201
|
Wang DS, Lipton RB, Katz MJ, Davies P, Buschke H, Kuslansky G, Verghese J, Younkin SG, Eckman C, Dickson DW. Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. J Neuropathol Exp Neurol 2005; 64:378-85. [PMID: 15892294 DOI: 10.1093/jnen/64.5.378] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although evidence suggests that extensive cortical beta-amyloid (Abeta) deposition is essential in Alzheimer disease (AD), it is also detected in nondemented elderly individuals with pathologic aging (PA). Given evidence that neutral endopeptidase (NEP) or neprilysin, a key enzyme for clearance of Abeta, is decreased in AD, the goal of the present study was to determine if NEP was also decreased in PA. We measured NEP immunoreactivity in frontal cortex of 12 AD and six PA cases and compared this with 10 normal (N) elderly individuals. None had any significant other pathology, and they were similar with respect to age, sex, and postmortem delay. In addition, Abeta1-40 and Abeta1-42 were measured by enzyme-linked immunosorbent assay (ELISA), whereas tau, synaptophysin, and alpha-synuclein were measured on Western blots. The AD cases had more neuritic plaques, neurofibrillary tangles, higher Braak stage, and more tau immunoreactivity in frontal cortex than both PA and N. In contrast, both PA and AD had more senile plaques and Abeta1-42 than N. NEP immunoreactivity was decreased in AD but not in PA. The decrease was unlikely the result of neuronal or synaptic loss because NEP immunoreactivity in frontotemporal degeneration with comparable degrees of synaptic loss as the AD cases was not different from control subjects. Although NEP enzyme activity was decreased in approximately half the AD cases, on average, it was not decreased compared with N or PA. The results add further evidence that PA is distinct from AD and indicate that decreased Abeta degradation by NEP is unlikely to contribute significantly to amyloid deposition in PA or, in many cases, of AD.
Collapse
Affiliation(s)
- Deng-Shun Wang
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Kim S, Lapham AN, Freedman CGK, Reed TL, Schmidt WK. Yeast as a tractable genetic system for functional studies of the insulin-degrading enzyme. J Biol Chem 2005; 280:27481-90. [PMID: 15944156 DOI: 10.1074/jbc.m414192200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed yeast as an expression and genetic system for functional studies of the insulin-degrading enzyme (IDE), which cleaves and inactivates certain small peptide molecules, including insulin and the neurotoxic A beta peptide. We show that heterologously expressed rat IDE is enzymatically active, as judged by the ability of IDE-containing yeast extracts to cleave insulin in vitro. We also show that IDE can promote the in vivo production of the yeast a-factor mating pheromone, a function normally attributed to the yeast enzymes Axl1p and Ste23p. However, IDE cannot substitute for the function of Axl1p in promoting haploid axial budding and repressing haploid invasive growth, activities that require an uncharacterized activity of Axl1p. Particulate fractions enriched for Axl1p or Ste23p are incapable of cleaving insulin, suggesting that the functional conservation of these enzymes may not be bidirectionally conserved. We have made practical use of our genetic system to confirm that residues composing the extended zinc metalloprotease motif of M16A family enzymes are required for the enzymatic activity of IDE, Ste23p, and Axl1p. We have determined that IDE and Axl1p both require an intact C terminus for optimal activity. We expect that the tractable genetic system that we have developed will be useful for investigating the enzymatic and structure/function properties of IDE and possibly for the identification of novel IDE alleles having altered substrate specificity.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
203
|
Leissring M, Farris W, Wu X, Christodoulou D, Haigis M, Guarente L, Selkoe D. Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem J 2005; 383:439-46. [PMID: 15285718 PMCID: PMC1133736 DOI: 10.1042/bj20041081] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IDE (insulin-degrading enzyme) is a widely expressed zinc-metallopeptidase that has been shown to regulate both cerebral amyloid beta-peptide and plasma insulin levels in vivo. Genetic linkage and allelic association have been reported between the IDE gene locus and both late-onset Alzheimer's disease and Type II diabetes mellitus, suggesting that altered IDE function may contribute to some cases of these highly prevalent disorders. Despite the potentially great importance of this peptidase to health and disease, many fundamental aspects of IDE biology remain unresolved. Here we identify a previously undescribed mitochondrial isoform of IDE generated by translation at an in-frame initiation codon 123 nucleotides upstream of the canonical translation start site, which results in the addition of a 41-amino-acid N-terminal mitochondrial targeting sequence. Fusion of this sequence to the N-terminus of green fluorescent protein directed this normally cytosolic protein to mitochondria, and full-length IDE constructs containing this sequence were also directed to mitochondria, as revealed by immuno-electron microscopy. Endogenous IDE protein was detected in purified mitochondria, where it was protected from digestion by trypsin and migrated at a size consistent with the predicted removal of the N-terminal targeting sequence upon transport into the mitochondrion. Functionally, we provide evidence that IDE can degrade cleaved mitochondrial targeting sequences. Our results identify new mechanisms regulating the subcellular localization of IDE and suggest previously unrecognized roles for IDE within mitochondria.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
