201
|
From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 2011; 10:123-36. [PMID: 22203377 DOI: 10.1038/nrmicro2677] [Citation(s) in RCA: 914] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
How bacteria grow and divide while retaining a defined shape is a fundamental question in microbiology, but technological advances are now driving a new understanding of how the shape-maintaining bacterial peptidoglycan sacculus grows. In this Review, we highlight the relationship between peptidoglycan synthesis complexes and cytoskeletal elements, as well as recent evidence that peptidoglycan growth is regulated from outside the sacculus in Gram-negative bacteria. We also discuss how growth of the sacculus is sensitive to mechanical force and nutritional status, and describe the roles of peptidoglycan hydrolases in generating cell shape and of D-amino acids in sacculus remodelling.
Collapse
|
202
|
Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet 2011; 7:e1002377. [PMID: 22125496 PMCID: PMC3219608 DOI: 10.1371/journal.pgen.1002377] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/24/2011] [Indexed: 12/28/2022] Open
Abstract
As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. Proper assembly of the cell envelope is essential for bacterial growth, environmental adaptation, and drug resistance. Yet, while the biological roles of the many genes and pathways involved in biosynthesis of the cell envelope have been studied extensively in isolation, how the myriad components intersect functionally to maintain envelope integrity under different growth conditions has not been explored systematically. Genome-scale genetic interaction screens have increasingly been performed to great impact in yeast; no analogous comprehensive studies have yet been reported for bacteria despite their prominence in human health and disease. We addressed this by using a synthetic genetic array technology to generate quantitative maps of genetic interactions encompassing virtually all the components of the cell envelope biosynthetic machinery of the classic model bacterium E. coli in two common laboratory growth conditions (rich and minimal medium). From the resulting networks of high-confidence genetic interactions, we identify condition-specific functional dependencies underlying envelope assembly and global remodeling of genetic backup mechanisms that ensure envelope integrity under environmental challenge.
Collapse
|
203
|
Jiang H, Si F, Margolin W, Sun SX. Mechanical control of bacterial cell shape. Biophys J 2011; 101:327-35. [PMID: 21767484 DOI: 10.1016/j.bpj.2011.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/29/2011] [Accepted: 06/01/2011] [Indexed: 01/31/2023] Open
Abstract
In bacteria, cytoskeletal filament bundles such as MreB control the cell morphology and determine whether the cell takes on a spherical or a rod-like shape. Here we use a theoretical model to describe the interplay of cell wall growth, mechanics, and cytoskeletal filaments in shaping the bacterial cell. We predict that growing cells without MreB exhibit an instability that favors rounded cells. MreB can mechanically reinforce the cell wall and prevent the onset of instability. We propose that the overall bacterial shape is determined by a dynamic turnover of cell wall material that is controlled by mechanical stresses in the wall. The model affirms that morphological transformations with and without MreB are reversible, and quantitatively describes the growth of irregular shapes and cells undergoing division. The theory also suggests a unique coupling between mechanics and chemistry that can control organismal shapes in general.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
204
|
Uehara T, Bernhardt TG. More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol 2011; 14:698-703. [PMID: 22055466 DOI: 10.1016/j.mib.2011.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 11/15/2022]
Abstract
Enzymes that degrade the peptidoglycan (PG) cell wall layer called PG hydrolases or autolysins are often thought of as destructive forces. Phages employ them to lyse their host for the release of virion particles and some bacteria secrete them to eliminate (lyse) their competition. However, bacteria also harness the activity of PG hydrolases for important aspects of growth, division, and development. Of course, using PG hydrolases in this capacity requires that they be tightly regulated. While this has been appreciated for some time, we are only just beginning to understand the mechanisms governing the activities of these 'tailoring' enzymes. This review will focus on recent advances in this area with an emphasis on the regulation of PG hydrolases involved in cell division.
