201
|
Trypanosoma brucei AP endonuclease 1 has a major role in the repair of abasic sites and protection against DNA-damaging agents. DNA Repair (Amst) 2012; 11:53-64. [DOI: 10.1016/j.dnarep.2011.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 11/20/2022]
|
202
|
Yamamoto R, Yamamoto M, Kusaka H, Masatsugu H, Matsuyama S, Tajima T, Ide H, Kubo K. NEIL1 mRNA splicing variants are expressed in normal mouse organs. JOURNAL OF RADIATION RESEARCH 2012; 53:234-241. [PMID: 22510596 DOI: 10.1269/jrr.11029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Oxidized pyrimidines are mainly repaired by base excision repair, which is initiated by damage-specific DNA glycosylases. NEIL1, the mammalian homolog of Escherichia coli endonuclease VIII and a major DNA glycosylase, initiates repair of oxidized pyrimidines. Here, we investigated the expression of two putative variant mouse NEIL1 (mNEIL1) mRNAs--variant 1 ("Neil1 protein" mRNA; BC043297 in the NCBI database) and variant 2 ("unnamed protein" mRNA; AK040802 in the NCBI database)--in normal mouse organs. Reverse transcription-PCR showed that both mRNAs were expressed in total RNA samples from 9 organs. Immunoblot analysis of a nuclear extract from normal mouse liver revealed three bands corresponding to full-length mNEIL1 protein and the two predicted variant proteins. However, neither variant protein, which included an N-terminal enzymatic activity domain deduced from the mRNA variants, were enzymatically active under multiple reaction conditions when expressed as his-tagged recombinant proteins. Nevertheless, recombinant variant 1 protein influenced mNEIL1 activity, while recombinant variant 2 protein had no influence. These results suggest that mNEIL1 mRNA variants are expressed in a variety of organs in normal mice and that variant 1 protein may regulate mNEIL1 activity.
Collapse
Affiliation(s)
- Ryohei Yamamoto
- Department of Advanced Pathobiology, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
203
|
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:71-91. [PMID: 22749143 DOI: 10.1016/b978-0-12-387665-2.00004-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions.
Collapse
|
204
|
Hegde ML, Izumi T, Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:123-53. [PMID: 22749145 DOI: 10.1016/b978-0-12-387665-2.00006-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
205
|
Swartzlander DB, Bauer NC, Corbett AH, Doetsch PW. Regulation of base excision repair in eukaryotes by dynamic localization strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:93-121. [PMID: 22749144 DOI: 10.1016/b978-0-12-387665-2.00005-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter discusses base excision repair (BER) and the known mechanisms defined thus far regulating BER in eukaryotes. Unlike the situation with nucleotide excision repair and double-strand break repair, little is known about how BER is regulated to allow for efficient and accurate repair of many types of DNA base damage in both nuclear and mitochondrial genomes. Regulation of BER has been proposed to occur at multiple, different levels including transcription, posttranslational modification, protein-protein interactions, and protein localization; however, none of these regulatory mechanisms characterized thus far affect a large spectrum of BER proteins. This chapter discusses a recently discovered mode of BER regulation defined in budding yeast cells that involves mobilization of DNA repair proteins to DNA-containing organelles in response to genotoxic stress.
Collapse
Affiliation(s)
- Daniel B Swartzlander
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
206
|
Imamura K, Averill A, Wallace SS, Doublié S. Structural characterization of viral ortholog of human DNA glycosylase NEIL1 bound to thymine glycol or 5-hydroxyuracil-containing DNA. J Biol Chem 2011; 287:4288-98. [PMID: 22170059 DOI: 10.1074/jbc.m111.315309] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine glycol (Tg) and 5-hydroxyuracil (5-OHU) are common oxidized products of pyrimidines, which are recognized and cleaved by two DNA glycosylases of the base excision repair pathway, endonuclease III (Nth) and endonuclease VIII (Nei). Although there are several structures of Nei enzymes unliganded or bound to an abasic (apurinic or apyrimidinic) site, until now there was no structure of an Nei bound to a DNA lesion. Mimivirus Nei1 (MvNei1) is an ortholog of human NEIL1, which was previously crystallized bound to DNA containing an apurinic site (Imamura, K., Wallace, S. S., and Doublié, S. (2009) J. Biol. Chem. 284, 26174-26183). Here, we present two crystal structures of MvNei1 bound to two oxidized pyrimidines, Tg and 5-OHU. Both lesions are flipped out from the DNA helix. Tg is in the anti conformation, whereas 5-OHU adopts both anti and syn conformations in the glycosylase active site. Only two protein side chains (Glu-6 and Tyr-253) are within hydrogen-bonding contact with either damaged base, and mutating these residues did not markedly affect the glycosylase activity. This finding suggests that lesion recognition by Nei occurs before the damaged base flips into the glycosylase active site.
Collapse
Affiliation(s)
- Kayo Imamura
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
207
|
DNA glycosylases: in DNA repair and beyond. Chromosoma 2011; 121:1-20. [PMID: 22048164 PMCID: PMC3260424 DOI: 10.1007/s00412-011-0347-4] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
Abstract
The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity.
Collapse
|
208
|
Hegde ML, Hegde PM, Rao KS, Mitra S. Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J Alzheimers Dis 2011; 24 Suppl 2:183-98. [PMID: 21441656 DOI: 10.3233/jad-2011-110281] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neurons in the central nervous system (CNS) with high O2 consumption and prolonged life span are chronically exposed to high levels of reactive oxygen species (ROS). Accumulation of ROS-induced genome damage in the form of oxidized bases and single-strand breaks (SSBs) as well as their defective or reduced repair in the brain has been implicated in the etiology of various neurological disorders including Alzheimer's/Parkinson's diseases (AD/PD). Although inactivating mutations in some DNA repair genes have been linked to hereditary neurodegenerative diseases, the underlying mechanisms of repair deficiencies for the sporadic diseases is not understood. The ROS-induced DNA damage is predominantly repaired via the highly conserved and regulated base excision/SSB repair (BER/SSBR) pathway. We recently made an interesting discovery that the transition metals iron and copper, which accumulate excessively in the brains of AD, PD, and other neurodegenerative diseases, act as a 'double-edged sword' by inducing genotoxic ROS and inhibiting DNA damage repair at the same time. These metals inhibit the base excision activity of NEIL family DNA glycosylases by oxidizing them, changing their structure, and inhibiting their binding to downstream repair proteins. Metal chelators and reducing agents partially reverse the inhibition, while curcumin with both chelating and reducing activities reverses the inhibition nearly completely. In this review, we have discussed the possible etiological linkage of BER/SSBR defects to neurodegenerative diseases and the therapeutic potential of metal chelators in restoring DNA repair capacity.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA.
| | | | | | | |
Collapse
|
209
|
Kirkali G, Keles D, Canda AE, Terzi C, Reddy PT, Jaruga P, Dizdaroglu M, Oktay G. Evidence for upregulated repair of oxidatively induced DNA damage in human colorectal cancer. DNA Repair (Amst) 2011; 10:1114-20. [PMID: 21924963 DOI: 10.1016/j.dnarep.2011.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/01/2011] [Accepted: 08/17/2011] [Indexed: 02/07/2023]
Abstract
Carcinogenesis may involve overproduction of oxygen-derived species including free radicals, which are capable of damaging DNA and other biomolecules in vivo. Increased DNA damage contributes to genetic instability and promote the development of malignancy. We hypothesized that the repair of oxidatively induced DNA base damage may be modulated in colorectal malignant tumors, resulting in lower levels of DNA base lesions than in surrounding pathologically normal tissues. To test this hypothesis, we investigated oxidatively induced DNA damage in cancerous tissues and their surrounding normal tissues of patients with colorectal cancer. The levels of oxidatively induced DNA lesions such as 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine and (5'S)-8,5'-cyclo-2'-deoxyadenosine were measured by gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution tandem mass spectrometry. We found that the levels of these DNA lesions were significantly lower in cancerous colorectal tissues than those in surrounding non-cancerous tissues. In addition, the level of DNA lesions varied between colon and rectum tissues, being lower in the former than in the latter. The results strongly suggest upregulation of DNA repair in malignant colorectal tumors that may contribute to the resistance to therapeutic agents affecting the disease outcome and patient survival. The type of DNA base lesions identified in this work suggests the upregulation of both base excision and nucleotide excision pathways. Development of DNA repair inhibitors targeting both repair pathways may be considered for selective killing of malignant tumors in colorectal cancer.