| | - Wesley Farris
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
| | - Xining Wu
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
| | - Danos C. Christodoulou
- †Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Marcia C. Haigis
- †Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Leonard Guarente
- †Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Dennis J. Selkoe
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed: Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A. (email )
| |
Collapse
|
204
|
Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM. Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 2005; 26:645-54. [PMID: 15708439 DOI: 10.1016/j.neurobiolaging.2004.06.013] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Accumulation of amyloid beta-protein (Abeta) is a fundamental feature of certain human brain disorders such as Alzheimer's disease (AD) and Down syndrome and also of the skeletal muscle disorder inclusion body myositis (IBM). Emerging evidence suggests that the steady-state levels of Abeta are determined by the balance between production and degradation. Although the proteolytic processes leading to Abeta formation have been extensively studied, less is known about the proteases that degrade Abeta, which include insulin-degrading enzyme (IDE) and neprilysin (NEP). Here we measured the steady-state levels of these proteases as a function of age and brain/muscle region in mice and humans. In the hippocampus, which is vulnerable to AD pathology, IDE and NEP steady-state levels diminish as function of age. By contrast, in the cerebellum, a brain region not marked by significant Abeta accumulation, NEP and IDE levels either increase or remain unaltered during aging. Moreover, the steady-state levels of IDE and NEP are significantly higher in the cerebellum compared to the cortex and hippocampus. We further show that IDE is more oxidized in the hippocampus compared to the cerebellum of AD patients. In muscle, we find differential levels of IDE and NEP in fast versus slow twitch muscle fibers that varies with aging. These findings suggest that age- and region-specific changes in the proteolytic clearance of Abeta represent a critical pathogenic mechanism that may account for the susceptibility of particular brain or muscle regions in AD and IBM.
Collapse
Affiliation(s)
- Antonella Caccamo
- Department of Neurobiology and Behavior, University of California, Irvine, 1109 Gillespie Neuroscience Bldg., Irvine, CA 92697-4545, USA
| | | | | | | | | |
Collapse
|
205
|
Song ES, Daily A, Fried MG, Juliano MA, Juliano L, Hersh LB. Mutation of Active Site Residues of Insulin-degrading Enzyme Alters Allosteric Interactions. J Biol Chem 2005; 280:17701-6. [PMID: 15749695 DOI: 10.1074/jbc.m501896200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The active site glutamate (Glu(111)) and the active site histidine (His(112)) of insulin-degrading enzyme (IDE) were mutated. These mutant enzymes exhibit, in addition to a large decrease in catalytic activity, a change in the substrate-velocity response from a sigmoidal one seen with the native enzyme (Hill coefficient > 2), to a hyperbolic response. With 2-aminobenzoyl-GGFLRKHGQ-N-(2,4-dinitrophenyl)ethylenediamine as substrate, ATP and triphosphate increase the reaction rate of the wild type enzyme some 50-80-fold. This effect is dampened with glutamate mutants to no effect or less than a 3-fold increase in activity and changed to inhibition with the histidine mutants. Sedimentation equilibrium shows the IDE mutants exhibit a similar oligomeric distribution as the wild type enzyme, being predominantly monomeric, with triphosphate having little if any effect on the oligomeric state. Triphosphate did induce aggregation of many of the IDE mutants. Thus, the oligomeric state of IDE does not correlate with kinetic properties. The His(112) mutants were shown to bind zinc, but with a lower affinity than the wild type enzyme. The glutamate mutants displayed an altered cleavage profile for the peptide beta-endorphin. Wild type IDE cleaved beta-endorphin at Leu(17)-Phe(18) and Phe(18)-Lys(19), whereas the glutamate mutants cleaved at these sites, but in addition at Lys(19)-Asn(20) and at Met(5)-Thr(6). Thus, active site mutations of IDE are suggested to not only reduce catalytic activity but also cause local conformational changes that affect the allosteric properties of the enzyme.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
206
|
Abstract
From Alois Alzheimer's description of Auguste D.'s brain in 1907 to George Glenner's biochemical dissection of beta-amyloid in 1984, the "amyloid hypothesis" of Alzheimer's disease has continued to gain support over the past two decades, particularly from genetic studies. Here we assess the amyloid hypothesis based on both known and putative Alzheimer's disease genes.
