201
|
Commentary: European Medicines Agency recommends approval of a broadly protective vaccine against serogroup B meningococcal disease. Pediatr Infect Dis J 2013; 32:372-3. [PMID: 23263177 DOI: 10.1097/inf.0b013e318282942f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
202
|
Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013; 1285:115-32. [PMID: 23527566 DOI: 10.1111/nyas.12046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reverse vaccinology (RV), the first application of genomic technologies in vaccine research, represented a major revolution in the process of discovering novel vaccines. By determining their entire antigenic repertoire, researchers could identify protective targets and design efficacious vaccines for pathogens where conventional approaches had failed. Bexsero, the first vaccine developed using RV, has recently received positive opinion from the European Medicines Agency. The use of RV initiated a cascade of changes that affected the entire vaccine development process, shifting the focus from the identification of a list of vaccine candidates to the definition of a set of high throughput screens to reduce the need for costly and labor intensive tests in animal models. It is now clear that a deep understanding of the epidemiology of vaccine candidates, and their regulation and role in host-pathogen interactions, must become an integral component of the screening workflow. Far from being outdated by technological advancements, RV still represents a paradigm of how high-throughput technologies and scientific insight can be integrated into biotechnology research.
Collapse
|
203
|
Vesikari T, Esposito S, Prymula R, Ypma E, Kohl I, Toneatto D, Dull P, Kimura A. Immunogenicity and safety of an investigational multicomponent, recombinant, meningococcal serogroup B vaccine (4CMenB) administered concomitantly with routine infant and child vaccinations: results of two randomised trials. Lancet 2013; 381:825-35. [PMID: 23324563 DOI: 10.1016/s0140-6736(12)61961-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Meningococcal serogroup B disease disproportionately affects infants. We assessed lot-to-lot consistency, safety and immunogenicity, and the effect of concomitant vaccination on responses to routine vaccines of an investigational multicomponent vaccine (4CMenB) in this population. METHODS We did primary and booster phase 3 studies between March 31, 2008, and Aug 16, 2010, in 70 sites in Europe. We used two series of sponsor-supplied, computer-generated randomisation envelopes to allocate healthy 2 month-old infants to receive routine vaccinations (diphtheria-tetanus-acellular pertussis, inactivated poliovirus, hepatitis B plus Haemophilus influenzae type b, and seven-valent pneumococcal vaccine) at 2, 4, and 6 months of age alone, or concomitantly with 4CMenB or serogroup C conjugate vaccine (MenC) in: 1) an open-label, lot-to-lot immunogenicity and safety substudy of three 4CMenB lots compared with routine vaccines alone (1:1:1:1, block size eight); or 2) an observer-blind, lot-to-lot safety substudy of three 4CMenB lots compared with MenC (1:1:1:3, block size six). At 12 months, 4CMenB-primed children from either substudy were randomised (1:1, block size two) to receive 4CMenB booster, with or without measles-mumps-rubella-varicella (MMRV) vaccine. Immunogenicity was assessed by serum bactericidal assay with human complement (hSBA) against serogroup B test strains, and on randomly selected subsets of serum samples for routine vaccines; laboratory personnel were masked to assignment. The first coprimary outcome was lot-to-lot consistency (hSBA geometric mean ratio of all lots between 0·5 and 2·0), and the second was an immune response (hSBA titre ≥5) for each of the three strains. The primary outcome for the booster study was immune response to booster dose. Immunogenicity data for 4CMenB were for the modified intention-to-treat population, including all infants from the open-label substudy who provided serum samples. The safety population included all participants who contributed safety data after at least one dose of study vaccine. These trials are registered with ClinicalTrials.gov, numbers NCT00657709 and NCT00847145. FINDINGS We enrolled 2627 infants in the open-label phase, 1003 in the observer-blind phase, and 1555 in the booster study. Lot-to-lot consistency was shown for the three 4CMenB lots, with the lowest 95% lower confidence limit being 0·74 and the highest upper limit being 1·33. Of 1181–1184 infants tested 1 month after three 4CMenB doses (all lots pooled), 100% (95% CI 99–100) had hSBA titres of 5 or more against strains selective for factor H binding protein and neisserial adhesin A, and 84% (82–86) for New Zealand outer-membrane vesicle. In a subset (n=100), 84% (75–91) of infants had hSBA titres of 5 or more against neisseria heparin binding antigen. At 12 months of age, waning titres were boosted by a fourth dose, such that 95–100% of children had hSBA titres of 5 or more for all antigens, with or without concomitant MMRV. Immune responses to routine vaccines were much the same with or without concomitant 4CMenB, but concomitant vaccination was associated with increased reactogenicity. 77% (1912 of 2478) of infants had fever of 38·5°C or higher after any 4CMenB dose, compared with 45% (295 of 659) after routine vaccines alone and 47% (228 of 490) with MenC, but only two febrile seizures were deemed probably related to 4CMenB. INTERPRETATION 4CMenB is immunogenic in infants and children aged 12 months with no clinically relevant interference with routine vaccines, but increases reactogenicity when administered concomitantly with routine vaccines. This breakthrough vaccine offers an innovative solution to the major remaining cause of bacterial meningitis in infant and toddlers. FUNDING Novartis Vaccines and Diagnostics.
Collapse
Affiliation(s)
- Timo Vesikari
- University of Tampere Medical School, Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Holst J, Oster P, Arnold R, Tatley MV, Næss LM, Aaberge IS, Galloway Y, McNicholas A, O'Hallahan J, Rosenqvist E, Black S. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future. Hum Vaccin Immunother 2013; 9:1241-53. [PMID: 23857274 PMCID: PMC3901813 DOI: 10.4161/hv.24129] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The utility of wild-type outer membrane vesicle (wtOMV) vaccines against serogroup B (MenB) meningococcal disease has been explored since the 1970s. Public health interventions in Cuba, Norway and New Zealand have demonstrated that these protein-based vaccines can prevent MenB disease. Data from large clinical studies and retrospective statistical analyses in New Zealand give effectiveness estimates of at least 70%. A consistent pattern of moderately reactogenic and safe vaccines has been seen with the use of approximately 60 million doses of three different wtOMV vaccine formulations. The key limitation of conventional wtOMV vaccines is their lack of broad protective activity against the large diversity of MenB strains circulating globally. The public health intervention in New Zealand (between 2004–2008) when MeNZB was used to control a clonal MenB epidemic, provided a number of new insights regarding international and public-private collaboration, vaccine safety surveillance, vaccine effectiveness estimates and communication to the public. The experience with wtOMV vaccines also provide important information for the next generation of MenB vaccines designed to give more comprehensive protection against multiple strains.
