201
|
Siegert S, Bahn E, Kramer ML, Schulz-Schaeffer WJ, Hewett JW, Breakefield XO, Hedreen JC, Rostasy KM. TorsinA expression is detectable in human infants as young as 4 weeks old. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:19-26. [PMID: 15939081 DOI: 10.1016/j.devbrainres.2005.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/23/2005] [Accepted: 02/28/2005] [Indexed: 11/22/2022]
Abstract
Familial, early onset, generalized torsion dystonia is the most common and severe primary dystonia. The majority of cases are caused by a 3-bp deletion (GAG) in the coding region of the DYT1 (TOR1A) gene. The cellular and regional distribution of torsinA protein and its message has been described previously in several regions of normal adult human and rodent brain. This study examines the expression of torsinA in the developing human brain of fetuses, infants and children up to 7 years of age in four selected brain regions. Expression of torsinA protein was detectable beginning at 4 to 8 weeks of age postnatally in the cerebellum (Purkinje cells), substantia nigra (dopaminergic neurons), hippocampus and basal ganglia. Prominent torsinA immunoreactivity was not seen before 6 weeks of age postnatally, a period associated with synaptic remodeling, process elimination and the beginning of myelination. Our results indicate that torsinA protein expression is temporally and spatially regulated and is present in all brain regions studied by the age of 2 months on into adulthood.
Collapse
Affiliation(s)
- S Siegert
- Department of Pediatrics and Pediatric Neurology, University of Goettingen, Robert-Koch-Str. 40, 37073 Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Goodchild RE, Dauer WT. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. ACTA ACUST UNITED AC 2005; 168:855-62. [PMID: 15767459 PMCID: PMC2171781 DOI: 10.1083/jcb.200411026] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A glutamic acid deletion (ΔE) in the AAA+ protein torsinA causes DYT1 dystonia. Although the majority of torsinA resides within the endoplasmic reticulum (ER), torsinA binds a substrate in the lumen of the nuclear envelope (NE), and the ΔE mutation enhances this interaction. Using a novel cell-based screen, we identify lamina-associated polypeptide 1 (LAP1) as a torsinA-interacting protein. LAP1 may be a torsinA substrate, as expression of the isolated lumenal domain of LAP1 inhibits the NE localization of “substrate trap” EQ-torsinA and EQ-torsinA coimmunoprecipitates with LAP1 to a greater extent than wild-type torsinA. Furthermore, we identify a novel transmembrane protein, lumenal domain like LAP1 (LULL1), which also appears to interact with torsinA. Interestingly, LULL1 resides in the main ER. Consequently, torsinA interacts directly or indirectly with a novel class of transmembrane proteins that are localized in different subdomains of the ER system, either or both of which may play a role in the pathogenesis of DYT1 dystonia.
Collapse
Affiliation(s)
- Rose E Goodchild
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
203
|
Worman HJ, Courvalin JC. Nuclear envelope, nuclear lamina, and inherited disease. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:231-79. [PMID: 16164970 DOI: 10.1016/s0074-7696(05)46006-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. In recent years, mutations in nuclear-envelope proteins have been shown to cause a surprisingly wide array of inherited diseases. While the mutant proteins are generally expressed in most or all differentiated somatic cells, many mutations cause fairly tissue-specific disorders. Perhaps the most dramatic case is that of mutations in A-type lamins, intermediate filament proteins associated with the inner nuclear membrane. Different mutations in the same lamin proteins have been shown to cause striated muscle diseases, partial lipodystrophy syndromes, a peripheral neuropathy, and disorders with features of severe premature aging. In this review, we summarize fundamental aspects of nuclear envelope structure and function, the inherited diseases caused by mutations in lamins and other nuclear envelope proteins, and possible pathogenic mechanisms.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine and Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
204
|