Collapse
Affiliation(s)
- Tsuyoshi Uehara
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
205
|
Kroeger J, Geitmann A. Modeling pollen tube growth: feeling the pressure to deliver testifiable predictions. PLANT SIGNALING & BEHAVIOR 2011; 6:1828-30. [PMID: 22042043 PMCID: PMC3329360 DOI: 10.4161/psb.6.11.17324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The frequency and amplitude of oscillatory pollen tube growth can be altered by changing the osmotic value of the surrounding medium. This has motivated the proposition that the periodic change in growth velocity is caused by changes in turgor pressure. Using mathematical modeling we recently demonstrated that the oscillatory pollen tube growth does not require turgor to change but that this behavior can be explained with a mechanism that relies on changes in the mechanical properties of the cell wall which in turn are caused by temporal variations in the secretion of cell wall precursors. The model also explains why turgor and growth rate are correlated for oscillatory growth with long growth cycles while they seem uncorrelated for oscillatory growth with short growth cycles. The predictions made by the model are testifiable by experimental data and therefore represent an important step towards understanding the dynamics of the growth behavior in walled cells.
Collapse
Affiliation(s)
- Jens Kroeger
- Department of Physiology, Centre for Nonlinear Dynamics, McGill University; Montréal, Québec, Canada
| | - Anja Geitmann
- Département de sciences biologiques, Institut de recherche en biologie végétale, Université de Montréal; Montréal, Québec, Canada
- Correspondence to: Anja Geitmann,
| |
Collapse
|
206
|
Sacoman JL, Hollingsworth RI. Synthesis and evaluation of an N-acetylglucosamine biosynthesis inhibitor. Carbohydr Res 2011; 346:2294-9. [DOI: 10.1016/j.carres.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/16/2022]
|
207
|
Abstract
Leptospira spp. are thin, highly motile, slow-growing spirochetes that can be distinguished from other bacteria on the basis of their unique helical shape. Defining the mechanisms by which these bacteria generate and maintain this atypical morphology should greatly enhance our understanding of the fundamental physiology of these pathogens. In this study, we showed that peptidoglycan sacculi from Leptospira spp. retain the helical shape of intact cells. Interestingly, the distribution of muropeptides was different from that in the Escherichia coli model, indicating that specific enzymes might be active on the peptidoglycan macromolecule. We could alter the shape of Leptospira biflexa with the broad-spectrum β-lactam antibiotic penicillin G and with amdinocillin and aztreonam, which are β-lactams that preferentially target penicillin-binding protein 2 (PBP2) and PBP3, respectively, in some species. Although genetic manipulations of Leptospira spp. are scarce, we were able to obtain mutants with alterations in genes encoding PBPs, including PBP3. Loss of this protein resulted in cell elongation. We also generated an L. biflexa strain that conditionally expresses MreB. Loss of the MreB function was correlated with morphological abnormalities such as a localized increased diameter and heterogeneous length. A prolonged depletion of MreB resulted in cell lysis, suggesting that this protein is essential. These findings indicate that important aspects of leptospiral cell morphology are determined by the cytoskeleton and the murein layer, thus providing a starting point for a better understanding of the morphogenesis in these atypical bacteria.
Collapse
|
208
|
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A 2011; 108:15822-7. [PMID: 21903929 DOI: 10.1073/pnas.1108999108] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.
Collapse
|
209
|
Abstract
For the rod-shaped Gram-negative bacterium Escherichia coli, changes in cell shape have critical consequences for motility, immune system evasion, proliferation and adhesion. For most bacteria, the peptidoglycan cell wall is both necessary and sufficient to determine cell shape. However, how the synthesis machinery assembles a peptidoglycan network with a robustly maintained micron-scale shape has remained elusive. To explore shape maintenance, we have quantified the robustness of cell shape in three Gram-negative bacteria in different genetic backgrounds and in the presence of an antibiotic that inhibits division. Building on previous modelling suggesting a prominent role for mechanical forces in shape regulation, we introduce a biophysical model for the growth dynamics of rod-shaped cells to investigate the roles of spatial regulation of peptidoglycan synthesis, glycan-strand biochemistry and mechanical stretching during insertion. Our studies reveal that rod-shape maintenance requires insertion to be insensitive to fluctuations in cell-wall density and stress, and even a simple helical pattern of insertion is sufficient for over sixfold elongation without significant loss in shape. In addition, we demonstrate that both the length and pre-stretching of newly inserted strands regulate cell width. In sum, we show that simple physical rules can allow bacteria to achieve robust, shape-preserving cell-wall growth.
