201
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
202
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
203
|
Bhatt HD, McClain SA, Lee HM, Zimmerman T, Deng J, Johnson F, Gu Y, Golub LM. The Maximum-Tolerated Dose and Pharmacokinetics of a Novel Chemically Modified Curcumin in Rats. J Exp Pharmacol 2022; 14:73-85. [PMID: 35173493 PMCID: PMC8842656 DOI: 10.2147/jep.s341927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose CMC 2.24, a chemically modified curcumin, was developed as a novel, pleiotropic MMP-inhibitor to treat various inflammatory/collagenolytic diseases including periodontitis. To date, this compound has shown efficacy in vitro, in cell culture, and in vivo (oral administration) in mice, rats and dogs. In preparation for possible Phase I human clinical trials, the current study describes the maximum-tolerated-dose (MTD), pharmacokinetics (PK), and toxicology of CMC 2.24 in the rat model. Methods For the MTD study, 30 Sprague-Dawley rats were randomly distributed into 5 groups (3M/3F per group): Placebo (vehicle; carboxymethylcellulose) and CMC 2.24 at various doses (50, 100, 500, 1000 mg/kg/day), were administered once daily by oral gavage for 5 days. For the PK study, 24 rats were administered either Placebo or CMC 2.24 (100mg/kg/day) once daily for 28 days or only once (500 or 1000 mg/kg). Analysis of this test compound was done using LC/MS/MS for PK evaluation on blood samples drawn from rats at multiple time points. The animals were sacrificed after 5 or 28 days of treatment, and blood chemistry and serology were analyzed. Major organs (heart, lung, liver, kidney, spleen, intestine, brain) were histologically examined at necropsy. Results Orally administered, CMC 2.24 did not produce significant changes in body weight, food consumption or adverse events in the MTD and toxicology studies. Moreover, no obvious pathologic changes were observed based on histology, hematology, serum biochemistry, or necropsy compared to placebo-treated controls. The PK study demonstrated a peak-blood concentration (Cmax) at 45 mins after oral administration of 2.24 and a serum half-life of 10 hours. Conclusion In conclusion, CMC 2.24, orally administered to rats once a day, appears to be safe and effective at a wide range of doses, consistent with efficacy previously demonstrated in studies on animal models of various collagenolytic diseases, such as periodontitis, diabetes and cancer.
Collapse
Affiliation(s)
- Heta Dinesh Bhatt
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Correspondence: Heta Dinesh Bhatt, Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA, Tel +1 646 715-2925, Fax +1 631 632-9705, Email
| | - Steve A McClain
- Department of Dermatology and Department of Emergency Medicine, Stony Brook University, and McClain Laboratories LLC, Smithtown, NY, 11787, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Thomas Zimmerman
- Division of Laboratory Animal Resources (DLAR) at Stony Brook, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jie Deng
- Department of Orthodontics, School of Stomatology, Peking University, Beijing, People’s Republic of China
| | - Francis Johnson
- Department of Chemistry and Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ying Gu
- Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
204
|
Tripathi AK, Ray AK, Mishra SK. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:16. [PMID: 35127957 PMCID: PMC8796742 DOI: 10.1186/s43088-022-00196-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Piperine is a type of amide alkaloid that exhibits pleiotropic properties like antioxidant, anticancer, anti-inflammatory, antihypertensive, hepatoprotective, neuroprotective and enhancing bioavailability and fertility-related activities. Piperine has the ability to alter gastrointestinal disorders, drug-metabolizing enzymes, and bioavailability of several drugs. The present review explores the available clinical and preclinical data, nanoformulations, extraction process, structure-activity relationships, molecular docking, bioavailability enhancement of phytochemicals and drugs, and brain penetration properties of piperine in the prevention, management, and treatment of various diseases and disorders. MAIN BODY Piperine provides therapeutic benefits in patients suffering from diabetes, obesity, arthritis, oral cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Parkinson's disease, Alzheimer's disease, cerebral stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The molecular basis for the pleiotropic activities of piperine is based on its ability to regulate multiple signaling molecules such as cell cycle proteins, anti-apoptotic proteins, P-glycoprotein, cytochrome P450 3A4, multidrug resistance protein 1, breast cancer resistance protein, transient receptor potential vanilloid 1 proinflammatory cytokine, nuclear factor-κB, c-Fos, cAMP response element-binding protein, activation transcription factor-2, peroxisome proliferator-activated receptor-gamma, Human G-quadruplex DNA, Cyclooxygenase-2, Nitric oxide synthases-2, MicroRNA, and coronaviruses. Piperine also regulates multiple signaling pathways such as Akt/mTOR/MMP-9, 5'-AMP-activated protein kinase-activated NLR family pyrin domain containing-3 inflammasome, voltage-gated K+ current, PKCα/ERK1/2, NF-κB/AP-1/MMP-9, Wnt/β-catenin, JNK/P38 MAPK, and gut microbiota. SHORT CONCLUSION Based on the current evidence, piperine can be the potential molecule for treatment of disease, and its significance of this molecule in the clinic is discussed. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- Molecular Biology Unit, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 India
- Clinical Research Division, School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar, UP India
| | - Anup Kumar Ray
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University, Varanasi, 221005 India
- Department of Pharmacognosy, I.T.S College of Pharmacy, Ghaziabad, UP 201206 India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
205
|
Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. BIOLOGY 2022; 11:biology11020177. [PMID: 35205044 PMCID: PMC8869385 DOI: 10.3390/biology11020177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary In this review, we discuss the potential use of extracellular vesicles (EVs) to deliver dietary supplements to the brain to reduce brain complications associated with HIV, COVID-19, and other brain disorders. Brain-related complications affect people with HIV and COVID-19 alike. Moreover, since HIV patients are at a higher risk of contracting COVID-19, their neurological problems can be exacerbated by COVID-19. The use of dietary supplements together with available treatment options has been shown to reduce the severity of infections. However, these treatments are not chemically compatible with the body’s blood–brain barrier defense mechanism. Therefore, a viable delivery method is needed to deliver drugs and nutraceuticals to the brain in HIV and COVID-19 comorbid patients. Abstract People living with HIV/AIDS (PLWHA) are at an increased risk of severe and critical COVID-19 infection. There is a steady increase in neurological complications associated with COVID-19 infection, exacerbating HIV-associated neurocognitive disorders (HAND) in PLWHA. Nutraceuticals, such as phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in treating and/or prophylaxis of neurological complications associated with these co-infections. However, most of these nutraceuticals have poor bioavailability and cannot cross the blood–brain barrier (BBB). To overcome this challenge, extracellular vesicles (EVs), biological nanovesicles, can be used. Due to their intrinsic features of biocompatibility, stability, and their ability to cross BBB, as well as inherent homing capabilities, EVs hold immense promise for therapeutic drug delivery to the brain. Therefore, in this review, we summarize the potential role of different nutraceuticals in reducing HIV- and COVID-19-associated neurological complications and the use of EVs as nutraceutical/drug delivery vehicles to treat HIV, COVID-19, and other brain disorders.
Collapse
|
206
|
Arabnezhad L, Mohammadifard M, Rahmani L, Majidi Z, Ferns GA, Bahrami A. Effects of curcumin supplementation on vitamin D levels in women with premenstrual syndrome and dysmenorrhea: a randomized controlled study. BMC Complement Med Ther 2022; 22:19. [PMID: 35065636 PMCID: PMC8784001 DOI: 10.1186/s12906-022-03515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Background Vitamin D has an established role in female reproduction. There is also evidence for an association between vitamin D levels and menstrual problems such as premenstrual syndrome (PMS) and dysmenorrhea. Curcumin, is a bioactive polyphenol constituent of turmeric, that can potentially interact with vitamin D receptors and its molecular targets. This study evaluated the effects of curcumin on vitamin D levels in young women with PMS and dysmenorrhea. Methods In this randomized, triple-blind, placebo-controlled trial, women with PMS and dysmenorrhea were divided randomly into experimental and control groups to receive one capsule (500 mg of curcuminoid+ 5 mg piperine, or placebo) daily, from approximately 7 days before until 3 days after menstruation for three consecutive menstrual cycles. Serum vitamin D levels, renal function, and liver enzymes were also measured before and after intervention. Results A total of 76 subjects (38 in each group) were recruited into the trial. Curcumin significantly increased the median (IQR) serum levels of vitamin D [from 12.8 ng/ml (7.0–24.6) to 16.2 ng/ml (6.4–28.8); P = 0.045], compared with placebo [from 18.6 ng/ml (2.2–26.8) to 21.3 ng/ml (5.2–27.1); P = 0.17]. Serum levels of aspartate aminotransferase and direct bilirubin were reduced by the end of trial in the curcumin group (p < 0.05), but did not change significantly in the control group (p > 0.05). Finally, no significant differences in levels of fasting blood glucose were detected between curcumin and placebo groups. Conclusion Curcumin supplementation in women with PMS and dysmenorrhea led to a significant improvement of vitamin D, liver function enzyme test, but did not affect blood glucose. Trial registration The trial was registered on Iranian Registry of Clinical Trials registry (Trial ID: IRCT20191112045424N1 on 23 January 2020; available at https://www.irct.ir).