Collapse
Affiliation(s)
- Johan Holst
- Division of Infectious Disease Control; Norwegian Institute of Public Health; Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Vogel U, Taha MK, Vazquez JA, Findlow J, Claus H, Stefanelli P, Caugant DA, Kriz P, Abad R, Bambini S, Carannante A, Deghmane AE, Fazio C, Frosch M, Frosi G, Gilchrist S, Giuliani MM, Hong E, Ledroit M, Lovaglio PG, Lucidarme J, Musilek M, Muzzi A, Oksnes J, Rigat F, Orlandi L, Stella M, Thompson D, Pizza M, Rappuoli R, Serruto D, Comanducci M, Boccadifuoco G, Donnelly JJ, Medini D, Borrow R. Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. THE LANCET. INFECTIOUS DISEASES 2013; 13:416-25. [PMID: 23414709 DOI: 10.1016/s1473-3099(13)70006-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.
Collapse
Affiliation(s)
- Ulrich Vogel
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Phase variation of PorA, a major outer membrane protein, mediates escape of bactericidal antibodies by Neisseria meningitidis. Infect Immun 2013; 81:1374-80. [PMID: 23403557 PMCID: PMC3639595 DOI: 10.1128/iai.01358-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several outer membrane proteins of Neisseria meningitidis are subject to phase variation due to alterations in simple sequence repeat tracts. The PorA protein is a major outer membrane protein and a target for protective host immune responses. Phase variation of PorA is mediated by a poly-G repeat tract present within the promoter, leading to alterations in protein expression levels. N. meningitidis strain 8047 was subjected to serial passage in the presence of P1.2, a PorA-specific bactericidal monoclonal antibody. Rapid development of resistance to bactericidal activity was associated with a switch in the PorA repeat tract from 11G to 10G. Phase variants with a 10G repeat tract exhibited a 2-fold reduction in surface expression of PorA protein. A mutS mutant of strain 8047, with an elevated phase variation rate, exhibited a higher rate of escape and an association of escape with 10G and 9G variants, the latter having a 13-fold reduction in surface expression of PorA. We conclude that graduated reductions in the surface expression of outer membrane proteins mediated by phase variation enable meningococci to escape killing in vitro by bactericidal antibodies. These findings indicate how phase variation could have a major impact on immune escape and host persistence of meningococci.
Collapse
|
207
|
Hong E, Giuliani MM, Deghmane AE, Comanducci M, Brunelli B, Dull P, Pizza M, Taha MK. Could the multicomponent meningococcal serogroup B vaccine (4CMenB) control Neisseria meningitidis capsular group X outbreaks in Africa? Vaccine 2013; 31:1113-6. [DOI: 10.1016/j.vaccine.2012.12.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 02/03/2023]
|
208
|
Baccarini C, Ternouth A, Wieffer H, Vyse A. The changing epidemiology of meningococcal disease in North America 1945-2010. Hum Vaccin Immunother 2013; 9:162-71. [PMID: 23108355 PMCID: PMC3667932 DOI: 10.4161/hv.22302] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/05/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
The epidemiology of Invasive Meningococcal Disease (IMD) is distinct in the United States and Canada compared with other countries. This review describes the incidence, mortality and vaccination strategies relevant to IMD in these countries over the past 65 y. The incidence of IMD has remained consistently low in both countries during this period. Serogroup B and serogroup C have been the most prominent disease-causing serogroups. Notably, serogroup Y has recently become an important cause of IMD in the USA, but has not been as prominent in Canada. Periodic rises in incidence have been characterized by local outbreaks that have raised public concern, especially those caused by serogroup C in Canada, and serogroup B in the USA. Case fatality rates have remained consistent at around 10-20%, but vary by age and serogroup. Recent outbreaks have led to the introduction of vaccination programs for both outbreak control and routine immunization.
Collapse
|
209
|
Transcriptional regulation of the nadA gene in Neisseria meningitidis impacts the prediction of coverage of a multicomponent meningococcal serogroup B vaccine. Infect Immun 2012; 81:560-9. [PMID: 23230289 DOI: 10.1128/iai.01085-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The NadA adhesin is a major component of 4CMenB, a novel vaccine to prevent meningococcus serogroup B (MenB) infection. Under in vitro growth conditions, nadA is repressed by the regulator NadR and poorly expressed, resulting in inefficient killing of MenB strains by anti-NadA antibodies. Interestingly, sera from children infected with strains that express low levels of NadA in laboratory growth nevertheless recognize the NadA antigen, suggesting that NadA expression during infection may be different from that observed in vitro. In a strain panel covering a range of NadA levels, repression was relieved through deleting nadR. All nadR knockout strains expressed high levels of NadA and were efficiently killed by sera from subjects immunized with 4CMenB. A selected MenB strain, NGP165, mismatched for other vaccine antigens, is not killed by sera from immunized infants when the strain is grown in vitro. However, in an in vivo passive protection model, the same sera effectively protected infant rats from bacteremia with NGP165. Furthermore, we identify a novel hydroxyphenylacetic acid (HPA) derivative, reported by others to be produced during inflammation, which induces expression of NadA in vitro, leading to efficient antibody-mediated killing. Finally, using bioluminescent reporters, nadA expression in the infant rat model was induced in vivo at 3 h postinfection. Our results suggest that during infectious disease, NadR repression is alleviated due to niche-specific signals, resulting in high levels of NadA expression from any nadA-positive (nadA(+)) strain and therefore efficient killing by anti-NadA antibodies elicited by the 4CMenB vaccine.
Collapse
|
210
|
Hong E, Giorgini D, Deghmane AE, Taha MK. Functional impacts of the diversity of the meningococcal factor H binding protein. Vaccine 2012; 31:183-9. [DOI: 10.1016/j.vaccine.2012.10.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 08/29/2012] [Accepted: 10/20/2012] [Indexed: 11/27/2022]
|
211
|
[What do pediatricians and general practitioners think about the implementation of meningococal B vaccination in France?]. Arch Pediatr 2012; 19:1379-85. [PMID: 23159343 DOI: 10.1016/j.arcped.2012.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND To assess the acceptability of a vaccine against meningococcus B by pediatricians and GP and to analyze how the vaccine could be implemented in France, InfoVac-France has set up a national survey. METHODS An email explained the purpose of this study and the practitioners of InfoVac-France network answered an online questionnaire (e-CRF). RESULTS Of the 6905 pediatricians and GP who saw the mail sent by InfoVac-France between 11 and 24 January, 2012, 1351 (13.5 %) completed the e-CERF : 361 GP (26.7%), 797 pediatricians (59%) and 193 other doctors (14.3%). The majority of practitioners (96.1%) believe that is important to implement a vaccine against meningococcus B in the French immunization schedule. In 80.5% of cases, practitioners do not want to vaccine three times routinely during a single consultation and more than half (53.5%) would prefer to use this vaccine alone. The best schedule of primary vaccination (80.6%) is the injection at 3, 5 and 6 months. The arguments considered likely to encourage parents to accept the vaccination would be the incidence of the disease, severity of meningitis (82.1%) and the rapid mortality (82.8%). CONCLUSION This survey by InfoVac-France shows that the practitioners know the epidemiology of meningococcal B invasive disease in children. They would support the implementation of this vaccine for children under 2 years with a primary vaccination at 3, 5 and 6 months.