Collapse
Affiliation(s)
- Leon Furchtgott
- Department of Bioengineering, 318 Campus Drive West, Stanford University, Stanford, CA 94305
| | - Ned S. Wingreen
- Department of Molecular Biology, Washington Road, Princeton University, Princeton, NJ 08544
| | - Kerwyn Casey Huang
- Department of Bioengineering, 318 Campus Drive West, Stanford University, Stanford, CA 94305
| |
Collapse
|
210
|
Francius G, Polyakov P, Merlin J, Abe Y, Ghigo JM, Merlin C, Beloin C, Duval JFL. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress. PLoS One 2011; 6:e20066. [PMID: 21655293 PMCID: PMC3105017 DOI: 10.1371/journal.pone.0020066] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/17/2011] [Indexed: 11/19/2022] Open
Abstract
The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3), cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions.
Collapse
Affiliation(s)
- Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Pavel Polyakov
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Jenny Merlin
- Laboratoire Environnement et Minéralurgie, Nancy Université, CNRS UMR7569, Vandoeuvre-lès-Nancy, France
| | - Yumiko Abe
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
- CNRS URA 2172, Paris, France
| | - Christophe Merlin
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
- CNRS URA 2172, Paris, France
| | - Jérôme F. L. Duval
- Laboratoire Environnement et Minéralurgie, Nancy Université, CNRS UMR7569, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
211
|
Abstract
Bacteria exhibit a wide variety of morphologies. This could simply be a consequence of an elaboration of bacterial cellular architecture akin to the famous decorative but not structurally essential Spandrels in the Basilica di San Marco in Venice that are a side-effect of an adaptation, rather than a direct product of natural selection. However, it is more likely that particular morphologies facilitate a specific function in cellular physiology. Two recent publications including one in this issue of Molecular Microbiology and another in Cell provide new insights into the molecular basis for the helical shape of the bacterium Helicobacter pylori and the role of this shape in pathogenesis. They identify a novel endopeptidase that is necessary to generate the helical shape by processing the peptidoglycan and report that catalytically inactive mutants lead to defects in colonization that appear to be independent of an effect on cellular motility. Here, we put these findings in the context of some of what is known about peptidoglycan and cell shape and suggest that the role of this endopeptidase in forming coccoid morphology may be critical for pathogenesis.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, NewYork, NY 10032, USA.
| |
Collapse
|
212
|
Zhou J, Qi X. Multi-walled carbon nanotubes/epilson-polylysine nanocomposite with enhanced antibacterial activity. Lett Appl Microbiol 2010; 52:76-83. [DOI: 10.1111/j.1472-765x.2010.02969.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
213
|
Mitchell GJ, Nelson DC, Weitz JS. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics. Phys Biol 2010; 7:046002. [PMID: 20921589 DOI: 10.1088/1478-3975/7/4/046002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.
Collapse
|
214
|
Shaevitz JW, Gitai Z. The structure and function of bacterial actin homologs. Cold Spring Harb Perspect Biol 2010; 2:a000364. [PMID: 20630996 DOI: 10.1101/cshperspect.a000364] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During the past decade, the appreciation and understanding of how bacterial cells can be organized in both space and time have been revolutionized by the identification and characterization of multiple bacterial homologs of the eukaryotic actin cytoskeleton. Some of these bacterial actins, such as the plasmid-borne ParM protein, have highly specialized functions, whereas other bacterial actins, such as the chromosomally encoded MreB protein, have been implicated in a wide array of cellular activities. In this review we cover our current understanding of the structure, assembly, function, and regulation of bacterial actins. We focus on ParM as a well-understood reductionist model and on MreB as a central organizer of multiple aspects of bacterial cell biology. We also discuss the outstanding puzzles in the field and possible directions where this fast-developing area may progress in the future.
