201
|
A novel hypothesis for an alkaline phosphatase 'rescue' mechanism in the hepatic acute phase immune response. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2044-56. [PMID: 23899605 DOI: 10.1016/j.bbadis.2013.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 12/24/2022]
Abstract
The liver isoform of the enzyme alkaline phosphatase (AP) has been used classically as a serum biomarker for hepatic disease states such as hepatitis, steatosis, cirrhosis, drug-induced liver injury, and hepatocellular carcinoma. Recent studies have demonstrated a more general anti-inflammatory role for AP, as it is capable of dephosphorylating potentially deleterious molecules such as nucleotide phosphates, the pathogenic endotoxin lipopolysaccharide (LPS), and the contact clotting pathway activator polyphosphate (polyP), thereby reducing inflammation and coagulopathy systemically. Yet the mechanism underlying the observed increase in liver AP levels in circulation during inflammatory insults is largely unknown. This paper hypothesizes an immunological role for AP in the liver and the potential of this system for damping generalized inflammation along with a wide range of ancillary pathologies. Based on the provided framework, a mechanism is proposed in which AP undergoes transcytosis in hepatocytes from the canalicular membrane to the sinusoidal membrane during inflammation and the enzyme's expression is upregulated as a result. Through a tightly controlled, nucleotide-stimulated negative feedback process, AP is transported in this model as an immune complex with immunoglobulin G by the asialoglycoprotein receptor through the cell and secreted into the serum, likely using the receptor's State 1 pathway. The subsequent dephosphorylation of inflammatory stimuli by AP and uptake of the circulating immune complex by endothelial cells and macrophages may lead to decreased inflammation and coagulopathy while providing an early upstream signal for the induction of a number of anti-inflammatory gene products, including AP itself.
Collapse
|
202
|
Schrodt C, McHugh EE, Gawinowicz MA, DuPont HL, Brown EL. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis. PLoS One 2013; 8:e68550. [PMID: 23922656 PMCID: PMC3724845 DOI: 10.1371/journal.pone.0068550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Collapse
Affiliation(s)
- Caroline Schrodt
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
| | - Erin E. McHugh
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
| | - Mary Ann Gawinowicz
- Protein Core Facility, Columbia University College, New York, New York, United States of America
| | - Herbert L. DuPont
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
- Internal Medicine Services, St. Luke’s Episcopal Hospital and Department of Medicine, Infectious Diseases Section, Baylor College of Medicine, Houston, Texas, United States of America
| | - Eric L. Brown
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
203
|
The mucin Muc2 limits pathogen burdens and epithelial barrier dysfunction during Salmonella enterica serovar Typhimurium colitis. Infect Immun 2013; 81:3672-83. [PMID: 23876803 DOI: 10.1128/iai.00854-13] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a model organism used to explore the virulence strategies underlying Salmonella pathogenesis. Although intestinal mucus is the first line of defense in the intestine, its role in protection against Salmonella is still unclear. The intestinal mucus layer is composed primarily of the Muc2 mucin, a heavily O-glycosylated glycoprotein. The core 3-derived O-glycans of Muc2 are synthesized by core 3 β1,3-N-acetylglucosaminyltransferase (C3GnT). Mice lacking these glycans still produce Muc2 but display a thinner intestinal mucus barrier. We began our investigations by comparing Salmonella-induced colitis and mucus dynamics in Muc2-deficient (Muc2(-/-)) mice, C3GnT(-/-) mice, and wild-type C57BL/6 (WT) mice. Salmonella infection led to increases in luminal Muc2 secretion in WT and C3GnT(-/-) mice. When Muc2(-/-) mice were infected with Salmonella, they showed dramatic susceptibility to infection, carrying significantly higher cecal and liver pathogen burdens, and developing significantly higher barrier disruption and higher mortality rates, than WT mice. We found that the exaggerated barrier disruption in infected Muc2(-/-) mice was invA dependent. We also tested the susceptibility of C3GnT(-/-) mice and found that they carried pathogen burdens similar to those of WT mice but developed exaggerated barrier disruption. Moreover, we found that Muc2(-/-) mice were impaired in intestinal alkaline phosphatase (IAP) expression and lipopolysaccharide (LPS) detoxification activity in their ceca, potentially explaining their high mortality rates during infection. Our data suggest that the intestinal mucus layer (Muc2) and core 3 O-glycosylation play critical roles in controlling Salmonella intestinal burdens and intestinal epithelial barrier function, respectively.
Collapse
|
204
|
The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment? Clin Transl Gastroenterol 2013; 4:e39. [PMID: 23842483 PMCID: PMC3724044 DOI: 10.1038/ctg.2013.11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/02/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity is a metabolic disorder and fundamental cause of other fatal diseases including atherosclerosis and cancer. One of the main factor that contributes to the development of obesity is high-fat (HF) consumption. Lipid ingestion will initiate from the gut feedback mechanisms to regulate glucose and lipid metabolisms. But these lipid-sensing pathways are impaired in HF-induced insulin resistance, resulting in hyperglycemia. Besides that, duodenal lipid activates mucosal mast cells, leading to the disruption of the intestinal tight junction. Lipopolysaccharide that is co-transited with dietary fat postprandially, promotes the release of cytokines and the development of metabolic syndrome. HF-diet also alters microbiota composition and enhances fat storage. Although gut is protected by immune system and contains high level of antioxidants, obesity developed presumably when this protective mechanism is compromised by the presence of excessive fat. Several therapeutic approaches targeting different pathways have been proposed. There may be no one single most effective treatment, but all aimed to prevent obesity. This review will elaborate on the physiological and molecular changes in the gut that lead to obesity, and will provide a summary of potential treatments to manage these pathophysiological changes.
Collapse
|
205
|
Gerdin JA, McDonough SP. Forensic Pathology of Companion Animal Abuse and Neglect. Vet Pathol 2013; 50:994-1006. [DOI: 10.1177/0300985813488895] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J. A. Gerdin
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine at Cornell University, Ithaca, NY, USA
| | - S. P. McDonough
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine at Cornell University, Ithaca, NY, USA
| |
Collapse
|
206
|
Abstract
The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host-microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host-microbiota interactions and explore recent human microbiome studies.
Collapse
Affiliation(s)
- Aleksandar D. Kostic
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA
| | - Michael R. Howitt
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Wendy S. Garrett
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA
| |
Collapse
|
207
|
Moss AK, Hamarneh SR, Mohamed MMR, Ramasamy S, Yammine H, Patel P, Kaliannan K, Alam SN, Muhammad N, Moaven O, Teshager A, Malo NS, Narisawa S, Millán JL, Warren HS, Hohmann E, Malo MS, Hodin RA. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am J Physiol Gastrointest Liver Physiol 2013; 304:G597-604. [PMID: 23306083 PMCID: PMC3602687 DOI: 10.1152/ajpgi.00455.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.