Jinnah HA, Hess EJ, Ledoux MS, Sharma N, Baxter MG, Delong MR. Rodent models for dystonia research: Characteristics, evaluation, and utility. Mov Disord 2005; 20:283-92. [PMID: 15641011 DOI: 10.1002/mds.20364] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A large number of different genetic and acquired disorders of the nervous system may be associated with dystonia. To elucidate its pathogenesis and to facilitate the discovery of potential novel treatments, there has been a growing interest in the development of animal models and particularly rodent models. Multiple animal models for dystonia have now been developed and partially characterized. The results obtained from studies of these models often lead in very different directions, in part because the different models target different aspects of a very heterogeneous disorder. A recent workshop addressed four main issues affecting those who conduct dystonia research with animal models, including the different ways in which dystonic disorders can be modeled in rodents, key features that constitute a useful model, methods used in the evaluation of these models, and recommendations for future research. This review summarizes the main outcomes of this conference. 2005 Movement Disorder Society.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | |
Collapse
|
205
|
Bragg DC, Kaufman CA, Kock N, Breakefield XO. Inhibition of N-linked glycosylation prevents inclusion formation by the dystonia-related mutant form of torsinA. Mol Cell Neurosci 2004; 27:417-26. [PMID: 15555920 DOI: 10.1016/j.mcn.2004.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 07/15/2004] [Accepted: 07/16/2004] [Indexed: 11/26/2022] Open
Abstract
Most cases of early-onset torsion dystonia are associated with a mutation in the DYT1 gene that results in the loss of a glutamic acid residue in the carboxy terminus of the encoded protein, torsinA. When overexpressed in cultured cells, wild-type torsinA distributes diffusely throughout the endoplasmic reticulum (ER), while the dystonia-related mutant, torsinADeltaE, accumulates within multilamellar membrane inclusions. Here we show that inclusion formation requires the addition of an N-linked oligosaccharide to one of two asparagine residues within the ATP-binding domain of the mutant protein. In the absence of this modification, overexpressed torsinADeltaE was localized diffusely throughout the cell in a reticular pattern resembling that of wild-type torsinA. In contrast, the localization of wild-type torsinA did not appear to vary with its glycosylation state. These results thus indicate that torsinADeltaE must achieve a specific conformation to induce formation of intracellular membrane inclusions.
Collapse
Affiliation(s)
- D Cristopher Bragg
- Departments of Neurology and Radiology Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
206
|
Shashidharan P, Sandu D, Potla U, Armata IA, Walker RH, McNaught KS, Weisz D, Sreenath T, Brin MF, Olanow CW. Transgenic mouse model of early-onset DYT1 dystonia. Hum Mol Genet 2004; 14:125-33. [PMID: 15548549 DOI: 10.1093/hmg/ddi012] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Early-onset dystonia is an autosomal dominant movement disorder associated with deletion of a glutamic acid residue in torsinA. We generated four independent lines of transgenic mice by overexpressing human DeltaE-torsinA using a neuron specific enolase promoter. The transgenic mice developed abnormal involuntary movements with dystonic-appearing, self-clasping of limbs, as early as 3 weeks after birth. Animals also showed hyperkinesia and rapid bi-directional circling. Approximately 40% of transgenic mice from each line demonstrated these severe behavioral abnormalities. Neurochemical analyses revealed decreases in striatal dopamine in affected transgenic mice, although levels were increased in those that had no behavioral changes. Immunohistochemistry demonstrated perinuclear inclusions and aggregates that stained positively for ubiquitin, torsinA and lamin, a marker of the nuclear envelope. Inclusions were detected in neurons of the pedunculopontine nucleus and in other brain stem regions in a pattern similar to what has been described in DYT1 patients. This transgenic mouse model demonstrates behavioral and pathologic features similar to patients with early-onset dystonia and may help to better understand the pathophysiology of this disorder and to develop more effective therapies.