Collapse
Affiliation(s)
- Güldal Kirkali
- Department of Biochemistry, School of Medicine, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
211
|
Castillo P, Bogliolo M, Surralles J. Coordinated action of the Fanconi anemia and ataxia telangiectasia pathways in response to oxidative damage. DNA Repair (Amst) 2011; 10:518-25. [DOI: 10.1016/j.dnarep.2011.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/15/2011] [Accepted: 02/27/2011] [Indexed: 11/25/2022]
|
212
|
Dalhus B, Forsbring M, Helle IH, Vik ES, Forstrøm RJ, Backe PH, Alseth I, Bjørås M. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Structure 2011; 19:117-27. [PMID: 21220122 DOI: 10.1016/j.str.2010.09.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/31/2010] [Accepted: 09/30/2010] [Indexed: 11/16/2022]
Abstract
7,8-Dihydro-8-oxoguanine (8oxoG) is a major mutagenic base lesion formed when reactive oxygen species react with guanine in DNA. The human 8oxoG DNA glycosylase (hOgg1) recognizes and initiates repair of 8oxoG. hOgg1 is acknowledged as a bifunctional DNA glycosylase catalyzing removal of the damaged base followed by cleavage of the backbone of the intermediate abasic DNA (AP lyase/β-elimination). When acting on 8oxoG-containing DNA, these two steps in the hOgg1 catalysis are considered coupled, with Lys249 implicated as a key residue. However, several lines of evidence point to a concurrent and independent monofunctional hydrolysis of the N-glycosylic bond being the in vivo relevant reaction mode of hOgg1. Here, we present biochemical and structural evidence for the monofunctional mode of hOgg1 by design of separation-of-function mutants. Asp268 is identified as the catalytic residue, while Lys249 appears critical for the specific recognition and final alignment of 8oxoG during the hydrolysis reaction.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet, Oslo University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Sampath H, Batra AK, Vartanian V, Carmical JR, Prusak D, King IB, Lowell B, Earley LF, Wood TG, Marks DL, McCullough AK, R Stephen L. Variable penetrance of metabolic phenotypes and development of high-fat diet-induced adiposity in NEIL1-deficient mice. Am J Physiol Endocrinol Metab 2011; 300:E724-34. [PMID: 21285402 PMCID: PMC3074946 DOI: 10.1152/ajpendo.00387.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exposure to chronic and acute oxidative stress is correlated with many human diseases, including, but not limited to, cancer, heart disease, diabetes, and obesity. In addition to cellular lipids and proteins, cellular oxidative stress can result in damage to DNA bases, especially in mitochondrial DNA. We previously described the development of spontaneous late-onset obesity, hepatic steatosis, hyperinsulinemia, and hyperleptinemia in mice that are deficient in the DNA glycosylase nei-like 1 (NEIL1), which initiates base excision repair of several oxidatively damaged bases. In the current study, we report that exposure to a chronic oxidative stress in the form of a high-fat diet greatly accelerates the development of obesity in neil1(-/-) mice. Following a 5-wk high-fat diet challenge, neil1(-/-) mice gained significantly more body weight than neil1(+/+) littermates and had increased body fat accumulation and moderate to severe hepatic steatosis. Analysis of oxygen consumption by indirect calorimetry indicated a modest reduction in total oxygen consumption in neil1(-/-) mice that was abolished upon correction for lean body mass. Additionally, hepatic expression of several inflammatory genes was significantly upregulated in neil1(-/-) mice following high-fat diet challenge compared with chow-fed or neil1(+/+) counterparts. A long-term high-fat diet also induced glucose intolerance as well as a significant reduction in mitochondrial DNA and protein content in neil1(-/-) mice. Collectively, these data indicate that NEIL1 deficiency results in an increased susceptibility to obesity and related complications potentially by lowering the threshold for tolerance of cellular oxidative stress in neil1(-/-) mice.
Collapse
Affiliation(s)
- Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Zhang H, Xie C, Spencer HJ, Zuo C, Higuchi M, Ranganathan G, Kern PA, Chou MW, Huang Q, Szczesny B, Mitra S, Watson AJ, Margison GP, Fan CY. Obesity and hepatosteatosis in mice with enhanced oxidative DNA damage processing in mitochondria. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1715-27. [PMID: 21435453 PMCID: PMC3078437 DOI: 10.1016/j.ajpath.2010.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 11/19/2010] [Accepted: 12/30/2010] [Indexed: 12/21/2022]
Abstract
Mitochondria play critical roles in oxidative phosphorylation and energy metabolism. Increasing evidence supports that mitochondrial DNA (mtDNA) damage and dysfunction play vital roles in the development of many mitochondria-related diseases, such as obesity, diabetes mellitus, infertility, neurodegenerative disorders, and malignant tumors in humans. Human 8-oxoguanine-DNA glycosylase 1 (hOGG1) transgenic (TG) mice were produced by nuclear microinjection. Transgene integration was analyzed by PCR. Transgene expression was measured by RT-PCR and Western blot analysis. Mitochondrial DNA damage was analyzed by mutational analyses and measurement of mtDNA copy number. Total fat content was measured by a whole-body scan using dual-energy X-ray absorptiometry. The hOGG1 overexpression in mitochondria increased the abundance of intracellular free radicals and major deletions in mtDNA. Obesity in hOGG1 TG mice resulted from increased fat content in tissues, produced by hyperphagia. The molecular mechanisms of obesity involved overexpression of genes in the central orexigenic (appetite-stimulating) pathway, peripheral lipogenesis, down-regulation of genes in the central anorexigenic (appetite-suppressing) pathway, peripheral adaptive thermogenesis, and fatty acid oxidation. Diffuse hepatosteatosis, female infertility, and increased frequency of malignant lymphoma were also seen in these hOGG1 TG mice. High levels of hOGG1 expression in mitochondria, resulting in enhanced oxidative DNA damage processing, may be an important factor in human metabolic syndrome, infertility, and malignancy.
Collapse
Affiliation(s)
- Haihong Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Lukin M, Minetti CASA, Remeta DP, Attaluri S, Johnson F, Breslauer KJ, de Los Santos C. Novel post-synthetic generation, isomeric resolution, and characterization of Fapy-dG within oligodeoxynucleotides: differential anomeric impacts on DNA duplex properties. Nucleic Acids Res 2011; 39:5776-89. [PMID: 21415012 PMCID: PMC3141231 DOI: 10.1093/nar/gkr082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Accumulation of damaged guanine nucleobases within genomic DNA, including the imidazole ring opened N6-(2-Deoxy-α,β-D-erythro-pentafuranosyl)-2,6-diamino-4-hydroxy-5-formylamidopyrimidine (Fapy-dG), is associated with progression of age-related diseases and cancer. To evaluate the impact of this mutagenic lesion on DNA structure and energetics, we have developed a novel synthetic strategy to incorporate cognate Fapy-dG site-specifically within any oligodeoxynucleotide sequence. The scheme involves the synthesis of an oligonucleotide precursor containing a 5-nitropyrimidine moiety at the desired lesion site via standard solid-phase procedures. Following deprotection and isolation, the Fapy-dG lesion is generated by catalytic hydrogenation and subsequent formylation. NMR assignment of the Fapy-dG lesion (X) embedded within a TXT trimer reveals the presence of rotameric and anomeric species. The latter have been characterized by synthesizing the tridecamer oligodeoxynucleotide d(GCGTACXCATGCG) harboring Fapy-dG as the central residue and developing a protocol to resolve the isomeric components. Hybridization of the chromatographically isolated fractions with their complementary d(CGCATGCGTACGC) counterpart yields two Fapy-dG·C duplexes that are differentially destabilized relative to the canonical G·C parent. The resultant duplexes exhibit distinct thermal and thermodynamic profiles that are characteristic of α- and β-anomers, the former more destabilizing than the latter. These anomer-specific impacts are discussed in terms of differential repair enzyme recognition, processing and translesion synthesis.