Collapse
Affiliation(s)
- Angela K. Moss
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Sulaiman R. Hamarneh
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Mussa M. Rafat Mohamed
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Sundaram Ramasamy
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Halim Yammine
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Palak Patel
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Kanakaraju Kaliannan
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Sayeda N. Alam
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Nur Muhammad
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Omeed Moaven
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Abeba Teshager
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Nondita S. Malo
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Sonoko Narisawa
- 2Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California; and
| | - José Luis Millán
- 2Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California; and
| | - H. Shaw Warren
- 3Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Hohmann
- 3Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Madhu S. Malo
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Richard A. Hodin
- 1Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
208
|
Martínez-Olmos MA, Peinó R, Prieto-Tenreiro A, Lage M, Nieto L, Lord T, Molina-Pérez E, Domínguez-Muñoz JE, Casanueva FF. Intestinal Absorption and Pancreatic Function are Preserved in Anorexia Nervosa Patients in Both a Severely Malnourished State and After Recovery. EUROPEAN EATING DISORDERS REVIEW 2013; 21:247-51. [DOI: 10.1002/erv.2223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Alma Prieto-Tenreiro
- Endocrinology and Nutrition Division; Complejo Hospitalario Universitario de Santiago and Santiago de Compostela University; Spain
| | | | - Laura Nieto
- Gastroenterology Division; Complejo Hospitalario Universitario de Santiago and Santiago de Compostela University; Spain
| | - Teresa Lord
- Endocrinology and Nutrition Division; Complejo Hospitalario Universitario de Santiago and Santiago de Compostela University; Spain
| | - Esther Molina-Pérez
- Gastroenterology Division; Complejo Hospitalario Universitario de Santiago and Santiago de Compostela University; Spain
| | - Juan Enrique Domínguez-Muñoz
- Gastroenterology Division; Complejo Hospitalario Universitario de Santiago and Santiago de Compostela University; Spain
| | | |
Collapse
|
209
|
Ghosh S, DeCoffe D, Brown K, Rajendiran E, Estaki M, Dai C, Yip A, Gibson DL. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One 2013; 8:e55468. [PMID: 23405155 PMCID: PMC3566198 DOI: 10.1371/journal.pone.0055468] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/23/2012] [Indexed: 01/03/2023] Open
Abstract
Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses resulting in sepsis. We conclude that as an anti-inflammatory agent, ω-3 PUFA supplementation during infection may prove detrimental when host inflammatory responses are critical for survival.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Daniella DeCoffe
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kirsty Brown
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ethendhar Rajendiran
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Mehrbod Estaki
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Chuanbin Dai
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ashley Yip
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- * E-mail:
| |
Collapse
|
210
|
Critical roles of type III phosphatidylinositol phosphate kinase in murine embryonic visceral endoderm and adult intestine. Proc Natl Acad Sci U S A 2013; 110:1726-31. [PMID: 23322734 DOI: 10.1073/pnas.1213212110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metabolism of membrane phosphoinositides is critical for a variety of cellular processes. Phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P(2)] controls multiple steps of the intracellular membrane trafficking system in both yeast and mammalian cells. However, other than in neuronal tissues, little is known about the physiological functions of PtdIns(3,5)P(2) in mammals. Here, we provide genetic evidence that type III phosphatidylinositol phosphate kinase (PIPKIII), which produces PtdIns(3,5)P(2), is essential for the functions of polarized epithelial cells. PIPKIII-null mouse embryos die by embryonic day 8.5 because of a failure of the visceral endoderm to supply the epiblast with maternal nutrients. Similarly, although intestine-specific PIPKIII-deficient mice are born, they fail to thrive and eventually die of malnutrition. At the mechanistic level, we show that PIPKIII regulates the trafficking of proteins to a cell's apical membrane domain. Importantly, mice with intestine-specific deletion of PIPKIII exhibit diarrhea and bloody stool, and their gut epithelial layers show inflammation and fibrosis, making our mutants an improved model for inflammatory bowel diseases. In summary, our data demonstrate that PIPKIII is required for the structural and functional integrity of two different types of polarized epithelial cells and suggest that PtdIns(3,5)P(2) metabolism is an unexpected and critical link between membrane trafficking in intestinal epithelial cells and the pathogenesis of inflammatory bowel disease.
Collapse
|
211
|
Peters E, van Elsas A, Heemskerk S, Jonk L, van der Hoeven J, Arend J, Masereeuw R, Pickkers P. Alkaline phosphatase as a treatment of sepsis-associated acute kidney injury. J Pharmacol Exp Ther 2013; 344:2-7. [PMID: 23131595 DOI: 10.1124/jpet.112.198226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Currently there are no pharmacological therapies licensed to treat sepsis-associated acute kidney injury (AKI). Considering the high incidence and mortality of sepsis-associated AKI, there is an urgent medical need to develop effective pharmacological interventions. Two phase II clinical trials recently demonstrated beneficial effects of the enzyme alkaline phosphatase (AP). In critically ill patients with sepsis-associated AKI, treatment with AP reduced the urinary excretion of tubular injury biomarkers and plasma markers of inflammation, which was associated with improvement of renal function. The dephosphorylating enzyme, AP, is endogenously present in the renal proximal tubule apical membrane but becomes depleted during ischemia-induced AKI, thereby possibly contributing to further renal damage. The exact mechanism of action of AP in AKI is unknown, but might be related to detoxification of circulating lipopolysaccharide and other proinflammatory mediators that lose their proinflammatory effects after dephosphorylation. Alternatively, tissue damage associated with systemic inflammation might be attenuated by an AP-mediated effect on adenosine metabolism. Adenosine is a signaling molecule that has been shown to protect the body from inflammation-induced tissue injury, which is derived through dephosphorylation of ATP. In this Perspectives article, we discuss the clinical activity of AP and its putative molecular modes of action, and we speculate on its use to treat and possibly prevent sepsis-associated AKI.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Nijmegen Institute for Infection Inflammation and Immunity, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Bobkova EV, Kiffer-Moreira T, Sergienko EA. Modulators of intestinal alkaline phosphatase. Methods Mol Biol 2013; 1053:135-144. [PMID: 23860652 DOI: 10.1007/978-1-62703-562-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP.
Collapse
Affiliation(s)
- Ekaterina V Bobkova
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
213
|
Huizinga R, Kreft KL, Onderwater S, Boonstra JG, Brands R, Hintzen RQ, Laman JD. Endotoxin- and ATP-neutralizing activity of alkaline phosphatase as a strategy to limit neuroinflammation. J Neuroinflammation 2012; 9:266. [PMID: 23231745 PMCID: PMC3538711 DOI: 10.1186/1742-2094-9-266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 11/26/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alkaline phosphatase (AP) is a ubiquitously expressed enzyme which can neutralize endotoxin as well as adenosine triphosphate (ATP), an endogenous danger signal released during brain injury. In this study we assessed a potential therapeutic role for AP in inhibiting neuroinflammation using three complementary approaches. METHODS Mice were immunized to induce experimental autoimmune encephalomyelitis (EAE) and treated with AP for seven days during different phases of disease. In addition, serological assays to determine AP activity, endotoxin levels and endotoxin-reactive antibodies were performed in a cohort of multiple sclerosis (MS) patients and controls. Finally, the expression of AP and related enzymes CD39 and CD73 was investigated in brain tissue from MS patients and control subjects. RESULTS AP administration during the priming phase, but not during later stages, of EAE significantly reduced neurological signs. This was accompanied by reduced proliferation of splenocytes to the immunogen, myelin oligodendrocyte glycoprotein peptide. In MS patients, AP activity and isoenzyme distribution were similar to controls. Although endotoxin-reactive IgM was reduced in primary-progressive MS patients, plasma endotoxin levels were not different between groups. Finally, unlike AP and CD73, CD39 was highly upregulated on microglia in white matter lesions of patients with MS. CONCLUSIONS Our findings demonstrate that: 1) pre-symptomatic AP treatment reduces neurological signs of EAE; 2) MS patients do not have altered circulating levels of AP or endotoxin; and 3) the expression of the AP-like enzyme CD39 is increased on microglia in white matter lesions of MS patients.
Collapse
Affiliation(s)
- Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
214
|
Hodin CM, Visschers RGJ, Rensen SS, Boonen B, Olde Damink SWM, Lenaerts K, Buurman WA. Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J Nutr 2012; 142:2141-7. [PMID: 23096015 DOI: 10.3945/jn.112.162388] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The use of total parenteral nutrition (TPN) in the treatment of critically ill patients has been the subject of debate because it has been associated with disturbances in intestinal homeostasis. Important factors in maintaining intestinal homeostasis are the intestinal microbiota and Paneth cells, which exist in a mutually amendable relationship. We hypothesized that the disturbed intestinal homeostasis in TPN-fed individuals results from an interplay between a shift in microbiota composition and alterations in Paneth cells. We studied the microbiota composition and expression of Paneth cell antimicrobial proteins in rats receiving TPN or a control diet for 3, 7, or 14 d. qPCR analysis of DNA extracts from small intestinal luminal contents of TPN-fed rats showed a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes after 14 d (P < 0.05) compared with the control group. This finding coincided with greater staining intensity for lysozyme and significantly greater mRNA expression of the Paneth cell antimicrobial proteins lysozyme (P < 0.05), rat α-defensin 5 (P < 0.01), and rat α-defensin 8 (P < 0.01). Finally, 14 d of TPN resulted in greater circulating ileal lipid-binding protein concentrations (P < 0.05) and greater leakage of horseradish peroxidase (P < 0.01), which is indicative of enterocyte damage and a breached intestinal barrier. Our findings show a shift in intestinal microbiota in TPN-fed rats that correlated with changes in Paneth cell lysozyme expression (r(s) = -0.75, P < 0.01). Further studies that include interventions with microbiota or nutrients that modulate them may yield information on the involvement of the microbiota and Paneth cells in TPN-associated intestinal compromise.