Collapse
|
212
|
Abstract
Meningococcal meningitis and septicaemia remain a serious global health threat. This review focuses on the epidemiology of meningococcal disease following the recent implementation of effective vaccines and the potential utility of a vaccine against serogroup B meningococcus.
Collapse
Affiliation(s)
- Simon Nadel
- Department of Paediatric Intensive Care, St Marys Hospital, Praed Street, London, UK.
| |
Collapse
|
213
|
Major M, Moss S, Gold R. From genes to vaccine: A breakthrough in the prevention of meningococcal group B disease. Paediatr Child Health 2012; 16:e61-4. [PMID: 23024591 DOI: 10.1093/pch/16.8.e61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2011] [Indexed: 11/13/2022] Open
Abstract
Although safe and effective vaccines exist for meningococcal serogroups A, C, W-135 and Y, no vaccine is available for routine use against disease caused by serogroup B (MenB). Consequently, MenB is now the most common cause of invasive meningococcal disease in Canada. MenB causes more than 80% of invasive meningococcal disease in infants and can occur at any age. The mortality and morbidity rates related to this disease are very high. Vaccine development against MenB has been hampered by the fact that MenB polysaccharide is not immunogenic in humans. Although vaccines derived from the outer membrane vesicle have been effective in controlling MenB outbreaks, such vaccines protect against the outbreak strain only. A new vaccine development strategy, reverse vaccinology, has led to the identification of genes coding for surface-exposed proteins, which are able to induce bactericidal antibodies against a broad range of MenB strains. A new vaccine containing a combination of these proteins has been tested in different age groups, in several clinical trials. The data available provide hope that control of MenB through routine vaccination will soon be possible.
Collapse
Affiliation(s)
- Maria Major
- Novartis Vaccines and Diagnostics, Dorval, Quebec
| | | | | |
Collapse
|
214
|
Holst J, Nøkleby H, Bettinger JA. Considerations for controlling invasive meningococcal disease in high income countries. Vaccine 2012; 30 Suppl 2:B57-62. [PMID: 22607900 DOI: 10.1016/j.vaccine.2011.12.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022]
Abstract
The development of conjugate vaccines has enabled the prevention and control of Neisseria meningitidis caused by serogroups A, C, W-135 and Y. Vaccines that provide protection against a broad number of serogroup B strains likely will be available soon to enable greater control of meningococcal disease in high income countries. We present an argument for adequate post-marketing surveillance to monitor epidemiological shifts and to provide a context for the safety and reactogenicity of serogroup B vaccines, including the newer recombinant vaccines. We also offer a series of recommendations to address possible concerns about vaccine safety.
Collapse
Affiliation(s)
- Johan Holst
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | |
Collapse
|
215
|
Vipond C, Care R, Feavers IM. History of meningococcal vaccines and their serological correlates of protection. Vaccine 2012; 30 Suppl 2:B10-7. [PMID: 22607894 DOI: 10.1016/j.vaccine.2011.12.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/11/2011] [Accepted: 12/13/2011] [Indexed: 11/18/2022]
Abstract
For over a hundred years Neisseria meningitidis has been known to be one of the major causes of bacterial meningitis. However, effective vaccines were not developed until the latter part of the 20th century. The first of these were based on purified high molecular weight capsular polysaccharides and more recently the development of glycoconjugate vaccines has made paediatric immunisation programmes possible. The prevention of group B meningococcal disease has remained a challenge throughout this period. This review charts the history of the development of meningococcal vaccines and the importance of serological correlates of protection in their evaluation.
Collapse
Affiliation(s)
- Caroline Vipond
- National Institute of Biological Standards and Control, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | | | | |
Collapse
|
216
|
Vogel U, Stefanelli P, Vazquez J, Taha MK, Claus H, Donnelly J. The use of vaccine antigen characterization, for example by MATS, to guide the introduction of meningococcus B vaccines. Vaccine 2012; 30 Suppl 2:B73-7. [PMID: 22607902 DOI: 10.1016/j.vaccine.2011.12.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 10/28/2022]
Abstract
Current concepts of vaccines against serogroup B meningococci (MenB) are mainly based on genetically variable protein antigens. Vaccine efficacy studies for meningococcal disease in developed countries are hampered by the low incidence. Licensure must therefore exclusively rely on clinical trials and laboratory investigation of meningococcal strains. In contrast to capsule polysaccharide vaccines, serum bactericidal assays for technical reasons are limited in their practicability as the surrogate of protection provided by MenB vaccines. Therefore, assays are required for reliable laboratory based assessment of expression of those specific antigen variants that are predicted to be targeted by bactericidal antibodies elicited by the vaccine. The MATS ELISA (MATS, meningococcal antigen typing system) reported recently is an example for such an assay. The paper discusses the pre- and post-licensure application of MATS, the role of reference laboratories, concepts of sustained provision of the assay, external quality assessment, and laboratory twinning.
Collapse
Affiliation(s)
- Ulrich Vogel
- Institute for Hygiene and Microbiology, National Reference Laboratory for Meningococci, University of Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
217
|
The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 2012; 30 Suppl 2:B87-97. [PMID: 22607904 DOI: 10.1016/j.vaccine.2012.01.033] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/22/2022]
Abstract
Neisseria meningitidis is a major cause of endemic cases and epidemics of meningitis and devastating septicemia. Although effective vaccines exist for several serogroups of pathogenic N. meningitidis, conventional vaccinology approaches have failed to provide a universal solution for serogroup B (MenB) which consequently remains an important burden of disease worldwide. The advent of whole-genome sequencing changed the approach to vaccine development, enabling the identification of potential vaccine candidates starting directly with the genomic information, with a process named reverse vaccinology. The application of reverse vaccinology to MenB allowed the identification of new protein antigens able to induce bactericidal antibodies. Three highly immunogenic antigens (fHbp, NadA and NHBA) were combined with outer membrane vesicles and formulated for human use in a multicomponent vaccine, named 4CMenB. This is the first MenB vaccine based on recombinant proteins able to elicit a robust bactericidal immune response in adults, adolescents and infants against a broad range of serogroup B isolates. This review describes the successful story of the development of the 4CMenB vaccine, with particular emphasis on the functional, immunological and structural characterization of the protein antigens included in the vaccine.
