |
Collapse
|
207
|
Fernández-Méndez M, Turk-Kubo KA, Buttigieg PL, Rapp JZ, Krumpen T, Zehr JP, Boetius A. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean. Front Microbiol 2016; 7:1884. [PMID: 27933047 PMCID: PMC5120112 DOI: 10.3389/fmicb.2016.01884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/09/2016] [Indexed: 11/13/2022] Open
Abstract
The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.
Collapse
Affiliation(s)
- Mar Fernández-Méndez
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhaven, Germany; HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Kendra A Turk-Kubo
- Department of Ocean Sciences, University of California at Santa Cruz, Santa Cruz CA, USA
| | - Pier L Buttigieg
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Josephine Z Rapp
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhaven, Germany; HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Thomas Krumpen
- Sea Ice Physics Section, Climate Sciences Department, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California at Santa Cruz, Santa Cruz CA, USA
| | - Antje Boetius
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhaven, Germany; HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| |
Collapse
|
208
|
Zhang Y, Yang Q, Ling J, Van Nostrand JD, Shi Z, Zhou J, Dong J. The Shifts of Diazotrophic Communities in Spring and Summer Associated with Coral Galaxea astreata, Pavona decussata, and Porites lutea. Front Microbiol 2016; 7:1870. [PMID: 27920768 PMCID: PMC5118425 DOI: 10.3389/fmicb.2016.01870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
The coral holobiont often resides in oligotrophic waters; both coral cells and their symbiotic dinoflagellates possess ammonium assimilation enzymes and potentially benefit from the nitrogen fixation of coral-associated diazotrophs. However, the seasonal dynamics of coral-associated diazotrophs are not well characterized. Here, the seasonal variations of diazotrophic communities associated with three corals, Galaxea astreata, Pavona decussata, and Porites lutea, were studied using nifH gene amplicon pyrosequencing techniques. Our results revealed a great diversity of coral-associated diazotrophs. nifH sequences related to Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were ubiquitous and dominant in all corals in two seasons. In contrast with the coral P. decussata, both G. astreata and P. lutea showed significant seasonal changes in the diazotrophic communities and nifH gene abundance. Variable diazotroph groups accounted for a range from 11 to 49% within individual coral samples. Most of the variable diazotrophic groups from P. decussata were species-specific, however, the majority of overlapping variable groups in G. astreata and P. lutea showed the same seasonal variation characteristics. Rhodopseudomonas palustris- and Gluconacetobacter diazotrophicus-affiliated sequences were relatively abundant in the summer, whereas a nifH sequence related to Halorhodospira halophila was relatively abundant in spring G. astreata and P. lutea. The seasonal variations of all diazotrophic communities were significantly correlated with the seasonal shifts of ammonium and nitrate, suggesting that diazotrophs play an important role in the nitrogen cycle of the coral holobiont.
Collapse
Affiliation(s)
- Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of SciencesSanya, China; Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, NormanOK, USA
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou, China
| | - Joy D Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Zhou Shi
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of SciencesSanya, China
| |
Collapse
|
209
|
Fossou RK, Ziegler D, Zézé A, Barja F, Perret X. Two Major Clades of Bradyrhizobia Dominate Symbiotic Interactions with Pigeonpea in Fields of Côte d'Ivoire. Front Microbiol 2016; 7:1793. [PMID: 27891120 PMCID: PMC5104742 DOI: 10.3389/fmicb.2016.01793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/25/2016] [Indexed: 12/03/2022] Open
Abstract
In smallholder farms of Côte d'Ivoire, particularly in the northeast of the country, Cajanus cajan (pigeonpea) has become an important crop because of its multiple beneficial facets. Pigeonpea seeds provide food to make ends meet, are sold on local markets, and aerial parts serve as forage for animals. Since it fixes atmospheric nitrogen in symbiosis with soil bacteria collectively known as rhizobia, C. cajan also improves soil fertility and reduces fallow time. Yet, seed yields remain low mostly because farmers cannot afford chemical fertilizers. To identify local rhizobial strains susceptible to be used as bio-inoculants to foster pigeonpea growth, root nodules were collected in six fields of three geographically distant regions of Côte d'Ivoire. Nodule bacteria were isolated and characterized using various molecular techniques including matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) and DNA sequencing. These molecular analyses showed that 63 out of 85 nodule isolates belonged to two major clades of bradyrhizobia, one of which is known as the Bradyrhizobium elkanii super clade. Phylogenies of housekeeping (16S-ITS-23S, rpoB) and symbiotic (nifH) genes were not always congruent suggesting that lateral transfer of nitrogen fixation genes also contributed to define the genome of these bradyrhizobial isolates. Interestingly, no field-, plant-, or cultivar-specific effect was found to shape the profiles of symbiotic strains. In addition, nodule isolates CI-1B, CI-36E, and CI-41A that belong to distinct species, showed similar symbiotic efficiencies suggesting that any of these strains might serve as a proficient inoculant for C. cajan.
Collapse
Affiliation(s)
- Romain K Fossou
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Dominik Ziegler
- Microbiology Unit, Department of Botany and Plant Biology, University of GenevaGeneva, Switzerland; Mabritec AGRiehen, Switzerland
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Félix Houphouët-Boigny (INPHB) Yamoussoukro, Côte d'Ivoire
| | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Xavier Perret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| |
Collapse
|
210
|
A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME JOURNAL 2016; 11:166-175. [PMID: 27740611 PMCID: PMC5315487 DOI: 10.1038/ismej.2016.97] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/25/2022]
Abstract
Nitrogen fixation is advantageous in microbial competition when bioavailable nitrogen is scarce, but has substantial costs for growth rate and growth efficiency. To quantify these costs, we have developed a model of a nitrogen-fixing bacterium that constrains mass, electron and energy flow at the scale of the individual. When tested and calibrated with laboratory data for the soil bacterium Azotobacter vinelandii, the model reveals that the direct energetic cost of nitrogen fixation is small relative to the cost of managing intracellular oxygen. It quantifies the costs and benefits of several potential oxygen protection mechanisms present in nature including enhanced respiration (respiratory protection) as well as the production of extracellular polymers as a barrier to O2 diffusion, and increasing cell size. The latter mechanisms lead to higher growth efficiencies relative to respiratory protection alone. This simple, yet mechanistic framework provides a quantitative model of nitrogen fixation, which can be applied in ecological simulations.