Collapse
Affiliation(s)
- Caroline M Hodin
- Department of Surgery, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
215
|
Riggle KM, Rentea RM, Welak SR, Pritchard KA, Oldham KT, Gourlay DM. Intestinal alkaline phosphatase prevents the systemic inflammatory response associated with necrotizing enterocolitis. J Surg Res 2012; 180:21-6. [PMID: 23158403 DOI: 10.1016/j.jss.2012.10.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 08/23/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with an incidence of 0.5-2.4 cases per 1000 live births and a mortality rate between 10% and 50%. Neonates affected by NEC develop a septic injury that is associated with increased risk of neurological impairment due to intraventricular bleeding and chronic lung disease. Intestinal alkaline phosphatase (IAP) is an endogenous protein that has been shown to inactivate the endotoxin lipopolysaccharide (LPS), and has recently been used successfully as an adjunct to treat sepsis in adult patients. We tested the hypothesis that systemic, exogenous IAP will mitigate the inflammatory response as measured by serum levels of proinflammatory cytokines in a rat model of NEC. METHODS Newborn Sprague-Dawley rats were divided into groups. Control pups were dam fed. NEC was induced by feeding formula containing LPS and exposure to intermittent hypoxia. NEC pups were given intraperitoneal injections of 4 or 40 glycine units (U) of IAP or placebo twice daily. Intestine and serum was collected for cytokine analysis as well as measurement of alkaline phosphatase activity. RESULTS Systemic IAP administration significantly increased serum alkaline phosphatase activity in a dose- and time-dependent fashion. The proinflammatory cytokines tumor necrosis factor α, interleukin 6, and interleukin 1β were significantly increased in NEC rats versus controls on days 2 and 3. Importantly, treatment with 40 U systemic IAP decreased these proinflammatory cytokines back to near-control levels. CONCLUSIONS Systemic IAP administration appears effective in mitigating the systemic inflammatory response associated with NEC, and may prove to be a valuable adjunctive treatment for NEC.
Collapse
Affiliation(s)
- Kevin M Riggle
- Children's Research Institute, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
216
|
Yang Y, Wandler AM, Postlethwait JH, Guillemin K. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates. Front Immunol 2012; 3:314. [PMID: 23091474 PMCID: PMC3469785 DOI: 10.3389/fimmu.2012.00314] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/21/2012] [Indexed: 01/01/2023] Open
Abstract
Alkaline phosphatases (Alps) are well-studied enzymes that remove phosphates from a variety of substrates. Alps function in diverse biological processes, including modulating host-bacterial interactions by dephosphorylating the Gram-negative bacterial cell wall component lipopolysaccharide (LPS). In animals, Alps are encoded by multiple genes characterized by either ubiquitous expression (named Alpls for their liver expression, but a key to proper bone mineralization), or their tissue-specific expression, for example in the intestine (Alpi). We previously characterized a zebrafish alpi gene (renamed here alpi.1) that is regulated by Myd88-dependent innate immune signaling and that is required to prevent a host’s excessive inflammatory reactions to its resident microbiota. Here we report the characterization of two new alp genes in zebrafish, alpi.2 and alp3. To understand their origins, we investigated the phylogenetic history of Alp genes in animals. We find that vertebrate Alp genes are organized in three clades with one of these clades missing from the mammals. We present evidence that these three clades originated during the two vertebrate genome duplications. We show that alpl is ubiquitously expressed in zebrafish, as it is in mammals, whereas the other three alps are specific to the intestine. Our phylogenetic analysis reveals that in contrast to Alpl, which has been stably maintained as a single gene throughout the vertebrates, the Alpis have been lost and duplicated multiple times independently in vertebrate lineages, likely reflecting the rapid and dynamic evolution of vertebrate gut morphologies, driven by changes in bacterial associations and diet.
Collapse
Affiliation(s)
- Ye Yang
- Institute of Molecular Biology, University of Oregon Eugene, OR, USA
| | | | | | | |
Collapse
|
217
|
Molnár K, Vannay A, Sziksz E, Bánki NF, Cseh A, Győrffy H, Dezsőfi A, Arató A, Veres G. [The role of intestinal alkaline phosphatase in pediatric inflammatory bowel and celiac diseases]. Orv Hetil 2012; 153:1389-1395. [PMID: 22935432 DOI: 10.1556/oh.2012.29441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Intestinal alkaline phosphatase enzyme plays a pivotal role in the maintenance of intestinal mucosal barrier integrity with the detoxification capacity of lipopolysaccharide, the ligand of Toll-like receptor 4. The inappropriate immune responses and the damage of the mucosal barrier may contribute to the initiation of inflammatory bowel and celiac diseases. In the inflamed colonic mucosa of children with inflammatory bowel disease and in the duodenal mucosa of newly diagnosed children with celiac disease, the decreased intestinal alkaline phosphatase and increased Toll-like receptor 4 protein expression may generate enhanced lipopolysaccharide activity, which may strengthen tissue damaging processes. The enhancement of intestinal alkaline phosphatase activity in an animal model of colitis and in therapy resistant, adult patients with ulcerative colitis reduced the symptoms of intestinal inflammation. In accordance with these results, the targeted intestinal administration of the enzyme in the two examined disorders may be a supplemental therapeutic option in the future.
Collapse
Affiliation(s)
- Kriszta Molnár
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Gyermekgyógyászati Klinika Budapest Bókay J
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 803] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
219
|
Thomson ABR, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: Part I. World J Gastroenterol 2012; 18:3336-52. [PMID: 22807604 PMCID: PMC3396187 DOI: 10.3748/wjg.v18.i26.3336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
As is the case in all parts of gastroenterology and hepatology, there have been many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed for 2008 and 2009, and the important advances in basic science as well as clinical applications were considered. In Part I of this Editorial Review, seven topics are considered: intestinal development; proliferation and repair; intestinal permeability; microbiotica, infectious diarrhea and probiotics; diarrhea; salt and water absorption; necrotizing enterocolitis; and immunology/allergy. These topics were chosen because of their importance to the practicing physician.
Collapse
|
220
|
Dussaubat C, Brunet JL, Higes M, Colbourne JK, Lopez J, Choi JH, Martín-Hernández R, Botías C, Cousin M, McDonnell C, Bonnet M, Belzunces LP, Moritz RFA, Le Conte Y, Alaux C. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One 2012; 7:e37017. [PMID: 22623972 PMCID: PMC3356400 DOI: 10.1371/journal.pone.0037017] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/12/2012] [Indexed: 12/12/2022] Open
Abstract
The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.
Collapse
Affiliation(s)
- Claudia Dussaubat
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Jean-Luc Brunet
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Mariano Higes
- Bee Pathology Laboratory, Centro Apícola Regional, JCCM, Marchamalo, Spain
| | - John K. Colbourne
- The Centre for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | - Jacqueline Lopez
- The Centre for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | - Jeong-Hyeon Choi
- The Centre for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | | | - Cristina Botías
- Bee Pathology Laboratory, Centro Apícola Regional, JCCM, Marchamalo, Spain
| | - Marianne Cousin
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Cynthia McDonnell
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Marc Bonnet
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Luc P. Belzunces
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Robin F. A. Moritz
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
- * E-mail:
| |
Collapse
|
221
|
Martínez-Moya P, Ortega-González M, González R, Anzola A, Ocón B, Hernández-Chirlaque C, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol Res 2012; 66:144-53. [PMID: 22569414 DOI: 10.1016/j.phrs.2012.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 12/17/2022]
Abstract
Alkaline phosphatase (AP) inactivates bacterial lipopolysaccharide and may therefore be protective. The small intestine and colon express intestinal (IAP) and tissue nonspecific enzyme (TNAP), respectively. The aim of this study was to assess the therapeutic potential of exogenous AP and its complementarity with endogenous enzyme protection in the intestine, as evidenced recently. IAP was given to rats by the oral or intrarectal route (700U/kgday). Oral budesonide (1mg/kgday) was used as a reference treatment. Treatment with intrarectal AP resulted in a 54.5% and 38.0% lower colonic weight and damage score, respectively, and an almost complete normalization of the expression of S100A8, LCN2 and IL-1β (p<0.05). Oral AP was less efficacious, while budesonide had a more pronounced effect on most parameters. Both oral and intrarectal AP counteracted bacterial translocation effectively (78 and 100%, respectively, p<0.05 for the latter), while budesonide failed to exert a positive effect. AP activity was increased in the feces of TNBS colitic animals, associated with augmented sensitivity to the inhibitor levamisole, suggesting enhanced luminal release of this enzyme. This was also observed in the mouse lymphocyte transfer model of chronic colitis. In a separate time course study, TNAP was shown to increase 2-3 days after colitis induction, while dextran sulfate sodium was a much weaker inducer of this isoform. We conclude that exogenous AP exerts beneficial effects on experimental colitis, which includes protection against bacterial translocation. AP of the tissue-nonspecific isoform is shed in higher amounts to the intestinal lumen in experimental colitis, possibly aiding in intestinal protection.