Collapse
|
218
|
|
219
|
Zlamy M, Hofer J, Elias J, Vogel U, Frosch M, Jungraithmayr T, Zimmerhackl LB, Prelog M. Immunogenicity of meningococcus C vaccination in a patient with atypical hemolytic uremic syndrome (aHUS) on eculizumab therapy. Pediatr Transplant 2012; 16:E246-50. [PMID: 21967634 DOI: 10.1111/j.1399-3046.2011.01585.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report successful kidney transplantation in a 10-yr-old boy with aHUS and heterozygous factor H mutation using the terminal complement inhibitor eculizumab to avoid recurrence of aHUS in the renal graft. Vaccination against meningococcus C (Men C) is essential in patients with dysfunction of the complement system, as induced by eculizumab. In our patient, we report waning SBA titers but maintenance of protective SBA titers (≥1:8) after kidney transplantation under immunosuppressive therapy with mycophenolate mofetil, tacrolimus, steroids, and eculizumab over a 27-month observational period. Our case illustrates that a humoral immune response to conjugate Men C vaccination may be mounted and maintained despite chronic renal disease, kidney transplantation, immunosuppressive drugs, and immunomodulatory therapy with eculizumab. However, it remains unclear whether serologically defined protective SBA titers mediate true protection from invasive meningococcal disease in an immunocompromised patient, particularly under treatment with a complement inhibitor. Thus, close monitoring of SBA titers seems mandatory in this patient.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
220
|
[Meningococcal serogroup B vaccines]. Arch Pediatr 2012; 19 Suppl 2:S65-9. [PMID: 22883369 DOI: 10.1016/s0929-693x(12)71276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The diversity and antigenic variability of Neisseria meningitidis serogroup B strains around the world has been a major challenge to developing a vaccine with broad coverage. Outer-membrane vesicle vaccines appear to be safe and effective but are strain-specific vaccines and used in delimited areas. Also, recombinant protein vaccines such as factor H binding protein, given alone or in combination with others antigens have been developed and may be effective against the majority of group B strains.
Collapse
|
221
|
Interlaboratory standardization of the sandwich enzyme-linked immunosorbent assay designed for MATS, a rapid, reproducible method for estimating the strain coverage of investigational vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1609-17. [PMID: 22875603 DOI: 10.1128/cvi.00202-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or "relative potency" (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified.
Collapse
|
222
|
Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect 2012; 18 Suppl 5:109-16. [PMID: 22882709 DOI: 10.1111/j.1469-0691.2012.03939.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vaccines have a significant impact on public health, and vaccinology in the era of genomics is taking advantage of new technologies to tackle diseases for which vaccine development has so far been unsuccessful. Almost all existing vaccines were developed based on traditional vaccinology methods, which relied on empirical screening of a few candidates at a time, based on known features of the pathogen. However, the ability to sequence a pathogen's genome provides access to its entire antigenic repertoire. As such, genomics has catalysed a shift in vaccine development towards sequence-based 'Reverse Vaccinology' approaches, which use high-throughput in silico screening of the entire genome of a pathogen to identify genes that encode proteins with the attributes of good vaccine targets. Furthermore, the increasing availability of genome sequences has led to the development and application of additional technologies to vaccine discovery, including comparative genomics, transcriptomics, proteomics, immunomics and structural genomics. Vaccine candidates identified from a pathogen's genome or proteome can then be expressed as recombinant proteins and tested in appropriate in vitro or in vivo models to assess immunogenicity and protection. The process of reverse vaccinology has been applied to several pathogens, including serogroup B Neisseria meningitidis, Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus pneumoniae and pathogenic Escherichia coli, and has provided scores of new candidate antigens for preclinical and clinical investigation. As novel genome-based technologies continue to emerge, it is expected that new vaccines for unmet diseases will be within reach.
Collapse
Affiliation(s)
- K L Seib
- Novartis Vaccines and Diagnostics, Siena, Italy
| | | | | |
Collapse
|
223
|
Abstract
Meningococcal meningitis is a devastating disease that is often fatal. Vaccines against the five major meningococcal serogroups causing disease are about to become available, a conjugate vaccine against meningococcus A is in use for mass vaccination in Africa, and a protein-based vaccine against meningococcal B is ready for licensure. With the availability of these new vaccines, the world can finally be rid of meningococcal meningitis, thus rewriting a new chapter in medical history.
Collapse
Affiliation(s)
- Steven Black
- Center for Global Health, Cincinnati Children's Hospital, Cincinnati, OH 45326, USA
| | | | | | | |
Collapse
|
224
|
|
225
|
Taha MK, Deghmane AE. Vaccines targeting serogroup B meningococci. THE LANCET. INFECTIOUS DISEASES 2012; 12:578-9. [PMID: 22569483 DOI: 10.1016/s1473-3099(12)70093-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muhamed-Kheir Taha
- Institut Pasteur, Unit of Invasive Bacterial Infections & National Reference Center for Meningococci, 75724 Paris, Cedex 15, France.
| | | |
Collapse
|
226
|
Zhou J, Lefebvre B, Deng S, Gilca R, Deceuninck G, Law DKS, De Wals P, Tsang RSW. Invasive serogroup B Neisseria meningitidis in Quebec, Canada, 2003 to 2010: persistence of the ST-269 clone since it first emerged in 2003. J Clin Microbiol 2012; 50:1545-51. [PMID: 22337990 PMCID: PMC3347115 DOI: 10.1128/jcm.06835-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/09/2012] [Indexed: 11/20/2022] Open
Abstract
In the era after the introduction of the meningococcal serogroup C conjugate vaccine, from 1 January 2003 to 31 December 2010, serogroup B meningococci were the major cause of invasive meningococcal disease in the province of Québec, Canada, being responsible for 72% of all meningococcal disease cases. Of the 334 invasive serogroup B Neisseria meningitidis strains analyzed, 53.9% belonged to the ST-269 clonal complex (CC). Since it first emerged in 2003, the percentage of invasive serogroup B isolates that belonged to the ST-269 CC had increased from 35% in 2003 to 76% in 2010. Among the 180 meningococci in the ST-269 CC, 91.7% belonged to a single ST (ST-269). The most common PorA genotypes identified in the ST-269 CC were (i) VR1 19-1, VR2 15-11, VR3 36 (84%) and (ii) VR1 18-7, VR2 9, VR3 35-1 (9%). Cases of invasive disease due to the ST-269 CC were commonly found in those aged 11 to 19 years (30.5%) and 20 to 40 years (25.5%). Meningococci of the ST-269 CC were uncommon in other Canadian provinces. In contrast to the ST-269 CC, invasive serogroup B meningococci that belonged to the ST-41/44 CC were much more diverse genetically. However, one ST (ST-571), which is uncommon in the United States, accounted for 35% of all cases due to this CC. The current finding suggests that the ST-269 clone may indeed represent an emerging hypervirulent clone of meningococci.