Collapse
|
207
|
Cox FF, Misiou A, Vierkant A, Ale-Agha N, Grandoch M, Haendeler J, Altschmied J. Protective Effects of Curcumin in Cardiovascular Diseases—Impact on Oxidative Stress and Mitochondria. Cells 2022; 11:cells11030342. [PMID: 35159155 PMCID: PMC8833931 DOI: 10.3390/cells11030342] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) contribute to a large part of worldwide mortality. Similarly, two of the major risk factors for these diseases, aging and obesity, are also global problems. Aging, the gradual decline of body functions, is non-modifiable. Obesity, a modifiable risk factor for CVDs, also predisposes to type 2 diabetes mellitus (T2DM). Moreover, it affects not only the vasculature and the heart but also specific fat depots, which themselves have a major impact on the development and progression of CVDs. Common denominators of aging, obesity, and T2DM include oxidative stress, mitochondrial dysfunction, metabolic abnormalities such as altered lipid profiles and glucose metabolism, and inflammation. Several plant substances such as curcumin, the major active compound in turmeric root, have been used for a long time in traditional medicine and for the treatment of CVDs. Newer mechanistic, animal, and human studies provide evidence that curcumin has pleiotropic effects and attenuates numerous parameters which contribute to an increased risk for CVDs in aging as well as in obesity. Thus, curcumin as a nutraceutical could hold promise in the prevention of CVDs, but more standardized clinical trials are required to fully unravel its potential.
Collapse
Affiliation(s)
- Fiona Frederike Cox
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Angelina Misiou
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Annika Vierkant
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| |
Collapse
|
208
|
Thomas G, Koland M. Composition of Piperine with Enteric-Coated Chitosan Microspheres Enhances the Transepithelial Permeation of Curcumin in Sheep Intestinal Mucosa and Caco-2 Cells. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0041-1741417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Objectives The purpose of this study was to investigate the efficacy of enteric-coated chitosan microspheres with herbal bioenhancer, piperine, as a suitable composition for improving the permeation of curcumin through biological membranes using suitable ex vivo models.
Material and Methods Chitosan microspheres of curcumin and piperine were prepared by an emulsion cross-linking method using glutaraldehydes the cross-linking agent and characterized for size, shape, entrapment efficiency, mucoadhesion, and in vitro release. The effect of piperine on the permeation of curcumin through excised sheep intestinal mucosa and Caco-2-cell monolayer was investigated.
Statistical Analysis The data from permeation studies were analyzed by Student's t-test using Statistical Package for the Social Sciences (SPSS) software (SPSS, Chicago, IL, United States) with p-values <0.05 indicating statistical significance.
Results The formulations showed mucoadhesion for a period of more than 6 hours which was influenced by the chitosan content. The rate of drug release of uncoated formulation followed first-order kinetics, and the mechanism of release was non-Fickian transport. Optimized formulation was coated with a pH-sensitive polymer, Eudragit S-100, by a solvent evaporation technique in different concentrations and evaluated for ex vivo permeation through sheep intestinal mucosa and Caco-2-cell monolayer. Scanning electron microscopy images of the optimized coated formulation showed spherical particles with smooth surfaces. The calculated permeation flux and permeability coefficient of curcumin from microspheres were at least 20% greater in the presence of piperine through the intestinal mucosa and 30% through the Caco-2-cell monolayer model. The permeability coefficient of curcumin from microspheres with piperine was 1.93 × 10 to 5 cm/sec and significantly greater (p < 0.05) than that of microspheres devoid of piperine and from aqueous dispersion (p < 0.005).
Conclusion The study confirmed the contribution of piperine and mucoadhesive microspheres toward improved permeation of curcumin through biological membranes, thereby providing an approach that has the potential of increasing transport through intestinal epithelial cells and possibly enhancing the oral bioavailability of this drug.
Collapse
Affiliation(s)
- Githa Thomas
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Marina Koland
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
209
|
Patel S, Chopra S, Chaurasia S, Sarwat M. PLANT BASED BIOAVAILABILITY ENHANCERS. Curr Pharm Des 2022; 28:642-654. [PMID: 35023453 DOI: 10.2174/1381612828666220112141355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Many of the synthetic as well as herbal drugs despite of their notable in vitro finding demonstrate insignificant in vivo activity majority of times due to poor bioavailability. As per Biopharmaceutical Classification System (BCS) one of the main concern is low solubility and/or permeation of drugs resulting in reduced absorption and poor bioavailability. To overcome these issues the various strategies have been adopted including use of permeation enhancers which are also known as bioenhancers. Bioenhancers are synthetic or natural compounds that increases the bioavailability of drugs and nutrients such as vitamins, amino acids, minerals, etc. into the systemic circulation and at the site of action for exhibiting improved therapeutic action. By improving bioavailability, bioenhancers can lead to reduction in drug dose, decrease in the treatment period and can circumvent the problem of drug resistance. Numerous studies have reported application of synthetic bioenhancers. On the other hand, owing to the natural origin, plant based bioenhancer can serve as better alternative. Literature review have revealed that the plant-based bioenhancers have been used in with a wide varieties of drugs including antibiotics, antiviral and anti-cancer. These can be categorized based on their sources and the mechanism of activity. This review will provide a systematic and detailed overview of the various plant based bioenhancers and applications.
Collapse
Affiliation(s)
- Sweta Patel
- Department of Hematology and Oncology, University of Albama, Birmingham AL 35294, USA
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh - 201313, India
| | - Simran Chaurasia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab -151001, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh - 201313, India
| |
Collapse
|
210
|
Role of Curcumin in Retinal Diseases-A review. Graefes Arch Clin Exp Ophthalmol 2022; 260:1457-1473. [PMID: 35015114 PMCID: PMC8748528 DOI: 10.1007/s00417-021-05542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To review the role of curcumin in retinal diseases, COVID era, modification of the molecule to improve bioavailability and its future scope. METHODS PubMed and MEDLINE searches were pertaining to curcumin, properties of curcumin, curcumin in retinal diseases, curcumin in diabetic retinopathy, curcumin in age-related macular degeneration, curcumin in retinal and choroidal diseases, curcumin in retinitis pigmentosa, curcumin in retinal ischemia reperfusion injury, curcumin in proliferative vitreoretinopathy and curcumin in current COVID era. RESULTS In experimental models, curcumin showed its pleiotropic effects in retinal diseases like diabetic retinopathy by increasing anti-oxidant enzymes, upregulating HO-1, nrf2 and reducing or inhibiting inflammatory mediators, growth factors and by inhibiting proliferation and migration of retinal endothelial cells in a dose-dependent manner in HRPC, HREC and ARPE-19 cells. In age-related macular degeneration, curcumin acts by reducing ROS and inhibiting apoptosis inducing proteins and cellular inflammatory genes and upregulating HO-1, thioredoxin and NQO1. In retinitis pigmentosa, curcumin has been shown to delay structural defects of P23H gene in P23H-rhodopsin transgenic rats. In proliferative vitreoretinopathy, curcumin inhibited the action of EGF in a dose- and time-dependent manner. In retinal ischemia reperfusion injury, curcumin downregulates IL-17, IL-23, NFKB, STAT-3, MCP-1 and JNK. In retinoblastoma, curcumin inhibits proliferation, migration and apoptosis of RBY79 and SO-RB50. Curcumin has already proven its efficacy in inhibiting viral replication, coagulation and cytokine storm in COVID era. CONCLUSION Curcumin is an easily available spice used traditionally in Indian cooking. The benefits of curcumin are manifold, and large randomized controlled trials are required to study its effects not only in treating retinal diseases in humans but in their prevention too.
Collapse
|
211
|
Yadav SS, Singh MK, Hussain S, Dwivedi P, Khattri S, Singh K. Therapeutic spectrum of piperine for clinical practice: a scoping review. Crit Rev Food Sci Nutr 2022; 63:5813-5840. [PMID: 34996326 DOI: 10.1080/10408398.2021.2024792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.
Collapse
|
212
|
Patel P, Bhatt J, Sureja F, Dhoru M, Detholia K. Herbal standardization of formulation containing curcuminoids, piperine and ascorbic acid by dual detection mode densitometric analysis. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-021-00139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
213
|
The Effects of Modified Curcumin Preparations on Glial Morphology in Aging and Neuroinflammation. Neurochem Res 2022; 47:813-824. [PMID: 34988899 DOI: 10.1007/s11064-021-03499-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is characterized by reactive microglia and astrocytes (collectively called gliosis) in the central nervous system and is considered as one of the main pathological hallmarks in different neurodegenerative diseases such as Alzheimer's disease, age-related dementia, and multiple sclerosis. Upon activation, glia undergoes structural and morphological changes such as the microglial cells swell in size and astrocytes become bushy, which play both beneficial and detrimental roles. Hence, they are unable to perform the normal physiological role in brain immunity. Curcumin, a cytokine suppressive anti-inflammatory drug, has a high proven pre-clinical potency and efficacy to reverse chronic neuroinflammation by attenuating the activation and morphological changes that occur in the microglia and astrocytes. This review will highlight the recent findings on the tree structure changes of microglia and astrocytes in neuroinflammation and the effects of curcumin against the activation and morphology of glial cells.