Collapse
Affiliation(s)
- P Martínez-Moya
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas-CIBERehd, Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Modulation of symbiont lipid A signaling by host alkaline phosphatases in the squid-vibrio symbiosis. mBio 2012; 3:mBio.00093-12. [PMID: 22550038 PMCID: PMC3569863 DOI: 10.1128/mbio.00093-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The synergistic activity of Vibrio fischeri lipid A and the peptidoglycan monomer (tracheal cytotoxin [TCT]) induces apoptosis in the superficial cells of the juvenile Euprymna scolopes light organ during the onset of the squid-vibrio symbiosis. Once the association is established in the epithelium-lined crypts of the light organ, the host degrades the symbiont's constitutively produced TCT by the amidase activity of a peptidoglycan recognition protein (E. scolopes peptidoglycan recognition protein 2 [EsPGRP2]). In the present study, we explored the role of alkaline phosphatases in transforming the lipid A of the symbiont into a form that changes its signaling properties to host tissues. We obtained full-length open reading frames for two E. scolopes alkaline phosphatase (EsAP) mRNAs (esap1 and esap2); transcript levels suggested that the dominant light organ isoform is EsAP1. Levels of total EsAP activity increased with symbiosis, but only after the lipid A-dependent morphogenetic induction at 12 h, and were regulated over the day-night cycle. Inhibition of total EsAP activity impaired normal colonization and persistence by the symbiont. EsAP activity localized to the internal regions of the symbiotic juvenile light organ, including the lumina of the crypt spaces where the symbiont resides. These data provide evidence that EsAPs work in concert with EsPGRPs to change the signaling properties of bacterial products and thereby promote persistent colonization by the mutualistic symbiont. IMPORTANCE The potential for microbe-associated molecular patterns (MAMPs) to compromise host-tissue health is reflected in the often-used nomenclature for these molecules: lipopolysaccharide (LPS) is also called "endotoxin" and the peptidoglycan monomer is also called "tracheal cytotoxin" (TCT). With constant presentation of MAMPs by the normal microbiota, mechanisms to tolerate their effects have developed. The results of this contribution provide evidence that host alkaline phosphatases (APs) dephosphorylate and inactivate the symbiont MAMP lipid A. As such, APs work in synergy with a peptidoglycan recognition protein, which inactivates symbiont-exported TCT, to alter the symbiont MAMPs and promote persistence of the partnership. Not only may these activities serve to "tame" the MAMPs, but also the resulting products may themselves be important signals in persistent mutualisms. The finding of lipid A modification by APs in an invertebrate mutualism provides evidence that this specific strategy for dealing with symbiotic partners is conserved across the animal kingdom.
Collapse
|
223
|
Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 2012; 108:801-9. [PMID: 22717075 DOI: 10.1017/s0007114512001213] [Citation(s) in RCA: 472] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharide (LPS) may play an important role in chronic diseases through the activation of inflammatory responses. The type of diet consumed is of major concern for the prevention and treatment of these diseases. Evidence from animal and human studies has shown that LPS can diffuse from the gut to the circulatory system in response to the intake of high amounts of fat. The method by which LPS move into the circulatory system is either through direct diffusion due to intestinal paracellular permeability or through absorption by enterocytes during chylomicron secretion. Considering the impact of metabolic diseases on public health and the association between these diseases and the levels of LPS in the circulatory system, this review will mainly discuss the current knowledge about high-fat diets and subclinical inflammation. It will also describe the new evidence that correlates gut microbiota, intestinal permeability and alkaline phosphatase activity with increased blood LPS levels and the biological effects of this increase, such as insulin resistance. Although the majority of the studies published so far have assessed the effects of dietary fat, additional studies are necessary to deepen the understanding of how the amount, the quality and the structure of the fat may affect endotoxaemia. The potential of food combinations to reduce the negative effects of fat intake should also be considered in future studies. In these studies, the effects of flavonoids, prebiotics and probiotics on endotoxaemia should be investigated. Thus, it is essential to identify dietetic strategies capable of minimising endotoxaemia and its postprandial inflammatory effects.
Collapse
|
224
|
Shao B, Munford RS, Kitchens R, Varley AW. Hepatic uptake and deacylation of the LPS in bloodborne LPS-lipoprotein complexes. Innate Immun 2012; 18:825-33. [PMID: 22441700 DOI: 10.1177/1753425912442431] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Much evidence indicates that bacterial LPS (endotoxin) is removed from the bloodstream mainly by the liver, yet the hepatic uptake mechanisms remain uncertain and controversial. In plasma, LPS can be either 'free' (as aggregates, bacterial membrane fragments or loosely bound to albumin, CD14, or other proteins) or 'bound' (complexed with lipoproteins). Whereas most free LPS is taken up by Kupffer cells (KCs), lipoprotein-bound LPS has seemed to be cleared principally by hepatocytes. Here, we compared the liver's ability to take up and deacylate free LPS aggregates and the LPS in preformed LPS-high density lipoprotein (HDL) complexes. In mice examined from 1 h to 7 d after a small amount of fluorescent (FITC-)LPS was injected into a lateral tail vein, we found FITC-LPS almost entirely within, or adjacent to, KCs. As expected, FITC-LPS complexed with HDL (FITC-LPS-HDL) disappeared more slowly from the circulation and a smaller fraction of the injected dose of FITC-LPS was found in the liver. Unexpectedly, the FITC-LPS injected as FITC-LPS-HDL complexes was also found within sinusoids, adjacent to, or within, KCs. In other experiments, we found that both free and HDL-bound radiolabeled LPS underwent enzymatic deacylation by acyloxyacyl hydrolase (AOAH), the LPS-inactivating enzyme that is principally produced within the liver by KCs. Our observations suggest that KCs and AOAH play important roles in clearing and catabolizing both free LPS and the LPS in circulating LPS-HDL complexes.
Collapse
Affiliation(s)
- Baomei Shao
- Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | | | | | | |
Collapse
|
225
|
Lallès JP, Orozco-Solís R, Bolaños-Jiménez F, de Coppet P, Le Dréan G, Segain JP. Perinatal undernutrition alters intestinal alkaline phosphatase and its main transcription factors KLF4 and Cdx1 in adult offspring fed a high-fat diet. J Nutr Biochem 2012; 23:1490-7. [PMID: 22405696 DOI: 10.1016/j.jnutbio.2011.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/20/2011] [Accepted: 10/12/2011] [Indexed: 12/14/2022]
Abstract
Nutrient restriction during gestation and/or suckling is associated with an increased risk of developing inflammation, obesity and metabolic diseases in adulthood. However, the underlying mechanisms, including the role of the small intestine, are unclear. We hypothesized that intestinal adaptation to the diet in adulthood is modulated by perinatal nutrition. This hypothesis was tested using a split-plot design experiment with 20 controls and 20 intrauterine growth-retarded (IUGR) rats aged 240 days and randomly assigned to be fed a standard chow or a high-fat (HF) diet for 10 days. Jejunal tissue was collected at necropsy and analyzed for anatomy, digestive enzymes, goblet cells and mRNA levels. Cecal contents and blood serum were analyzed for alkaline phosphatase (AP). IUGR rats failed to adapt to HF by increasing AP activity in jejunal tissue and cecal content as observed in controls. mRNA levels of transcription factors KLF4 and Cdx1 were blunted in jejunal epithelial cell of IUGR rats fed HF. mRNA levels of TNF-α were lower in IUGR rats. They also displayed exacerbated aminopeptidase N response and reduced jejunal goblet cell density. Villus and crypt architecture and epithelial cell proliferation increased with HF in both control and IUGR rats. Serum AP tended to be lower, and serum levamisole inhibition-resistant AP fraction was lower, in IUGR than controls with HF. Serum fatty acids and triglycerides were higher in IUGR rats and higher with HF. In conclusion, the adult intestine adapts to an HF diet differentially depending on early nutrition, jejunal AP and transcription factors being blunted in IUGR individuals fed HF.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- INRA, UMR1079, Systèmes d'Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France.
| | | | | | | | | | | |
Collapse
|
226
|
Shifrin DA, McConnell RE, Nambiar R, Higginbotham JN, Coffey RJ, Tyska MJ. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol 2012; 22:627-31. [PMID: 22386311 DOI: 10.1016/j.cub.2012.02.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/03/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
The continuous monolayer of intestinal epithelial cells (IECs) lining the gut lumen functions as the site of nutrient absorption and as a physical barrier to prevent the translocation of microbes and associated toxic compounds into the peripheral vasculature. IECs also express host defense proteins such as intestinal alkaline phosphatase (IAP), which detoxify bacterial products and prevent intestinal inflammation. Our laboratory recently showed that IAP is enriched on vesicles that are released from the tips of IEC microvilli and accumulate in the intestinal lumen. Here, we show that these native "lumenal vesicles" (LVs) (1) contain catalytically active IAP that can dephosphorylate lipopolysaccharide (LPS), (2) cluster on the surface of native lumenal bacteria, (3) prevent the adherence of enteropathogenic E. coli (EPEC) to epithelial monolayers, and (4) limit bacterial population growth. We also find that IECs upregulate LV production in response to EPEC and other Gram-negative pathogens. Together, these results suggest that microvillar vesicle shedding represents a novel mechanism for distributing host defense machinery into the intestinal lumen and that microvillus-derived LVs modulate epithelial-microbial interactions.