Collapse
Affiliation(s)
- Jianwei Zhou
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Brigitte Lefebvre
- Laboratorie de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec
| | - Saul Deng
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Rodica Gilca
- Institut National de Santé Publique du Québec, Centre de Recherche du CHUL-CHUQ, Québec, Québec
- Department de Medecine Sociale et Preventive de I'Université Laval, Québec, Québec, Canada
| | - Genevieve Deceuninck
- Institut National de Santé Publique du Québec, Centre de Recherche du CHUL-CHUQ, Québec, Québec
- Department de Medecine Sociale et Preventive de I'Université Laval, Québec, Québec, Canada
| | - Dennis K. S. Law
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Philippe De Wals
- Institut National de Santé Publique du Québec, Centre de Recherche du CHUL-CHUQ, Québec, Québec
- Department de Medecine Sociale et Preventive de I'Université Laval, Québec, Québec, Canada
| | - Raymond S. W. Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| |
Collapse
|
227
|
Snape MD, Medini D, Halperin SA, DeTora L, Drori J, Moxon ER. The challenge of post-implementation surveillance for novel meningococcal vaccines. Vaccine 2012; 30 Suppl 2:B67-72. [DOI: 10.1016/j.vaccine.2011.12.126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 10/14/2022]
|
228
|
Dull PM, McIntosh ED. Meningococcal vaccine development – from glycoconjugates against MenACWY to proteins against MenB – potential for broad protection against meningococcal disease. Vaccine 2012; 30 Suppl 2:B18-25. [DOI: 10.1016/j.vaccine.2012.01.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/22/2022]
|
229
|
The early clinical development of a multicomponent vaccine against meningococcal serogroup B. ACTA ACUST UNITED AC 2012. [DOI: 10.4155/cli.12.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
230
|
Hadad R, Jacobsson S, Pizza M, Rappuoli R, Fredlund H, Olcén P, Unemo M. Novel meningococcal 4CMenB vaccine antigens - prevalence and polymorphisms of the encoding genes in Neisseria gonorrhoeae. APMIS 2012; 120:750-60. [PMID: 22882265 DOI: 10.1111/j.1600-0463.2012.02903.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/06/2012] [Indexed: 01/20/2023]
Abstract
The first cross-protective Neisseria meningitidis vaccine (focus on serogroup B), the protein-based 4 component meningococcus serogroup B (4CMenB), includes the New Zealand outer membrane vesicle and three main genome-derived neisserial antigens (GNAs). These GNAs are fHbp (fused to GNA2091), NHBA (fused to GNA1030) and NadA. In this study, the prevalence and polymorphisms of the nucleotide and amino acid sequences of the 4CMenB antigens in a temporally and geographically diverse collection of N. gonorrhoeae isolates (n = 111) were investigated. All the examined GNA genes, except the nadA gene, were present in all gonococcal isolates. However, 25 isolates contained premature stop codons in the fHbp gene and/or the nhba gene, resulting in truncated proteins. Compared with the 4CMenB antigen sequences in reference strain MC58, the gonococcal strains displayed 67.0-95.4% and 60.9-94.9% identity in nucleotide sequence and amino acid sequence, respectively, in the equivalent GNA antigens. The absence of NadA, lack of universal expression of fHbp and NHBA and the uncertainty regarding the surface exposure of fHbp as well as the function of NHBA in N. gonorrhoeae will likely limit the use of the identical 4CMenB antigens in a gonococcal vaccine. However, possible cross-immunity of 4CMenB with gonococci and expression and function of the equivalent gonococcal GNAs, as well as of more appropriate GNAs for a gonococcal vaccine, need to be further examined.
Collapse
Affiliation(s)
- Ronza Hadad
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
231
|
Vu DM, Pajon R, Reason DC, Granoff DM. A broadly cross-reactive monoclonal antibody against an epitope on the n-terminus of meningococcal fHbp. Sci Rep 2012; 2:341. [PMID: 22461972 PMCID: PMC3314305 DOI: 10.1038/srep00341] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022] Open
Abstract
Meningococcal factor H binding protein (fHbp) is an important vaccine antigen for prevention of disease caused by capsular group B strains. The protein has been sub-classified into three variant groups. Most anti-fHbp antibodies are variant group-specific and recognize epitopes on the C-terminal domain. We report a murine IgG1 mAb, JAR 41, which broadly cross-reacted with fHbp sequence variants from all variant groups. The mAb bound to the surface of live meningococci with fHbp from each of the three variant groups. In combination with second non-bactericidal anti-fHbp mAbs, JAR 41 elicited complement-mediated bactericidal activity in vitro, and augmented passive protection against meningococcal bacteremia in human fH transgenic rats. The epitope was located on a conserved region of the N-terminal portion of the fHbp molecule opposite that of fH contact residues. The data underscore the importance of broadly cross-reactive, surface-exposed epitopes on the N-terminal domain in the design of protective fHbp vaccines.
Collapse
Affiliation(s)
- David M Vu
- Children's Hospital Oakland Research Institute , Oakland, CA 94609, U.S.A
| | | | | | | |
Collapse
|
232
|
Santolaya ME, O'Ryan ML, Valenzuela MT, Prado V, Vergara R, Muñoz A, Toneatto D, Graña G, Wang H, Clemens R, Dull PM. Immunogenicity and tolerability of a multicomponent meningococcal serogroup B (4CMenB) vaccine in healthy adolescents in Chile: a phase 2b/3 randomised, observer-blind, placebo-controlled study. Lancet 2012; 379:617-24. [PMID: 22260988 DOI: 10.1016/s0140-6736(11)61713-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Effective glycoconjugate vaccines against Neisseria meningitidis serogroups A, C, W-135, and Y have been developed, but serogroup B remains a major cause of severe invasive disease in infants and adolescents worldwide. We assessed immunogenicity and tolerability of a four-component vaccine (4CMenB) in adolescents. METHODS We did a randomised, observer-blind, placebo-controlled, study at 12 sites in Santiago and Valparaíso, Chile. Adolescents aged 11-17 years received one, two, or three doses of 4CMenB at 1 month, 2 month, or 6 month intervals. Immunogenicity was assessed as serum bactericidal activity using human complement (hSBA) against three reference strains for individual vaccine antigens, and assessed by ELISA against the fourth strain. Local and systemic reactions were recorded 7 days after each vaccination, and adverse events were monitored throughout the study. Participants were initially randomised to five groups (3:3:3:3:1) during the primary phase to receive either one dose, two doses 1 or 2 months apart, or three doses of 4CMenB, or three doses of placebo, with an additional three groups generated for the booster phase. All subjects received at least one dose of 4CMenB. Geometric mean titres, proportions of participants with serum bactericidal antibody titres of 4 or more, and Clopper-Pearson 95% CIs were calculated. The study is registered with ClinicalTrials.gov, number NCT00661713. FINDINGS Overall, 1631 adolescents (mean age 13·8 [SD 1·9] years) received at least one dose of 4CMenB. After two or three doses, 99-100% of recipients had hSBA titres of 4 or more against test strains, compared with 92-97% after one dose (p<0·0145) and 29-50% after placebo. At 6 months 91-100% of participants still had titres of 4 or more for each strain after two or three doses, but only 73-76% after one dose; seroresponse rates reached 99-100% for each strain after second or third doses at 6 months. Local and systemic reaction rates were similar after each 4CMenB injection and did not increase with subsequent doses, but remained higher than placebo. No vaccine-related serious adverse events were reported and no significant safety signals were identified. INTERPRETATION On the basis of immunogenicity responses this study provides evidence for an adolescent 4CMenB vaccine schedule of two doses, 1-6 months apart, to provide protection against meningococcal B infection. The extent of this protection against meningococcus B variants circulating worldwide will be determined by national surveys. FUNDING Novartis Vaccines and Diagnostics.