Collapse
|
214
|
Devan AR, Nair B, Kumar AR, Gorantla JN, T S A, Nath LR. Unravelling the Immune Modulatory Effect of Indian Spices to Impede the Transmission of COVID-19: A Promising Approach. Curr Pharm Biotechnol 2022; 23:201-220. [PMID: 33593256 DOI: 10.2174/1389201022666210216144917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Months after WHO declared COVID-19 as a Global Public Health Emergency of International Concern, it does not seem to be flattening the curve as we are still devoid of an effective treatment modality and vaccination is in the first phase in many countries. Amid such uncertainty, being immune is the best strategy to defend against corona attacks. As the whole world is referring back to immune-boosting traditional remedies, interest is rekindled in the Indian system of Medicine, which is gifted with an abundance of herbal medicines as well as remedies. Among them, spices (root, rhizome, seed, fruit, leaf, bud, and flower of various plants used to add taste and flavors to food) are bestowed with immense medicinal potential. A plethora of clinical as well as preclinical studies reported the effectiveness of various spices for various ailments. The potential immune-boosting properties together with their excellent safety profiles are making spices the current choice of phytoresearch as well as the immune-boosting home remedies during these sceptical times. The present review critically evaluates the immune impact of various Indian spices and their potential to tackle the novel coronavirus, with comments on the safety and toxicity aspects of spices.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Jaggaiah N Gorantla
- Department of Chemistry, Wayne State University, Detroit, 48201, Michigan, USA
| | - Aishwarya T S
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| |
Collapse
|
215
|
Lam M, Khoshkhat P, Chamani M, Shahsavari S, Dorkoosh FA, Rajabi A, Maniruzzaman M, Nokhodchi A. In-depth multidisciplinary review of the usage, manufacturing, regulations & market of dietary supplements. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
216
|
Hao M, Chu Y, Lei J, Yao Z, Wang P, Chen Z, Wang K, Sang X, Han X, Wang L, Cao G. Pharmacological Mechanisms and Clinical Applications of Curcumin: Update. Aging Dis 2022; 14:716-749. [PMID: 37191432 DOI: 10.14336/ad.2022.1101] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Curcumin, a well-known hydrophobic polyphenol extracted from the rhizomes of turmeric (Curcuma longa L.), has attracted great interest in the last ten years due to its multiple pharmacological activities. A growing body of evidence has manifested that curcumin has extensive pharmacological activities including anti-inflammatory, anti-oxygenation, lipid regulation, antiviral, and anticancer with hypotoxicity and minor adverse reactions. However, the disadvantages of low bioavailability, short half-life in plasma, low drug concentration in blood, and poor oral absorption severely limited the clinical application of curcumin. Pharmaceutical researchers have carried out plenty of dosage form transformations to improve the druggability of curcumin and have achieved remarkable results. Therefore, the objective of this review summarizes the pharmacological research progress, problems in clinical application and the improvement methods of curcumin's druggability. By reviewing the latest research progress of curcumin, we believe that curcumin has a broad clinical application prospect for its wide range of pharmacological activities with few side effects. The deficiencies of lower bioavailability of curcumin could be improved by dosage form transformation. However, curcumin in the clinical application still requires further study regarding the underlying mechanism and clinical trial verification.
Collapse
|
217
|
Girgis AS, D'Arcy P, Aboshouk DR, Bekheit MS. Synthesis and bio-properties of 4-piperidone containing compounds as curcumin mimics. RSC Adv 2022; 12:31102-31123. [DOI: 10.1039/d2ra05518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022] Open
Abstract
3,5-Diyliden-4-piperidone scaffold are considered as curcumin mimic exhibiting diverse bio-properties.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Padraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
218
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
219
|
Ke DYJ, El-Sahli S, Wang L. The Potential of Natural Products in the Treatment of Triple-Negative Breast Cancer. Curr Cancer Drug Targets 2021; 22:388-403. [PMID: 34970954 DOI: 10.2174/1568009622666211231140623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks receptors for targeted therapy. Consequently, chemotherapy is currently the mainstay of systemic treatment options. However, the enrichment of cancer stem cells (CSC, a subpopulation with stem-cell characteristics and tumor-initiating propensity) promotes chemo-resistance and tumorigenesis, resulting in cancer recurrence and relapse. Furthermore, toxic side effects of chemotherapeutics reduce patient wellbeing. Natural products, specifically compounds derived from plants, have the potential to treat TNBC and target CSCs by inhibiting CSC signaling pathways. Literature evidence from six promising compounds were reviewed, including sulforaphane, curcumin, genistein, resveratrol, lycopene, and epigallocatechin-3-gallate. These compounds have been shown to promote cell cycle arrest and apoptosis in TNBC cells. They also could inhibit the epithelial-mesenchymal transition (EMT) that plays an important role in metastasis. In addition, those natural compounds have been found to inhibit pathways important for CSCs, such as NF-κB, PI3K/Akt/mTOR, Notch 1, Wnt/β-catenin, and YAP. Clinicals trials conducted on these compounds have shown varying degrees of effectiveness. Epidemiological case-control studies for the compounds commonly consumed in certain human populations have also been summarized. While in vivo and in vitro data are promising, further basic and clinical investigations are required. Likely, natural products in combination with other drugs may hold great potential to improve TNBC treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Danny Yu Jia Ke
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
220
|
Rajarajan D, Natesh J, Penta D, Meeran SM. Dietary Piperine Suppresses Obesity-Associated Breast Cancer Growth and Metastasis by Regulating the miR-181c-3p/ PPARα Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15562-15574. [PMID: 34905918 DOI: 10.1021/acs.jafc.1c05670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adipocyte-derived leptin activates multiple oncogenic signaling, leading to breast cancer cell progression and metastasis. Hence, finding effective strategies to inhibit the oncogenic effects of leptin would provide a novel approach for disrupting obesity-associated breast cancer. In the current study, we explored the role of piperine, a major plant alkaloid from Piper nigrum (black pepper), against leptin-induced breast cancer. Piperine treatment significantly inhibited leptin-induced breast cancer cell proliferation, colony formation, migration, and invasion. We found that piperine downregulated the expression of PPARα, a predicted target of miR-181c-3p. Mechanistically, piperine potentiates miR-181c-3p-mediated anticancer potential in leptin-induced breast cancer cells. Interestingly, the knockdown of PPARα reduced the proliferative potential of leptin-induced breast cancer cells. Further, oral administration of piperine inhibited breast tumor growth in diet-induced obese mice, accompanied by the upregulation of miR-181c-3p and downregulation of PPARα expression. Together, piperine represents a potential candidate for further development as an anticancer agent for treating obesity-associated breast cancer.
Collapse
Affiliation(s)
- Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
221
|
Sohal A, Alhankawi D, Sandhu S, Chintanaboina J. Turmeric-Induced Hepatotoxicity: Report of 2 Cases. Int Med Case Rep J 2021; 14:849-852. [PMID: 34992472 PMCID: PMC8711139 DOI: 10.2147/imcrj.s333342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
The use of herbal and dietary supplements is rising in the United States. Turmeric has been one of the most popular supplements recently, used widely for various conditions such as arthritis, digestive disorder, and liver conditions. Although rarely reported, hepatotoxicity can happen with turmeric use. Here, we present 2 cases of drug-induced liver injury due to turmeric use with the complete resolution after cessation.
Collapse
Affiliation(s)
- Aalam Sohal
- Department of Internal Medicine, UCSF Fresno, Fresno, CA, USA
| | - Dhuha Alhankawi
- Department of Gastroenterology and Hepatology, UCSF Fresno, Fresno, CA, USA
| | - Sunny Sandhu
- Department of Internal Medicine, UCSF Fresno, Fresno, CA, USA
| | | |
Collapse
|
222
|
Curcumin combined with photodynamic therapy, promising therapies for the treatment of cancer. Biomed Pharmacother 2021; 146:112567. [PMID: 34953392 DOI: 10.1016/j.biopha.2021.112567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Curcumin, a phytochemical derived from the rhizome of turmeric (Curcuma longa L.), has a broad group of substances with antibacterial, anti-inflammatory, anti-oxidant, anticancer activities. The anticancer activity of curcumin and its derivatives are mainly related to its regulation of signal transduction pathways. However, due to the low oral availability of curcumin, fast metabolism and other pharmacokinetic properties limit the application of curcumin in the treatment of cancer. Evidence suggests that curcumin combined with photodynamic therapy can overcome the limitation of curcumin's low bioavailability by acting on apoptosis pathways, such as B-cell lymphoma 2 (Bcl-2) and caspase family, and affecting cell cycle. This paper reviews the structure and pharmacokinetics of curcumin, focusing on the anticancer activity of curcumin combined with photodynamic therapy and the effects on cancer-related signal pathways.