Collapse
Affiliation(s)
- David A Shifrin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
227
|
Fujita T, Daiko H, Nishimura M. Early enteral nutrition reduces the rate of life-threatening complications after thoracic esophagectomy in patients with esophageal cancer. ACTA ACUST UNITED AC 2012; 48:79-84. [PMID: 22377820 DOI: 10.1159/000336574] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/15/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early postoperative enteral nutrition has been suggested to improve the nutritional status of patients after esophageal surgery. However, whether enteral nutrition decreases rates of surgical complications and increases the completion rate of the clinical management pathway is unclear. METHODS We analyzed 154 patients who were randomly assigned to either an enteral or parenteral nutrition group after undergoing esophagectomy, compared the incidence of surgical complications, and evaluated the completion rate of the clinical pathway. In these 2 patient groups, perioperative management was performed through identical clinical pathways, except for nutrition. RESULTS The overall rate of surgical complications of any type did not differ between patients who received early enteral nutrition and those who did not (p = 0.50); however, the rate of life-threatening surgical complications was significantly lower in patients who received early enteral nutrition (p = 0.02). The rate of non-life-threatening surgical complications did not differ between the groups (p = 0.98). In patients who received enteral nutrition, the completion rate of the clinical pathway was higher (p = 0.03), and the postoperative hospital stay was shorter (p = 0.04). CONCLUSIONS Early enteral nutrition reduces the incidence of life-threatening surgical complications and improves the completion rate of the clinical pathway for thoracic esophagectomy.
Collapse
Affiliation(s)
- T Fujita
- Division of Esophageal Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | | | | |
Collapse
|
228
|
Kelly CJ, Colgan SP, Frank DN. Of microbes and meals: the health consequences of dietary endotoxemia. Nutr Clin Pract 2012; 27:215-25. [PMID: 22378797 DOI: 10.1177/0884533611434934] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human intestinal tract comprises a rich and complex microbial ecosystem. This intestinal microbota provides a large reservoir of potentially toxic molecules, including bacterial endotoxin (ie, lipopolysaccharide [LPS]). This potent inflammatory molecule is detectable in the circulation of healthy individuals, and levels transiently increase following ingestion of energy-rich meals. Chronic exposure to circulating endotoxin has been associated with obesity, diabetes, and cardiovascular disease. Western-style meals augment LPS translocation and by this mechanism may contribute to the pathogenesis of these diseases. By contrast, the gut and other organs have evolved mechanisms to detoxify endotoxin and neutralize the potentially inflammatory qualities of circulating endotoxin. Of specific interest to clinicians is evidence that acute postprandial elevation of circulating endotoxin is dependent on meal composition. In this review, the authors present an overview of the biochemical and cellular mechanisms that lead to endotoxemia, with emphasis on the interplay between microbial and nutrition determinants of this condition. The link between endotoxemia, diet, and changes in the intestinal microbiota raise the possibility that dietary interventions can, at least in part, ameliorate the detrimental outcomes of endotoxemia.
Collapse
Affiliation(s)
- Caleb J Kelly
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
229
|
Chen C, Sibley E. Expression profiling identifies novel gene targets and functions for Pdx1 in the duodenum of mature mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G407-19. [PMID: 22135308 PMCID: PMC3287393 DOI: 10.1152/ajpgi.00314.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/28/2011] [Indexed: 01/31/2023]
Abstract
Transcription factor pancreatic and duodenal homeobox 1 (Pdx1) plays an essential role in the pancreas to regulate its development and maintain proper islet function. However, the functions of Pdx1 in mature small intestine are less known. We aimed to investigate the intestinal role of Pdx1 by profiling the expression of genes differentially regulated in response to inactivation of Pdx1 specifically in the intestinal epithelium. Pdx1 was conditionally inactivated in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Total RNA was isolated from the first 5 cm of the small intestine from mature Pdx1(flox/flox);VilCre and littermate control mice. Microarray analysis identified 86 probe sets representing 68 genes significantly upregulated or downregulated 1.5-fold or greater in Pdx(flox/flox);VilCre mice maintained under standard conditions. Ingenuity Pathway Analysis revealed that functions of the differentially expressed genes are significantly associated with metabolism of nutrients including lipids and iron. Network analysis examining the interactions among the differentially expressed genes further supports the notion that Pdx1 may modulate metabolism of lipids and iron from mature intestinal epithelium. Following forced oil feeding, Pdx1(flox/flox);VilCre mice showed diminished lipid staining in the duodenal epithelium and decreased serum triglyceride levels, indicating reduced lipid absorption compared with control duodenal epithelium. Blood samples from Pdx1(flox/flox);VilCre mice have significantly lower mean values for mean corpuscular volume and mean corpuscular hemoglobin, consistent with iron deficiency. The absence of nonheme iron in the villous epithelium and lamina propria of Pdx1(flox/flox);VilCre duodenum indicates that the duodenal epithelium lacking Pdx1 may have defects in importing iron through enterocytes, resulting in iron deficiency in Pdx1(flox/flox);VilCre mice.
Collapse
Affiliation(s)
- Chin Chen
- Dept. of Pediatrics, Stanford Univ. School of Medicine, Stanford, CA 94305-5208, USA.
| | | |
Collapse
|
230
|
Bastarache JA, Ware LB, Girard TD, Wheeler AP, Rice TW. Markers of inflammation and coagulation may be modulated by enteral feeding strategy. JPEN J Parenter Enteral Nutr 2012; 36:732-40. [PMID: 22318965 DOI: 10.1177/0148607111433054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although enteral nutrition (EN) is provided to most mechanically ventilated patients, the effect of specific feeding strategies on circulating markers of coagulation and inflammation is unknown. METHODS Markers of inflammation (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, interferon [IFN]-γ, IL-6, IL-8, IL-10, IL-12) and coagulation (tissue factor [TF], plasminogen activator inhibitor-1) were measured at baseline (n = 185) and 6 days (n = 103) in mechanically ventilated intensive care unit patients enrolled in a randomized controlled study of trophic vs full-energy feeds to test the hypothesis that trophic enteral feeds would be associated with decreases in markers of inflammation and coagulation compared to full-energy feeds. RESULTS There were no differences in any of the biomarkers measured at day 6 between patients who were randomized to receive trophic feeds compared to full-energy feeds. However, TF levels decreased modestly in patients from baseline to day 6 in the trophic feeding group (343.3 vs 247.8 pg/mL, P = .061) but increased slightly in the full-calorie group (314.3 vs 331.8 pg/mL). Lower levels of TF at day 6 were associated with a lower mortality, and patients who died had increasing TF levels between days 0 and 6 (median increase of 39.7) compared to decreasing TF levels in patients who lived (median decrease of 95.0, P = .033). CONCLUSIONS EN strategy in critically ill patients with acute respiratory failure does not significantly modify inflammation and coagulation by day 6, but trophic feeds may have some modest effects in attenuating inflammation and coagulation.
Collapse
Affiliation(s)
- Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA.
| | | | | | | | | |
Collapse
|
231
|
Molnár K, Vannay Á, Sziksz E, Bánki NF, Győrffy H, Arató A, Dezsőfi A, Veres G. Decreased mucosal expression of intestinal alkaline phosphatase in children with coeliac disease. Virchows Arch 2012; 460:157-61. [DOI: 10.1007/s00428-011-1188-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/12/2011] [Accepted: 12/26/2011] [Indexed: 12/19/2022]
|
232
|
Mani V, Weber TE, Baumgard LH, Gabler NK. Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock. J Anim Sci 2012; 90:1452-65. [PMID: 22247110 DOI: 10.2527/jas.2011-4627] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endotoxin, also referred to as lipopolysaccharide (LPS), can stimulate localized or systemic inflammation via the activation of pattern recognition receptors. Additionally, endotoxin and inflammation can regulate intestinal epithelial function by altering integrity, nutrient transport, and utilization. The gastrointestinal tract is a large reservoir of both gram-positive and gram-negative bacteria, of which the gram-negative bacteria serve as a source of endotoxin. Luminal endotoxin can enter circulation via two routes: 1) nonspecific paracellular transport through epithelial cell tight junctions, and 2) transcellular transport through lipid raft membrane domains involving receptor-mediated endocytosis. Paracellular transport of endotoxin occurs through dissociation of tight junction protein complexes resulting in reduced intestinal barrier integrity, which can be a result of enteric disease, inflammation, or environmental and metabolic stress. Transcellular transport, via specialized membrane regions rich in glycolipids, sphingolipids, cholesterol, and saturated fatty acids, is a result of raft recruitment of endotoxin-related signaling proteins leading to endotoxin signaling and endocytosis. Both transport routes and sensitivity to endotoxin may be altered by diet and environmental and metabolic stresses. Intestinal-derived endotoxin and inflammation result in suppressed appetite, activation of the immune system, and partitioning of energy and nutrients away from growth toward supporting the immune system requirements. In livestock, this leads to the suppression of growth, particularly suppression of lean tissue accretion. In this paper, we summarize the evidence that intestinal transport of endotoxin and the subsequent inflammation leads to decrease in the production performance of agricultural animals and we present an overview of endotoxin detoxification mechanisms in livestock.