Collapse
Affiliation(s)
- María Elena Santolaya
- Departamento de Pediatría, Hospital Dr Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Abad R, Vázquez JA. [Microbiology and public health: new challenges in surveillance and control of meningococcal disease]. Enferm Infecc Microbiol Clin 2012; 30:53-5. [PMID: 22305483 DOI: 10.1016/j.eimc.2012.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/01/2012] [Indexed: 12/28/2022]
|
234
|
Menson EN, Mellado MJ, Bamford A, Castelli G, Duiculescu D, Marczyńska M, Navarro ML, Scherpbier HJ, Heath PT. Guidance on vaccination of HIV-infected children in Europe. HIV Med 2012; 13:333-6; e1-14. [PMID: 22296225 DOI: 10.1111/j.1468-1293.2011.00982.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2011] [Indexed: 02/02/2023]
Affiliation(s)
- E N Menson
- Department of General Paediatrics, Evelina Children's Hospital @St Thomas' Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Gorringe AR, Pajón R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother 2012; 8:174-83. [PMID: 22426368 DOI: 10.4161/hv.18500] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Serogroup B meningococcal (MenB) disease remains a serious public health problem for which a cross-protective vaccine effective against a wide range of MenB isolates has not been available. Novartis Vaccines has developed a vaccine for the prevention of MenB disease that contains four antigenic components: factor H binding protein (fHbp), neisserial adhesin A (NadA), Neisseria heparin binding antigen (NHBA) and outer membrane vesicles from a New Zealand epidemic strain (which provides PorA). This vaccine has been submitted for regulatory review in Europe so it is timely to review the design of the vaccine, results to date in clinical studies and the potential strain coverage provided by the vaccine. It is also critical to discuss the key issues for the long-term success of the vaccine which include strain coverage, potential persistence of protection, potential effects on carriage of MenB strains, potential for escape mutants and cost effectiveness.
Collapse
|
236
|
Sanders H, Brehony C, Maiden MCJ, Vipond C, Feavers IM. The effect of iron availability on transcription of the Neisseria meningitidis fHbp gene varies among clonal complexes. MICROBIOLOGY-SGM 2012; 158:869-876. [PMID: 22241045 PMCID: PMC3949423 DOI: 10.1099/mic.0.054957-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Factor H binding protein (fHbp) is a major antigenic component of novel vaccines
designed to protect against meningococcal disease. Prediction of the potential coverage of these
vaccines is difficult, as fHbp is antigenically variable and levels of expression differ among
isolates. Transcriptional regulation of the fHbp gene is poorly understood,
although evidence suggests that oxygen availability is involved. In this study iron accessibility
was found to affect fHbp transcription. However, regulation differed among
meningococcal clonal complexes (ccs). For the majority of isolates, increased iron
concentrations upregulated transcription. This effect was enhanced by the presence of a 181 bp
insertion element upstream of fHbp, associated with isolates belonging to cc4 and
cc5. Conversely, meningococci belonging to cc32 showed iron-repressed control of
fHbp, as regulation was dominated by cotranscription with the iron-repressed
upstream gene cbbA. These results highlight the complexity of fHbp
regulation and demonstrate that control of transcription can vary among genetic lineages.
Collapse
Affiliation(s)
- Holly Sanders
- National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Carina Brehony
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Caroline Vipond
- National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
237
|
Claus H, Jördens MS, Kriz P, Musilek M, Jarva H, Pawlik MC, Meri S, Vogel U. Capsule null locus meningococci: Typing of antigens used in an investigational multicomponent meningococcus serogroup B vaccine. Vaccine 2012; 30:155-60. [DOI: 10.1016/j.vaccine.2011.11.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 06/22/2011] [Accepted: 11/13/2011] [Indexed: 01/13/2023]
|
238
|
Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein. Infect Immun 2011; 80:187-94. [PMID: 22064712 DOI: 10.1128/iai.05956-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.
Collapse
|
239
|
Abstract
Neisseria meningitidis causes life-threatening disease in infants, toddlers, and adolescents. Besides representative case notification, public health management of the disease requires bacterial typing information. European reference laboratories and state epidemiologists in collaboration with European institutions have driven forward the harmonization of typing by rigorously adopting DNA sequence typing and using common reference databases. External quality assessment has been provided by supranational networks, i.e. EU-IBIS and IBD-Labnet. The recent development of novel protein-based vaccines targeting serogroup B strains highlights the necessity to complement standard typing schemes by specific vaccine antigen typing including antigen expression analysis. Although not yet feasible for routine application on hundreds of strains, novel database structures have been developed to accommodate deep sequencing data.
Collapse
Affiliation(s)
- Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, Building E2, 97080 Würzburg, Germany.
| |
Collapse
|
240
|
Esposito V, Musi V, de Chiara C, Veggi D, Serruto D, Scarselli M, Kelly G, Pizza M, Pastore A. Structure of the C-terminal domain of Neisseria heparin binding antigen (NHBA), one of the main antigens of a novel vaccine against Neisseria meningitidis. J Biol Chem 2011; 286:41767-41775. [PMID: 21965688 PMCID: PMC3308885 DOI: 10.1074/jbc.m111.289314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neisseria heparin binding antigen (NHBA), also known as GNA2132 (genome-derived Neisseria antigen 2132), is a surface-exposed lipoprotein from Neisseria meningitidis that was originally identified by reverse vaccinology. It is one the three main antigens of a multicomponent vaccine against serogroup B meningitis (4CMenB), which has just completed phase III clinical trials in infants. In contrast to the other two main vaccine components, little is known about the origin of the immunogenicity of this antigen, and about its ability to induce a strong cross-bactericidal response in animals and humans. To characterize NHBA in terms of its structural/immunogenic properties, we have analyzed its sequence and identified a C-terminal region that is highly conserved in all strains. We demonstrate experimentally that this region is independently folded, and solved its three-dimensional structure by nuclear magnetic resonance. Notably, we need detergents to observe a single species in solution. The NHBA domain fold consists of an 8-strand β-barrel that closely resembles the C-terminal domains of N. meningitidis factor H-binding protein and transferrin-binding protein B. This common fold together with more subtle structural similarities suggest a common ancestor for these important antigens and a role of the β-barrel fold in inducing immunogenicity against N. meningitidis. Our data represent the first step toward understanding the relationship between structural, functional, and immunological properties of this important vaccine component.