Collapse
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Grin IR, Zharkov DO. Eukaryotic endonuclease VIII-Like proteins: New components of the base excision DNA repair system. BIOCHEMISTRY (MOSCOW) 2011; 76:80-93. [DOI: 10.1134/s000629791101010x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
217
|
Ma H, Wang J, Abdel-Rahman SZ, Hazra TK, Boor PJ, Khan MF. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity. Toxicol Appl Pharmacol 2011; 251:1-7. [PMID: 21145906 PMCID: PMC3045817 DOI: 10.1016/j.taap.2010.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 01/08/2023]
Abstract
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline-induced oxidative stress is associated with an induction of NEIL1/2. The increased NIEL-mediated BER activity is another indication of aniline-induced oxidative damage in the spleen and could constitute another important mechanism of removal of oxidative DNA lesions, especially in transcribed DNA following aniline insult.
Collapse
Affiliation(s)
- Huaxian Ma
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Sherif Z. Abdel-Rahman
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555
| | - Tapas K. Hazra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Paul J. Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
218
|
Gredilla R. DNA damage and base excision repair in mitochondria and their role in aging. J Aging Res 2010; 2011:257093. [PMID: 21234332 PMCID: PMC3018712 DOI: 10.4061/2011/257093] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/14/2010] [Indexed: 12/28/2022] Open
Abstract
During the last decades, our knowledge about the processes involved in the aging process has exponentially increased. However, further investigation will be still required to globally understand the complexity of aging. Aging is a multifactorial phenomenon characterized by increased susceptibility to cellular loss and functional decline, where mitochondrial DNA mutations and mitochondrial DNA damage response are thought to play important roles. Due to the proximity of mitochondrial DNA to the main sites of mitochondrial-free radical generation, oxidative stress is a major source of mitochondrial DNA mutations. Mitochondrial DNA repair mechanisms, in particular the base excision repair pathway, constitute an important mechanism for maintenance of mitochondrial DNA integrity. The results reviewed here support that mitochondrial DNA damage plays an important role in aging.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n. 28040 Madrid, Spain
| |
Collapse
|
219
|
Banerjee D, Mandal SM, Das A, Hegde ML, Das S, Bhakat KK, Boldogh I, Sarkar PS, Mitra S, Hazra TK. Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem 2010; 286:6006-16. [PMID: 21169365 DOI: 10.1074/jbc.m110.198796] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preferential repair of bulky DNA adducts from the transcribed genes via nucleotide excision repair is well characterized in mammalian cells. However, definitive evidence is lacking for similar repair of oxidized bases, the major endogenous DNA lesions. Here we show that the oxidized base-specific human DNA glycosylase NEIL2 associates with RNA polymerase II and the transcriptional regulator heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), both in vitro and in cells. NEIL2 immunocomplexes from cell extracts preferentially repaired the mutagenic cytosine oxidation product 5-hydroxyuracil in the transcribed strand. In a reconstituted system, we also observed NEIL2-initiated transcription-dependent base excision repair of 5-hydroxyuracil in the transcribed strand, with hnRNP-U playing a critical role. Chromatin immunoprecipitation/reimmunoprecipitation studies showed association of NEIL2, RNA polymerase II, and hnRNP-U on transcribed but not on transcriptionally silent genes. Furthermore, NEIL2-depleted cells accumulated more DNA damage in active than in silent genes. These results strongly support the preferential role of NEIL2 in repairing oxidized bases in the transcribed genes of mammalian cells.
Collapse
Affiliation(s)
- Dibyendu Banerjee
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Zhang X, Tachibana S, Wang H, Hisada M, Williams GM, Gao B, Sun Z. Interleukin-6 is an important mediator for mitochondrial DNA repair after alcoholic liver injury in mice. Hepatology 2010; 52:2137-47. [PMID: 20931558 PMCID: PMC2991528 DOI: 10.1002/hep.23909] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 07/31/2010] [Indexed: 01/01/2023]
Abstract
UNLABELLED We investigated the hypothesis that a prominent effect of chronic ethanol consumption is mitochondrial DNA (mtDNA) injury and compared this injury in IL-6 knockout (KO) and wild-type (WT) mice. Ethanol feeding for 4 weeks resulted in steatosis and oxidative mtDNA damage (8-OHdG) in both IL-6KO and WT mice. However, the WT mice were able to repair the injury by increased production of mtDNA repair enzymes (OGG-1, Neil 1) and check point (p21, p53) proteins and avoid the mtDNA mutations. By contrast the IL-6 KO mice were unable to repair mtDNA resulting in deletions and diminished transcription of the mtDNA encoded protein cytochrome c oxidase subunit-I (COI). The mitochondrial injury was reflected by decreased membrane potential, reduced levels of ATP, and apoptosis-inducing factor (AIF)-induced apoptosis. CONCLUSION IL-6 plays a critical role in allowing the liver to recover from significant mtDNA oxidation caused by alcohol. The data suggests that IL-6 activates mtDNA repair enzymes and induces cell cycle arrest allowing time for mtDNA repair.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shingo Tachibana
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Masayuki Hisada
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
221
|
RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci U S A 2010; 107:20715-9. [PMID: 21068368 DOI: 10.1073/pnas.1009231107] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Editing of the pre-mRNA for the DNA repair enzyme NEIL1 causes a lysine to arginine change in the lesion recognition loop of the protein. The two forms of NEIL1 are shown here to have distinct enzymatic properties. The edited form removes thymine glycol from duplex DNA 30 times more slowly than the form encoded in the genome, whereas editing enhances repair of the guanidinohydantoin lesion by NEIL1. In addition, we show that the NEIL1 recoding site is a preferred editing site for the RNA editing adenosine deaminase ADAR1. The edited adenosine resides in an A-C mismatch in a hairpin stem formed by pairing of exon 6 to the immediate upstream intron 5 sequence. As expected for an ADAR1 site, editing at this position is increased in human cells treated with interferon α. These results suggest a unique regulatory mechanism for DNA repair and extend our understanding of the impact of RNA editing.
Collapse
|
222
|
van Loon B, Markkanen E, Hübscher U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 2010; 9:604-16. [PMID: 20399712 DOI: 10.1016/j.dnarep.2010.03.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 12/20/2022]
Abstract
The maintenance of genetic stability is of crucial importance for any form of life. Prior to cell division in each mammalian cell, the process of DNA replication must faithfully duplicate the three billion bases with an absolute minimum of mistakes. Various environmental and endogenous agents, such as reactive oxygen species (ROS), can modify the structural properties of DNA bases and thus damage the DNA. Upon exposure of cells to oxidative stress, an often generated and highly mutagenic DNA damage is 7,8-dihydro-8-oxo-guanine (8-oxo-G). The estimated steady-state level of 8-oxo-G lesions is about 10(3) per cell/per day in normal tissues and up to 10(5) lesions per cell/per day in cancer tissues. The presence of 8-oxo-G on the replicating strand leads to frequent (10-75%) misincorporations of adenine opposite the lesion (formation of A:8-oxo-G mispairs), subsequently resulting in C:G to A:T transversion mutations. These mutations are among the most predominant somatic mutations in lung, breast, ovarian, gastric and colorectal cancers. Thus, in order to reduce the mutational burden of ROS, human cells have evolved base excision repair (BER) pathways ensuring (i) the correct and efficient repair of A:8-oxo-G mispairs and (ii) the removal of 8-oxo-G lesions from the genome. Very recently it was shown that MutY glycosylase homologue (MUTYH) and DNA polymerase lambda play a crucial role in the accurate repair of A:8-oxo-G mispairs. Here we review the importance of accurate BER of 8-oxo-G damage and its regulation in prevention of cancer.