Collapse
Affiliation(s)
- V Mani
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
233
|
Campbell EL, Serhan CN, Colgan SP. Antimicrobial aspects of inflammatory resolution in the mucosa: a role for proresolving mediators. THE JOURNAL OF IMMUNOLOGY 2011; 187:3475-81. [PMID: 21934099 DOI: 10.4049/jimmunol.1100150] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial Ags, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier; in recent years, numerous findings implicate an active role of the epithelium with proresolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and proresolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression, and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosal homeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to proresolving lipid mediators.
Collapse
Affiliation(s)
- Eric L Campbell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
234
|
Hodin CM, Lenaerts K, Grootjans J, de Haan JJ, Hadfoune M, Verheyen FK, Kiyama H, Heineman E, Buurman WA. Starvation compromises Paneth cells. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2885-93. [PMID: 21986443 DOI: 10.1016/j.ajpath.2011.08.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
Abstract
Lack of enteral feeding, with or without parenteral nutritional support, is associated with increased intestinal permeability and translocation of bacteria. Such translocation is thought to be important in the high morbidity and mortality rates of patients who receive nothing by mouth. Recently, Paneth cells, important constituents of innate intestinal immunity, were found to be crucial in host protection against invasion of both commensal and pathogenic bacteria. This study investigates the influence of food deprivation on Paneth cell function in a mouse starvation model. Quantitative PCR showed significant decreases in mRNA expression of typical Paneth cell antimicrobials, lysozyme, cryptdin, and RegIIIγ, in ileal tissue after 48 hours of food deprivation. Protein expression levels of lysozyme and RegIIIγ precursor were also significantly diminished, as shown by Western blot analysis and IHC. Late degenerative autophagolysosomes and aberrant Paneth cell granules in starved mice were evident by electron microscopy, Western blot analysis, and quantitative PCR. Furthermore, increased bacterial translocation to mesenteric lymph nodes coincided with Paneth cell abnormalities. The current study demonstrates the occurrence of Paneth cell abnormalities during enteral starvation. Such changes may contribute to loss of epithelial barrier function, causing the apparent bacterial translocation in enteral starvation.
Collapse
Affiliation(s)
- Caroline M Hodin
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
OBJECTIVES The intestinal mucosal barrier protects the body from the large numbers of microbes that inhabit the intestines and the molecules they release. Intestinal barrier function is impaired in humans with cystic fibrosis (CF), including reduced activity of the lipopolysaccharide-detoxifying enzyme intestinal alkaline phosphatase (IAP) and increased permeability. The objective of this study was to determine the suitability of using the CF mouse to investigate intestinal barrier function, and whether interventions that are beneficial for the CF mouse intestinal phenotype (antibiotics or laxative), would improve barrier function. Also tested were the effects of exogenous IAP administration. MATERIALS AND METHODS The Cftr(tm1UNC) mouse was used. IAP expression (encoded by the murine Akp3 gene) was measured by quantitative reverse transcription-polymerase chain reaction and enzyme activity. Intestinal permeability was assessed by measuring rhodamine-dextran plasma levels following gavage. RESULTS CF mice had 40% Akp3 mRNA expression and 30% IAP enzyme activity, as compared with wild-type mice. Oral antibiotics and laxative treatments normalized Akp3 expression and IAP enzyme activity in the CF intestine. CF mice had a 5-fold greater transfer of rhodamine-dextran from gut lumen to blood. Antibiotic and laxative treatments reduced intestinal permeability in CF mice. Administration of exogenous purified IAP to CF mice reduced intestinal permeability to wild-type levels and reduced small intestinal bacterial overgrowth by >80%. CONCLUSIONS The CF mouse intestine has impaired mucosal barrier function, similar to human CF. Interventions that improve other aspects of the CF intestinal phenotype (antibiotics and laxative) also increase IAP activity and decrease intestinal permeability in CF mice. Exogenous IAP improve permeability and strongly reduce bacterial overgrowth in CF mice, suggesting this may be a useful therapy for CF.
Collapse
|
236
|
Tyska MJ, Nambiar R. Myosin-1a: A motor for microvillar membrane movement and mechanics. Commun Integr Biol 2011; 3:64-6. [PMID: 20539787 DOI: 10.4161/cib.3.1.10141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022] Open
Abstract
Myosin-1a is one of eight monomeric, membrane binding class I myosins expressed in vertebrates.1 As the most abundant actin-based motor protein found in the enterocyte microvillus, myosin-1a has long been known to interact with the apical membrane via a highly basic C-terminal tail domain.2 Several recent studies shed light on possible functional consequences of this protein/lipid interaction. In vitro and in vivo studies of microvillar function have revealed that myosin-1a can move apical membrane along core actin bundles, leading to the release of small vesicles from microvillar tips.3,4 Additional studies indicate that myosin-1a and other class I myosins contribute to membrane-cytoskeleton adhesion, which enables the apical membrane to resist deformation.5 These findings clearly position myosin-1a as an important player in apical membrane movement and structural stability. How this motor is able to fulfill these two seemingly distinct functions is currently unclear, but will serve as the focus of our discussion below.
Collapse
Affiliation(s)
- Matthew J Tyska
- Department of Cell and Developmental Biology; Vanderbilt University Medical Center; Nashville, TN USA
| | | |
Collapse
|
237
|
Weinbaum S, Duan Y, Thi MM, You L. An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes). Cell Mol Bioeng 2011; 4:510-537. [PMID: 23976901 DOI: 10.1007/s12195-011-0179-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review we will examine from a biomechanical and ultrastructural viewpoint how the cytoskeletal specialization of three basic cell types, endothelial cells (ECs), epithelial cells (renal tubule) and dendritic cells (osteocytes), enables the mechano-sensing of fluid flow in both their native in vivo environment and in culture, and the downstream signaling that is initiated at the molecular level in response to fluid flow. These cellular responses will be discussed in terms of basic mysteries and paradoxes encountered by each cell type. In ECs fluid shear stress (FSS) is nearly entirely attenuated by the endothelial glycocalyx that covers their apical membrane and yet FSS is communicated to both intracellular and junctional molecular components in activating a wide variety of signaling pathways. The same is true in proximal tubule (PT) cells where a dense brush border of microvilli covers the apical surface and the flow at the apical membrane is negligible. A four decade old unexplained mystery is the ability of PT epithelia to reliably reabsorb 60% of the flow entering the tubule regardless of the glomerular filtration rate. In the cortical collecting duct (CCD) the flow rates are so low that a special sensing apparatus, a primary cilia is needed to detect very small variations in tubular flow. In bone it has been a century old mystery as to how osteocytes embedded in a stiff mineralized tissue are able to sense miniscule whole tissue strains that are far smaller than the cellular level strains required to activate osteocytes in vitro.
Collapse
Affiliation(s)
- Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
238
|
Local peritoneal irrigation with intestinal alkaline phosphatase is protective against peritonitis in mice. J Gastrointest Surg 2011; 15:860-9. [PMID: 21360208 DOI: 10.1007/s11605-010-1405-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/08/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND The brush-border enzyme intestinal alkaline phosphatase (IAP) functions as a gut mucosal defense factor and detoxifies different toll-like receptor ligands. This study aimed to determine the therapeutic effects of locally administered calf IAP (cIAP) in a cecal ligation and puncture (CLP) model of polymicrobial sepsis. METHODS C57BL/6 mice underwent CLP followed by intraperitoneal injection of cIAP or normal saline. Blood leukocyte counts, levels of cytokines and liver enzymes, and lung myeloperoxidase activity were determined. Peritoneal lavage fluid (PLF) was assayed for neutrophil infiltration and both aerobic and anaerobic bacterial counts. RESULTS After intraperitoneal injection, cIAP activity in PLF decreased 50% within 15 min with minimal activity evident at 4 h. Compared with irrigation with normal saline, cIAP irrigation increased the 7-day survival rate in mice undergoing CLP, with maximal effects seen at 25 units of cIAP (0% vs. 46% survival rate, respectively; p < 0.001). cIAP treatment reduced lung inflammation, liver damage and levels of tumor necrosis factor alpha and interleukin-6. CONCLUSIONS Peritoneal irrigation with cIAP significantly enhances survival in a mouse model of peritonitis, likely through reduction of local inflammation and remote organ damage. We suggest that intraperitoneal cIAP irrigation could be a novel therapy for intra-abdominal sepsis.