Collapse
Affiliation(s)
- Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Department of Neurology, Massachussetts General Hospital, Harvard Medical School, Charlestown, Massachussetts 02129, USA.
| | | |
Collapse
|
207
|
Blomqvist MEL, Chalmers K, Andreasen N, Bogdanovic N, Wilcock GK, Cairns NJ, Feuk L, Brookes AJ, Love S, Blennow K, Kehoe PG, Prince JA. Sequence variants of IDE are associated with the extent of beta-amyloid deposition in the Alzheimer's disease brain. Neurobiol Aging 2005; 26:795-802. [PMID: 15718037 DOI: 10.1016/j.neurobiolaging.2004.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 07/28/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Insulin degrading enzyme, encoded by IDE, plays a primary role in the degradation of amyloid beta-protein (A beta), the deposition of which in senile plaques is one of the defining hallmarks of Alzheimer's disease (AD). We recently identified haplotypes in a broad linkage disequilibrium (LD) block encompassing IDE that associate with several AD-related quantitative traits. Here, by examining 32 polymorphic markers extending across IDE and testing quantitative measures of plaque density and cognitive function in three independent Swedish AD samples, we have refined the probable position of pathogenic sequences to a 3' region of IDE, with local maximum effects in the proximity of marker rs1887922. To replicate these findings, a subset of variants were examined against measures of brain A beta load in an independent English AD sample, whereby maximum effects were again observed for rs1887922. For both Swedish and English autopsy materials, variation at rs1887922 explained approximately 10% of the total variance in the respective histopathology traits. However, across all clinical materials studied to date, this variant site does not appear to associate directly with disease, suggesting that IDE may affect AD severity rather than risk. Results indicate that alleles of IDE contribute to variability in A beta deposition in the AD brain and suggest that this relationship may have relevance for the degree of cognitive dysfunction in AD patients.
Collapse
Affiliation(s)
- Mia E-L Blomqvist
- Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VMY, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 2005; 120:701-713. [PMID: 15766532 DOI: 10.1016/j.cell.2005.01.015] [Citation(s) in RCA: 645] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/17/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Cerebral deposition of beta-amyloid (Abeta) peptides is an invariant pathological hallmark in brains of patients with Alzheimer's disease (AD) and transgenic mice coexpressing familial AD-linked APP and PS1 variants. We now report that exposure of transgenic mice to an "enriched environment" results in pronounced reductions in cerebral Abeta levels and amyloid deposits, compared to animals raised under "standard housing" conditions. The enzymatic activity of an Abeta-degrading endopeptidase, neprilysin, is elevated in the brains of "enriched" mice and inversely correlated with amyloid burden. Moreover, DNA microarray analysis revealed selective upregulation in levels of transcripts encoded by genes associated with learning and memory, vasculogenesis, neurogenesis, cell survival pathways, Abeta sequestration, and prostaglandin synthesis. These studies provide evidence that environmental enrichment leads to reductions in steady-state levels of cerebral Abeta peptides and amyloid deposition and selective upregulation in levels of specific transcripts in brains of transgenic mice.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
Alzheimer's disease (AD) remains the most common of the neurodegenerative disorders. In the elderly, it represents the most frequently occurring form of dementia, especially if considered alongside concomitant cerebrovascular disease. Current treatment involves the use of acetylcholinesterase inhibitors, which have shown symptomatic benefits in the recognised domains of cognition, function and behaviour. While they may have intrinsic disease-modifying activity, this is yet to be proven, and strategies to alter the fundamental neuropathological changes in AD continue to be sought. Much of the evidence suggests that the accumulation of amyloid-beta may play a pivotal role, therefore the bulk of current research is focused on possible intervention along the amyloid pathways. However, the abnormal phosphorylation of tau is also a reasonable target and as the molecular basis of AD is better delineated, more targeted treatment approaches are being proposed. This paper reports on the current data that is setting the future directions for research into AD.
Collapse
Affiliation(s)
- Roger Bullock
- Kingshill Research Centre, Victoria Hospital, Swindon, UK.
| |
Collapse
|
210
|
Abstract
Alzheimer's Disease (AD) is a devastating disease that affects millions of elderly persons. Despite years of intense investigations, genetic risk factors that affect the majority of AD cases have yet to be determined. Recent studies suggest that cholesterol metabolism has integral part in AD pathogenesis, suggesting that genes that regulate lipid metabolism may also play roles in AD. This review will first describe emerging evidence that links cholesterol to the mechanisms thought to underlie AD. Based on this rationale, candidate genes located in regions implicated in AD that have roles in lipid metabolism will then be discussed.