Collapse
|
211
|
Frank IE, Turk-Kubo KA, Zehr JP. Rapid annotation of nifH gene sequences using classification and regression trees facilitates environmental functional gene analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:905-916. [PMID: 27557869 DOI: 10.1111/1758-2229.12455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/16/2016] [Indexed: 05/22/2023]
Abstract
The nifH gene is a widely used molecular proxy for studying nitrogen fixation. Phylogenetic classification of nifH gene sequences is an essential step in diazotroph community analysis that requires a fast automated solution due to increasing size of environmental sequence libraries and increasing yield of nifH sequences from high-throughput technologies. A novel approach to rapidly classify nifH amino acid sequences into well-defined phylogenetic clusters that provides a common platform for comparative analysis across studies is presented. Phylogenetic group membership can be accurately predicted with decision tree-type statistical models that identify and utilize signature residues in the amino acid sequences. Our classification models were trained and evaluated with a publicly available and manually curated nifH gene database containing cluster annotations. Model-independent sequence sets from diverse ecosystems were used for further assessment of the models' prediction accuracy. The utility of this novel sequence binning approach was demonstrated in a comparative study where joint treatment of diazotroph assemblages from a wide range of habitats identified habitat-specific and widely-distributed diazotrophs and revealed a marine - terrestrial distinction in community composition. Our rapid and automated phylogenetic cluster assignment circumvents extensive phylogenetic analysis of nifH sequences; hence, it saves substantial time and resources in nitrogen fixation studies.
Collapse
Affiliation(s)
- Ildiko E Frank
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Kendra A Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
212
|
Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice. Sci Rep 2016; 6:32270. [PMID: 27596935 PMCID: PMC5011652 DOI: 10.1038/srep32270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023] Open
Abstract
Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G(+)/G(-), sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N.
Collapse
|
213
|
Sun J, Qian X, Gu J, Wang X, Gao H. Effects of oxytetracycline on the abundance and community structure of nitrogen-fixing bacteria during cattle manure composting. BIORESOURCE TECHNOLOGY 2016; 216:801-807. [PMID: 27318157 DOI: 10.1016/j.biortech.2016.05.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
The effects of oxytetracycline (OTC) on nitrogen-fixing bacterial communities were investigated during cattle manure composting. The abundance and community structure of nitrogen-fixing bacteria were determined by qPCR and denaturing gradient gel electrophoresis (DGGE), respectively. The matrix was spiked with OTC at four levels: no OTC, 10mg/kg dry weight (DW) OTC (L), 60mg/kg DW OTC (M), and 200mg/kg DW OTC (H). The high temperature period of composting was shorter with M and H, and the decline in temperature during the cooling stage was accelerated by OTC. OTC had a concentration-dependent inhibitory effect on the nitrogenase activity during early composting, and the nifH gene abundance declined significantly during the later composting stage. The DGGE profile and statistical analysis showed that OTC changed the nitrogen-fixing bacterial community succession and reduced the community richness and dominance. The nitrogen-fixing bacterial community structure was affected greatly by the high level of OTC.
Collapse
Affiliation(s)
- Jiajun Sun
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hua Gao
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
214
|
Lehnen N, Marchant HK, Schwedt A, Milucka J, Lott C, Weber M, Dekaezemacker J, Seah BKB, Hach PF, Mohr W, Kuypers MMM. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Syst Appl Microbiol 2016; 39:476-483. [PMID: 27638196 DOI: 10.1016/j.syapm.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Seagrass meadows of Posidonia oceanica represent hotspots of productivity in the oligotrophic Mediterranean Sea. The lack of dissolved inorganic nitrogen (DIN) in the seawater suggests that the N-demand of these meadows might be in part supported by microbial dinitrogen (N2) fixation. However, currently there are no direct N2 fixation measurements available for this productive marine macrophyte. Here we investigated N2 fixation activity associated with P. oceanica leaf, rhizome and root pieces. In 15N2 incubations, the roots exhibited highest rates of N2 fixation. The rates varied considerably between replicates, presumably due to a patchy microbial colonization of the roots. Additions of organic carbon compounds (acetate, glucose, sucrose or algal lysate) did not enhance the N2 fixation rates. Sulfate reduction rates measured alongside were also highest in root incubations. Correspondingly, sequences of the nifH gene (a marker gene for the iron protein of the N2-fixing enzyme nitrogenase) related to known sulfate-reducing bacteria were retrieved from P. oceanica roots. Other nifH sequences clustered with known heterotrophic diazotrophs previously identified in other marine macrophytes. In particular, many sequences obtained from P. oceanica roots were similar (>94%) to a saltmarsh rhizosphere-associated heterotrophic diazotroph, indicating that heterotrophic lifestyle might be common among marine macrophyte-associated diazotrophs.
Collapse
Affiliation(s)
- Nadine Lehnen
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
| | - Hannah K Marchant
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Anne Schwedt
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Christian Lott
- HYDRA Institute for Marine Sciences, Elba Field Station, 57034 Campo nell'Elba, Italy
| | - Miriam Weber
- HYDRA Institute for Marine Sciences, Elba Field Station, 57034 Campo nell'Elba, Italy
| | - Julien Dekaezemacker
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Brandon K B Seah
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Philipp F Hach
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Wiebke Mohr
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Marcel M M Kuypers
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
215
|
Sun H, Santalahti M, Pumpanen J, Köster K, Berninger F, Raffaello T, Asiegbu FO, Heinonsalo J. Bacterial community structure and function shift across a northern boreal forest fire chronosequence. Sci Rep 2016; 6:32411. [PMID: 27573440 PMCID: PMC5004109 DOI: 10.1038/srep32411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/09/2016] [Indexed: 11/09/2022] Open
Abstract
Soil microbial responses to fire are likely to change over the course of forest recovery. Investigations on long-term changes in bacterial dynamics following fire are rare. We characterized the soil bacterial communities across three different times post fire in a 2 to 152-year fire chronosequence by Illumina MiSeq sequencing, coupled with a functional gene array (GeoChip). The results showed that the bacterial diversity did not differ between the recently and older burned areas, suggesting a concomitant recovery in the bacterial diversity after fire. The differences in bacterial communities over time were mainly driven by the rare operational taxonomic units (OTUs < 0.1%). Proteobacteria (39%), Acidobacteria (34%) and Actinobacteria (17%) were the most abundant phyla across all sites. Genes involved in C and N cycling pathways were present in all sites showing high redundancy in the gene profiles. However, hierarchical cluster analysis using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting potential differences in maintaining essential biogeochemical soil processes. Soil temperature, pH and water contents were the most important factors in shaping the bacterial community structures and function. This study provides functional insight on the impact of fire disturbance on soil bacterial community.
Collapse
Affiliation(s)
- Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.,Department of Food and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Minna Santalahti
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70210, Finland
| | - Kajar Köster
- Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.,Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Frank Berninger
- Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Jussi Heinonsalo
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| |
Collapse
|
216
|
Igai K, Itakura M, Nishijima S, Tsurumaru H, Suda W, Tsutaya T, Tomitsuka E, Tadokoro K, Baba J, Odani S, Natsuhara K, Morita A, Yoneda M, Greenhill AR, Horwood PF, Inoue JI, Ohkuma M, Hongoh Y, Yamamoto T, Siba PM, Hattori M, Minamisawa K, Umezaki M. Nitrogen fixation and nifH diversity in human gut microbiota. Sci Rep 2016; 6:31942. [PMID: 27554344 PMCID: PMC4995403 DOI: 10.1038/srep31942] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/27/2016] [Indexed: 12/04/2022] Open
Abstract
It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A 15N2 incorporation assay showed significant enrichment of 15N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance.