Collapse
|
239
|
Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Immunol 2011; 4:325-34. [PMID: 20980996 DOI: 10.1038/mi.2010.71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Innate immune recognition of the bacterial cell wall constituent peptidoglycan by the cytosolic nucleotide-binding oligomerization domain 2 (Nod2) receptor has a pivotal role in the maintenance of intestinal mucosal homeostasis. Whereas peptidoglycan cleavage by gut-derived lysozyme preserves the recognition motif, the N-acetylmuramoyl-L-alanine amidase activity of the peptidoglycan recognition protein 2 (PGLYRP-2) destroys the Nod2-detected muramyl dipeptide structure. PGLYRP-2 green fluorescent protein (GFP) reporter and wild-type mice were studied by flow cytometry and quantitative RT-PCR to identify Pglyrp-2 expression in cells of the intestinal mucosa and reveal a potential regulatory function on epithelial peptidoglycan recognition. CD3(+)/CD11c(+) T lymphocytes revealed significant Pglyrp-2 expression, whereas epithelial cells and intestinal myeloid cells were negative. The mucosal Pglyrp-2-expressing lymphocyte population demonstrated a mixed T-cell receptor (TCR) αβ or γδ phenotype with predominant CD8α and less so CD8β expression, as well as significant staining for the activation markers B220 and CD69, presenting a typical intraepithelial lymphocyte phenotype. Importantly, exposure of peptidoglycan to PGLYRP-2 significantly reduced Nod2/Rip2-mediated epithelial activation. Also, moderate but significant alterations of the intestinal microbiota composition were noted in Pglyrp-2-deficient animals. PGLYRP-2 might thus have a significant role in regulation of the enteric host-microbe homeostasis.
Collapse
|
240
|
Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millan JL, Mostafa G, Alam SN, Ramasamy S, Warren HS, Hohmann EL, Hodin RA. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci 2011; 56:1020-7. [PMID: 20844955 PMCID: PMC3931260 DOI: 10.1007/s10620-010-1396-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 08/12/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor known to dephosphorylate lipopolysaccharide (LPS); however, the role of IAP in the gut response to luminal bacteria remains poorly defined. We investigated immune responses of wild-type (WT) and IAP-knockout (IAP-KO) mice to LPS and Salmonella typhimurium challenges. METHODS Cryostat sectioning and standard indirect immunohistochemical staining for major histocompatibility complex (MHC) class II molecules were performed on liver tissue from WT and IAP-KO mice. WT and IAP-KO mice were orally gavaged with S. typhimurium; bacterial translocation to mesenteric nodes, liver, and spleen was determined by tissue homogenization and plating. In other experiments, WT and IAP-KO mice received intraperitoneal injections of LPS, with subsequent quantification of complete blood counts and serum interleukin (IL)-6 by enzyme-linked immunosorbent assay (ELISA). WT and IAP-KO whole blood were plated and stimulated with LPS and Pam-3-Cys, followed by cytokine assays. RESULTS Immunohistologic liver examinations showed increased expression of MHC class II molecules in IAP-KO mice. Following S. typhimurium challenge, WT mice appeared moribund compared with IAP-KO mice, with increased bacterial translocation. WT mice had >50% decrease (P<.005) in platelets and 1.8-fold (P<.05) increased serum IL-6 compared with IAP-KO mice in response to LPS injections. IAP-KO whole-blood stimulation with LPS and Pam-3-Cys resulted in increased IL-6 and tumor necrosis factor (TNF)-alpha secretion compared with WT. CONCLUSIONS IAP-KO mice exhibit characteristics consistent with local LPS tolerance. Whole-blood response of IAP-KO mice did not reflect systemic tolerance. These data suggest that IAP is a local immunomodulating factor, perhaps regulating LPS-toll-like receptor 4 (TLR4) interaction between commensal microflora and intestinal epithelium.
Collapse
Affiliation(s)
- Kathryn T. Chen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Surgery, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 195, Minneapolis, MN 55455, USA
| | - Madhu S. Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Golam Mostafa
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sayeda N. Alam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sundaram Ramasamy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - H. Shaw Warren
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth L. Hohmann
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
241
|
Shah DH, Zhou X, Addwebi T, Davis MA, Orfe L, Call DR, Guard J, Besser TE. Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. MICROBIOLOGY-SGM 2011; 157:1428-1445. [PMID: 21292746 DOI: 10.1099/mic.0.044461-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins.
Collapse
Affiliation(s)
- Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Xiaohui Zhou
- WSU-Zoonoses Unit, Washington State University, Pullman, WA 99164, USA.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Tarek Addwebi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Margaret A Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lisa Orfe
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Jean Guard
- Egg Quality and Safety Research Unit, Agriculture Research Service, United States Department of Agriculture, Athens, GA 30605, USA
| | - Thomas E Besser
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
242
|
Ramasamy S, Nguyen DD, Eston M, Alam SN, Moss AK, Ebrahimi F, Biswas B, Mostafa G, Chen KT, Kaliannan K, Yammine H, Narisawa S, Millán JL, Warren HS, Hohmann EL, Mizoguchi E, Reinecker HC, Bhan AK, Snapper SB, Malo MS, Hodin RA. Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis 2011; 17:532-42. [PMID: 20645323 PMCID: PMC3154118 DOI: 10.1002/ibd.21377] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The brush border enzyme intestinal alkaline phosphatase (IAP) functions as a gut mucosal defense factor and is protective against dextran sulfate sodium (DSS)-induced acute injury in rats. The present study evaluated the potential therapeutic role for orally administered calf IAP (cIAP) in two independent mouse models of chronic colitis: 1) DSS-induced chronic colitis, and 2) chronic spontaneous colitis in Wiskott-Aldrich Syndrome protein (WASP)-deficient (knockout) mice that is accelerated by irradiation. METHODS The wildtype (WT) and IAP knockout (IAP-KO) mice received four cycles of 2% DSS ad libitum for 7 days. Each cycle was followed by a 7-day DSS-free interval during which mice received either cIAP or vehicle in the drinking water. The WASP-KO mice received either vehicle or cIAP for 6 weeks beginning on the day of irradiation. RESULTS Microscopic colitis scores of DSS-treated IAP-KO mice were higher than DSS-treated WT mice (52±3.8 versus 28.8±6.6, respectively, P<0.0001). cIAP treatment attenuated the disease in both groups (KO=30.7±6.01, WT=18.7±5.0, P<0.05). In irradiated WASP-KO mice cIAP also attenuated colitis compared to control groups (3.3±0.52 versus 6.2±0.34, respectively, P<0.001). Tissue myeloperoxidase activity and proinflammatory cytokines were significantly decreased by cIAP treatment. CONCLUSIONS Endogenous IAP appears to play a role in protecting the host against chronic colitis. Orally administered cIAP exerts a protective effect in two independent mouse models of chronic colitis and may represent a novel therapy for human IBD.