Collapse
|
223
|
Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: Results of a phase I clinical trial. J Clin Neurosci 2021; 95:48-54. [PMID: 34929651 DOI: 10.1016/j.jocn.2021.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most common and most aggressive primary brain cancer in adults. Standard treatment of glioblastoma consisting of maximal safe resection, adjuvant radiotherapy and chemotherapy with temozolomide, results in an overall median survival of 14.6 months. The aggressive nature of glioblastoma has been attributed to the presence of glioblastoma stem cells which express components of the renin-angiotensin system (RAS). This phase I clinical trial investigated the tolerability and efficacy of a treatment targeting the RAS and its converging pathways in patients with glioblastoma. Patients who had relapsed following standard treatment of glioblastoma who met the trial criteria were commenced on dose-escalated oral RAS modulators (propranolol, aliskiren, cilazapril, celecoxib, curcumin with piperine, aspirin, and metformin). Of the 17 patients who were enrolled, ten completed full dose-escalation of the treatment. The overall median survival was 19.9 (95% CI:14.1-25.7) months. Serial FET-PET/CTs showed a reduction in both tumor volume and uptake in one patient, an increase in tumor uptake in nine patients with decreased (n = 1), unchanged (n = 1) and increased (n = 7) tumor volume, in the ten patients who had completed full dose-escalation of the treatment. Two patients experienced mild side effects and all patients had preservation of quality of life and performance status during the treatment. There is a trend towards increased survival by 5.3 months although it was not statistically significant. These encouraging results warrant further clinical trials on this potential novel, well-tolerated and cost-effective therapeutic option for patients with glioblastoma.
Collapse
|
224
|
Itaya M, Miyazawa T, Khalifa S, Shimizu N, Nakagawa K. The inhibition of interaction with serum albumin enhances the physiological activity of curcumin by increasing its cellular uptake. Food Funct 2021; 13:639-648. [PMID: 34931204 DOI: 10.1039/d1fo03234h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Based on the free drug hypothesis, we hypothesized that food compounds that bind stronger to BSA than CUR inhibit the binding between BSA and CUR, and that this results in an increase of the cellular uptake and physiological activities of CUR. To verify this hypothesis, food compounds that bind stronger to BSA than CUR were identified. When THP-1 monocytes were co-treated with the identified compounds (e.g., piperine) and CUR, cell viability significantly decreased, suggesting that the physiological activity of CUR was enhanced. Also, when THP-1 macrophages were co-treated with CUR and the identified compounds following LPS + IFNγ treatment, the decrement of TNF-α was higher compared to treatment with CUR only. Furthermore, the cellular uptake of CUR was increased during this co-treatment. Such results verify our hypothesis, and provide insights into the development of ways to enhance the physiological activities of various food compounds via focusing on their interaction with albumin.
Collapse
Affiliation(s)
- Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1Aramakiazaaoba, Aoba-ku, Sendai, 980-8572, Japan.
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Saoussane Khalifa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1Aramakiazaaoba, Aoba-ku, Sendai, 980-8572, Japan.
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1Aramakiazaaoba, Aoba-ku, Sendai, 980-8572, Japan.
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1Aramakiazaaoba, Aoba-ku, Sendai, 980-8572, Japan.
| |
Collapse
|
225
|
Carnovali M, Ramoni G, Banfi G, Mariotti M. Herbal Preparation (Bromelain, Papain, Curcuma, Black Pepper) Enhances Mineralization and Reduces Glucocorticoid-Induced Osteoporosis in Zebrafish. Antioxidants (Basel) 2021; 10:antiox10121987. [PMID: 34943090 PMCID: PMC8750159 DOI: 10.3390/antiox10121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022] Open
Abstract
Natural foods with antioxidant properties, such as curcuma, papain, bromelain and black pepper, have been indicated as a potential natural therapeutic approach against osteoporosis. Zebrafish are an excellent animal model to study the effects of herbal preparations on osteogenesis and bone metabolism, both in physiological and in pathological conditions. Our study was aimed at evaluating whether curcuma-bromelain-papain-pepper herbal preparation (CHP) administered in embryos and adult fish is capable of promoting bone wellness in physiological and osteoporotic conditions. The effect of CHP has been studied in embryonic osteogenesis and glucocorticoid-induced osteoporosis (GIOP) in an adult fish model in which drug treatment induces a bone-loss phenotype in adult scales very similar to that which characterizes the bones of human patients. CHP prevented the onset of the osteoporotic phenotype in the scales of GIOP in adult zebrafish, with the osteoblastic and osteoclastic metabolic activity maintaining unaltered. CHP is also able to attenuate an already established GIOP phenotype, even if the alteration is in an advanced phase, partially restoring the normal balance of the bone markers alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) and stimulating anabolic reparative processes. The results obtained indicated CHP as a potential integrative antioxidant therapy in human bone-loss diseases.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Gina Ramoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, 20122 Milan, Italy; (G.R.); (G.B.)
| | - Giuseppe Banfi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, 20122 Milan, Italy; (G.R.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Mariotti
- IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, 20122 Milan, Italy; (G.R.); (G.B.)
- Correspondence:
| |
Collapse
|
226
|
Villegas C, Perez R, Sterner O, González-Chavarría I, Paz C. Curcuma as an adjuvant in colorectal cancer treatment. Life Sci 2021; 286:120043. [PMID: 34637800 DOI: 10.1016/j.lfs.2021.120043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide and mostly affects men. Around 20% of its incidence is by familiar disposition due to hereditary syndromes. The CRC treatment involves surgery and chemotherapy; however, the side effects of treatments and the fast emergence of drug resistance evidence the necessity to find more effective drugs. Curcumin is the main polyphenol pigment present in Curcuma longa, a plant widely used as healthy food with antioxidant properties. Curcumin has synergistic effects with antineoplastics such as 5-fluorouracil and oxaliplatin, as well anti-inflammatory drugs by inhibiting cyclooxygenase-2 and the Nuclear factor kappa B. Furthermore, curcumin shows anticancer properties by inhibition of the Wnt/β-catenin, Hedgehog, Notch, and the phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathways implicated in the progression of CRC. However, the consumption of pure curcumin is less suitable, as the absorption is poor, and the metabolism and excretion are high. Pharmacological formulations and essential oils of the plant improve the curcumin absorption, resulting in therapeutical dosages. Despite the evidence obtained in vitro and in vivo, clinical studies have not yet confirmed the therapeutic potential of curcumin against CRC. Here we reviewed the last scientific information that supports the consumption of curcumin as an adjuvant for CRC therapy.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products and Drug Discovery, Department of Basic Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Rebeca Perez
- Laboratory of Natural Products and Drug Discovery, Department of Basic Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Olov Sterner
- Division of Organic chemistry, Lund University, Lund, Sweden
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian Paz
- Laboratory of Natural Products and Drug Discovery, Department of Basic Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
227
|
Hsiao AF, Lien YC, Tzeng IS, Liu CT, Chou SH, Horng YS. The efficacy of high- and low-dose curcumin in knee osteoarthritis: A systematic review and meta-analysis. Complement Ther Med 2021; 63:102775. [PMID: 34537344 DOI: 10.1016/j.ctim.2021.102775] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to critically appraise and evaluate effects of low- and high-dose curcuminoids on pain and functional improvement in patients with knee osteoarthritis (OA) and to compare adverse events (AEs) between curcuminoids and non-steroid anti-inflammatory drugs (NSAIDs). METHODS We systematically reviewed all randomized controlled trials (RCTs) on curcuminoids in knee osteoarthritis from the PubMed, Embase, Cochrane Library, AMED, Cinahl, ISI Web of Science, Chinese medical database, and Indian Scientific databases from inception to June 21, 2021. RESULTS We included eleven studies with a total of 1258 participants with primary knee OA. The meta-analysis results showed that curcuminoids were significantly more effective than comparators regarding visual analogue scale (VAS) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain scores. However, no significant difference in pain relief or AEs between the high-dose (daily dose ≥1000 mg or total dose ≥42 gm) and low-dose (daily dose <1000 mg or total dose <42 gm) curcuminoid treatments was observed. When comparing curcumininoids versus NSAIDs, a significant difference in VAS pain was found. For AE analysis, three of our included studies used NSAIDs as comparators, with all reporting higher AE rates in the NSAID group, though significance was reached in only one study. CONCLUSIONS The results of our meta-analysis suggest that low- and high-dose curcuminoids have similar pain relief effects and AEs in knee OA. Curcuminoids are also associated with better pain relief than NSAIDs; therefore, using curcuminoids as an adjunctive treatment in knee OA is recommended.
Collapse
Affiliation(s)
- An-Fang Hsiao
- Department of Physical Medicine and Rehabilitation, Cheng Ching Hospital Chung Kang Branch, Taichung City, Taiwan, ROC
| | - Yi-Chieh Lien
- Department of Physical Medicine and Rehabilitation, Cardinal Tien Hospital An Kang Branch, New Taipei City, Taiwan, ROC
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Chien-Ting Liu
- Department of Physical Medicine and Rehabilitation, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC; Department of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Sheng-Hsun Chou
- Department of Physical Medicine and Rehabilitation, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Yi-Shiung Horng
- Department of Physical Medicine and Rehabilitation, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC; Department of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
| |
Collapse
|
228
|
Facina CH, Campos SGP, Ruiz TFR, Góes RM, Vilamaior PSL, Taboga SR. Protective effect of the association of curcumin with piperine on prostatic lesions: New perspectives on BPA-induced carcinogenesis. Food Chem Toxicol 2021; 158:112700. [PMID: 34838672 DOI: 10.1016/j.fct.2021.112700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a chemical agent which can exert detrimental effects on the male reproductive system, especially the prostate gland. In this study we described the efficacy of the dietary agent curcumin, alone or combined with piperine, to suppress the impact of BPA on the prostate. Adult gerbils were divided into nine experimental groups (n = 7 each group), regarding control (water and oil), exposed to BPA (50 μg/kg/day in water) or curcumin (100 mg/kg) and/or piperine (20 mg/kg). To evaluate the effects of the phytotherapic agents, the other groups received oral doses every two days, BPA plus curcumin (BCm), piperine (BP), and curcumin + piperine (BCmP). BPA promoted prostatic inflammation and morphological lesions in ventral and dorsolateral prostate lobes, associated with an increase in androgen receptor-positive cells and nuclear atypia, mainly in the ventral lobe. Curcumin and piperine helped to minimize these effects. BPA plus piperine or curcumin showed a reduction in nuclear atypical phenotype, indicating a beneficial effect of phytochemicals. Thus, these phytochemicals minimize the deleterious action of BPA in prostatic lobes, especially when administered in association. The protective action of curcumin and piperine consumption is associated with weight loss, anti-inflammatory potential, and control of prostate epithelial cell homeostasis.