Collapse
Affiliation(s)
- Katsura Igai
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Manabu Itakura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Suguru Nishijima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hirohito Tsurumaru
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Wataru Suda
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takumi Tsutaya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Eriko Tomitsuka
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Tadokoro
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Baba
- Department of Sociological Studies, Faculty of Human Sciences, Wako University, Tokyo, Japan
| | - Shingo Odani
- Faculty of Letters, Chiba University, Chiba, Japan
| | | | - Ayako Morita
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minoru Yoneda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Andrew R Greenhill
- Papua New Guinea Institute of Medical Research, Eastern Highlands Province, Papua New Guinea.,School of Applied and Biomedical Sciences, Federation University Australia, Victoria, Australia
| | - Paul F Horwood
- Papua New Guinea Institute of Medical Research, Eastern Highlands Province, Papua New Guinea
| | - Jun-Ichi Inoue
- Japan Collection of Microorganisms, RIKEN BioResource Center, Ibaraki, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Ibaraki, Japan
| | - Yuichi Hongoh
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Taro Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Eastern Highlands Province, Papua New Guinea
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kiwamu Minamisawa
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Masahiro Umezaki
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
217
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
218
|
Bombar D, Paerl RW, Riemann L. Marine Non-Cyanobacterial Diazotrophs: Moving beyond Molecular Detection. Trends Microbiol 2016; 24:916-927. [PMID: 27476748 DOI: 10.1016/j.tim.2016.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/20/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
Abstract
The nitrogen input through biological N2 fixation is essential for life in vast areas of the global ocean. The belief is that cyanobacteria are the only relevant N2-fixing (diazotrophic) organisms. It has, however, now become evident that non-cyanobacterial diazotrophs, bacteria and archaea with ecologies fundamentally distinct from those of cyanobacteria, are widespread and occasionally fix N2 at significant rates. The documentation of a globally relevant nitrogen input from these diazotrophs would constitute a new paradigm for research on oceanic nitrogen cycling. Here we highlight the need for combining rate measurements and molecular analyses of field samples with cultivation studies in order to clarify the ecology of non-cyanobacteria and their contribution to marine N2 fixation on local and global scales.
Collapse
Affiliation(s)
- Deniz Bombar
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Ryan W Paerl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
| |
Collapse
|
219
|
Pajares S, Bohannan BJM. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Front Microbiol 2016; 7:1045. [PMID: 27468277 PMCID: PMC4932190 DOI: 10.3389/fmicb.2016.01045] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023] Open
Abstract
Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research.
Collapse
Affiliation(s)
- Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | | |
Collapse
|
220
|
Azimuddin KM, Hirai J, Suzuki S, Haider MN, Tachibana A, Watanabe K, Kitamura M, Hashihama F, Takahashi K, Hamasaki K. Possible association of diazotrophs with marine zooplankton in the Pacific Ocean. Microbiologyopen 2016; 5:1016-1026. [PMID: 27353240 PMCID: PMC5221459 DOI: 10.1002/mbo3.385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/03/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
Dinitrogen fixation, the biological reduction in N2 gas to ammonia contributes to the supply of new nitrogen in the surface ocean. To understand the diversity and abundance of potentially diazotrophic (N2 fixing) microorganisms associated with marine zooplankton, especially copepods, the nifH gene was studied using zooplankton samples collected in the Pacific Ocean. In total, 257 nifH sequences were recovered from 23 nifH‐positive DNA extracts out of 90 copepod samples. The nifH genes derived from cyanobacteria related to Trichodesmium, α‐ and γ‐subdivisions of proteobacteria, and anaerobic euryarchaeota related to Methanosaeta concilii were detected. Our results indicated that Pleuromamma, Pontella, and Euchaeta were the major copepod genera hosting dinitrogen fixers, though we found no species‐specific association between copepods and dinitrogen fixers. Also, the digital PCR provided novel data on the number of copies of the nifH gene in individual copepods, which we report the range from 30 to 1666 copies per copepod. This study is the first systematic study of zooplankton‐associated diazotrophs, covering a large area of the open ocean, which provide a clue to further study of a possible new hotspot of N2 fixation.
Collapse
Affiliation(s)
- Kazi Md Azimuddin
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Junya Hirai
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Shotaro Suzuki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Md Nurul Haider
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Aiko Tachibana
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Keigo Watanabe
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Minoru Kitamura
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Fuminori Hashihama
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato-Ku, Tokyo, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Science, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
221
|
Čorić I, Holland PL. Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. J Am Chem Soc 2016; 138:7200-11. [PMID: 27171599 PMCID: PMC5508211 DOI: 10.1021/jacs.6b00747] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrogenase enzymes are used by microorganisms for converting atmospheric N2 to ammonia, which provides an essential source of N atoms for higher organisms. The active site of the molybdenum-dependent nitrogenase is the unique carbide-containing iron-sulfur cluster called the iron-molybdenum cofactor (FeMoco). On the FeMoco, N2 binding is suggested to occur at one or more iron atoms, but the structures of the catalytic intermediates are not clear. In order to establish the feasibility of different potential mechanistic steps during biological N2 reduction, chemists have prepared iron complexes that mimic various structural aspects of the iron sites in the FeMoco. This reductionist approach gives mechanistic insight, and also uncovers fundamental principles that could be used more broadly for small-molecule activation. Here, we discuss recent results and highlight directions for future research. In one direction, synthetic iron complexes have now been shown to bind N2, break the N-N triple bond, and produce ammonia catalytically. Carbon- and sulfur-based donors have been incorporated into the ligand spheres of Fe-N2 complexes to show how these atoms may influence the structure and reactivity of the FeMoco. Hydrides have been incorporated into synthetic systems, which can bind N2, reduce some nitrogenase substrates, and/or reductively eliminate H2 to generate reduced iron centers. Though some carbide-containing iron clusters are known, none yet have sulfide bridges or high-spin iron atoms like the FeMoco.