Collapse
Affiliation(s)
- Veronica Esposito
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Valeria Musi
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Cesira de Chiara
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Daniele Veggi
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Davide Serruto
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Maria Scarselli
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Geoff Kelly
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | - Mariagrazia Pizza
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | - Annalisa Pastore
- MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom.
| |
Collapse
|
241
|
Su EL, Snape MD. A combination recombinant protein and outer membrane vesicle vaccine against serogroup B meningococcal disease. Expert Rev Vaccines 2011; 10:575-88. [PMID: 21604979 DOI: 10.1586/erv.11.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although meningococcal disease caused by serogroup B remains an important public health concern, a licensed vaccine providing broad protection against this pathogen is not yet available. Advances in genomics have paved the way for the discovery of new vaccine candidates for inclusion into a multicomponent serogroup B vaccine. In this article, we will review recent advances in the development of these vaccines, focussing particularly on one of the 'next generation' MenB vaccines, 4CMenB.
Collapse
Affiliation(s)
- Ee Lyn Su
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | | |
Collapse
|
242
|
Marsh JW, Shutt KA, Pajon R, Tulenko MM, Liu S, Hollick RA, Kiehlbauch JA, Clark TA, Stephens DS, Arnold KE, Myers RA, Mayer LW, Harrison LH. Diversity of factor H-binding protein in Neisseria meningitidis carriage isolates. Vaccine 2011; 29:6049-58. [PMID: 21704667 PMCID: PMC4762365 DOI: 10.1016/j.vaccine.2011.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 11/17/2022]
Abstract
Several meningococcal vaccines under development for prevention of serogroup B disease target the factor H-binding protein (FHbp), an immunogenic lipoprotein expressed on the surface of Neisseria meningitidis. Based upon sequence and phylogenetic analyses, FHbp can be classified into 3 protein variants (1, 2 or 3) or 2 subfamilies (A or B). The potential effect of FHbp-containing vaccines on meningococcal carriage is not known. We determined the diversity of FHbp among a population of carriage isolates obtained from Georgia and Maryland high school students in 1998 and 2006-2007. Analysis of the fHbp gene sequence from 408 carriage isolates identified 30 different FHbp protein sequences. The majority of carriage isolates harbored FHbp proteins belonging to variant 2/subfamily A. Association between FHbp proteins and genetic lineage was observed among the carriage isolates. However, split decomposition analysis, together with tests of linkage disequilibrium and pairwise homoplasy suggest recombination at fHbp contribute to allelic diversity. Of note, the FHbp proteins in serogroup B vaccines under development are either absent or not well represented in this carriage population. The FHbp genetic repertoire observed in carriage isolate populations will be useful in understanding the potential impact of FHbp-containing vaccines on meningococcal carriage.
Collapse
Affiliation(s)
- Jane W Marsh
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
Antigenic variability of immunodominant antigens is a common mechanism used by pathogens to escape the immune response. Frequently, the proposed solution is a universal vaccine based on conserved antigens present on all strains of the pathogen. Indeed, a lot of progress has been made in the development of vaccines that induce broad immune responses. However, truly universal vaccines are not easy to produce and still face many challenges, mostly because in those pathogens that use antigenic variability to escape the immune response, conserved antigens have been selected by evolution to be poorly immunogenic. This review describes the progress made towards the development of vaccines inducing broad protection against Neisseria meningitidis, influenza, HIV, and Candida and the challenges of developing truly universal vaccines.
Collapse
Affiliation(s)
- Rino Rappuoli
- Novartis Vaccines and Diagnostics Via Fiorentina 1, 53100 Siena Italy
| |
Collapse
|
244
|
Deasy A, Read RC. Challenges for development of meningococcal vaccines in infants and children. Expert Rev Vaccines 2011; 10:335-43. [PMID: 21434801 DOI: 10.1586/erv.11.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neisseria meningitidis causes significant disease in the form of severe sepsis syndrome or meningococcal meningitis. Owing to the susceptibility of the immune system in early life, the risk of disease after infection is significantly higher in infants. Thus far, vaccines targeted against meningococcal serogroups have struggled to provide lasting protection in young children. Even conjugate vaccines that are now routinely used in the immunization of infants require multiple dosing and the duration of protection has been shown to wane over time and require repeated booster doses. After briefly summarizing the current epidemiology according to age and serogroup, this article will consider the reasons for poor immunogenicity of vaccines in infants and will discuss the relative efficacy of the different vaccine types in this age group. It will then go on to consider strategies for optimizing the protection of infants against meningococcal disease.
Collapse
Affiliation(s)
- Alice Deasy
- Infection and Immunity Department, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | | |
Collapse
|
245
|
Abstract
Vaccines against microbial diseases have improved the health of millions of people. In the next decade and beyond, many conceptual and technological scientific advances offer extraordinary opportunities to expand the portfolio of immunisations against viral and bacterial diseases and to pioneer the first vaccines against human parasitic and fungal diseases. Scientists in the public and private sectors are motivated as never before to bring about these innovations in immunisation. Many societal factors threaten to compromise realisation of the public health gains that immunisation can achieve in the next decade and beyond--understanding these factors is imperative. Vaccines are typically given to healthy individuals and safety issues loom high on the list of public concerns. The public needs to regain confidence in immunisation and trust the organisations responsible for the research, development, and implementation of vaccines. In the past, by use of a judicious amalgam of knowledge and empiricism, successful vaccines were largely developed by microbiologists who identified antigens that induced immune responses to conserved pathogen components. In the future, vaccines need to be developed against deadly diseases for which this strategy is often not feasible because of the extensive antigenic variability of relevant pathogens. High microbial diversity means that immunity after natural infection is often ineffective for prevention of disease on subsequent exposure, for example in HIV infection and malaria. Additionally, vaccines need to be generated to protect the people who are most vulnerable because of age or underlying diseases. Thus, in the future, a much deeper understanding of the immunological challenges--including the diversifying role of host genetics and environmental factors, leading perhaps to more personalised approaches-will be the touchstone for rational design and development of adjuvants that result in novel safe and effective vaccines.