Collapse
Affiliation(s)
- Camila Helena Facina
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
229
|
A curcumin analog CA-5f inhibits urokinase-type plasminogen activator and invasive phenotype of triple-negative breast cancer cells. Toxicol Res 2021; 38:19-26. [PMID: 35070937 PMCID: PMC8748588 DOI: 10.1007/s43188-021-00112-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive types of breast cancer with poor outcomes. Patients with TNBC cannot benefit from targeted therapies such as Tamoxifen and Herceptin. The aim of the present study was to seek a preventive or therapeutic agent with a potential inhibitory effect on aggressive progression of TNBC. Anticancer effect of a natural compound curcumin have been demonstrated, however, development of more effective curcumin analogs with better bioavailability is needed. We investigated if a curcumin analog CA-5f could inhibit the invasive phenotype of TNBC cell lines in the present study. Treatment with CA-5f inhibited the viability of MDA‑MB‑231 and Hs578T TNBC cells, possible by inducing apoptosis. The invasive phenotypes of these cells were inhibited by CA-5f in a concentration-dependent manner. Protein expression of urokinase-type plasminogen activator (uPA), a serine protease known to degrade the extracellular matrix and lead to invasion, was markedly decreased by CA-5f in Hs578T cells. However, mRNA level of uPA was not altered by CA-5f, implicating that the effect of CA-5f was not through transcriptional regulation. Of note, CA-5f upregulated plasminogen activator inhibitor type (PAI)-1, which is known to inhibit uPA by interacting with urokinase-type plasminogen receptor, in TNBC cells. Taken together, these results demonstrated that CA-5f significantly inhibited the invasive phenotype of TNBC cells, possibly by decreasing the protein level of uPA through upregulating PAI-1. Our results may provide useful information on developing CA-5f as a potential therapeutic agent against malignant progression of TNBC.
Collapse
|
230
|
The Inhibitory Activity of Curcumin on P-Glycoprotein and Its Uptake by and Efflux from LS180 Cells Is Not Affected by Its Galenic Formulation. Antioxidants (Basel) 2021; 10:antiox10111826. [PMID: 34829695 PMCID: PMC8615263 DOI: 10.3390/antiox10111826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
The biological activities of curcumin in humans, including its antioxidative and anti-inflammatory functions, are limited by its naturally low bioavailability. Different formulation strategies have been developed, but the uptake of curcumin from these galenic formulations into and efflux from intestinal cells, which may be critical processes limiting bioavailability, have not been directly compared. Furthermore, little is known about their effect on P-glycoprotein activity, an important determinant of the pharmacokinetics of potentially co-administered drugs. P-glycoprotein activity was determined in LS180 cells, incubated with 30 or 60 µmol/L of curcumin in the form of seven different formulations or native curcuma extract for 1 h. All formulations inhibited P-glycoprotein activity at both concentrations. Curcumin uptake, after 1 h incubation of LS180 cells with the formulations (60 µmol/L), showed significant variability but no consistent effects. After 1 h pre-treatment with the formulations and further 8 h with curcumin-free medium, curcumin in cell culture supernatants, reflecting the efflux, differed between individual formulations, again without a clear effect. In conclusion, curcumin inhibits P-glycoprotein activity independently of its formulation. Its uptake by and efflux from intestinal cells was not significantly different between formulations, indicating that these processes are not important regulatory points for its bioavailability.
Collapse
|
231
|
Wiśniewski O, Rajczewski A, Szumigała A, Gibas-Dorna M. Diet-Induced Adipocyte Browning. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
232
|
Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, Gautam RK, Tsagkaris C, Joon S, Singla S, Shen B. Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Front Cell Dev Biol 2021; 9:745177. [PMID: 34805155 PMCID: PMC8602797 DOI: 10.3389/fcell.2021.745177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the most common type of cancer among men and the second most frequent cause of cancer-related mortality around the world. The progression of advanced prostate cancer to castration-resistant prostate cancer (CRPC) plays a major role in disease-associated morbidity and mortality, posing a significant therapeutic challenge. Resistance has been associated with the activation of androgen receptors via several mechanisms, including alternative dehydroepiandrosterone biosynthetic pathways, other androgen receptor activator molecules, oncogenes, and carcinogenic signaling pathways. Tumor microenvironment plays a critical role not only in the cancer progression but also in the drug resistance. Numerous natural products have shown major potential against particular or multiple resistance pathways as shown by in vitro and in vivo studies. However, their efficacy in clinical trials has been undermined by their unfavorable pharmacological properties (hydrophobic molecules, instability, low pharmacokinetic profile, poor water solubility, and high excretion rate). Nanoparticle formulations can provide a way out of the stalemate, employing targeted drug delivery, improved pharmacokinetic drug profile, and transportation of diagnostic and therapeutic agents via otherwise impermeable biological barriers. This review compiles the available evidence regarding the use of natural products for the management of CRPC with a focus on nanoparticle formulations. PubMed and Google Scholar search engines were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical studies. The results of our study suggest the efficacy of natural compounds such as curcumin, resveratrol, apigenin, quercetin, fisetin, luteolin, kaempferol, genistein, berberine, ursolic acid, eugenol, gingerol, and ellagic acid against several mechanisms leading to castration resistance in preclinical studies, but fail to set the disease under control in clinical studies. Nanoparticle formulations of curcumin and quercetin seem to increase their potential in clinical settings. Using nanoparticles based on betulinic acid, capsaicin, sintokamide A, niphatenones A and B, as well as atraric acid seems promising but needs to be verified with preclinical and clinical studies.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rajat Goyal
- MM School of Pharmacy, MM University, Ambala, India
| | | | | | - Shikha Joon
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
233
|
Sahu AK, Mishra AK. Curcumin-Induced Membrane Property Changes in DMPC Multilamellar Vesicles and the Effects of Membrane-Destabilizing Molecules on Curcumin-Loaded Multilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12753-12766. [PMID: 34694126 DOI: 10.1021/acs.langmuir.1c02407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Curcumin (CUR) is the major bioactive component of turmeric (Curcuma longa), commonly used as a spice and traditional medicine in India. CUR possesses a wide range of pharmacological benefits, including antioxidant, anticarcinogenic, antimutagenic, anti-inflammatory, anti-Alzheimer, and anti-Parkinson effects. The CUR-membrane interaction is believed to be the reason for such biological activity of CUR. Several research groups have modeled the interaction of CUR with artificial model lipid membranes using various techniques such as nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). However, the mechanism of its action is still unclear. A fluorescent-probe-based technique could be advantageous to study the CUR-lipid membrane interaction due to its sensitivity toward the local environment and its multiparametric nature. In this work, we have used the intrinsic fluorescence properties of CUR to investigate CUR-induced physical property changes in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilamellar vesicles (MLVs) at various CUR concentrations. By rationalizing the results of steady-state fluorescence intensity, fluorescence anisotropy, temperature-dependent fluorescence intensity, temperature-dependent fluorescence anisotropy, and quenching experiments, we have proposed a model showing concentration-dependent effects of CUR on the DMPC bilayer membrane. We suggest that at low concentrations (≤1 mol %), CUR is homogeneously distributed in the DMPC bilayer membrane in both the solid gel (SG) and liquid crystalline (LC) phases. At high concentrations (>1 mol %), CUR molecules form segregated domains that fluidize both membrane phases. However, the CUR-induced fluidization is less pronounced in the LC phase as some CUR molecules from the domain partition into the bilayer core. Further, the effects of membrane-destabilizing molecules such as bile salts, capsaicin (CAP), and piperine (PIP) on CUR-loaded DMPC multilamellar vesicles were studied. Our work also shows that CUR has a stabilizing effect on the DMPC membrane at high concentrations.