Collapse
Affiliation(s)
- Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
215
|
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry & Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | - Shahriar Mobashery
- Department of Chemistry & Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| |
Collapse
|
216
|
Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, Salama NR. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 2010; 141:822-33. [PMID: 20510929 PMCID: PMC2920535 DOI: 10.1016/j.cell.2010.03.046] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/29/2010] [Accepted: 03/19/2010] [Indexed: 02/07/2023]
Abstract
The mechanisms by which bacterial cells generate helical cell shape and its functional role are poorly understood. Helical shape of the human pathogen Helicobacter pylori may facilitate penetration of the thick gastric mucus where it replicates. We identified four genes required for helical shape: three LytM peptidoglycan endopeptidase homologs (csd1-3) and a ccmA homolog. Surrounding the cytoplasmic membrane of most bacteria, the peptidoglycan (murein) sacculus is a meshwork of glycan strands joined by peptide crosslinks. Intact cells and isolated sacculi from mutants lacking any single csd gene or ccmA formed curved rods and showed increased peptidoglycan crosslinking. Quantitative morphological analyses of multiple-gene deletion mutants revealed each protein uniquely contributes to a shape-generating pathway. This pathway is required for robust colonization of the stomach in spite of normal directional motility. Our findings suggest that the coordinated action of multiple proteins relaxes peptidoglycan crosslinking, enabling helical cell curvature and twist.
Collapse
Affiliation(s)
- Laura K. Sycuro
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520 USA
| | | | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Chelsea A. Stern
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Nina R. Salama
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| |
Collapse
|
217
|
Processivity of peptidoglycan synthesis provides a built-in mechanism for the robustness of straight-rod cell morphology. Proc Natl Acad Sci U S A 2010; 107:10086-91. [PMID: 20479277 DOI: 10.1073/pnas.1000737107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The propagation of cell shape across generations is remarkably robust in most bacteria. Even when deformations are acquired, growing cells progressively recover their original shape once the deforming factors are eliminated. For instance, straight-rod-shaped bacteria grow curved when confined to circular microchambers, but straighten in a growth-dependent fashion when released. Bacterial cell shape is maintained by the peptidoglycan (PG) cell wall, a giant macromolecule of glycan strands that are synthesized by processive enzymes and cross-linked by peptide chains. Changes in cell geometry require modifying the PG and therefore depend directly on the molecular-scale properties of PG structure and synthesis. Using a mathematical model we quantify the straightening of curved Caulobacter crescentus cells after disruption of the cell-curving crescentin structure. We observe that cells straighten at a rate that is about half (57%) the cell growth rate. Next we show that in the absence of other effects there exists a mathematical relationship between the rate of cell straightening and the processivity of PG synthesis-the number of subunits incorporated before termination of synthesis. From the measured rate of cell straightening this relationship predicts processivity values that are in good agreement with our estimates from published data. Finally, we consider the possible role of three other mechanisms in cell straightening. We conclude that regardless of the involvement of other factors, intrinsic properties of PG processivity provide a robust mechanism for cell straightening that is hardwired to the cell wall synthesis machinery.
Collapse
|
218
|
Meyer P, Gutierrez J, Pogliano K, Dworkin J. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol Microbiol 2010; 76:956-70. [PMID: 20444098 PMCID: PMC2893020 DOI: 10.1111/j.1365-2958.2010.07155.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During Bacillus subtilis sporulation, an endocytic-like process called engulfment results in one cell being entirely encased in the cytoplasm of another cell. The driving force underlying this process of membrane movement has remained unclear, although components of the machinery have been characterized. Here we provide evidence that synthesis of peptidoglycan, the rigid, strength bearing extracellular polymer of bacteria, is a key part of the missing force-generating mechanism for engulfment. We observed that sites of peptidoglycan synthesis initially coincide with the engulfing membrane and later with the site of engulfment membrane fission. Furthermore, compounds that block muropeptide synthesis or polymerization prevented membrane migration in cells lacking a component of the engulfment machinery (SpoIIQ), and blocked the membrane fission event at the completion of engulfment in all cells. In addition, these compounds inhibited bulge and vesicle formation that occur in spoIID mutant cells unable to initiate engulfment, as did genetic ablation of a protein that polymerizes muropeptides. This is the first report to our knowledge that peptidoglycan synthesis is necessary for membrane movements in bacterial cells and has implications for the mechanism of force generation during cytokinesis.