Collapse
Affiliation(s)
- Barbara van Loon
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
223
|
Hegde ML, Hazra TK, Mitra S. Functions of disordered regions in mammalian early base excision repair proteins. Cell Mol Life Sci 2010; 67:3573-87. [PMID: 20714778 PMCID: PMC2996047 DOI: 10.1007/s00018-010-0485-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species, generated endogenously and induced as a toxic response, produce several dozen oxidized or modified bases and/or single-strand breaks in mammalian and other genomes. These lesions are predominantly repaired via the conserved base excision repair (BER) pathway. BER is initiated with excision of oxidized or modified bases by DNA glycosylases leading to formation of abasic (AP) site or strand break at the lesion site. Structural analysis by experimental and modeling approaches shows the presence of a disordered segment commonly localized at the N- or C-terminus as a characteristic signature of mammalian DNA glycosylases which is absent in their bacterial prototypes. Recent studies on unstructured regions in DNA metabolizing proteins have indicated their essential role in interaction with other proteins and target DNA recognition. In this review, we have discussed the unique presence of disordered segments in human DNA glycosylases, and AP endonuclease involved in the processing of glycosylase products, and their critical role in regulating repair functions. These disordered segments also include sites for posttranslational modifications and nuclear localization signal. The teleological basis for their structural flexibility is discussed.
Collapse
Affiliation(s)
- Muralidhar L. Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079 USA
| | - Tapas K. Hazra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079 USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-1079 USA
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079 USA
| |
Collapse
|
224
|
Abstract
Cells sustain endogenous DNA damage at rates greater than 20,000 DNA lesions per cell per day. These damages occur largely as a result of the inherently unstable nature of DNA and the presence of reactive oxygen species within cells. The base excision repair system removes the majority of DNA lesions resulting from endogenous DNA damage. There are several enzymes that function during base excision repair. Importantly, there are over 100 germline single nucleotide polymorphisms in genes that function in base excision repair and that result in non-synonymous amino acid substitutions in the proteins they encode. Somatic variants of these enzymes are also found in human tumors. Variant repair enzymes catalyze aberrant base excision repair. Aberrant base excision repair combined with continuous endogenous DNA damage over time has the potential to lead to a mutator phenotype. Mutations that arise in key growth control genes, imbalances in chromosome number, chromosomal translocations, and loss of heterozygosity can result in the initiation of human cancer or its progression.
Collapse
Affiliation(s)
- Antonia A. Nemec
- Departments of Therapeutic Radiology and Genetics, 15 York St, New Haven, CT 06520
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Joann B. Sweasy
- Departments of Therapeutic Radiology and Genetics, 15 York St, New Haven, CT 06520
| |
Collapse
|
225
|
Hegde ML, Hegde PM, Holthauzen LMF, Hazra TK, Rao KSJ, Mitra S. Specific Inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron: potential etiological linkage to neurodegenerative diseases. J Biol Chem 2010; 285:28812-25. [PMID: 20622253 PMCID: PMC2937909 DOI: 10.1074/jbc.m110.126664] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/06/2010] [Indexed: 11/06/2022] Open
Abstract
Dyshomeostasis of transition metals iron and copper as well as accumulation of oxidative DNA damage have been implicated in multitude of human neurodegenerative diseases, including Alzheimer disease and Parkinson disease. These metals oxidize DNA bases by generating reactive oxygen species. Most oxidized bases in mammalian genomes are repaired via the base excision repair pathway, initiated with one of four major DNA glycosylases: NTH1 or OGG1 (of the Nth family) or NEIL1 or NEIL2 (of the Nei family). Here we show that Fe(II/III) and Cu(II) at physiological levels bind to NEIL1 and NEIL2 to alter their secondary structure and strongly inhibit repair of mutagenic 5-hydroxyuracil, a common cytosine oxidation product, both in vitro and in neuroblastoma (SH-SY5Y) cell extract by affecting the base excision and AP lyase activities of NEILs. The specificity of iron/copper inhibition of NEILs is indicated by a lack of similar inhibition of OGG1, which also indicated that the inhibition is due to metal binding to the enzymes and not DNA. Fluorescence and surface plasmon resonance studies show submicromolar binding of copper/iron to NEILs but not OGG1. Furthermore, Fe(II) inhibits the interaction of NEIL1 with downstream base excision repair proteins DNA polymerase beta and flap endonuclease-1 by 4-6-fold. These results indicate that iron/copper overload in the neurodegenerative diseases could act as a double-edged sword by both increasing oxidative genome damage and preventing their repair. Interestingly, specific chelators, including the natural chemopreventive compound curcumin, reverse the inhibition of NEILs both in vitro and in cells, suggesting their therapeutic potential.
Collapse
Affiliation(s)
| | - Pavana M. Hegde
- From the Department of Biochemistry and Molecular Biology and
| | | | - Tapas K. Hazra
- From the Department of Biochemistry and Molecular Biology and
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - K. S. Jagannatha Rao
- the Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020, India
| | - Sankar Mitra
- From the Department of Biochemistry and Molecular Biology and
| |
Collapse
|
226
|
Radak Z, Boldogh I. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 2010; 49:587-96. [PMID: 20483371 PMCID: PMC2943936 DOI: 10.1016/j.freeradbiomed.2010.05.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 02/07/2023]
Abstract
The one-electron oxidation product of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG), is an abundant lesion in genomic, mitochondrial, and telomeric DNA and RNA. It is considered to be a marker of oxidative stress that preferentially accumulates at the 5' end of guanine strings in the DNA helix, in guanine quadruplexes, and in RNA molecules. 8-OxoG has a lower oxidation potential compared to guanine; thus it is susceptible to oxidation/reduction and, along with its redox products, is traditionally considered to be a major mutagenic DNA base lesion. It does not change the architecture of the DNA double helix and it is specifically recognized and excised by 8-oxoguanine DNA glycosylase (OGG1) during the DNA base excision repair pathway. OGG1 null animals accumulate excess levels of 8-oxoG in their genome, yet they do not have shorter life span nor do they exhibit severe pathological symptoms including tumor formation. In fact they are increasingly resistant to inflammation. Here we address the rarely considered significance of 8-oxoG, such as its optimal levels in DNA and RNA under a given condition, essentiality for normal cellular physiology, evolutionary role, and ability to soften the effects of oxidative stress in DNA, and the harmful consequences of its repair, as well as its importance in transcriptional initiation and chromatin relaxation.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
227
|
Macé-Aimé G, Couvé S, Khassenov B, Rosselli F, Saparbaev MK. The Fanconi anemia pathway promotes DNA glycosylase-dependent excision of interstrand DNA crosslinks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:508-519. [PMID: 20120016 DOI: 10.1002/em.20548] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA interstrand crosslinks (ICLs) and, to a milder extension, to ionizing radiation and oxidative stress. Recently, we reported that human oxidative DNA glycosylase, NEIL1 excises with high efficiency the unhooked crosslinked oligomer within three-stranded DNA repair intermediate induced by photoactivated psoralen exposure. Complete reconstitution of repair of the ICL within a three-stranded DNA structure shows that it is processed in the short-patch base excision repair (BER) pathway. To examine whether the DNA damage hypersensitivity in FA cells follows impaired BER activities, we measured DNA glycosylase and AP endonuclease activities in cell-free extracts from wild-type, FA, and FA-corrected cells. We showed that immortalized lymphoid cells of FA complementation Groups A, C, and D and from control cells from normal donors contain similar BER activities. Intriguingly, the cellular level of NEIL1 protein strongly depends on the intact FA pathway suggesting that the hypersensitivity of FA cells to ICLs may, at least in part, arise from downregulation or degradation of NEIL1. Consistent with this result, plasmid-based expression of the FLAG-tagged NEIL1 protein partially complements the hypersensitivity FA cells to the crosslinking agents exposures, suggesting that NEIL1 specifically complements impaired capability of FA cells to repair ICLs and oxidative DNA damage. These findings shed light to how the FA pathway may regulate DNA repair proteins and bring explanation for the long-time disputed problem of the oxidative stress sensitive phenotype of FA cells.
Collapse
Affiliation(s)
- Gaëtane Macé-Aimé
- CNRS UMR8200 Groupe, Voie FANC/BRCA et Cancer, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
228
|
Theriot CA, Hegde ML, Hazra TK, Mitra S. RPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures. DNA Repair (Amst) 2010; 9:643-52. [PMID: 20338831 PMCID: PMC2883689 DOI: 10.1016/j.dnarep.2010.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 12/11/2022]
Abstract
The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (K(d) approximately 20 nM) via the common interacting interface (residues 312-349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CDelta78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CDelta78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome.