Collapse
Affiliation(s)
- C L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
211
|
Kulstad JJ, McMillan PJ, Leverenz JB, Cook DG, Green PS, Peskind ER, Wilkinson CW, Farris W, Mehta PD, Craft S. Effects of Chronic Glucocorticoid Administration on Insulin-Degrading Enzyme and Amyloid-Beta Peptide in the Aged Macaque. J Neuropathol Exp Neurol 2005; 64:139-46. [PMID: 15751228 DOI: 10.1093/jnen/64.2.139] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulin-degrading enzyme (IDE) has been identified as a candidate protease in the clearance of amyloid-delta (Abeta) peptides from the brain. IDE activity and binding to insulin are known to be inhibited by glucocorticoids in vitro. In Alzheimer disease (AD), both a decrease in IDE levels and an increase in peripheral glucocorticoid levels have been documented. Our study investigated the effects of glucocorticoid treatment on IDE expression in vivo in 12 nonhuman primates (Macaca nemestrina). Year-long, high-dose exposure to the glucocorticoid cortisol (hydrocortisone acetate) was associated with reduced IDE protein levels in the inferior frontal cortex and reduced IDE mRNA levels in the dentate gyrus of the hippocampus. We assessed Abeta40 and Abeta42 levels by ELISA in the brain and in plasma, total plaque burden by immunohistochemistry, and relative Abeta1-40 and Abeta1-42 levels in the brain by mass spectrometry. Glucocorticoid treatment increased Abeta42 relative to Abeta40 levels without a change in overall plaque burden within the brain, while Abeta42 levels were decreased in plasma. These findings support the notion that glucocorticoids regulate IDE and provide a mechanism whereby increased glucocorticoid levels may contribute to AD pathology.
Collapse
Affiliation(s)
- J Jacob Kulstad
- Geriatric Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, Pasinetti GM. Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer's disease. FASEB J 2005; 19:659-61. [PMID: 15650008 DOI: 10.1096/fj.04-3182fje] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study was designed to explore the possibility that caloric restriction (CR) may benefit Alzheimer's disease (AD) by preventing beta-amyloid (Abeta) neuropathology pivotal to the initiation and progression of the disease. We report that a CR dietary regimen prevents Abeta peptides generation and neuritic plaque deposition in the brain of a mouse model of AD neuropathology through mechanisms associated with promotion of anti-amyloidogenic alpha-secretase activity. Study findings support existing epidemiological evidence indicating that caloric intake may influence risk for AD and raises the possibility that CR may be used in preventative measures aimed at delaying the onset of AD amyloid neuropathology.
Collapse
Affiliation(s)
- Jun Wang
- Neuroinflammation Research Laboratories, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Lee EB, Zhang B, Liu K, Greenbaum EA, Doms RW, Trojanowski JQ, Lee VMY. BACE overexpression alters the subcellular processing of APP and inhibits Abeta deposition in vivo. ACTA ACUST UNITED AC 2005; 168:291-302. [PMID: 15642747 PMCID: PMC2171598 DOI: 10.1083/jcb.200407070] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introducing mutations within the amyloid precursor protein (APP) that affect β- and γ-secretase cleavages results in amyloid plaque formation in vivo. However, the relationship between β-amyloid deposition and the subcellular site of Aβ production is unknown. To determine the effect of increasing β-secretase (BACE) activity on Aβ deposition, we generated transgenic mice overexpressing human BACE. Although modest overexpression enhanced amyloid deposition, high BACE overexpression inhibited amyloid formation despite increased β-cleavage of APP. However, high BACE expression shifted the subcellular location of APP cleavage to the neuronal perikarya early in the secretory pathway. These results suggest that the production, clearance, and aggregation of Aβ peptides are highly dependent on the specific neuronal subcellular domain wherein Aβ is generated and highlight the importance of perikaryal versus axonal APP proteolysis in the development of Aβ amyloid pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Edward B Lee
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine
| | | | | | | | | | | | | |
Collapse
|
214
|
Morelli L, Bulloj A, Leal MC, Castaño EM. Amyloid beta degradation: a challenging task for brain peptidases. Subcell Biochem 2005; 38:129-45. [PMID: 15709476 DOI: 10.1007/0-387-23226-5_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Amyloid beta (Abeta) accumulates in the neuropil and within the walls of cerebral vessels in association with normal aging, dementia or stroke. Abeta is released from its precursor protein as soluble monomeric species yet, under pathological conditions, it self-aggregates to form soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Abeta levels could be lowered by inhibiting its generation or by promoting its clearance by transport or degradation. Here we will summarize recent findings on brain proteases capable of degrading Abeta, with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence supporting a role in the proteolysis of Abeta in vivo.