Collapse
Affiliation(s)
- P Shashidharan
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Xiao J, Gong S, Zhao Y, LeDoux MS. Developmental expression of rat torsinA transcript and protein. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:47-60. [PMID: 15283994 DOI: 10.1016/j.devbrainres.2004.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2004] [Indexed: 11/19/2022]
Abstract
A GAG deletion in the gene (TOR1A) for torsinA is associated with childhood-onset generalized dystonia (DYT1). Environmental factors may contribute to development of the phenotype since mutations in TOR1A are clinically penetrant in less than 40% of cases. Median age of onset is 10 and appearance of dystonia after 28 is rare. As a step towards understanding the temporal window of DYT1 disease penetrance, we have examined torsinA transcript and protein expression in rats from the embryonic period through adulthood. With relative quantitative multiplex real-time RT-PCR, we detected torsinA transcript in both neural (cerebellar cortex, striatum, cerebral cortex, thalamus and hippocampus) and non-neural (liver, kidney and heart) tissues at each developmental time point tested (embryonic day 20 [E20], postnatal day 1 [P1], P7, P14, P36, 6 months, 1.5 years). Levels of torsinA transcript were highest at E20 or P1 in all tissues examined except for the cerebellum where transcript levels peaked at P14. Early postnatal levels of torsinA transcript were over three times higher than those seen in adult rats. With quantitative radioactive in situ hybridization, torsinA transcript was widely distributed in brain at all ages with levels peaking at P14 in both cerebellum and striatum. TorsinA-immunoreactivity (IR) was present in neurons throughout the brain. TorsinA-IR was detected in perikarya, dendrites and axons but not nuclei. At P14, prominent expression of torsinA was noted in both striatal cholinergic interneurons and cerebellar Purkinje cells. Our results suggest that torsinA may contribute to postnatal maturational events in the brain such as dendritic arborization and synaptogenesis. Furthermore, the time course of torsinA expression in discrete components of motor networks is compatible with the temporal window of clinical penetrance in DYT1 mutation carriers.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
208
|
Gerace L. TorsinA and torsion dystonia: Unraveling the architecture of the nuclear envelope. Proc Natl Acad Sci U S A 2004; 101:8839-40. [PMID: 15187229 PMCID: PMC428431 DOI: 10.1073/pnas.0402441101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Larry Gerace
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
209
|
Gonzalez-Alegre P, Paulson HL. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 2004; 24:2593-601. [PMID: 15028751 PMCID: PMC6729521 DOI: 10.1523/jneurosci.4461-03.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Torsion dystonia-1 (DYT1) dystonia, the most common inherited form of dystonia, is caused by a three base pair deletion that eliminates a single amino acid from the disease protein, torsinA. TorsinA is an "AAA" protein thought to reside in the endoplasmic reticulum (ER), yet both its cellular function and the basis for neuronal dysfunction in DYT1 remain unknown. A clue to disease pathogenesis is the fact that mutant, but not wild-type, torsinA forms membranous inclusions in cell culture. To explore the pathobiology of DYT1 dystonia, we generated PC12 neural cell lines that inducibly express wild-type or mutant torsinA. Although in this model torsinA displays some properties consistent with ER localization, mutant torsinA also accumulates in the nuclear envelope (NE), a structure contiguous with cytoplasmic ER. Consistent with this, membranous inclusions formed by mutant torsinA are shown to derive not from the ER, as thought previously, but from the NE. We demonstrate further that torsinA forms different disulfide-linked complexes that may be linked functionally to subcellular localization in the NE versus cytoplasmic ER. Despite mutant TA accumulation in NE structures, nucleocytoplasmic transport of a reporter protein was unaffected. These findings, together with parallel studies failing to demonstrate perturbation of ER function, implicate the NE as a primary site of dysfunction in DYT1. DYT1 dystonia can be added to the growing list of inherited neurological disorders involving the NE.