Collapse
Affiliation(s)
- Corey A. Theriot
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Muralidhar L. Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Tapas K. Hazra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| |
Collapse
|
229
|
Popuri V, Croteau DL, Bohr VA. Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases. DNA Repair (Amst) 2010; 9:636-42. [PMID: 20346739 PMCID: PMC2925176 DOI: 10.1016/j.dnarep.2010.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 12/26/2022]
Abstract
NEIL1, the mammalian homolog of Escherichia coli endonuclease VIII, is a DNA glycosylase that repairs ring-fragmented purines, saturated pyrimidines and several oxidative lesions like 5-hydroxyuracil, 5-hydroxycytosine, etc. Previous studies from our laboratory have shown that Werner Syndrome protein (WRN), one of the five human RecQ helicases, stimulates NEIL1 DNA glycosylase activity on oxidative DNA lesions. The goal of this study was to extend this observation and analyze the interaction between NEIL1 and all five human RecQ helicases. The DNA substrate specificity of the interaction between WRN and NEIL1 was also analyzed. The results indicate that WRN is the only human RecQ helicase that stimulates NEIL1 DNA glycosylase activity, and that this stimulation requires a double-stranded DNA substrate.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| |
Collapse
|
230
|
Gredilla R, Garm C, Holm R, Bohr VA, Stevnsner T. Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions. Neurobiol Aging 2010; 31:993-1002. [PMID: 18701195 PMCID: PMC2858237 DOI: 10.1016/j.neurobiolaging.2008.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 12/26/2022]
Abstract
Aging in the brain is characterized by increased susceptibility to neuronal loss and functional decline, and mitochondrial DNA (mtDNA) mutations are thought to play an important role in these processes. Due to the proximity of mtDNA to the main sites of mitochondrial free radical generation, oxidative stress is a major source of DNA mutations in mitochondria. The base excision repair (BER) pathway removes oxidative lesions from mtDNA, thereby constituting an important mechanism to avoid accumulation of mtDNA mutations. The complexity of the brain implies that exposure and defence against oxidative stress varies among brain regions and hence some regions may be particularly prone to accumulation of mtDNA damages. In the current study we investigated the efficiency of the BER pathway throughout the murine lifespan in mitochondria from cortex and hippocampus, regions that are central in mammalian cognition, and which are severely affected during aging and in neurodegenerative diseases. A regional specific regulation of mitochondrial DNA repair activities was observed with aging. In cortical mitochondria, DNA glycosylase activities peaked at middle-age followed by a significant drop at old age. However, only minor changes were observed in hippocampal mitochondria during the whole lifespan of the animals. Furthermore, DNA glycosylase activities were lower in hippocampal than in cortical mitochondria. Mitochondrial AP endonuclease activity increased in old animals in both brain regions. Our data suggest an important regional specific regulation of mitochondrial BER during aging.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Danish Center of Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, C.F. Moellers Allé 1130, 8000 Aarhus C, Denmark
| | - Christian Garm
- Danish Center of Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, C.F. Moellers Allé 1130, 8000 Aarhus C, Denmark
| | - Rikke Holm
- Danish Center of Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, C.F. Moellers Allé 1130, 8000 Aarhus C, Denmark
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Tinna Stevnsner
- Danish Center of Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, C.F. Moellers Allé 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
231
|
Grin IR, Dianov GL, Zharkov DO. The role of mammalian NEIL1 protein in the repair of 8-oxo-7,8-dihydroadenine in DNA. FEBS Lett 2010; 584:1553-7. [PMID: 20214901 PMCID: PMC3004018 DOI: 10.1016/j.febslet.2010.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/30/2022]
Abstract
8-oxo-7,8-dihydroadenine (8-oxoAde) is a major product of adenine modification by reactive oxygen species. So far, only one mammalian DNA glycosylase, 8-oxoguanine-DNA-glycosylase 1 (OGG1), has been shown to excise 8-oxoAde, exclusively from pairs with Cyt. We have found that endonuclease VIII-like protein 1 (NEIL1), a mammalian homolog of bacterial endonuclease VIII, can efficiently remove 8-oxoAde from 8-oxoAde:Cyt pairs but not from other contexts. In an in vitro reconstituted system, reactions containing OGG1 produced a fully repaired product, whereas NEIL1 caused an abortive initiation of repair, stopping after 8-oxoAde removal and DNA strand cleavage. This block was partially relieved by polynucleotide kinase/3'-phosphatase. Thus, two alternative routes of 8-oxoAde repair may exist in mammals.
Collapse
Affiliation(s)
- Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Grigory L. Dianov
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
232
|
Zhao X, Krishnamurthy N, Burrows CJ, David SS. Mutation versus repair: NEIL1 removal of hydantoin lesions in single-stranded, bulge, bubble, and duplex DNA contexts. Biochemistry 2010; 49:1658-66. [PMID: 20099873 DOI: 10.1021/bi901852q] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human DNA glycosylase NEIL1 exhibits a superior ability to remove oxidized guanine lesions guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) from duplex DNA in comparison to other substrates. In this work, Gh and Sp lesions in bubble, bulge, and single-stranded DNA were found to be good substrates for NEIL1 but were typically excised at much slower rates than from canonical duplex substrates. A notable exception was the activity of NEIL1 on removal of Gh in bubble structures which approaches that of the normal duplex substrate. The cleavage of Gh in the template strand of a replication or transcription bubble may prevent mutations associated with Gh during replication or transcription. However, removal of hydantoin lesions in the absence of an opposite base may also result in strand breaks and potentially deletion and frameshift mutations. Consistent with this as a potential mechanism leading to an N-1 frameshift mutation, the nick left after the removal of the Gh lesion in a DNA bulge by NEIL1 was efficiently religated in the presence of polynucleotide kinase (PNK) and human DNA ligase III (Lig III). These results indicate that NEIL1 does not require a base opposite to identify and remove hydantoin lesions. Depending on the context, the glycosylase activity of NEIL1 may stall replication and prevent mutations or lead to inappropriate removal that may contribute to the mutational spectrum of these unusual lesions.
Collapse
Affiliation(s)
- Xiaobei Zhao
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
233
|
Liu M, Bandaru V, Bond JP, Jaruga P, Zhao X, Christov PP, Burrows CJ, Rizzo CJ, Dizdaroglu M, Wallace SS. The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc Natl Acad Sci U S A 2010; 107:4925-30. [PMID: 20185759 PMCID: PMC2841873 DOI: 10.1073/pnas.0908307107] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while the properties of the Neil3 protein remain to be elucidated. In this study, we report the characterization of Mus musculus (house mouse) Neil3 (MmuNeil3) as an active DNA glycosylase both in vitro and in vivo. In duplex DNA, MmuNeil3 recognizes the oxidized purines, spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino- 5-formamidopyrimidine (FapyA), but not 8-oxo-7,8-dihydroguanine (8-oxoG). Interestingly, MmuNeil3 prefers lesions in single-stranded DNA and in bubble structures. In contrast to other members of the family that use the N-terminal proline as the nucleophile, MmuNeil3 forms a Schiff base intermediate via its N-terminal valine. We expressed the glycosylase domain of MmuNeil3 (MmuNeil3Delta324) in an Escherichia coli triple mutant lacking Fpg, Nei, and MutY glycosylase activities and showed that MmuNeil3 greatly reduced both the spontaneous mutation frequency and the level of FapyG in the DNA, suggesting that Neil3 plays a role in repairing FapyG in vivo.