Collapse
Affiliation(s)
- Anand Kumar Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
234
|
Stati G, Rossi F, Sancilio S, Basile M, Di Pietro R. Curcuma longa Hepatotoxicity: A Baseless Accusation. Cases Assessed for Causality Using RUCAM Method. Front Pharmacol 2021; 12:780330. [PMID: 34776989 PMCID: PMC8586077 DOI: 10.3389/fphar.2021.780330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Curcuma longa is a perennial herb that belongs to the Zingiberaceae family. To date, literature includes more than 11.000 scientific articles describing all its beneficial properties. In the last 3 decades various surveys by the U.S. Food and Drug Administration (FDA) concluded that curcumin, the most active ingredient of the drug, is a "generally safe" compound with strong anti-oxidant effects. Curcuma longa was introduced in the daily diet by ayurvedic teachers due to its beneficial effects on health. Nonetheless, recently several reports, from the various global surveillance systems on the safety of plant products, pointed out cases of hepatotoxicity linked to consumption of food supplements containing powdered extract and preparations of Curcuma longa. The latest trend is the use of Curcuma longa as a weight-loss product in combination with piperine, which is used to increase its very low systemic bioavailability. Indeed, only 20 mg piperine, one of the alkaloids found in black pepper (Piper nigrum), assumed at the same time with 2 g curcumin increased 20-fold serum curcumin bioavailability. This combination of natural products is now present in several weight loss supplements containing Curcuma longa. The enhanced drug bioavailability caused by piperine is due to its potent inhibition of drug metabolism, being able to inhibit human P-glycoprotein and CYP3A4, while it interferes with UDP-glucose dehydrogenase and glucuronidation activities in liver. While only few cases of hepatotoxicity, assessed using Roussel Uclaf Causality Assessment Method (RUCAM) method, from prolonged intake of piperine and curcumin have been reported, it would be reasonable to speculate that the suspected toxicity of Curcuma longa could be due to the concomitant presence of piperine itself. Hence, not only there is the need of more basic research to understand the etiopathology of curcumin-related hepatotoxicity and of the combination curcumin-piperine, but human trials will be necessary to settle this dispute.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Francesco Rossi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University, Venice, Italy
- Biophysics Group, Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Silvia Sancilio
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
235
|
Bahrami A, Zarban A, Rezapour H, Agha Amini Fashami A, Ferns GA. Effects of curcumin on menstrual pattern, premenstrual syndrome, and dysmenorrhea: A triple-blind, placebo-controlled clinical trial. Phytother Res 2021; 35:6954-6962. [PMID: 34708460 DOI: 10.1002/ptr.7314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Premenstrual syndrome (PMS) and primary dysmenorrhea are common complaints among young women. This study evaluated the effects of curcumin supplements on symptoms of pain in young women with PMS and dysmenorrhea. A randomized, triple-blinded, placebo-controlled clinical trial was undertaken. Women who suffered from both PMS and dysmenorrhea were enrolled, and were randomly allocated to the curcumin (n = 62), or placebo (n = 62) groups. Each subject received one capsule (500 mg of curcuminoid, or placebo) daily, from 7 days pre- until 3 days post-menstruation for three successive menstrual cycles. Participants recorded the severity of PMS, or dysmenorrhea using a Premenstrual Syndrome Screening Tool (PSST) and the visual analog scale, respectively. Baseline characteristics of participants did not differ between the curcumin and placebo groups. At the end of the trial, the PSST scores were significantly lower in both the curcumin (32.5 ± 9.8 vs. 21.6 ± 9.8); and placebo groups (31.7 ± 9.4 vs. 23.4 ± 12.8). There was a significant reduction of dysmenorrhea pain in both the curcumin and placebo groups (by 64% and 53.3%, respectively). Hence, curcumin had comparable effects as placebo, regarding the amelioration of symptoms of PMS and dysmenorrhea. Further studies are required with larger samples, using higher doses curcumin for longer durations, and perhaps in combination therapy.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hadis Rezapour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, UK
| |
Collapse
|
236
|
The Potential use of a Curcumin-Piperine Combination as an Antimalarial Agent: A Systematic Review. J Trop Med 2021; 2021:9135617. [PMID: 34671402 PMCID: PMC8523290 DOI: 10.1155/2021/9135617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant global health problem, but the development of effective antimalarial drugs is challenging due to the parasite's complex life cycle and lack of knowledge about the critical specific stages. Medicinal plants have been investigated as adjuvant therapy for malaria, so this systematic review summarizes 46 primary articles published until December 2020 that discuss curcumin and piperine as antimalarial agents. The selected articles discussed their antioxidant, anti-inflammatory, and antiapoptosis properties, as well as their mechanism of action against Plasmodium species. Curcumin is a potent antioxidant, damages parasite DNA, and may promote an immune response against Plasmodium by increasing reactive oxygen species (ROS), while piperine is also a potent antioxidant that potentiates the effects of curcumin. Hence, combining these compounds is likely to have the same effect as chloroquine, that is, attenuate and restrict parasite development, thereby reducing parasitemia and increasing host survival. This systematic review presents new information regarding the development of a curcumin-piperine combination for future malaria therapy.
Collapse
|
237
|
Javed B, Zhao X, Cui D, Curtin J, Tian F. Enhanced Anticancer Response of Curcumin- and Piperine-Loaded Lignin-g-p (NIPAM-co-DMAEMA) Gold Nanogels against U-251 MG Glioblastoma Multiforme. Biomedicines 2021; 9:biomedicines9111516. [PMID: 34829745 PMCID: PMC8615061 DOI: 10.3390/biomedicines9111516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and commonly diagnosed brain cancer and is highly resistant to routine chemotherapeutic drugs. The present study involves the synthesis of Lignin-g-p (NIPAM-co-DMAEMA) gold nanogel, loaded with curcumin and piperine, to treat GBM. The ongoing study has the application potential to (1) overcome the limitations of drugs biodistribution, (2) enhance the toxicity of anticancer drugs against GBM, and (3) identify the drugs uptake pathway. Atom transfer radical polymerization was used to synthesize the Lignin-g-PNIPAM network, crosslinked with the gold nanoparticles (GNPs) to self-assemble into nanogels. The size distribution and morphological analysis confirmed that the drug-loaded gold nanogels are spherical and exist in the size of 180 nm. The single and combinatorial toxicity effects of curcumin- and piperine-loaded Lignin-g-p (NIPAM-co-DMAEMA) gold nanogels were studied against U-251 MG GBM cells. A cytotoxicity analysis displayed anticancer properties. IC50 of curcumin- and piperine-loaded gold nanogels were recorded at 30 μM and 35 μM, respectively. Immunostaining and Western blot analysis confirmed the protein expression of caspase-3 and cleaved caspase-3 in cells treated with drug-loaded nanogels. Kinetic drug release revealed 86% release of hybrid curcumin–piperine from gold nanogel after 250 min at pH 4. Atomic absorption spectroscopic analysis confirmed that the drug-loaded nanogels have better internalization or association with the cancer cells than the GNPs or nano-gels alone. Morphological studies further confirmed that the curcumin and piperine nanogels penetrate the cells via endocytic pathways and induce caspase-3-related apoptosis. The experimental evidence shows the enhanced properties of combinatorial curcumin–piperine gold nanogels (IC50: 21 μM) to overcome the limitations of conventional chemotherapeutic treatments of glioma cells.
Collapse
Affiliation(s)
- Bilal Javed
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland; (X.Z.); (J.C.)
- Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
- Correspondence: (B.J.); (F.T.)
| | - Xinyi Zhao
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland; (X.Z.); (J.C.)
- Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Daxiang Cui
- Department of Instrument Science and Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - James Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland; (X.Z.); (J.C.)
- Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland; (X.Z.); (J.C.)
- Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
- Correspondence: (B.J.); (F.T.)
| |
Collapse
|
238
|
Shilpa S, Shwetha HJ, Perumal MK, Ambedkar R, Hanumanthappa M, Baskaran V, Lakshminarayana R. Turmeric, red pepper, and black pepper affect carotenoids solubilized micelles properties and bioaccessibility: Capsaicin/piperine improves and curcumin inhibits carotenoids uptake and transport in Caco-2 cells. J Food Sci 2021; 86:4877-4891. [PMID: 34658029 DOI: 10.1111/1750-3841.15926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/17/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the role of spices/spice active principles on physical, biochemical, and molecular targets of bioaccessibility/bioavailability. Carotenoids-rich micellar fraction obtained through simulated digestion of green leafy vegetables (GLV) with individual or two/three combinations were correlated to their influence on bioaccessibility, cellular uptake, and basolateral secretion of carotenoids in Caco-2 cells. Results suggest that carotenoids' bioaccessibility depends on micelles physicochemical properties, which is affected due to the presence of co-treated dietary spices and their composition. Increased bioaccessibility of β-carotene (BC) and lutein (LUT) is found in GLV (spinach) digested with turmeric (TM) than red pepper (RP) and black pepper (BP). In contrast, enhanced cellular uptake and secretion of BC and LUT-rich triglyceride-rich lipoprotein is observed in the presence of RP and BP compared to the control group. In contrast, TM inhibited absorption, while retinol levels significantly reduced in the presence of TM and RP than BP. Control cells have indicated higher cleavage of β-carotene to retinol than the spice-treated group. Besides, spice active principles modulate facilitated transport of carotenoids by scavenger receptor class B type 1 (SR-B1) protein. The effect of spices on carotenoids' bioavailability is validated with active spice principles. Overall, carotenoids' bioavailability (cellular uptake and basolateral secretion) was found in the following order of treatments; piperine > capsaicin > piperine + capsaicin > curcumin + capsaicin + piperine > control > turmeric. These findings suggested that the interaction of specific dietary factors, including spice ingredients at the enterocyte level, could provide greater insight into carotenoid absorption. PRACTICAL APPLICATION: Spices/spice active principles play a role in the digestion process by stimulating digestive enzymes and bile acids secretion. Since carotenoids are lipid soluble and have low bioavailability, spice ingredients' influence on intestinal absorption of carotenoids is considered crucial. Hence, understanding the interaction of co-consumed spices on the absorption process of carotenoids may help to develop functional foods/formulation of nutraceuticals to improve their health benefits.