Collapse
Affiliation(s)
- Pedro Gonzalez-Alegre
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
210
|
Naismith TV, Heuser JE, Breakefield XO, Hanson PI. TorsinA in the nuclear envelope. Proc Natl Acad Sci U S A 2004; 101:7612-7. [PMID: 15136718 PMCID: PMC419654 DOI: 10.1073/pnas.0308760101] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Accepted: 04/09/2004] [Indexed: 11/18/2022] Open
Abstract
Early-onset torsion dystonia, a CNS-based movement disorder, is usually associated with a single amino acid deletion (Delta E302/303) in the protein torsinA. TorsinA is an AAA+ ATPase in the endoplasmic reticulum, but what it does is unknown. Here, we use torsinA mutants with defects in ATP hydrolysis (E171Q, ATP-bound) and ATP binding (K108A, ATP-free) to probe torsinA's normal cellular function. Surprisingly, ATP-bound torsinA is recruited to the nuclear envelope (NE) of transfected cells, where it alters connections between inner and outer nuclear membranes. In contrast, ATP-free torsinA is diffusely distributed throughout the endoplasmic reticulum and has no effect on the NE. Among AAA+ ATPases, affinity for substrates is high in the ATP-bound and low in the ATP-free state, leading us to propose that component(s) of the NE may be substrates for torsinA. We also find that the disease-promoting Delta E302/303 mutant is in the NE, and that this relocalization, as well as the mutant's previously described ability to induce membranous inclusions, is eliminated by the K108A ATP-binding mutation. These results suggest that changes in interactions involving torsinA in the NE could be important for the pathogenesis of dystonia and point to torsinA and related proteins as a class of ATPases that may operate in the NE.
Collapse
Affiliation(s)
- Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
211
|
Kamm C, Boston H, Hewett J, Wilbur J, Corey DP, Hanson PI, Ramesh V, Breakefield XO. The early onset dystonia protein torsinA interacts with kinesin light chain 1. J Biol Chem 2004; 279:19882-92. [PMID: 14970196 DOI: 10.1074/jbc.m401332200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early onset dystonia is a movement disorder caused by loss of a glutamic acid residue (Glu(302/303)) in the carboxyl-terminal portion of the AAA+ protein, torsinA. We identified the light chain subunit (KLC1) of kinesin-I as an interacting partner for torsinA, with binding occurring between the tetratricopeptide repeat domain of KLC1 and the carboxyl-terminal region of torsinA. Coimmunoprecipitation analysis demonstrated that wild-type torsinA and kinesin-I form a complex in vivo. In cultured cortical neurons, both proteins co-localized along processes with enrichment at growth cones. Wild-type torsinA expressed in CAD cells co-localized with endogenous KLC1 at the distal end of processes, whereas mutant torsinA remained confined to the cell body. Subcellular fractionation of adult rat brain revealed torsinA and KLC associated with cofractionating membranes, and both proteins were co-immunoprecipitated after cross-linking cytoplasmically oriented proteins on isolated rat brain membranes. These studies suggest that wild-type torsinA undergoes anterograde transport along microtubules mediated by kinesin and may act as a molecular chaperone regulating kinesin activity and/or cargo binding.
Collapse
Affiliation(s)
- Christoph Kamm
- Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
212
|
McNaught KSP, Kapustin A, Jackson T, Jengelley TA, Jnobaptiste R, Shashidharan P, Perl DP, Pasik P, Olanow CW. Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol 2004; 56:540-7. [PMID: 15455404 DOI: 10.1002/ana.20225] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
DYT1 dystonia is a severe form of young-onset dystonia caused by a mutation in the gene that encodes for the protein torsinA, which is thought to play a role in protein transport and degradation. We describe, for the first time to our knowledge, perinuclear inclusion bodies in the midbrain reticular formation and periaqueductal gray in four clinically documented and genetically confirmed DYT1 patients but not in controls. The inclusions were located within cholinergic and other neurons in the pedunculopontine nucleus, cuneiform nucleus, and griseum centrale mesencephali and stained positively for ubiquitin, torsinA, and the nuclear envelope protein lamin A/C. No evidence of inclusion body formation was detected in the substantia nigra pars compacta, striatum, hippocampus, or selected regions of the cerebral cortex. We also noted tau/ubiquitin-immunoreactive aggregates in pigmented neurons of the substantia nigra pars compacta and locus coeruleus in all four DYT1 dystonia cases, but not in controls. This study supports the notion that DYT1 dystonia is associated with impaired protein handling and the nuclear envelope. The role of the pedunculopontine and cuneiform nuclei, and related brainstem brainstem structures, in mediating motor activity and controlling muscle tone suggests that alterations in these structures could underlie the pathophysiology of DYT1 dystonia [corrected]
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Neuropathology Division, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|