Collapse
Affiliation(s)
- Minmin Liu
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0086
| | - Viswanath Bandaru
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0086
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0086
| | - Pawel Jaruga
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Building 227/A243, Gaithersburg, MD 20899
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Xiaobei Zhao
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850; and
| | - Plamen P. Christov
- Departments of Chemistry and Biochemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235-1822
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850; and
| | - Carmelo J. Rizzo
- Departments of Chemistry and Biochemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235-1822
| | - Miral Dizdaroglu
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Building 227/A243, Gaithersburg, MD 20899
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0086
| |
Collapse
|
234
|
Pal S, Polyak SJ, Bano N, Qiu WC, Carithers RL, Shuhart M, Gretch DR, Das A. Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1. J Gastroenterol Hepatol 2010; 25:627-34. [PMID: 20074151 PMCID: PMC3565844 DOI: 10.1111/j.1440-1746.2009.06128.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV)-induced chronic inflammation may induce oxidative stress which could compromise the repair of damaged DNA, rendering cells more susceptible to spontaneous or mutagen-induced alterations, the underlying cause of liver cirrhosis and hepatocellular carcinoma. In the current study we examined the induction of reactive oxygen species (ROS) resulting from HCV infection and evaluated its effect on the host DNA damage and repair machinery. METHODS HCV infected human hepatoma cells were analyzed to determine (i) ROS, (ii) 8-oxoG and (iii) DNA glycosylases NEIL1, NEIL2, OGG1. Liver biopsies were analyzed for NEIL1. RESULTS Human hepatoma cells infected with HCV JFH-1 showed 30-60-fold increases in ROS levels compared to uninfected cells. Levels of the oxidatively modified guanosine base 8-oxoguanine (8-oxoG) were significantly increased sixfold in the HCV-infected cells. Because DNA glycosylases are the enzymes that remove oxidized nucleotides, their expression in HCV-infected cells was analyzed. NEIL1 but not OGG1 or NEIL2 gene expression was impaired in HCV-infected cells. In accordance, we found reduced glycosylase (NEIL1-specific) activity in HCV-infected cells. The antioxidant N-acetyl cystein (NAC) efficiently reversed the NEIL1 repression by inhibiting ROS induction by HCV. NEIL1 expression was also partly restored when virus-infected cells were treated with interferon (IFN). HCV core and to a lesser extent NS3-4a and NS5A induced ROS, and downregulated NEIL1 expression. Liver biopsy specimens showed significant impairment of NEIL1 levels in HCV-infected patients with advanced liver disease compared to patients with no disease. CONCLUSION Collectively, the data indicate that HCV induction of ROS and perturbation of NEIL1 expression may be mechanistically involved in progression of liver disease and suggest that antioxidant and antiviral therapies can reverse these deleterious effects of HCV in part by restoring function of the DNA repair enzyme/s.
Collapse
Affiliation(s)
- Sampa Pal
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195-7110 USA.
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Effects of base excision repair proteins on mutagenesis by 8-oxo-7,8-dihydroguanine (8-hydroxyguanine) paired with cytosine and adenine. DNA Repair (Amst) 2010; 9:542-50. [PMID: 20197241 DOI: 10.1016/j.dnarep.2010.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 11/21/2022]
Abstract
8-Oxo-7,8-dihydroguanine (8-oxo-Gua, also known as 8-hydroxyguanine) is a major base lesion that is generated by reactive oxygen species in both the DNA and nucleotide pool. The role of DNA glycosylases, which initiate base excision repair, in the mutagenic processes of 8-oxo-Gua in DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP, also known as 8-hydroxy-2'-deoxyguanosine 5'-triphosphate) were investigated using supF shuttle plasmids propagated in human cells. The DNA glycosylases, OGG1, MUTYH, NTH1, and NEIL1, in 293T cells were individually knocked-down by siRNAs and plasmid DNAs containing an 8-oxo-Gua:C/8-oxo-Gua:A pair, and 8-oxo-dGTP plus unmodified plasmid DNA were then introduced into the knocked-down cells. The knock-down of OGG1, MUTYH, NTH1, and NEIL1 resulted in a significant increase in G:C-->T:A transversions caused by the 8-oxo-Gua:C pair in the shuttle plasmid. The knock-down of MUTYH resulted in a reduction in A:T-->C:G transversions induced by 8-oxo-dGTP and the 8-oxo-Gua:A pair, but the knockdown of OGG1, NTH1, and NEIL1 had no effect on mutagenesis. These results indicate that all of the above DNA glycosylases suppress mutations caused by 8-oxo-Gua:C in DNA. In contrast, it appears that MUTYH enhances A:T-->C:G mutations caused by 8-oxo-dGTP.
Collapse
|
236
|
Jaruga P, Xiao Y, Vartanian V, Lloyd RS, Dizdaroglu M. Evidence for the involvement of DNA repair enzyme NEIL1 in nucleotide excision repair of (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines. Biochemistry 2010; 49:1053-5. [PMID: 20067321 PMCID: PMC2817919 DOI: 10.1021/bi902161f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/11/2010] [Indexed: 01/30/2023]
Abstract
The DNA repair enzyme NEIL1 is a DNA glycosylase that is involved in the first step of base excision repair (BER) of oxidatively induced DNA damage. NEIL1 exhibits a strong preference for excision of 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from DNA with no specificity for 8-hydroxyguanine (8-OH-Gua). In this study, we report on the significant accumulation of (5'R)-8,5'-cyclo-2'-deoxyadenosine (R-cdA) and (5'S)-8,5'-cyclo-2'-deoxyadenosine (S-cdA) in liver DNA of neil1(-/-) mice that were not exposed to exogenous oxidative stress, while no accumulation of these lesions was observed in liver DNA from control or ogg1(-/-) mice. Significant accumulation of FapyGua was detected in liver DNA of both neil1(-/-) and ogg1(-/-) mice, while 8-OH-Gua accumulated in ogg1(-/-) only. Since R-cdA and S-cdA contain an 8,5'-covalent bond between the base and sugar moieties, they cannot be repaired by BER. There is evidence that these lesions are repaired by nucleotide excision repair (NER). Since the accumulation of R-cdA and S-cdA in neil1(-/-) mice strongly points to the failure of their repair, these data suggest that NEIL1 is involved in NER of R-cdA and S-cdA. Further studies aimed at elucidating the mechanism of action of NEIL1 in NER are warranted.
Collapse
Affiliation(s)
- Pawel Jaruga
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Yan Xiao
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Vladimir Vartanian
- Center for Research on Occupational and Environmental Toxicology, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Miral Dizdaroglu
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| |
Collapse
|
237
|
Goto M, Shinmura K, Tao H, Tsugane S, Sugimura H. Three novel NEIL1 promoter polymorphisms in gastric cancer patients. World J Gastrointest Oncol 2010; 2:117-120. [PMID: 21160930 PMCID: PMC2999164 DOI: 10.4251/wjgo.v2.i2.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 08/05/2009] [Accepted: 08/12/2009] [Indexed: 02/05/2023] Open
Abstract
AIM To identify genetic polymorphisms in the promoter region of the human base excision repair gene NEIL1 in gastric cancer patients. METHODS The NEIL1 promoter region in DNA from 80 Japanese patients with gastric cancer was searched for genetic polymorphisms by polymerase chain reaction-single-strand conformation polymorphism and subsequent sequencing analyses. RESULTS Three novel genetic polymorphisms, i.e. c.-3769C>T, c.-3170T>G, and c.-2681TA[8], were identified in the NEIL1 promoter region at an allele frequency of 0.6%, 9.4%, and 4.4%, respectively, in Japanese gastric cancer patients. CONCLUSION Three NEIL1 promoter polymorphisms detected in this study may be of importance in gastric carcinogenesis.
Collapse
Affiliation(s)
- Masanori Goto
- Masanori Goto, Kazuya Shinmura, Hong Tao, Haruhiko Sugimura, First Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | |
Collapse
|
238
|
Gredilla R, Bohr VA, Stevnsner T. Mitochondrial DNA repair and association with aging--an update. Exp Gerontol 2010; 45:478-88. [PMID: 20096766 DOI: 10.1016/j.exger.2010.01.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 01/07/2023]
Abstract
Mitochondrial DNA is constantly exposed to oxidative injury. Due to its location close to the main site of reactive oxygen species, the inner mitochondrial membrane, mtDNA is more susceptible than nuclear DNA to oxidative damage. The accumulation of DNA damage is thought to play a critical role in the aging process and to be particularly deleterious in post-mitotic cells. Thus, DNA repair is an important mechanism for maintenance of genomic integrity. Despite the importance of mitochondria in the aging process, it was thought for many years that mitochondria lacked an enzymatic DNA repair system comparable to that in the nuclear compartment. However, it is now well established that DNA repair actively takes place in mitochondria. Oxidative DNA damage processing, base excision repair mechanisms were the first to be described in these organelles, and consequently the best understood. However, new proteins and novel DNA repair pathways, thought to be exclusively present in the nucleus, have recently been described also to be present in mitochondria. Here we review the main mitochondrial DNA repair pathways and their association with the aging process.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Danish Center for Molecular Gerontology, Department of Molecular Biology, Aarhus University, C.F. Moellers allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
239
|
HPLC-UV measurements of metabolites in the supernatant of endothelial cells exposed to oxidative stress. Anal Bioanal Chem 2010; 396:1763-71. [DOI: 10.1007/s00216-009-3398-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/10/2009] [Indexed: 01/08/2023]
|
240
|
The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair (Amst) 2009; 9:177-90. [PMID: 20031487 DOI: 10.1016/j.dnarep.2009.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 11/22/2022]
Abstract
The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from gamma-irradiated DNA. MtuFpg1 has substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products. The kinetic parameters of the MtuFpg1, MtuNei1 and MtuNth proteins on selected substrates were also determined and compared to those of their E. coli homologs.