Collapse
Affiliation(s)
- Ilija Čorić
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
222
|
Tu Q, Deng Y, Yan Q, Shen L, Lin L, He Z, Wu L, Van Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide RB, Brown JH, Zhou J. Biogeographic patterns of soil diazotrophic communities across six forests in North America. Mol Ecol 2016; 25:2937-48. [PMID: 27085668 DOI: 10.1111/mec.13651] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa-area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z-values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r(2) > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r(2) < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Marine Sciences, Ocean College, Zhejiang University, Zhejiang, 310058, China.,Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Ye Deng
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qingyun Yan
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Lina Shen
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Lu Lin
- Department of Marine Sciences, Ocean College, Zhejiang University, Zhejiang, 310058, China
| | - Zhili He
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Liyou Wu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Joy D Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Vanessa Buzzard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sean T Michaletz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.,Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, Los Alamos, NM 87545, USA
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.,The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA
| | - Michael D Weiser
- Department of Biology, EEB Graduate Program, University of Oklahoma, Norman, OK, 73019, USA
| | - Michael Kaspari
- Department of Biology, EEB Graduate Program, University of Oklahoma, Norman, OK, 73019, USA.,Smithsonian Tropical Research Institute, Balboa, 0843-03092, Republic of Panama
| | - Robert B Waide
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - James H Brown
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.,Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA
| |
Collapse
|
223
|
Jos eacute GDS, Joaquim JEDC, Jos eacute MRDL, Jos eacute ECDS. Fertigation with domestic wastewater: Uses and implications. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2015.15115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
224
|
Abstract
Much of the demand for nitrogen (N) in cereal cropping systems is met by using N fertilisers, but the cost of production is increasing and there are also environmental concerns. This has led to a growing interest in exploring other sources of N such as biological N2fixation. Non-symbiotic N2fixation (by free-living bacteria in soils or associated with the rhizosphere) has the potential to meet some of this need especially in the lower input cropping systems worldwide. There has been considerable research on non-symbiotic N2fixation, but still there is much argument about the amount of N that can potentially be fixed by this process largely due to shortcomings of indirect measurements, however isotope-based direct methods indicate agronomically significant amounts of N2fixation both in annual crop and perennial grass systems. New molecular technologies offer opportunities to increase our understanding of N2-fixing microbial communities (many of them non-culturable) and the molecular mechanisms of non-symbiotic N2fixation. This knowledge should assist the development of new plant-diazotrophic combinations for specific environments and more sustainable exploitation of N2-fixing bacteria as inoculants for agriculture. Whilst the ultimate goal might be to introduce nitrogenase genes into significant non-leguminous crop plants, it may be more realistic in the shorter-term to better synchronise plant-microbe interactions to enhance N2fixation when the N needs of the plant are greatest. The review explores possibilities to maximise potential N inputs from non-symbiotic N2fixation through improved management practices, identification of better performing microbial strains and their successful inoculation in the field, and plant based solutions.
Collapse
|
225
|
Doblin MA, Petrou K, Sinutok S, Seymour JR, Messer LF, Brown MV, Norman L, Everett JD, McInnes AS, Ralph PJ, Thompson PA, Hassler CS. Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current. PeerJ 2016; 4:e1973. [PMID: 27168982 PMCID: PMC4860325 DOI: 10.7717/peerj.1973] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-core) eddy (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2–10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$(\geq 20\lrm{\mu }\mathrm{m})$\end{document}≥20μm, as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a ‘greening’ effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si) and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic eddies increase delivery of nitrogen to the upper ocean to potentially mitigate the negative consequences of increased stratification due to ocean warming, but also increase the biological demand for iron that is necessary to sustain the growth of large-celled phototrophs and potentially support the diversity of diazotrophs over longer time-scales.
Collapse
Affiliation(s)
- Martina A Doblin
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney , Ultimo NSW , Australia
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney , Ultimo NSW , Australia
| | - Sutinee Sinutok
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo NSW, Australia; Faculty of Environmental Management, Prince of Songkla University, Kho Hong Songkhla, Thailand
| | - Justin R Seymour
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney , Ultimo NSW , Australia
| | - Lauren F Messer
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney , Ultimo NSW , Australia
| | - Mark V Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney NSW , Australia
| | - Louiza Norman
- Department of Plant Sciences, University of Cambridge , Cambridge , United Kingdom
| | - Jason D Everett
- School of Biological, Earth and Environmental Sciences, University of New South Wales , Sydney NSW , Australia
| | - Allison S McInnes
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney , Ultimo NSW , Australia
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney , Ultimo NSW , Australia
| | - Peter A Thompson
- Oceans and Atmosphere Flagship, Commonwealth Scientific Industrial Research Organisation , Hobart Tas , Australia
| | - Christel S Hassler
- Institute F.-A. Forel, Earth and Environmental Sciences, University of Geneva , Geneva , Switzerland
| |
Collapse
|
226
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
227
|
Tu Q, Zhou X, He Z, Xue K, Wu L, Reich P, Hobbie S, Zhou J. The Diversity and Co-occurrence Patterns of N₂-Fixing Communities in a CO₂-Enriched Grassland Ecosystem. MICROBIAL ECOLOGY 2016; 71:604-615. [PMID: 26280746 DOI: 10.1007/s00248-015-0659-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Diazotrophs are the major organismal group responsible for atmospheric nitrogen (N2) fixation in natural ecosystems. The extensive diversity and structure of N2-fixing communities in grassland ecosystems and their responses to increasing atmospheric CO2 remain to be further explored. Through pyrosequencing of nifH gene amplicons and extraction of nifH genes from shotgun metagenomes, coupled with co-occurrence ecological network analysis approaches, we comprehensively analyzed the diazotrophic community in a grassland ecosystem exposed to elevated CO2 (eCO2) for 12 years. Long-term eCO2 increased the abundance of nifH genes but did not change the overall nifH diversity and diazotrophic community structure. Taxonomic and phylogenetic analysis of amplified nifH sequences suggested a high diversity of nifH genes in the soil ecosystem, the majority belonging to nifH clusters I and II. Co-occurrence ecological network analysis identified different co-occurrence patterns for different groups of diazotrophs, such as Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and Bradyrhizobium/Acidobacteria. This indicated a potential attraction of non-N2-fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence patterns were found for free-living diazotrophs than commonly known symbiotic diazotrophs, which is consistent with the physical isolation nature of symbiotic diazotrophs from the environment by root nodules. The study provides novel insights into our understanding of the microbial ecology of soil diazotrophs in natural ecosystems.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Marine Sciences, Ocean College, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73019, USA
| | - Xishu Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73019, USA
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhili He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Kai Xue
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Liyou Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Peter Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55455, USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, 2753, NSW, Australia
| | - Sarah Hobbie
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55455, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73019, USA.