Collapse
Affiliation(s)
- Shivaprasad Shilpa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| | - Hulikere Jagdish Shwetha
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Rudrappa Ambedkar
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| | | | - Vallikannan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Rangaswamy Lakshminarayana
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| |
Collapse
|
239
|
Flory S, Sus N, Haas K, Jehle S, Kienhöfer E, Waehler R, Adler G, Venturelli S, Frank J. Increasing Post-Digestive Solubility of Curcumin Is the Most Successful Strategy to Improve its Oral Bioavailability: A Randomized Cross-Over Trial in Healthy Adults and In Vitro Bioaccessibility Experiments. Mol Nutr Food Res 2021; 65:e2100613. [PMID: 34665507 DOI: 10.1002/mnfr.202100613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/26/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. METHODS AND RESULTS In a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration-time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly. CONCLUSION The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective.
Collapse
Affiliation(s)
- Sandra Flory
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| | - Kathrin Haas
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sina Jehle
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| | - Eva Kienhöfer
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Günther Adler
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
240
|
Nebrisi EE. Neuroprotective Activities of Curcumin in Parkinson's Disease: A Review of the Literature. Int J Mol Sci 2021; 22:11248. [PMID: 34681908 PMCID: PMC8537234 DOI: 10.3390/ijms222011248] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a slowly progressive multisystem disorder affecting dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is characterized by a decrease of dopamine (DA) in their striatal terminals. Treatment of PD with levodopa or DA receptor agonists replaces the function of depleted DA in the striatum. Prolonged treatment with these agents often has variable therapeutic effects and leads to the development of undesirable dyskinesia. Consequently, a crucial unmet demand in the management of Parkinson's disease is the discovery of new approaches that could slow down, stop, or reverse the process of neurodegeneration. Novel potential treatments involving natural substances with neuroprotective activities are being developed. Curcumin is a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric). It has been demonstrated to have potent anti-inflammatory, antioxidant, free radical scavenging, mitochondrial protecting, and iron-chelating effects, and is considered a promising therapeutic and nutraceutical agent for the treatment of PD. However, molecular and cellular mechanisms that mediate the pharmacological actions of curcumin remain largely unknown. Stimulation of nicotinic receptors and, more precisely, selective α7 nicotinic acetylcholine receptors (α7-nAChR), have been found to play a major modulatory role in the immune system via the "cholinergic anti-inflammatory pathway". Recently, α7-nAChR has been proposed to be a potential therapeutic approach in PD. In this review, the detailed mechanisms of the neuroprotective activities of curcumin as a potential therapeutic agent to help Parkinson's patients are being discussed and elaborated on in detail.
Collapse
Affiliation(s)
- Eslam El Nebrisi
- Department of Pharmacology, Dubai Medical College, Dubai 20170, United Arab Emirates
| |
Collapse
|
241
|
Tabanelli R, Brogi S, Calderone V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics 2021; 13:1715. [PMID: 34684008 PMCID: PMC8540263 DOI: 10.3390/pharmaceutics13101715] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Curcumin possesses a plethora of interesting pharmacological effects. Unfortunately, it is also characterized by problematic drug delivery and scarce bioavailability, representing the main problem related to the use of this compound. Poor absorption, fast metabolism, and rapid systemic clearance are the most important factors contributing to low curcumin levels in plasma and tissues. Accordingly, to overcome these issues, numerous strategies have been proposed and are investigated in this article. Due to advances in the drug delivery field, we describe here the most promising strategies for increasing curcumin bioavailability, including the use of adjuvant, complexed/encapsulated curcumin, specific curcumin formulations, and curcumin nanoparticles. We analyze current strategies, already available in the market, and the most advanced technologies that can offer a future perspective for effective curcumin formulations. We focus the attention on the effectiveness of curcumin-based formulations in clinical trials, providing a comprehensive summary. Clinical trial results, employing various delivery methods for curcumin, showed that improved bioavailability corresponds to increased therapeutic efficacy. Furthermore, advances in the field of nanoparticles hold great promise for developing curcumin-based complexes as effective therapeutic agents. Summarizing, suitable delivery methods for this polyphenol will ensure the possibility of using curcumin-derived formulations in clinical practice as preventive and disease-modifying therapeutics.
Collapse
Affiliation(s)
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy; (R.T.); (V.C.)
| | | |
Collapse
|
242
|
Antitumoral Activities of Curcumin and Recent Advances to ImProve Its Oral Bioavailability. Biomedicines 2021; 9:biomedicines9101476. [PMID: 34680593 PMCID: PMC8533288 DOI: 10.3390/biomedicines9101476] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a main bioactive component of the Curcuma longa L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types. However, although curcumin displays anticancer potential, its clinical application is limited by its low absorption, rapid metabolism and poor bioavailability. To overcome these limitations, several curcumin-based derivatives/analogues and different drug delivery approaches have been developed. Here, we also report the anticancer mechanisms and pharmacokinetic characteristics of some derivatives/analogues and the delivery systems used. These strategies, although encouraging, require additional in vivo studies to support curcumin clinical applications.
Collapse
|
243
|
N Diaye K, Debong M, Behr J, Dirndorfer S, Duggan T, Beusch A, Schlagbauer V, Dawid C, Loos HM, Buettner A, Lang R, Hofmann T. Dietary Piperine is Transferred into the Milk of Nursing Mothers. Mol Nutr Food Res 2021; 65:e2100508. [PMID: 34633734 DOI: 10.1002/mnfr.202100508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The diet of breastfeeding mothers could bring nurslings into contact with flavor compounds putatively contributing to early sensory programming of the infant. The study investigates whether tastants from a customary curry dish consumed by mothers are detectable in their milk afterwards and can be perceived by the infant. METHODS AND RESULTS Sensory evaluation identifies pungency as the dominating taste impression of the curry dish. Its ingredients of chili, pepper, and ginger suggest the flavor compounds capsaicin, piperine, and 6-gingerol as analytical targets. Breastfeeding mothers are recruited for an intervention trial involving the consumption of the curry dish and subsequent collection of milk samples for flavor compound analysis. Targeted and untargeted mass spectrometric (MS)- investigations identify exclusively piperine as an intervention-derived compound in human milk. However, concentrations are below the human taste threshold. CONCLUSION Piperine from pepper-containing foods transfers into the mother's milk within 1 h and is delivered to the nursling. Concentrations of 50 and 200 nM of piperine are 70-350 times below the human taste threshold, but TRPV1 (Transient Receptor Potential Vanilloid-1 ion channel) desensitization through frequent exposure to sub-taste-threshold concentrations could contribute to an increased tolerance at a later age.
Collapse
Affiliation(s)
- Katharina N Diaye
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Marcel Debong
- Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9, Erlangen, 91054, Germany
| | - Jürgen Behr
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Sebastian Dirndorfer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Tara Duggan
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Anja Beusch
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Verena Schlagbauer
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Helene M Loos
- Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9, Erlangen, 91054, Germany.,Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, Freising, 85354, Germany
| | - Andrea Buettner
- Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9, Erlangen, 91054, Germany.,Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, Freising, 85354, Germany
| | - Roman Lang
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany.,Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, Freising, 85354, Germany
| |
Collapse
|
244
|
Murray M, Selby-Pham S, Colton BL, Bennett L, Williamson G, Dordevic AL. Does timing of phytonutrient intake influence the suppression of postprandial oxidative stress? A systematic literature review. Redox Biol 2021; 46:102123. [PMID: 34488026 PMCID: PMC8426566 DOI: 10.1016/j.redox.2021.102123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Postprandial oxidative stress markers in blood are generated transiently from various tissues and cells following high-fat and/or high-carbohydrate (HFHC) meals, and may be suppressed by certain phytonutrients, such as polyphenols and carotenoids. However, the transient presence of phytonutrients in circulation suggests that timing of consumption, relative to the meal, could be important. This systematic review investigates the effect of timing of phytonutrient intake on blood markers of postprandial oxidative processes. METHOD EMBASE, Medline, Scopus and Web of Science were searched up to December 2020. Eligible studies met the criteria: 1) healthy human adults; 2) phytonutrient(s) consumed in solid form within 24 h of a HFHC meal; 3) postprandial measurements of oxidative stress or antioxidants in blood; and 4) controlled study design. Cohen's d effect sizes were calculated to compare studies. RESULTS Nine studies, involving 256 participants, were included. Phytonutrients were consumed either at the same time, 1 h before, or the day (>12 h) before a HFHC meal. Significant decreases in blood markers - plasma lipid hydroperoxides, plasma malondialdehyde, serum sNox2-dp, serum 8-iso-PGF2α, platelet p47phox phosphorylation, and Keap-1 and p47phox protein levels in mononuclear cells (MNCs) - were observed where the phytonutrient was consumed together with the challenge meal (n = 4). Lack of any effect on oxidative stress markers was observed where phytonutrients were consumed with (n = 1), 1 h before (n = 1), and the day before (n = 2) the HFHC meal. CONCLUSION Phytonutrients consumed with a HFHC meal significantly suppressed some markers of oxidative stress in blood. Although there were only a limited number of studies, it appears that suppression appeared effective at the time of peak phytonutrient concentration in plasma. However, further studies are required to confirm the observations and systematically optimise the effect of timing.