Collapse
|
241
|
Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair (Amst) 2009; 9:134-43. [PMID: 20005182 DOI: 10.1016/j.dnarep.2009.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/21/2009] [Accepted: 11/13/2009] [Indexed: 01/26/2023]
Abstract
Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1]. To determine if this property is shared by human DNA glycoylases in the Fpg/Nei family, we investigated the activity of NEIL1 on defined nucleosome substrates. We report here that the cellular concentrations and apparent k(cat)/K(M) ratios for hNTH1 and NEIL1 are similar. Additionally, after adjustment for non-specific DNA binding, hNTH1 and NEIL1 proved to have similar intrinsic activities toward nucleosome substrates. However, NEIL1 and hNTH1 differ in that NEIL1 binds undamaged DNA far more avidly than hNTH1. As a result, hNTH1 is able to excise both accessible and sterically occluded lesions from nucleosomes at physiological concentrations, while the high non-specific DNA affinity of NEIL1 would likely hinder its ability to process sterically occluded lesions in cells. These results suggest that, in vivo, NEIL1 functions either at nucleosome-free regions (such as those near replication forks) or with cofactors that limit its non-specific binding to DNA.
Collapse
|
242
|
Eccles LJ, Lomax ME, O'Neill P. Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage. Nucleic Acids Res 2009; 38:1123-34. [PMID: 19965771 PMCID: PMC2831305 DOI: 10.1093/nar/gkp1070] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ionising radiation induces clustered DNA damage sites which pose a severe challenge to the cell’s repair machinery, particularly base excision repair. To date, most studies have focussed on two-lesion clusters. We have designed synthetic oligonucleotides to give a variety of three-lesion clusters containing abasic sites and 8-oxo-7, 8-dihydroguanine to investigate if the hierarchy of lesion processing dictates whether the cluster is cytotoxic or mutagenic. Clusters containing two tandem 8-oxoG lesions opposing an AP site showed retardation of repair of the AP site with nuclear extract and an elevated mutation frequency after transformation into wild-type or mutY Escherichia coli. Clusters containing bistranded AP sites with a vicinal 8-oxoG form DSBs with nuclear extract, as confirmed in vivo by transformation into wild-type E. coli. Using ung1 E. coli, we propose that DSBs arise via lesion processing rather than stalled replication in cycling cells. This study provides evidence that it is not only the prompt formation of DSBs that has implications on cell survival but also the conversion of non-DSB clusters into DSBs during processing and attempted repair. The inaccurate repair of such clusters has biological significance due to the ultimate risk of tumourigenesis or as potential cytotoxic lesions in tumour cells.
Collapse
Affiliation(s)
- Laura J Eccles
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|
243
|
Grin IR, Konorovsky PG, Nevinsky GA, Zharkov DO. Heavy metal ions affect the activity of DNA glycosylases of the Fpg family. BIOCHEMISTRY (MOSCOW) 2009; 74:1253-9. [DOI: 10.1134/s000629790911011x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
244
|
Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 2009; 131:21-8. [PMID: 19913571 DOI: 10.1016/j.mad.2009.11.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/29/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022]
Abstract
Silent information regulators are potent NAD(+)-dependent protein deacetylases, which have been shown to regulate gene silencing, muscle differentiation and DNA damage repair. Here, changes in the level and activity of sirtuin 1 (SIRT1) in response to exercise in groups of young and old rats were studied. There was an age-related increase in SIRT1 level, while exercise training significantly increased the relative activity of SIRT1. A strong inverse correlation was found between the nuclear activity of SIRT1 and the level of acetylated proteins. Exercise training induced SIRT1 activity due to the positive effect of exercise on the activity of nicotinamide phosphoribosyltransferase (NAMPT) and thereby the production of sirtuin-fueling NAD(+). Exercise training normalized the age-associated shift in redox balance, since exercised animals had significantly lower levels of carbonylated proteins, expression of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor. The age-associated increase in the level of SIRT6 was attenuated by exercise training. On the other hand, aging did not significantly increase the level of DNA damage, which was in line with the activity of 8-oxoguanine DNA glycosylase, while exercise training increased the level of this enzyme. Regular exercise decelerates the deleterious effects of the aging process via SIRT1-dependent pathways through the stimulation of NAD(+) biosynthesis by NAMPT.
Collapse
|
245
|
Brown KL, Roginskaya M, Zou Y, Altamirano A, Basu AK, Stone MP. Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5'-GTgG-3' sequence: destabilization of two base pairs at the lesion site. Nucleic Acids Res 2009; 38:428-40. [PMID: 19892827 PMCID: PMC2811006 DOI: 10.1093/nar/gkp844] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The 5R thymine glycol (5R-Tg) DNA lesion exists as a mixture of cis-(5R,6S) and trans-(5R,6R) epimers; these modulate base excision repair. We examine the 7:3 cis-(5R,6S):trans-(5R,6R) mixture of epimers paired opposite adenine in the 5′-GTgG-3′ sequence with regard to nucleotide excision repair. Human XPA recognizes the lesion comparably to the C8-dG acetylaminoflourene (AAF) adduct, whereas XPC/HR23B recognition of Tg is superior. 5R-Tg is processed by the Escherichia coli UvrA and UvrABC proteins less efficiently than the C8-dG AAF adduct. For the cis-(5R, 6S) epimer Tg and A are inserted into the helix, remaining in the Watson–Crick alignment. The Tg N3H imine and A N6 amine protons undergo increased solvent exchange. Stacking between Tg and the 3′-neighbor G•C base pair is disrupted. The solvent accessible surface and T2 relaxation of Tg increases. Molecular dynamics calculations predict that the axial conformation of the Tg CH3 group is favored; propeller twisting of the Tg•A pair and hydrogen bonding between Tg OH6 and the N7 atom of the 3′-neighbor guanine alleviate steric clash with the 5′-neighbor base pair. Tg also destabilizes the 5′-neighbor G•C base pair. This may facilitate flipping both base pairs from the helix, enabling XPC/HR23B recognition prior to recruitment of XPA.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
246
|
Brown KL, Basu AK, Stone MP. The cis-(5R,6S)-thymine glycol lesion occupies the wobble position when mismatched with deoxyguanosine in DNA. Biochemistry 2009; 48:9722-33. [PMID: 19772348 PMCID: PMC2761728 DOI: 10.1021/bi900695e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Oxidative damage to 5-methylcytosine in DNA, followed by deamination, yields thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, mispaired with deoxyguanosine. The structure of the 5R Tg·G mismatch pair has been refined using a combination of simulated annealing and isothermal molecular dynamics calculations restrained by NMR-derived distance restraints and torsion angle restraints in 5′-d(G1T2G3C4G5Tg6G7T8T9T10G11T12)-3′·5′-d(A13C14A15A16A17C18G19C20G21C22A23C24)-3′; Tg = 5R Tg. In this duplex the cis-5R,6S:trans-5R,6R equilibrium favors the cis-5R,6S epimer [Brown, K. L., Adams, T., Jasti, V. P., Basu, A. K., and Stone, M. P. (2008) J. Am. Chem. Soc. 130, 11701−11710]. The cis-5R,6S Tg lesion is in the wobble orientation such that Tg6O2 is proximate to G19 N1H and Tg6 N3H is proximate to G19O6. Both Tg6 and the mismatched nucleotide G19 remain stacked in the helix. The Tg6 nucleotide shifts toward the major groove and stacks below the 5′-neighbor base G5, while its complement G19 stacks below the 5′-neighbor C20. In the 3′-direction, stacking between Tg6 and the G7·C18 base pair is disrupted. The solvent-accessible surface area of the Tg nucleotide increases as compared to the native Watson−Crick hydrogen-bonded T·A base pair. An increase in T2 relaxation rates for the Tg6 base protons is attributed to puckering of the Tg base, accompanied by increased disorder at the Tg·G mismatch pair. The axial vs equatorial conformation of the Tg6 CH3 group cannot be determined with certainty from the NMR data. The rMD trajectories suggest that in either the axial or equatorial conformations the cis-5R,6S Tg lesion does not form strong intrastrand hydrogen bonds with the imidazole N7 atom of the 3′-neighbor purine G7. The wobble pairing and disorder of the Tg·G mismatch correlate with the reduced thermodynamic stability of the mismatch and likely modulate its recognition by DNA base excision repair systems.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Chemistry, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
247
|