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
228
|
Cheung S, Xia X, Guo C, Liu H. Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome. JOURNAL OF PLANKTON RESEARCH 2016; 38:380-391. [PMID: 27275037 PMCID: PMC4889993 DOI: 10.1093/plankt/fbw003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 01/11/2016] [Indexed: 05/10/2023]
Abstract
Oxygen minimum zones (OMZs), characterized by depleted dissolved oxygen concentration in the intermediate depth of the water column, are predicted to expand under the influence of global warming. Recent studies in the Eastern Tropical South Pacific Ocean and Arabian Sea have reported that heterotrophic nitrogen fixation is active in the OMZs. In this study, we investigated the community structure of diazotrophs in the OMZ of the Costa Rica Dome (CRD) upwelling region in the Eastern Tropical North Pacific Ocean, using 454-pyrosequencing of nifH gene amplicons. Comparing diazotroph assemblages in different depth strata of the OMZ (200-1000 m in depth), we found a unique diazotroph community in the OMZ core, which was mainly dominated by methanotroph-like diazotrophs, suggesting a potential coupling of nitrogen cycle and methane assimilation. In addition, some OTUs revealed in this study, especially those belonging to the large sub-cluster Vibrio diazotrophicus, were reported to be abundant and expressing the nifH gene in other OMZs. Our results suggest that the unique hydrographic conditions in OMZs may support similar assemblages of diazotrophs, and heterotrophic nitrogen fixation could also be occurring in our studied region. Our study provides the first insight into the composition and distribution of putative diazotrophs in the CRD OMZ.
Collapse
|
229
|
Shin W, Islam R, Benson A, Joe MM, Kim K, Gopal S, Samaddar S, Banerjee S, Sa T. Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement. ACTA ACUST UNITED AC 2016. [DOI: 10.7745/kjssf.2016.49.1.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
230
|
Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere? Sci Rep 2016; 6:21690. [PMID: 26902960 PMCID: PMC4763242 DOI: 10.1038/srep21690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
Plant evolutionary history influences the taxonomic composition of the root-associated bacterial community, but whether it can also modulate its functioning is unknown. Here, we tested the hypothesis that crop diversification is a significant factor determining the ecology of the functional group of nitrogen-fixing bacteria the rhizosphere of Poaceae. A greenhouse experiment was carried out using a range of Poaceae, i.e. four Zea mays varieties (from two genetic groups) and teosinte (representing maize’s ancestor), sorghum (from the same Panicoideae subfamily), and wheat (from neighboring Pooideae subfamily), as well as the dicot tomato as external reference. Diazotroph rhizosphere community was characterized at 21 days in terms of size (quantitative PCR of nifH genes), composition (T-RFLP and partial sequencing of nifH alleles) and functioning (quantitative RT-PCR, T-RFLP and partial sequencing of nifH transcripts). Plant species and varieties had a significant effect on diazotroph community size and the number of nifH transcripts per root system. Contrarily to expectations, however, there was no relation between Poaceae evolutionary history and the size, diversity or expression of the rhizosphere diazotroph community. These results suggest a constant selection of this functional group through evolution for optimization of nitrogen fixation in the rhizosphere.
Collapse
|
231
|
Newell SE, Pritchard KR, Foster SQ, Fulweiler RW. Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ 2016; 4:e1615. [PMID: 26977375 PMCID: PMC4788212 DOI: 10.7717/peerj.1615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/01/2016] [Indexed: 11/22/2022] Open
Abstract
Primary production in coastal waters is generally nitrogen (N) limited with
denitrification outpacing nitrogen fixation (N2-fixation). However, recent work
suggests that we have potentially underestimated the importance of heterotrophic sediment
N2-fixation in marine ecosystems. We used clone libraries to examine
transcript diversity of nifH (a gene associated with
N2-fixation) in sediments at three sites in a temperate New England estuary
(Waquoit Bay, Massachusetts, USA) and compared our results to net sediment N2
fluxes previously measured at these sites. We observed nifH expression at
all sites, including a site heavily impacted by anthropogenic N. At this N impacted site,
we also observed mean net sediment N2-fixation, linking the geochemical rate
measurement with nifH expression. This same site also had the lowest
diversity (non-parametric Shannon = 2.75). At the two other sites, we also detected
nifH transcripts, however, the mean N2 flux indicated net
denitrification. These results suggest that N2-fixation and denitrification
co-occur in these sediments. Of the unique sequences in this study, 67% were most closely
related to uncultured bacteria from various marine environments, 17% to Cluster III, 15%
to Cluster I, and only 1% to Cluster II. These data add to the growing body of literature
that sediment heterotrophic N2-fixation, even under high inorganic nitrogen
concentrations, may be an important yet overlooked source of N in coastal systems.
Collapse
Affiliation(s)
- Silvia E Newell
- Department of Earth and Environment, Boston University, Boston, MA, USA; Department of Earth and Environmental Sciences, Wright State University, Dayton, OH, USA
| | - Kaitlyn R Pritchard
- Department of Marine and Environmental Sciences, Northeastern University , Boston, MA , USA
| | - Sarah Q Foster
- Department of Earth and Environment, Boston University , Boston, MA , USA
| | - Robinson W Fulweiler
- Department of Earth and Environment, Boston University, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
232
|
Wang J, Bao JT, Li XR, Liu YB. Molecular Ecology of nifH Genes and Transcripts Along a Chronosequence in Revegetated Areas of the Tengger Desert. MICROBIAL ECOLOGY 2016; 71:150-163. [PMID: 26276410 DOI: 10.1007/s00248-015-0657-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
The colonization and succession of diazotrophs are essential for the development of organic soil layers in desert. We examined the succession of diazotrophs in the well-established revegetated areas representing a chronosequence of 0 year (control), 22 years (restored artificially since 1981), 57 years (restored artificially since 1956), and more than 100 years (restored naturally) to determine the community assembly and active expression of diazotrophs. The pyrosequencing data revealed that Alphaproteobacteria-like diazotrophs predominated in the topsoil of our mobile dune site, while cyanobacterial diazotrophs predominated in the revegetated sites. The cyanobacterial diazotrophs were primarily composed of the heterocystous genera Anabaena, Calothrix, Cylindrospermum, Nodularia, Nostoc, Trichormus, and Mastigocladus. Almost all the nifH sequences belonged to the Cyanobacteria phylum (all the relative abundance values >99.1 %) at transcript level and all the active cyanobacterial diazotrophs distributed in the families Nostocaceae and Rivulariaceae. The most dominant active cyanobacterial genus was Cylindrospermum in all the samples. The rank abundance and community analyses demonstrated that most of the diazotrophic diversity originated from the "rare" species, and all the DNA-based diazotrophic libraries were richer and more diverse than their RNA-based counterparts in the revegetated sites. Significant differences in the diazotrophic community and their active population composition were observed among the four research sites. Samples from the 1981-revegetating site (predominated by cyanobacterial crusts) showed the highest nitrogenase activity, followed by samples from the naturally revegetating site (predominated by lichen crusts), the 1956-revegetating site (predominated by moss crusts), and the mobile dune site (without crusts). Collectively, our data highlight the importance of nitrogen fixation by the primary successional desert topsoil and suggest that the N2-fixing cyanobacteria are the key diazotrophs to the nitrogen budget and the development of topsoil in desert, which is critical for the succession of the degraded terrestrial ecosystems.