Collapse
Affiliation(s)
- Pablo Meyer
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jennifer Gutierrez
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
219
|
Architecture of peptidoglycan: more data and more models. Trends Microbiol 2010; 18:59-66. [DOI: 10.1016/j.tim.2009.12.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 10/28/2009] [Accepted: 12/08/2009] [Indexed: 01/09/2023]
|
220
|
Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 2009; 191:7566-80. [PMID: 19820083 DOI: 10.1128/jb.01031-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG.
Collapse
|
221
|
Abstract
In many naturally occurring habitats, bacteria live in micrometer-size confined spaces. Although bacterial growth and motility in such constrictions is of great interest to fields as varied as soil microbiology, water purification, and biomedical research, quantitative studies of the effects of confinement on bacteria have been limited. Here, we establish how Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria can grow, move, and penetrate very narrow constrictions with a size comparable to or even smaller than their diameter. We show that peritrichously flagellated E. coli and B. subtilis are still motile in microfabricated channels where the width of the channel exceeds their diameters only marginally (approximately 30%). For smaller widths, the motility vanishes but bacteria can still pass through these channels by growth and division. We observe E. coli, but not B. subtilis, to penetrate channels with a width that is smaller than their diameter by a factor of approximately 2. Within these channels, bacteria are considerably squeezed but they still grow and divide. After exiting the channels, E. coli bacteria obtain a variety of anomalous cell shapes. Our results reveal that sub-micron size pores and cavities are unexpectedly prolific bacterial habitats where bacteria exhibit morphological adaptations.
Collapse
|
222
|
Kim JS, Sun SX. Morphology of Caulobacter crescentus and the Mechanical Role of Crescentin. Biophys J 2009; 96:L47-9. [PMID: 19383443 DOI: 10.1016/j.bpj.2009.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 10/20/2022] Open
Abstract
Bacterial cells exist in a wide variety of shapes. To understand the mechanism of bacterial shape maintenance, we investigate the morphology of Caulobacter crescentus, which is a Gram-negative bacterium that adopts a helical crescent shape. It is known that crescentin, an intermediate filament homolog of C. crescentus, is required for maintaining this asymmetrical cell shape. We employ a continuum model to understand the interaction between the bacterial cell wall and the crescentin bundle. The model allows us to examine different scenarios of attaching crescentin to the cell wall and compute the shape of the bacterium. Results show that if the sole influence of crescentin is mechanical, then the crescentin bundle is unrealistically rigid and must be attached to the cell wall directly. The model suggests that alternative roles for crescentin such as how it influences cell wall growth must be considered.
Collapse
|
223
|
Gitai Z. New fluorescence microscopy methods for microbiology: sharper, faster, and quantitative. Curr Opin Microbiol 2009; 12:341-6. [PMID: 19356974 PMCID: PMC2741158 DOI: 10.1016/j.mib.2009.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022]
Abstract
In addition to the inherent interest stemming from their ecological and human health impacts, microbes have many advantages as model organisms, including ease of growth and manipulation and relatively simple genomes. However, the imaging of bacteria via light microscopy has been limited by their small sizes. Recent advances in fluorescence microscopy that allow imaging of structures at extremely high resolutions are thus of particular interest to the modern microbiologist. In addition, advances in high-throughput microscopy and quantitative image analysis are enabling cellular imaging to finally take advantage of the full power of bacterial numbers and ease of manipulation. These technical developments are ushering in a new era of using fluorescence microscopy to understand bacterial systems in a detailed, comprehensive, and quantitative manner.
Collapse
Affiliation(s)
- Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
224
|
Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C. Bacterial cell curvature through mechanical control of cell growth. EMBO J 2009; 28:1208-19. [PMID: 19279668 DOI: 10.1038/emboj.2009.61] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 02/13/2009] [Indexed: 12/18/2022] Open
Abstract
The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|