Hamann I, Schwerdtle T, Hartwig A. Establishment of a non-radioactive cleavage assay to assess the DNA repair capacity towards oxidatively damaged DNA in subcellular and cellular systems and the impact of copper. Mutat Res 2009; 669:122-130. [PMID: 19505484 DOI: 10.1016/j.mrfmmm.2009.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/19/2009] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
Oxidative stress is involved in many diseases, and the search for appropriate biomarkers is one major focus in molecular epidemiology. 8-Oxoguanine (8-oxoG), a potentially mutagenic DNA lesion, is considered to be a sensitive biomarker for oxidative stress. Another approach consists in assessing the repair capacity towards 8-oxoG, mediated predominantly by the human 8-oxoguanine DNA glycosylase 1 (hOGG1). With respect to the latter, during the last few years so-called cleavage assays have been described, investigating the incision of (32)P-labelled and 8-oxoG damaged oligonucleotides by cell extracts. Within the present study, a sensitive non-radioactive test system based on a Cy5-labelled oligonucleotide has been established. Sources of incision activity are isolated proteins or extracts prepared from cultured cells and peripheral blood mononuclear cells (PBMC). After comparing different oligonucleotide structures, a hairpin-like structure was selected which was not degraded by cell extracts. Applying this test system the impact of copper on the activity of isolated hOGG1 and on hOGG activity in A549 cells was examined, showing a distinct inhibition of the isolated protein at low copper concentration as compared to a modest inhibition of hOGG activity in cells at beginning cytotoxic concentrations. For investigating PBMC, all reaction conditions, including the amounts of oligonucleotide and cell extract as well as the reaction time have been optimized. The incision activities of PBMC protein extracts obtained from different donors have been investigated, and inter-individual differences have been observed. In summary, the established method is as sensitive and even faster than the radioactive technique, and additionally, offers the advantage of reduced costs and low health risk.
Collapse
Affiliation(s)
- Ingrit Hamann
- Fachgebiet Lebensmittelchemie und Toxikologie, Institut für Lebensmitteltechnologie und Lebensmittelchemie, Technische Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
248
|
Bernstein NK, Hammel M, Mani RS, Weinfeld M, Pelikan M, Tainer JA, Glover JNM. Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, Polynucleotide Kinase. Nucleic Acids Res 2009; 37:6161-73. [PMID: 19671525 PMCID: PMC2764422 DOI: 10.1093/nar/gkp597] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 01/11/2023] Open
Abstract
Mammalian polynucleotide kinase (mPNK) is a critical DNA repair enzyme whose 5'-kinase and 3'-phoshatase activities function with poorly understood but striking specificity to restore 5'-phosphate/3'-hydroxyl termini at sites of DNA damage. Here we integrated site-directed mutagenesis and small-angle X-ray scattering (SAXS) combined with advanced computational approaches to characterize the conformational variability and DNA-binding properties of mPNK. The flexible attachment of the FHA domain to the catalytic segment, elucidated by SAXS, enables the interactions of mPNK with diverse DNA substrates and protein partners required for effective orchestration of DNA end repair. Point mutations surrounding the kinase active site identified two substrate recognition surfaces positioned to contact distinct regions on either side of the phosphorylated 5'-hydroxyl. DNA substrates bind across the kinase active site cleft to position the double-stranded portion upstream of the 5'-hydroxyl on one side, and the 3'-overhang on the opposite side. The bipartite DNA-binding surface of the mPNK kinase domain explains its preference for recessed 5'-termini, structures that would be encountered in the course of DNA strand break repair.
Collapse
Affiliation(s)
- N. K. Bernstein
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada, Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, MO 63121, Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 and Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - M. Hammel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada, Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, MO 63121, Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 and Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - R. S. Mani
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada, Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, MO 63121, Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 and Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - M. Weinfeld
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada, Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, MO 63121, Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 and Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - M. Pelikan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada, Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, MO 63121, Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 and Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - J. A. Tainer
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada, Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, MO 63121, Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 and Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - J. N. M. Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada, Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, MO 63121, Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 and Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
249
|
Mori H, Ouchida R, Hijikata A, Kitamura H, Ohara O, Li Y, Gao X, Yasui A, Lloyd RS, Wang JY. Deficiency of the oxidative damage-specific DNA glycosylase NEIL1 leads to reduced germinal center B cell expansion. DNA Repair (Amst) 2009; 8:1328-32. [PMID: 19782007 DOI: 10.1016/j.dnarep.2009.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 12/31/2022]
Abstract
Mammalian cells possess multiple DNA glycosylases, including OGG1, NTH1, NEIL1, NEIL2 and NEIL3, for the repair of oxidative DNA damage. Among these, NEIL1 and NEIL2 are able to excise oxidized bases on single stranded or bubble-structured DNA and has been implicated in repair of oxidative damage associated with DNA replication or transcription. We found that Neil1 was highly constitutively expressed in the germinal center (GC) B cells, a rapidly dividing cell population that is undergoing immunoglobulin (Ig) gene hypermutation and isotype switching. While Neil1(-/-) mice exhibited normal B and T cell development and maturation, these mice contained a significantly lower frequency of GC B cells than did WT mice after immunization with a T-dependent antigen. Consistent with the reduced expansion of GC B cells, Neil1(-/-) mice had a decreased frequency of Ig gene hypermutation and produced less antibody against a T-dependent antigen during both primary and secondary immune responses. These results suggest that repair of endogenous oxidative DNA damage by NEIL1 is important for the rapid expansion of GC B cells and efficient induction of humoral immune responses.
Collapse
Affiliation(s)
- Hiromi Mori
- Laboratory for Immune Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Ballal R, Cheema A, Ahmad W, Rosen EM, Saha T. Fluorescent oligonucleotides can serve as suitable alternatives to radiolabeled oligonucleotides. J Biomol Tech 2009; 20:190-194. [PMID: 19721820 PMCID: PMC2729480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Prolonged exposure to radiation from radionuclei used in medical research can cause DNA damage and mutation, which lead to several diseases including cancer. Radioactivity-based experiments are expensive and associated with specialized training, dedication of instruments, approvals, and cleanup with potential hazardous waste. The objective of this study was to find an alternative to the use of radioactivity in medical research using nucleic acid chemistry. FITC-labeled oligonucleotides that contain wild-type (wt) and modified base (8-oxo-G) at the same position and their complementary unlabeled strand were synthesized. Purified DNA repair enzyme, OGG1, and nuclear lysates from MCF-7 breast cancer cells were incubated with double-stranded FITC-labeled wt and 8-oxo-G oligonucleotide to demonstrate the OGG1 incision assay. We found that FITC-coupled oligonucleotides do not impose a steric hindrance during duplex formation, and the fluorescence intensity of the oligonucleotide is comparable with the intensity of the radioactive oligonucleotide. Moreover, we have seen that the OGG1 incision assay can be performed using these fluorescence oligonucleotides, replacing conventional use of radiolabeled oligonucleotides in the assay. Although the use of fluorescent-labeled oligonucleotides was described in detail for incision assays, the technique can be applied to replace a broad range of experiments, where radioactive oligonucleotides are used, eliminating the hazardous consequences of radiation.
Collapse
Affiliation(s)
- Rahul Ballal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|