Collapse
Affiliation(s)
- Sundaram Ramasamy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Deanna D. Nguyen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Michelle Eston
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sayeda Nasrin Alam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Angela K. Moss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Farzad Ebrahimi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Brishti Biswas
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Golam Mostafa
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kathryn T. Chen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kanakaraju Kaliannan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Halim Yammine
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - H. Shaw Warren
- Infectious Disease Unit, Departments of Pediatrics and Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Elizabeth L. Hohmann
- Infectious Disease Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Hans-Christian Reinecker
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Scott B. Snapper
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Madhu S. Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Corresponding Author: Madhu S. Malo, M.D., Ph.D., Department of Surgery, Massachusetts General Hospital, Jackson 812, 55 fruit Street, Boston, MA 02114, Telephone: (617) 726 1956, Fax: (617) 726 3114,
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
243
|
Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet. Life Sci 2011; 88:384-91. [DOI: 10.1016/j.lfs.2010.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/17/2010] [Accepted: 12/06/2010] [Indexed: 11/23/2022]
|
244
|
López-Posadas R, González R, Ballester I, Martínez-Moya P, Romero-Calvo I, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Tissue-nonspecific alkaline phosphatase is activated in enterocytes by oxidative stress via changes in glycosylation. Inflamm Bowel Dis 2011; 17:543-56. [PMID: 20645320 DOI: 10.1002/ibd.21381] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal inflammation produces an induction of alkaline phosphatase (AP) activity that is attributable in part to augmented expression, accompanied by a change in isoform, in epithelial cells. METHODS This study focuses on induction of AP in intestinal epithelial cells in vitro. RESULTS Treatment with the oxidants H2O2, monochloramine, or tButOOH increases AP activity in vitro in Caco-2, HT29, and IEC18 cells. We selected IEC18 cells for further testing. Basal AP activity in IEC18 cells is of the tissue-nonspecific (bone-liver-kidney) type, as indicated by Northern and Western blot analysis. Oxidative stress augments AP activity and the sensitivity of the enzyme to levamisole, homoarginine, and heat in IEC18 cells. Increased immunoreactivity to tissue-nonspecific AP antibodies suggests an isoform shift from liver to either kidney or bone type. This effect occurs without changes at the mRNA level and is sensitive to tunicamycin, an inhibitor of N-glycosylation, and neuraminidase digestion. Saponin and deoxycholate produce similar effects to oxidants. Butyrate but not proinflammatory cytokines or LPS can induce a similar effect but without toxicity. The AP increase is not prevented by modulators of the MAPK, NF-κB, calcium, and cyclic adenosine monophosphate (cAMP) pathways, and is actually enhanced by actinomycin D via higher cell stress. CONCLUSIONS Oxidative stress causes a distinct increase in enterocyte AP activity together with cell toxicity via changes in the glycosylation of the enzyme that correspond to a shift in isotype within the tissue-nonspecific paradigm. We speculate that this may have physiological implication for gut defense.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Campus de Cartuja, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Doig GS, Heighes PT, Simpson F, Sweetman EA. Early enteral nutrition reduces mortality in trauma patients requiring intensive care: a meta-analysis of randomised controlled trials. Injury 2011; 42:50-6. [PMID: 20619408 DOI: 10.1016/j.injury.2010.06.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 02/02/2023]
Abstract
INTRODUCTION To determine whether the provision of early standard enteral nutrition (EN) confers treatment benefits to adult trauma patients who require intensive care. MATERIALS AND METHODS MEDLINE and EMBASE were searched. Hand citation review of retrieved guidelines and systematic reviews was undertaken and academic and industry experts were contacted. Methodologically sound randomised controlled trials (RCTs) conducted in adult trauma patients requiring intensive care that compared the delivery of standard EN, provided within 24 h of injury, to standard care were included.The primary analysis was conducted on clinically meaningful patient-oriented outcomes, which included mortality, functional status and quality of life. Secondary analyses considered vomiting/regurgitation, pneumonia, bacteraemia, sepsis and multiple organ dysfunction syndrome. Meta-analysis was conducted using an analytical method known to minimise bias in the presence of sparse events. The impact of heterogeneity was assessed using the I2 metric. RESULTS Three RCTs with 126 participants were found to be free from major flaws and were included in the primary analysis. The provision of early EN was associated with a significant reduction in mortality(OR = 0.20, 95% confidence interval 0.04–0.91, I2 = 0). No other outcomes could be pooled. A sensitivity analysis and a confirmatory analysis conducted using a different analytical method confirmed the presence of a mortality reduction. CONCLUSION Although the detection of a statistically significant reduction in mortality is promising,overall trial quality was low and trial size was small. The results of this meta-analysis should be confirmed by the conduct of a large multi-center trial.
Collapse
Affiliation(s)
- Gordon S Doig
- Intensive Care, Northern Clinical School, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
246
|
Liu ZH, Qin HL. Recent progress in understanding the molecular mechanisms underlying intestinal epithelial barrier function. Shijie Huaren Xiaohua Zazhi 2010; 18:3501-3507. [DOI: 10.11569/wcjd.v18.i33.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal barrier dysfunction is related to the development of various clinical diseases. Recent probiotic studies have shown that the adhesive domain of surface layer proteins of lactobacillus can exert protective effects on intestinal epithelial cells. The role of tight junctions between intestinal epithelial cells in regulating intestinal epithelial barrier function has been established. Besides, intestinal alkaline phosphatase (IAP), protein phosphatase 2A (PP2A), and intraepithelial intestinal lymphocytes (IEL) are implicated in regulating intestinal epithelial barrier function. In addition, great attention has been paid to the association between intestinal stem cells and intestinal epithelial barrier function.
Collapse
|
247
|
Lallès JP, David JC. Fasting and refeeding modulate the expression of stress proteins along the gastrointestinal tract of weaned pigs. J Anim Physiol Anim Nutr (Berl) 2010; 95:478-88. [PMID: 21091542 DOI: 10.1111/j.1439-0396.2010.01075.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract (GIT) of young mammals is submitted to aggressions early in life and GIT stress proteins are up-regulated in pigs following weaning. We hypothesized that transient food deprivation may contribute to these changes. Therefore, the effects of fasting and refeeding on GIT stress proteins in weaned pigs were investigated. A complete block experimental design with three groups of five pigs each was set up with the following treatments: A - food offered, B - fasted for 1.5 days, C - fasted for 1.5 days and then re-fed for 2.5 days. After slaughter, the GIT was removed, weighed and sampled. Intestinal villi and crypts were measured and alkaline phosphatase activity was determined. GIT tissue stress protein concentrations were measured by Western blotting. Fasting led to intestinal mucosa and villous-crypt atrophy (p < 0.01) and reduced mucosal alkaline phosphatase total activity in the proximal small intestine (p < 0.05). Heat shock proteins HSP 27 and HSP 90 (but not HSP 70) and neuronal NO synthase (nNOS) increased (p < 0.01) in the stomach, mid-intestine and proximal colon with fasting. Inducible NOS (iNOS) did so in the stomach (p < 0.001). Refeeding partially or totally restored GIT characteristics and stress protein concentrations, except for gastric HSP 90 and iNOS. Significant correlations (p < 0.05 to p < 0.0001) were found among stress proteins, between nNOS and digesta weight, between HSP 27 or HSP 90 and intestinal mucosa weight, and between intestinal or colonic HSP or nNOS and alkaline phosphatase. In conclusion, fasting and refeeding modulate GIT HSP proteins and nNOS in pigs following weaning. Changes in digesta and intestinal mucosa weights and alkaline phosphatase activity may be involved in the modulation of stress proteins along the GIT.
Collapse
Affiliation(s)
- J P Lallès
- Institut National de la Recherche Agronomique, Saint-Gilles, France.
| | | |
Collapse
|
248
|
Abstract
PURPOSE OF REVIEW We have summarized recent findings related to gastroduodenal mucosal defense as well as factors contributing to defensive failure, highlighting findings that illuminate new pathophysiological mechanisms. RECENT FINDINGS Gastroduodenal bicarbonate secretion is mediated by prostaglandin E receptors and stimulated by the prostone lubiprostone. Toll-like receptor (TLR)4 signaling is protective against gastric injury. Intestinal alkaline phosphatase (IAP) is a chemosensor that regulates the duodenal mucosal surface pH. Lipopolysaccharide (LPS) increases gastric permeability; IAP secreted during fat digestion may detoxify colonic LPS. NADPH oxidase activity mediates ischemia/reperfusion-related gastric mucosal damage. Heat shock protein 70 (HSP70) protects the gastric mucosa through inhibition of apoptosis, proinflammatory cytokines, and cell adhesion molecules (CAMs). HSP90 may be a contributing factor in impaired adaptive cytoprotection. Proteinase-activated receptor-1 (PAR-1) is protective against Helicobacter-induced gastritis, mediated by the suppression of proinflammatory pathways. IKK β/NF-κB signaling decreases chronic Helicobacter-induced inflammation by inhibiting cellular apoptosis and necrosis. Activation of A2A adenosine receptors decreases inflammation and gastritis but leads to persistent Helicobacter pylori infection. SUMMARY Enhanced understanding of the mechanisms of gastroduodenal defense and injury provides new insight into potential therapeutic targets, contributing towards the development of better tolerated and more effective therapies.
Collapse
Affiliation(s)
- Arushi deFoneska
- Greater Los Angeles Veteran Affairs Healthcare System, WLAVA Medical Center, Department of Medicine, UCLA School of Medicine, Los Angeles, California 90073, USA
| | | |
Collapse
|
249
|
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010. [PMID: 21040540 DOI: 10.1186/1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. RESULTS C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. CONCLUSION These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.
Collapse
Affiliation(s)
- Lisa D Kalischuk
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, T1J 4B1, Lethbridge, AB, Canada.
| | | | | |
Collapse
|
250
|
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010; 2:14. [PMID: 21040540 PMCID: PMC2987776 DOI: 10.1186/1757-4749-2-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. RESULTS C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. CONCLUSION These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.
Collapse
Affiliation(s)
- Lisa D Kalischuk
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, T1J 4B1, Lethbridge, AB, Canada.
| | | | | |
Collapse
|