Collapse
Affiliation(s)
- Jin Wang
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jing-Ting Bao
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Rong Li
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yu-Bing Liu
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
233
|
Tahon G, Tytgat B, Stragier P, Willems A. Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria. MICROBIAL ECOLOGY 2016; 71:131-149. [PMID: 26582318 DOI: 10.1007/s00248-015-0704-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Pieter Stragier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
234
|
Schmalenberger A, Fox A. Bacterial Mobilization of Nutrients From Biochar-Amended Soils. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:109-59. [PMID: 26917243 DOI: 10.1016/bs.aambs.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur.
Collapse
|
235
|
Navarro-Noya YE, Luna-Guido M, Dendooven L. Cultivable Nitrogen Fixing Bacteria from Extremely Alkaline-Saline Soils. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.66041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
236
|
Köberl M, Erlacher A, Ramadan EM, El-Arabi TF, Müller H, Bragina A, Berg G. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiol Ecol 2015; 92:fiv166. [PMID: 26705571 PMCID: PMC4730177 DOI: 10.1093/femsec/fiv166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 01/09/2023] Open
Abstract
Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization–confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. The diazotrophic microbiome of desert ecosystems is characterized by a high diversity and abundance and specific for each plant rhizosphere.
Collapse
Affiliation(s)
- Martina Köberl
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Elshahat M Ramadan
- Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt Biotechnology Laboratory, Heliopolis University, 11777 Cairo, Egypt
| | - Tarek F El-Arabi
- Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt Biotechnology Laboratory, Heliopolis University, 11777 Cairo, Egypt
| | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Anastasia Bragina
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
237
|
Benavides M, Moisander PH, Berthelot H, Dittmar T, Grosso O, Bonnet S. Mesopelagic N2 Fixation Related to Organic Matter Composition in the Solomon and Bismarck Seas (Southwest Pacific). PLoS One 2015; 10:e0143775. [PMID: 26659074 PMCID: PMC4684240 DOI: 10.1371/journal.pone.0143775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/09/2015] [Indexed: 01/31/2023] Open
Abstract
Dinitrogen (N2) fixation was investigated together with organic matter composition in the mesopelagic zone of the Bismarck (Transect 1) and Solomon (Transect 2) Seas (Southwest Pacific). Transparent exopolymer particles (TEP) and the presence of compounds sharing molecular formulae with saturated fatty acids and sugars, as well as dissolved organic matter (DOM) compounds containing nitrogen (N) and phosphorus (P) were higher on Transect 1 than on Transect 2, while oxygen concentrations showed an opposite pattern. N2 fixation rates (up to ~1 nmol N L-1 d-1) were higher in Transect 1 than in Transect 2, and correlated positively with TEP, suggesting a dependence of diazotroph activity on organic matter. The scores of the multivariate ordination of DOM molecular formulae and their relative abundance correlated negatively with bacterial abundances and positively with N2 fixation rates, suggesting an active bacterial exploitation of DOM and its use to sustain diazotrophic activity. Sequences of the nifH gene clustered with Alpha-, Beta-, Gamma- and Deltaproteobacteria, and included representatives from Clusters I, III and IV. A third of the clone library included sequences close to the potentially anaerobic Cluster III, suggesting that N2 fixation was partially supported by presumably particle-attached diazotrophs. Quantitative polymerase chain reaction (qPCR) primer-probe sets were designed for three phylotypes and showed low abundances, with a phylotype within Cluster III at up to 103 nifH gene copies L-1. These results provide new insights into the ecology of non-cyanobacterial diazotrophs and suggest that organic matter sustains their activity in the mesopelagic ocean.
Collapse
Affiliation(s)
- Mar Benavides
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 98848, Nouméa, New Caledonia
| | - Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts 02747, United States of America
| | - Hugo Berthelot
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Thorsten Dittmar
- Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Strasse 9–11, D-26129 Oldenburg, Germany
| | - Olivier Grosso
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Sophie Bonnet
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 98848, Nouméa, New Caledonia
| |
Collapse
|
238
|
de Souza R, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015; 38:401-19. [PMID: 26537605 PMCID: PMC4763327 DOI: 10.1590/s1415-475738420150053] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.
Collapse
Affiliation(s)
- Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
239
|
Wang L, Yu Z, Yang J, Zhou J. Diazotrophic bacterial community variability in a subtropical deep reservoir is correlated with seasonal changes in nitrogen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19695-19705. [PMID: 26278898 DOI: 10.1007/s11356-015-5144-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Nitrogen-fixing microorganisms (diazotrophs) play important roles in aquatic biogeochemistry and ecosystem functioning. However, little is known about the spatiotemporal variation of diazotrophic microbial communities in deep subtropical reservoirs. In this study, denaturing gradient gel electrophoresis (DGGE), clone libraries, quantitative PCR, and quantitative reverse transcription (RT)-PCR were used together to examine the vertical and seasonal patterns of diazotrophic microbial communities based on nitrogenase (nifH) gene sequences in the Dongzhen Reservoir, China, across time (every 3 months for 1 year) and space (five different water depths). In general, the numbers of DGGE bands increased with water depth during the stratification seasons (spring, summer, and autumn), with the clone-library-based operational taxonomic unit (OTU) number and nifH gene diversity being highest in autumn (6 OTUs at depth 0 m; 15 OTUs at 33 m) and winter (12 OTUs at 0 m, 13 OTUs at 33 m) but decreasing drastically in spring (2 OTUs at 0 m, 3 OTUs at 33 m) and summer (3 OTUs at 0 m, 2 OTUs at 33 m). The nifH gene abundance was lowest in the water mixing season (winter average, 5.17 × 10(7) copies/L) but increased in the three other seasons (9.03 × 10(9) copies/L). Cyanobacteria (dominated by filamentous thermophilic cyanobacteria and Cylindrospermopsis raciborskii) were the most dominant diazotrophic group at all depths and seasons, while both alphaproteobacteria and gammaproteobacteria were co-dominant in the bottom waters in autumn and winter. The distinct seasonal and spatial patterns in diazotrophic communities were significantly related to total nitrogen (TN) and ammonium nitrogen (NH4-N) in the reservoir (P < 0.01). Further, TN showed a significant positive correlation with nifH RNA copy number (P < 0.05) and DGGE band number (P < 0.01), whereas the NH4-N was negatively correlated with nifH DNA copy number (P < 0.01) and positively with both RNA/DNA ratio (P < 0.01) and DGGE band number (P < 0.01). Our data indicated that water stratification, mixing, and nitrogen might drive the diazotrophic community structure and activity in complex ways, thereby influencing the aquatic nitrogen cycle. Therefore, adaptive reservoir management strategies should carefully consider the effects of water stratification for protecting drinking water quality and for controlling the potential for diazotrophic cyanobacteria blooms.