Collapse
Affiliation(s)
- Laura Morelli
- Instituto de Química y Fisicoquímica Biológicas, CONICET, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
215
|
Funalot B, Ouimet T, Claperon A, Fallet C, Delacourte A, Epelbaum J, Subkowski T, Léonard N, Codron V, David JP, Amouyel P, Schwartz JC, Helbecque N. Endothelin-converting enzyme-1 is expressed in human cerebral cortex and protects against Alzheimer's disease. Mol Psychiatry 2004; 9:1122-8, 1059. [PMID: 15340356 DOI: 10.1038/sj.mp.4001584] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cerebral accumulation of beta-amyloid peptide (A beta) is a central event in the pathogenesis of Alzheimer's disease (AD). Endothelin-converting enzyme-1 (ECE-1) is a candidate A beta-degrading enzyme in brain, but its involvement in AD pathogenesis was never assessed. We first performed brain immunocytochemistry, using a monoclonal anti-ECE-1 antibody, and observed neuronal ECE-1 expression in various cortical regions of nondemented subjects. In the hippocampus, ECE-1 immunoreactivity showed a stereotypical pattern inversely correlated with susceptibility to A beta deposition, further suggesting a physiological role in A beta clearance. In order to undertake a genetic association study, we identified a functional genetic variant (ECE1B C-338A) located in a regulatory region of the ECE1 gene. We showed that the A allele is associated with increased transcriptional activity in promoter-reporter gene assays and with increased ECE-1 mRNA expression in human neocortex. In a case-control study involving 401 patients with late-onset AD and 461 aged controls, we found that homozygous carriers of the A allele had a reduced risk of AD (OR=0.47, 95% CI 0.25-0.88). This finding was strengthened by the analysis of two other genetic variants of the ECE1 gene, which showed that the genetic association is extended over at least 13 kilobases of the gene sequence. Our results suggest that ECE-1 expression in brain may be critical for cortical A beta clearance and offer new potential targets for therapeutic interventions in AD.
Collapse
Affiliation(s)
- B Funalot
- Institut National de la Santé et de la Recherche Médicale Unit 573, 75014 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Morelli L, Llovera RE, Mathov I, Lue LF, Frangione B, Ghiso J, Castaño EM. Insulin-degrading Enzyme in Brain Microvessels. J Biol Chem 2004; 279:56004-13. [PMID: 15489232 DOI: 10.1074/jbc.m407283200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accumulation of amyloid beta (Abeta) in the walls of small vessels in the cerebral cortex is associated with diseases characterized by dementia or stroke. These include Alzheimer's disease, Down syndrome, and sporadic and hereditary cerebral amyloid angiopathies (CAAs) related to mutations within the Abeta sequence. A higher tendency of Abeta to aggregate, a defective clearance to the systemic circulation, and insufficient proteolytic removal have been proposed as mechanisms that lead to Abeta accumulation in the brain. By using immunoprecipitation and mass spectrometry, we show that insulin-degrading enzyme (IDE) from isolated human brain microvessels was capable of degrading (125)I-insulin and cleaved Abeta-(1-40) wild type and the genetic variants Abeta A21G (Flemish), Abeta E22Q (Dutch), and Abeta E22K (Italian) at the predicted sites. In microvessels from Alzheimer's disease cases with CAA, IDE protein levels showed a 44% increase as determined by sandwich enzyme-linked immunosorbent assay and Western blot. However, the activity of IDE upon radiolabeled insulin was significantly reduced in CAA as compared with age-matched controls. These results support the notion that a defect in Abeta proteolysis by IDE contributes to the accumulation of this peptide in the cortical microvasculature. Moreover they raise the possibility that IDE inhibition or inactivation is a pathogenic mechanism that may open novel strategies for the treatment of cerebrovascular Abeta amyloidoses.