Collapse
Affiliation(s)
- Margaret Murray
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia; Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| | - Sophie Selby-Pham
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - Beau-Luke Colton
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| | - Louise Bennett
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - Gary Williamson
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| |
Collapse
|
245
|
Rajesh Kashyap R, Shanker Kashyap R. Herbal derivatives in the management of mouth opening in oral submucous fibrosis-A network meta-analysis. Oral Dis 2021; 27:1606-1615. [PMID: 32671872 DOI: 10.1111/odi.13544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Oral submucous fibrosis is a potentially malignant disorder commonly seen in Asian countries. In this disease, the mucosa becomes stiff and patients have difficulty in mouth opening, thus affecting their quality of life. Recently, practitioners are focusing on herbal derivatives instead of commonly practiced intralesional steroids for the management of this disorder. Hence, we conducted a network meta-analysis of randomized clinical trials on herbal derivatives to identify the most effective treatment for oral submucous fibrosis. MATERIALS AND METHODS Electronic search for articles published in various journals was undertaken through various search engines till January 2020. 14 articles were selected which had performed randomized control trials of herbal derivatives against control/placebo. Frequentist network meta-analysis was performed using R studio software, and effective treatment ranking was derived. RESULTS The treatment ranking was generated, and relative to mouth opening, the most effective treatment was lycopene administered along with vitamin E and the second effective drug was aloe vera gel. CONCLUSION This network meta-analysis highlights the efficacy of some of the drugs of herbal origin which can be implemented by the practitioners in the management of initial stages of oral submucous fibrosis.
Collapse
Affiliation(s)
| | - Rajesh Shanker Kashyap
- Department of Periodontics, Yenepoya Dental College, Yenepoya University (Deemed to be), Mangalore, India
| |
Collapse
|
246
|
Pengjam Y, Syazwani N, Inchai J, Numit A, Yodthong T, Pitakpornpreecha T, Panichayupakaranant P. High water-soluble curcuminoids-rich extract regulates osteogenic differentiation of MC3T3-E1 cells: Involvement of Wnt/β-catenin and BMP signaling pathway. CHINESE HERBAL MEDICINES 2021; 13:534-540. [PMID: 36119369 PMCID: PMC9476497 DOI: 10.1016/j.chmed.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The present study aimed to evaluate the effect of a high water-soluble curcuminoids-rich extract (CRE) in a solid dispersion form (CRE-SD) using polyvinylpyrrolidone K30 on osteogenic induction of MC3T3-E1 cells. METHODS CRE was pre-purified using a microwave assisted extraction couple with a Diaion® HP-20 column chromatography. The osteoblastic cell proliferation and differentiation potentials of CRE-SD in MC3T3-E1 cells were tested by cell viability, alkaline phosphatase (ALP) activity, and Alizarin red S activity assays. The mRNA expressions of osteoblast-specific genes and underline mechanisms were assessed by a real time PCR and western blot analysis. RESULTS CRE-SD 50 µg/mL increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts in both MC3T3-E1 cells and non-osteogenic mouse pluripotent cell line, C3H10T1/2, indicating the action of CRE-SD was not cell-type specific. Alizarin red S activity showed a significant amount of calcium deposition in cells treated with CRE-SD. CRE-SD also upregulated the mRNA expression levels of transcription factors that favor osteoblast differentiation including Bmp-2, Runx2 and Collagen 1a, in a dose dependent manner. Western blot analysis revealed that noggin attenuated CRE-SD-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt/β-catenin signaling pathway also annulled the influence of CRE-SD, indicating Wnt/β-catenin dependent activity. Inhibition of the different signaling pathways abolished the influence of CRE-SD on ALP activity, confirming that CRE-SD induced MC3T3-E1 cells into osteoblasts through Wnt/β-catenin and BMP signaling pathway. CONCLUSION These results collectively demonstrate that CRE-SD may be a potential therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai 90110, Thailand
| | - Nurul Syazwani
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Jakkapong Inchai
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai 90110, Thailand
| | - Amornkan Numit
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai 90110, Thailand
| | | | | | | |
Collapse
|
247
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
248
|
Quijia CR, Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Res 2021; 36:147-163. [PMID: 34559416 DOI: 10.1002/ptr.7291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.
Collapse
Affiliation(s)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
249
|
Bormann M, Alt M, Schipper L, van de Sand L, Le-Trilling VTK, Rink L, Heinen N, Madel RJ, Otte M, Wuensch K, Heilingloh CS, Mueller T, Dittmer U, Elsner C, Pfaender S, Trilling M, Witzke O, Krawczyk A. Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro. Viruses 2021; 13:1914. [PMID: 34696344 PMCID: PMC8537626 DOI: 10.3390/v13101914] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). The availability of effective and well-tolerated antiviral drugs for the treatment of COVID-19 patients is still very limited. Traditional herbal medicines elicit antiviral activity against various viruses and might therefore represent a promising option for the complementary treatment of COVID-19 patients. The application of turmeric root in herbal medicine has a very long history. Its bioactive ingredient curcumin shows a broad-spectrum antimicrobial activity. In the present study, we investigated the antiviral activity of aqueous turmeric root extract, the dissolved content of a curcumin-containing nutritional supplement capsule, and pure curcumin against SARS-CoV-2. Turmeric root extract, dissolved turmeric capsule content, and pure curcumin effectively neutralized SARS-CoV-2 at subtoxic concentrations in Vero E6 and human Calu-3 cells. Furthermore, curcumin treatment significantly reduced SARS-CoV-2 RNA levels in cell culture supernatants. Our data uncover curcumin as a promising compound for complementary COVID-19 treatment. Curcumin concentrations contained in turmeric root or capsules used as nutritional supplements completely neutralized SARS-CoV-2 in vitro. Our data argue in favor of appropriate and carefully monitored clinical studies that vigorously test the effectiveness of complementary treatment of COVID-19 patients with curcumin-containing products.
Collapse
Affiliation(s)
- Maren Bormann
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Leonie Schipper
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Lukas van de Sand
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (V.T.K.L.-T.); (L.R.); (U.D.); (C.E.); (M.T.)
| | - Lydia Rink
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (V.T.K.L.-T.); (L.R.); (U.D.); (C.E.); (M.T.)
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, 44801 Bochum, Germany; (N.H.); (S.P.)
| | - Rabea Julia Madel
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Mona Otte
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Korbinian Wuensch
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Christiane Silke Heilingloh
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Thorsten Mueller
- Department of Molecular Biochemistry, Cell Signaling, Ruhr-University Bochum, 44801 Bochum, Germany;
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336 Munich, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (V.T.K.L.-T.); (L.R.); (U.D.); (C.E.); (M.T.)
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (V.T.K.L.-T.); (L.R.); (U.D.); (C.E.); (M.T.)
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, 44801 Bochum, Germany; (N.H.); (S.P.)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (V.T.K.L.-T.); (L.R.); (U.D.); (C.E.); (M.T.)
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.B.); (M.A.); (L.S.); (L.v.d.S.); (R.J.M.); (M.O.); (K.W.); (C.S.H.); (O.W.)
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (V.T.K.L.-T.); (L.R.); (U.D.); (C.E.); (M.T.)
| |
Collapse
|
250
|
Zhao G, Shi Y, Gong C, Liu T, Nan W, Ma L, Wu Z, Da C, Zhou K, Zhang H. Curcumin Exerts Antinociceptive Effects in Cancer-Induced Bone Pain via an Endogenous Opioid Mechanism. Front Neurosci 2021; 15:696861. [PMID: 34539332 PMCID: PMC8446608 DOI: 10.3389/fnins.2021.696861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer pain is one of the main complications in advanced cancer patients, and its management is still challenging. Therefore, there is an urgent need to develop novel pharmacotherapy for cancer pain. Several natural products have attracted the interest of researchers. In previous studies, curcumin has proved to exhibit antitumor, antiviral, antioxidant, anti-inflammatory, and analgesic effects. However, the analgesic mechanism of curcumin has not been elucidated. Thus, in this study, we aimed to elucidate the antinociceptive potency and analgesic mechanism of curcumin in cancer-induced bone pain. Our results showed that consecutive curcumin treatment (30, 60, 120 mg/kg, i.p., twice daily for 11 days) produced significant analgesic activity, but had no effect on the progress of the bone cancer pain. Notably, pretreatment with naloxone, a non-selective opioid receptor antagonist, markedly reversed the antinociceptive effect induced by curcumin. Moreover, in primary cultured rat dorsal root ganglion (DRG) neurons, curcumin significantly up-regulated the expression of proopiomelanocortin (Pomc) and promoted the release of β-endorphin and enkephalin. Furthermore, pretreatment with the antiserum of β-endorphin or enkephalin markedly attenuated curcumin-induced analgesia in cancer-induced bone pain. Our present study, for the first time, showed that curcumin attenuates cancer-induced bone pain. The results also suggested that stimulation of expression of DRG neurons β-endorphin and enkephalin mediates the antinociceptive effect of curcumin in pain hypersensitivity conditions.
Collapse
Affiliation(s)
- Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongqiang Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chaoyang Gong
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Taicong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Wei Nan
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chaoming Da
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Kaisheng Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|