Collapse
Affiliation(s)
- Lina Wang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Yu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jing Zhou
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, China
| |
Collapse
|
240
|
High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation. ISME JOURNAL 2015; 10:1499-513. [PMID: 26613341 DOI: 10.1038/ismej.2015.205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/05/2015] [Accepted: 10/07/2015] [Indexed: 11/08/2022]
Abstract
Australia's tropical waters represent predicted 'hotspots' for nitrogen (N2) fixation based on empirical and modelled data. However, the identity, activity and ecology of diazotrophs within this region are virtually unknown. By coupling DNA and cDNA sequencing of nitrogenase genes (nifH) with size-fractionated N2 fixation rate measurements, we elucidated diazotroph dynamics across the shelf region of the Arafura and Timor Seas (ATS) and oceanic Coral Sea during Austral spring and winter. During spring, Trichodesmium dominated ATS assemblages, comprising 60% of nifH DNA sequences, while Candidatus Atelocyanobacterium thalassa (UCYN-A) comprised 42% in the Coral Sea. In contrast, during winter the relative abundance of heterotrophic unicellular diazotrophs (δ-proteobacteria and γ-24774A11) increased in both regions, concomitant with a marked decline in UCYN-A sequences, whereby this clade effectively disappeared in the Coral Sea. Conservative estimates of N2 fixation rates ranged from <1 to 91 nmol l(-1) day(-1), and size fractionation indicated that unicellular organisms dominated N2 fixation during both spring and winter, but average unicellular rates were up to 10-fold higher in winter than in spring. Relative abundances of UCYN-A1 and γ-24774A11 nifH transcripts negatively correlated to silicate and phosphate, suggesting an affinity for oligotrophy. Our results indicate that Australia's tropical waters are indeed hotspots for N2 fixation and that regional physicochemical characteristics drive differential contributions of cyanobacterial and heterotrophic phylotypes to N2 fixation.
Collapse
|
241
|
Jing H, Xia X, Liu H, Zhou Z, Wu C, Nagarajan S. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing. Front Microbiol 2015; 6:1172. [PMID: 26539189 PMCID: PMC4612719 DOI: 10.3389/fmicb.2015.01172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/09/2015] [Indexed: 11/13/2022] Open
Abstract
Diazotrophs in the mangrove rhizosphere play a major role in providing new nitrogen to the mangrove ecosystem and their composition and activity are strongly influenced by anthropogenic activity and ecological conditions. In this study, the diversity of the diazotroph communities in the rhizosphere sediment of five tropical mangrove sites with different levels of pollution along the north and south coastline of Singapore were studied by pyrosequencing of the nifH gene. Bioinformatics analysis revealed that in all the studied locations, the diazotroph communities comprised mainly of members of the diazotrophic cluster I and cluster III. The detected cluster III diazotrophs, which were composed entirely of sulfate-reducing bacteria, were more abundant in the less polluted locations. The metabolic capacities of these diazotrophs indicate the potential for bioremediation and resiliency of the ecosystem to anthropogenic impact. In heavily polluted locations, the diazotrophic community structures were markedly different and the diversity of species was significantly reduced when compared with those in a pristine location. This, together with the increased abundance of Marinobacterium, which is a bioindicator of pollution, suggests that anthropogenic activity has a negative impact on the genetic diversity of diazotrophs in the mangrove rhizosphere.
Collapse
Affiliation(s)
- Hongmei Jing
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences Sanya, China
| | - Xiaomin Xia
- Division of Life Science, The Hong Kong University of Science and Technology Kowloon, Hong Kong
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology Kowloon, Hong Kong
| | - Zhi Zhou
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore Singapore, Singapore
| | - Chen Wu
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore Singapore, Singapore
| | - Sanjay Nagarajan
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore Singapore, Singapore
| |
Collapse
|
242
|
Yang B, Wang XM, Ma HY, Yang T, Jia Y, Zhou J, Dai CC. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere. Front Microbiol 2015; 6:982. [PMID: 26441912 PMCID: PMC4585018 DOI: 10.3389/fmicb.2015.00982] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022] Open
Abstract
The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.
Collapse
Affiliation(s)
- Bo Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Xiao-Mi Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Hai-Yan Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Jun Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| |
Collapse
|
243
|
Cao H, Shao Z, Li J, Zhang W, Qian PY. Phylogenetic diversity of nitrogen-utilizing genes in hydrothermal chimneys from 3 middle ocean ridges. Extremophiles 2015; 19:1173-82. [PMID: 26369648 DOI: 10.1007/s00792-015-0788-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Nitrogen-metabolizing genes, including nitrogenase (nifH), periplasmic nitrate reductase (napA), and cytochrome cd 1-type nitrite reductase (nirS), were collected from hydrothermal chimney sulfides on 3 middle ocean ridges and compared for the first time. There was a clear phylogenetic distinction of these nifH genes between different hydrothermal ecosystems, which supported the colonization and potential adaptation by different nitrogen fixing microbes in those sulfides. In particular, in sulfides from low-temperature hydrothermal vents of the Southwest Indian Ocean Ridge, the prevalence of nifH genes appears to be attributed to sulfate-reducing bacteria, suggesting their ecological significance. Phylogenetic analysis of nitrate/nitrite reductase genes indicated that nitrate was a critical electron acceptor for sulfur- or metal-oxidizing bacteria in these hydrothermal ecosystems. Our results provided information about the compositions and diversity of the 3 important genes involved in nitrogen fixation and nitrate/nitrite reduction processes in hydrothermal ecosystems and is the first comprehensive genetic repertoire of genes related to potential nitrogen fixation and denitrification processes in various hydrothermal environments.
Collapse
Affiliation(s)
- Huiluo Cao
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Weipeng Zhang
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
244
|
Ferrando L, Fernández Scavino A. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 2015; 91:fiv104. [PMID: 26324852 DOI: 10.1093/femsec/fiv104] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 11/14/2022] Open
Abstract
Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping.