Collapse
Affiliation(s)
- Laura Morelli
- IQUIFIB/Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
217
|
Gao W, Eisenhauer PB, Conn K, Lynch JA, Wells JM, Ullman MD, McKee A, Thatte HS, Fine RE. Insulin degrading enzyme is expressed in the human cerebrovascular endothelium and in cultured human cerebrovascular endothelial cells. Neurosci Lett 2004; 371:6-11. [PMID: 15500957 DOI: 10.1016/j.neulet.2004.07.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/09/2004] [Accepted: 07/10/2004] [Indexed: 10/26/2022]
Abstract
Insulin degrading enzyme (IDE) is found in the cytosol, peroxisomes and plasma membrane of many cells. Although it preferentially cleaves insulin it can also cleave many other small proteins with diverse sequences including the monomeric form of the amyloid beta peptide (A beta). In the brain, IDE has been reported to be expressed predominantly in neurons. In this study, IDE expression was detected in cultured human cerebrovascular endothelial cells. Using laser capture microdissection followed by PCR analysis, it was found that IDE mRNA is expressed in human brain blood vessels. Using immunofluorescence and multiphoton microscopy IDE was localized to the endothelium of the cerebrovascular blood vessels in human.
Collapse
Affiliation(s)
- Wenwu Gao
- ENR VA Medical Center, Bedford, MA 01730, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Song ES, Juliano MA, Juliano L, Fried MG, Wagner SL, Hersh LB. ATP effects on insulin-degrading enzyme are mediated primarily through its triphosphate moiety. J Biol Chem 2004; 279:54216-20. [PMID: 15494400 DOI: 10.1074/jbc.m411177200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported previously that ATP inhibits the insulysin reaction (Camberos, M. C., Perez, A. A., Udrisar, D. P., Wanderley, M. I., and Cresto, J. C. (2001) Exp. Biol. Med. 226, 334-341). We report here that with 2-aminobenzoyl-GGFLRKHGQ-ethylenediamine-2,4-dinitrophenyl as substrate, ATP and other nucleotides increase the rate >20-fold in Tris buffer. There is no specificity with respect to the nucleotide; however, ATP is more effective than ADP, which is more effective than AMP. Triphosphate itself was as effective as ATP, indicating it is this moiety that is responsible for activation. The binding of triphosphate was shown to be at a site distinct from the active site, thus acting as a noncompetitive activator. With the physiological substrates insulin and amyloid beta peptide, nucleotides and triphosphate were without effect. However, with small physiological peptides such as bradykinin and dynorphin B-9, ATP and triphosphate increased the rate of hydrolysis approximately 10-fold. Triphosphate and ATP shifted the oligomeric state of the enzyme from primarily dimer-tetramers to a monomer. These data suggest the presence of an allosteric regulatory site on insulysin that may shift its specificity toward small peptide substrates.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | | | | | |
Collapse
|
219
|
Tucker HM, Simpson J, Kihiko-Ehmann M, Younkin LH, McGillis JP, Younkin SG, Degen JL, Estus S. Plasmin deficiency does not alter endogenous murine amyloid beta levels in mice. Neurosci Lett 2004; 368:285-9. [PMID: 15364412 DOI: 10.1016/j.neulet.2004.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/03/2004] [Accepted: 07/08/2004] [Indexed: 11/17/2022]
Abstract
Deposition of amyloid beta (A beta) into extracellular plaques is a pathologic characteristic of Alzheimer's disease. Plasmin, neprilysin, endothelin-converting enzyme and insulin-degrading enzyme (IDE) have each been implicated in A beta degradation; data supporting the role of the latter three enzymes have included increased levels of endogenous murine A beta in mice genetically deficient for the respective enzyme. In this study, we sought to determine if plasminogen deficiency increases endogenous A beta. We report that plasminogen deficiency did not result in an A beta increase in the brain or in the plasma of adult mice. Hence, although plasmin is potentially important in the degradation of A beta aggregates, we interpret these data as suggesting that plasmin does not regulate steady-state A beta levels in non-pathologic conditions.
Collapse
Affiliation(s)
- H Michael Tucker
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Hama E, Shirotani K, Iwata N, Saido TC. Effects of Neprilysin Chimeric Proteins Targeted to Subcellular Compartments on Amyloid β Peptide Clearance in Primary Neurons. J Biol Chem 2004; 279:30259-64. [PMID: 15100223 DOI: 10.1074/jbc.m401891200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neprilysin (NEP) is a rate-limiting amyloid beta peptide (Abeta)-degrading enzyme in the brain. We demonstrated previously that overexpression of neprilysin in primary cortical neurons remarkably decreased not only extracellular but also intracellular Abeta levels. To investigate the subcellular compartments where neprilysin degrades Abeta most efficiently, we expressed neprilysin chimeric proteins containing various subcellular compartment-targeting domains in neurons. Sec12-NEP, beta-galactoside alpha2,6-sialyltransferase-NEP, transferrin receptor-NEP, and growth-associated protein 43-NEP were successfully sorted to the endoplasmic reticulum, trans-Golgi network, early/recycling endosomes, and lipid rafts, respectively. We found that intracellularly, wild-type neprilysin and all the chimeras showed equivalent Abeta40-degrading activities. Abeta40 was more effectively cleared than Abeta42, and this tendency was greater for intracellular Abeta than for extracellular Abeta. Wild-type and trans-Golgi network-targeted ST-NEP cleared more intracellular Abeta42 than the other chimeras. Wild-type neprilysin cleared extracellular Abeta more effectively than any of the chimeras, among which endoplasmic reticulum-targeted Sec12-NEP was the least effective. These observations indicate that different intracellular compartments may be involved in the metabolism of distinct pools of Abeta (Abeta40 and Abeta42) to be retained or recycled intracellularly and to be secreted extracellularly, and that the endogenous targeting signal in wild-type neprilysin is well optimized for the overall neuronal clearance of Abeta.