Collapse
Affiliation(s)
- E Richard Moxon
- University of Oxford Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
246
|
Seubert A, Calabro S, Santini L, Galli B, Genovese A, Valentini S, Aprea S, Colaprico A, D'Oro U, Giuliani MM, Pallaoro M, Pizza M, O'Hagan DT, Wack A, Rappuoli R, De Gregorio E. Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proc Natl Acad Sci U S A 2011; 108:11169-74. [PMID: 21690334 PMCID: PMC3131326 DOI: 10.1073/pnas.1107941108] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oil-in-water emulsions have been successfully used to increase the efficacy, immunogenicity, and cross-protection of human vaccines; however, their mechanism of action is still largely unknown. Nlrp3 inflammasome has been previously associated to the activity of alum, another adjuvant broadly used in human vaccines, and MyD88 adaptor protein is required for the adjuvanticity of most Toll-like receptor agonists. We compared the contribution of Nlrp3 and MyD88 to the adjuvanticity of alum, the oil-in-water emulsion MF59, and complete Freund's adjuvant in mice using a three-component vaccine against serogroup B Neisseria meningitidis (rMenB). Although the basal antibody responses to the nonadjuvanted rMenB vaccine were largely dependent on Nlrp3, the high-level antibody responses induced by alum, MF59, or complete Freund's adjuvant did not require Nlrp3. Surprisingly, we found that MF59 requires MyD88 to enhance bactericidal antibody responses to the rMenB vaccine. Because MF59 did not activate any of the Toll-like receptors in vitro, we propose that MF59 requires MyD88 for a Toll-like receptor-independent signaling pathway.
Collapse
Affiliation(s)
- Anja Seubert
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | - Laura Santini
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Barbara Galli
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | | | - Susanna Aprea
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | - Ugo D'Oro
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | | | | | - Derek T. O'Hagan
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
- Novartis Vaccines and Diagnostics, Cambridge, MA 02139; and
| | - Andreas Wack
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
- Medical Research Council National Institute for Medical Research, The Ridgeway, London NW7 1AA, United Kingdom
| | - Rino Rappuoli
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | |
Collapse
|
247
|
Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. Vaccines for gonorrhea: can we rise to the challenge? Front Microbiol 2011; 2:124. [PMID: 21687431 PMCID: PMC3109613 DOI: 10.3389/fmicb.2011.00124] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Immune responses to the gonococcus after natural infection ordinarily result in little immunity to reinfection, due to antigenic variation of the gonococcus, and redirection or suppression of immune responses. Brinton and colleagues demonstrated that parenteral immunization of male human volunteers with a purified pilus vaccine gave partial protection against infection by the homologous strain. However, the vaccine failed in a clinical trial. Recent vaccine development efforts have focused on the female mouse model of genital gonococcal infection. Here we discuss the state of the field, including our unpublished data regarding efficacy in the mouse model of either viral replicon particle (VRP) vaccines, or outer membrane vesicle (OMV) vaccines. The OMV vaccines failed, despite excellent serum and mucosal antibody responses. Protection after a regimen consisting of a PorB-VRP prime plus recombinant PorB boost was correlated with apparent Th1, but not with antibody, responses. Protection probably was due to powerful adjuvant effects of the VRP vector. New tools including novel transgenic mice expressing human genes required for gonococcal infection should enable future research. Surrogates for immunity are needed. Increasing antimicrobial resistance trends among gonococci makes development of a vaccine more urgent.
Collapse
Affiliation(s)
- Weiyan Zhu
- Department of Medicine, University of North Carolina Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
248
|
Bai X, Findlow J, Borrow R. Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opin Biol Ther 2011; 11:969-85. [PMID: 21615224 DOI: 10.1517/14712598.2011.585965] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Meningococcal infection is a major cause of morbidity and mortality worldwide. Infection with Neisseria meningitidis is most common in young children, teenagers and people with certain medical conditions. Effective polysaccharide and glycoconjugate vaccines for serogroups A, C, W135 and Y have been developed. A similar capsular polysaccharide approach for serogroup B (MenB) has by most been judged as unsuitable, hence, no broad coverage vaccine has been licensed to date. The novel vaccine Bexsero (previously 4CMenB) has been developed and proven safe and immunogenic in clinical trials. AREAS COVERED The authors outline the constituents of Bexsero and immunogenicity and safety data from preclinical and clinical trials published in peer-reviewed literature, meeting proceedings and publicly-available clinical trial websites from 2000 to 2010. EXPERT OPINION Bexsero is well tolerated with a proven safety profile, and has demonstrated a robust immune response across different age groups against a range of diverse MenB strains. These data suggest that Bexsero has the ability to provide protection in infants, who are at the greatest risk of developing meningococcal disease.
Collapse
Affiliation(s)
- Xilian Bai
- Vaccine Evaluation Unit, Health Protection Agency North West, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, M13 9WZ, UK.
| | | | | |
Collapse
|
249
|
Meningococcal Disease: Shifting Epidemiology and Genetic Mechanisms That May Contribute to Serogroup C Virulence. Curr Infect Dis Rep 2011; 13:374-9. [DOI: 10.1007/s11908-011-0195-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
250
|
Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine 2011; 29:4739-44. [PMID: 21571026 DOI: 10.1016/j.vaccine.2011.04.092] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/12/2011] [Accepted: 04/25/2011] [Indexed: 11/22/2022]
Abstract
Neisseria meningitidis (Nm) serogroups B, C and Y are the major causes of meningococcal diseases in the United States. NmB accounts for ∼1/3 of the disease but no licensed vaccine is yet available. Two candidate vaccines are being developed specifically to target NmB, but may also provide protection against other serogroups. To assess the potential impact of these vaccines on NmB and other serogroups causing disease in the US, we determined the prevalence, genetic diversity and epidemiological characteristics of three candidate antigen genes in Nm isolates collected through Active Bacterial Core surveillance (ABCs), a population-based active surveillance program. fHbp was detected in all NmB, NmY and NmW135 isolates. Eleven NmC isolates contain fHbp with a single base-pair deletion creating a frame shift in the C-terminal region. Among NmB, 59% were FHbp subfamily/variant B/v1 and 41% A/v2-3. Among NmC and NmY, 39% and 3% were B/v1, respectively. nadA was detected in 39% of NmB, 61% of NmC and 4% of NmY. Among isolates tested, nhbA was present in all NmB and 96% of non-B. For the subset of strains sequenced for NadA and NhbA, pairwise identity was greater than 93% and 78%, respectively. The proportion of FHbp subfamily/variant was different between ABCs site and year, but no linear temporal trend was observed. Although assessment of the vaccine coverage also requires understanding of the antigen expression and the ability to induce bactericidal activity, our finding that all isolates contain one or more antigen genes suggests these candidate vaccines may protect against multiple Nm serogroups.
Collapse
|