Collapse
Affiliation(s)
- Lucía Ferrando
- Cátedra de Microbiología, Departamento de Biociencias. Facultad de Química, Universidad de la República. Gral. Flores 2124, Código Postal 11800 Montevideo, Uruguay
| | - Ana Fernández Scavino
- Cátedra de Microbiología, Departamento de Biociencias. Facultad de Química, Universidad de la República. Gral. Flores 2124, Código Postal 11800 Montevideo, Uruguay
| |
Collapse
|
245
|
Suyal DC, Yadav A, Shouche Y, Goel R. Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3 Biotech 2015; 5:433-441. [PMID: 28324543 PMCID: PMC4522724 DOI: 10.1007/s13205-014-0238-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Red kidney beans (RKBs) are one of the major components in the human diet of Western Indian Himalaya (WIH). Their cultivation in these habitats is strongly influenced by various biotic and abiotic stresses and therefore, there must be a selection of RKB associated microorganisms that are adapted to these harsh conditions. Seven cold adaptive diazotrophs from the same rhizosphere were isolated in our previous study to reveal the low-temperature associated proteins and mechanisms. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are still unknown. In this study, RKB rhizospheric soil from two different agro-ecosystems of WIH namely S1 (Chhiplakot, 30.70°N/80.30°E) and S2 (Munsyari, 30.60°N/80.20°E) were explored for the assessment of nitrogenase reductase gene (nifH) diversity by plating respective clone libraries SN1 and SN2. The RKB rhizosphere diazotroph assemblage was very diverse and apparently consists mainly of the genera Rhizobium, followed by unknown diazotrophic microorganisms. Deduced amino acid sequence analysis revealed the presence of diverse nifH sequences, affiliated with a wide range of taxa, encompassing members of the Proteobacteria, Actinobacteria and Firmicutes. Members of cyanobacteria, methanotrophs and archaea were also detected. To the best of our knowledge, this is the first major metagenomic effort that revealed the presence of diverse nitrogen-fixing microbial assemblages in indigenous RKB rhizospheric soil which can further be explored for improved crop yield/productivity.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Amit Yadav
- Microbial Culture Collection, National Centre for Cell Science, Pune University Campus, Ganeshkhind, 411 007, Pune, India
| | - Yogesh Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune University Campus, Ganeshkhind, 411 007, Pune, India
| | - Reeta Goel
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| |
Collapse
|
246
|
Bowen JL, Weisman D, Yasuda M, Jayakumar A, Morrison HG, Ward BB. Marine Oxygen-Deficient Zones Harbor Depauperate Denitrifying Communities Compared to Novel Genetic Diversity in Coastal Sediments. MICROBIAL ECOLOGY 2015; 70:311-321. [PMID: 25721726 DOI: 10.1007/s00248-015-0582-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Denitrification is a critically important biogeochemical pathway that removes fixed nitrogen from ecosystems and thus ultimately controls the rate of primary production in nitrogen-limited systems. We examined the community structure of bacteria containing the nirS gene, a signature gene in the denitrification pathway, from estuarine and salt marsh sediments and from the water column of two of the world's largest marine oxygen-deficient zones (ODZs). We generated over 125,000 nirS gene sequences, revealing a large degree of genetic diversity including 1,815 unique taxa, the vast majority of which formed clades that contain no cultured representatives. These results underscore how little we know about the genetic diversity of metabolisms underlying this critical biogeochemical pathway. Marine sediments yielded 1,776 unique taxa when clustered at 95 % sequence identity, and there was no single nirS denitrifier that was a competitive dominant; different samples had different highly abundant taxa. By contrast, there were only 39 unique taxa identified in samples from the two ODZs, and 99 % of the sequences belonged to 5 or fewer taxa. The ODZ samples were often dominated by nirS sequences that shared a 92 % sequence identity to a nirS found in the anaerobic ammonium-oxidizing (anammox) genus Scalindua. This sequence was abundant in both ODZs, accounting for 38 and 59 % of all sequences, but it was virtually absent in marine sediments. Our data indicate that ODZs are remarkably depauperate in nirS genes compared to the remarkable genetic richness found in coastal sediments.
Collapse
Affiliation(s)
- Jennifer L Bowen
- Department of Biology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA,
| | | | | | | | | | | |
Collapse
|
247
|
Phylogenetic Diversity of Diazotrophs along an Experimental Nutrient Gradient in Mangrove Sediments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2015. [DOI: 10.3390/jmse3030699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
248
|
Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling. Appl Environ Microbiol 2015. [PMID: 26209674 DOI: 10.1128/aem.01382-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem.
Collapse
|
249
|
Fan H, Bolhuis H, Stal LJ. Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments. Front Microbiol 2015; 6:738. [PMID: 26257718 PMCID: PMC4508842 DOI: 10.3389/fmicb.2015.00738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/06/2015] [Indexed: 12/05/2022] Open
Abstract
The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L−1 d−1 and from undetectable to 8.2 nmol N g−1 d−1 in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 μmol m−2 d−1 and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR) data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and oxygen concentration.
Collapse
Affiliation(s)
- Haoxin Fan
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands
| | - Lucas J Stal
- Department of Marine Microbiology, Royal Netherlands Institute for Sea Research Yerseke, Netherlands ; Department of Aquatic Microbiology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
250
|
Genomics and Ecophysiology of Heterotrophic Nitrogen-Fixing Bacteria Isolated from Estuarine Surface Water. mBio 2015; 6:e00929. [PMID: 26152586 PMCID: PMC4495170 DOI: 10.1128/mbio.00929-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas stutzeri strain BAL361 and Raoultella ornithinolytica strain BAL286, which are gammaproteobacteria, and Rhodopseudomonas palustris strain BAL398, an alphaproteobacterium. Genome sequencing revealed that all were metabolically versatile and that the gene clusters encoding the N2 fixation complex varied in length and complexity between isolates. All three isolates could sustain growth by N2 fixation in the absence of reactive N, and this fixation was stimulated by low concentrations of oxygen in all three organisms (≈4 to 40 µmol O2 liter−1). P. stutzeri BAL361 did, however, fix N at up to 165 µmol O2 liter−1, presumably accommodated through aggregate formation. Glucose stimulated N2 fixation in general, and reactive N repressed N2 fixation, except that ammonium (NH4+) stimulated N2 fixation in R. palustris BAL398, indicating the use of nitrogenase as an electron sink. The lack of correlations between nitrogenase reductase gene expression and ethylene (C2H4) production indicated tight posttranscriptional-level control. The N2 fixation rates obtained suggested that, given the right conditions, these heterotrophic diazotrophs could contribute significantly to in situ rates. The biological process of importing atmospheric N2 is of paramount importance in terrestrial and aquatic ecosystems. In the oceans, a diverse array of prokaryotes seemingly carry the genetic capacity to perform this process, but lack of knowledge about their autecology and the factors that constrain their N2 fixation hamper an understanding of their ecological importance in marine waters. The present study documents a high variability of genomic and ecophysiological properties related to N2 fixation in three heterotrophic isolates obtained from estuarine surface waters and shows that these organisms fix N2 under a surprisingly broad range of conditions and at significant rates. The observed intricate regulation of N2 fixation for the isolates indicates that indigenous populations of heterotrophic diazotrophs have discrete strategies to cope with environmental controls of N2 fixation. Hence, community-level generalizations about the regulation of N2 fixation in marine heterotrophic bacterioplankton may be problematic.
Collapse
|