Collapse
Affiliation(s)
- Emi Hama
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
221
|
Duckworth WC, Fawcett J, Tsui BT, Bennett RG, Hamel FG. Biological activity of a fragment of insulin. Biochem Biophys Res Commun 2004; 318:1019-24. [PMID: 15147975 DOI: 10.1016/j.bbrc.2004.04.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Indexed: 10/26/2022]
Abstract
Insulin controls or alters glucose, protein, and fat metabolism as well as other cellular functions. Insulin binds to a specific receptor on the cell membrane initiating a protein phosphorylation cascade that controls glucose uptake and metabolism and long-term effects such as mitogenesis. This process also initiates insulin uptake and ultimate cellular metabolism in all insulin sensitive cells. The effects of insulin on other cellular metabolic properties have not been clearly related to this mechanism. Here we show that intracellular metabolism of insulin may be related to some aspects of insulin actions, specifically control of fat metabolism. A normal intracellular degradation product of insulin has been synthesized and tested for actions on fat turnover in cultured adipocytes. This 7-peptide, B-chain fragment (HLVEALY) inhibits both basal and stimulated lipolysis as measured by glycerol release, but does not inhibit FFA release because of a lack of effect on FFA reesterification in the adipocyte. HLVEALY also enhances insulin's effects on lipogenesis. This study shows that a fragment of insulin produced by the action of the insulin-degrading enzyme has both independent biological effects and interactions with insulin. This supports a biologically important effect of insulin metabolism and insulin degradation products on insulin action on non-glucose pathways.
Collapse
|
222
|
Iwata N, Mizukami H, Shirotani K, Takaki Y, Muramatsu SI, Lu B, Gerard NP, Gerard C, Ozawa K, Saido TC. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J Neurosci 2004; 24:991-8. [PMID: 14749444 PMCID: PMC6729819 DOI: 10.1523/jneurosci.4792-03.2004] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A local increase in amyloid-beta peptide (Abeta) is closely associated with synaptic dysfunction in the brain in Alzheimer's disease. Here, we report on the catabolic mechanism of Abeta at the presynaptic sites. Neprilysin, an Abeta-degrading enzyme, expressed by recombinant adeno-associated viral vector-mediated gene transfer, was axonally transported to presynaptic sites through afferent projections of neuronal circuits. This gene transfer abolished the increase in Abeta levels in the hippocampal formations of neprilysin-deficient mice and also reduced the increase in young mutant amyloid precursor protein transgenic mice. In the latter case, Abeta levels in the hippocampal formation contralateral to the vector-injected side were also significantly reduced as a result of transport of neprilysin from the ipsilateral side, and in both sides soluble Abeta was degraded more efficiently than insoluble Abeta. Furthermore, amyloid deposition in aged mutant amyloid precursor protein transgenic mice was remarkably decelerated. Thus, presynaptic neprilysin has been demonstrated to degrade Abeta efficiently and to retard development of amyloid pathology.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J 2004; 18:902-4. [PMID: 15033922 DOI: 10.1096/fj.03-0978fje] [Citation(s) in RCA: 478] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence indicates that insulin resistance, a proximal cause of Type II diabetes [a non-insulin dependent form of diabetes mellitus (NIDDM)], is associated with an increased relative risk for Alzheimer's disease (AD). In this study we examined the role of dietary conditions leading to NIDDM-like insulin resistance on amyloidosis in Tg2576 mice, which model AD-like neuropathology. We found that diet-induced insulin resistance promoted amyloidogenic beta-amyloid (Abeta) Abeta1-40 and Abeta1-42 peptide generation in the brain that corresponded with increased gamma-secretase activities and decreased insulin degrading enzyme (IDE) activities. Moreover, increased Abeta production also coincided with increased AD-type amyloid plaque burden in the brain and impaired performance in a spatial water maze task. Further exploration of the apparent interrelationship of insulin resistance to brain amyloidosis revealed a functional decrease in insulin receptor (IR)-mediated signal transduction in the brain, as suggested by decreased IR beta-subunit (IRbeta) Y1162/1163 autophosphorylation and reduced phosphatidylinositol 3 (PI3)-kinase/pS473-AKT/Protein kinase (PK)-B in these same brain regions. This latter finding is of particular interest given the known inhibitory role of AKT/PKB on glycogen synthase kinase (GSK)-3alpha activity, which has previously been shown to promote Abeta peptide generation. Most interestingly, we found that decreased pS21-GSK-3alpha and pS9-GSK-3beta phosphorylation, which is an index of GSK activation, positively correlated with the generation of brain C-terminal fragment (CTF)-gamma cleavage product of amyloid precursor protein, an index of gamma-secretase activity, in the brain of insulin-resistant relative to normoglycemic Tg2576 mice. Our study is consistent with the hypothesis that insulin resistance may be an underlying mechanism responsible for the observed increased relative risk for AD neuropathology, and presents the first evidence to suggest that IR signaling can influence Abeta production in the brain.
Collapse
Affiliation(s)
- Lap Ho
- Neuroinflammation Research Laboratories, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF. BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer's Disease. Neuron 2004; 41:27-33. [PMID: 14715132 DOI: 10.1016/s0896-6273(03)00810-9] [Citation(s) in RCA: 413] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
beta-site APP cleaving enzyme 1 (BACE1) is the beta-secretase enzyme required for generating pathogenic beta-amyloid (Abeta) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Abeta and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacking. Here we show that BACE1 null mice engineered to overexpress human APP (BACE1(-/-).Tg2576(+)) are rescued from Abeta-dependent hippocampal memory deficits. Moreover, impaired hippocampal cholinergic regulation of neuronal excitability found in the Tg2576 AD model is ameliorated in BACE1(-/-).Tg2576(+) bigenic mice. The behavioral and electrophysiological rescue of deficits in BACE1(-/-).Tg2576(+) mice is correlated with a dramatic reduction of cerebral Abeta40 and Abeta42 levels and occurs before amyloid deposition in Tg2576 mice. Our gene-based approach demonstrates that lower Abeta levels are beneficial for AD-associated memory impairments, validating BACE1 as a therapeutic target for AD.
Collapse
Affiliation(s)
- Masuo Ohno
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ. Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death. Neuron 2003; 40:1087-93. [PMID: 14687544 DOI: 10.1016/s0896-6273(03)00787-6] [Citation(s) in RCA: 554] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Converging evidence suggests that the accumulation of cerebral amyloid beta-protein (Abeta) in Alzheimer's disease (AD) reflects an imbalance between the production and degradation of this self-aggregating peptide. Upregulation of proteases that degrade Abeta thus represents a novel therapeutic approach to lowering steady-state Abeta levels, but the consequences of sustained upregulation in vivo have not been studied. Here we show that transgenic overexpression of insulin-degrading enzyme (IDE) or neprilysin (NEP) in neurons significantly reduces brain Abeta levels, retards or completely prevents amyloid plaque formation and its associated cytopathology, and rescues the premature lethality present in amyloid precursor protein (APP) transgenic mice. Our findings demonstrate that chronic upregulation of Abeta-degrading proteases represents an efficacious therapeutic approach to combating Alzheimer-type pathology in vivo.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Song ES, Juliano MA, Juliano L, Hersh LB. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J Biol Chem 2003; 278:49789-94. [PMID: 14527953 DOI: 10.1074/jbc.m308983200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate of the insulin-degrading enzyme (IDE)-catalyzed hydrolysis of the fluorogenic substrate 2-aminobenzoyl-GGFLRKHGQ-ethylenediamine-2,4-dinitrophenyl is increased 2-7-fold by other peptide substrates but not by peptide non-substrates. This increased rate is attributed to a decrease in Km with little effect on Vmax. An approximately 2.5-fold increase in the rate of amyloid beta peptide hydrolysis is produced by dynorphin B-9. However, with insulin as substrate, dynorphin B-9 is inhibitory. Immunoprecipitation of differentially tagged IDE and gel filtration analysis were used to show that IDE exists as a mixture of dimers and tetramers. The equilibrium between dimer and tetramer is concentration-dependent, with the dimer the more active form. Bradykinin shifted the equilibrium toward dimer. Activation of substrate hydrolysis is not seen with a mixed dimer of IDE containing one active subunit and one subunit that is catalytically inactive and deficient in substrate binding. On the other hand, a mixed dimer containing one active subunit and one subunit that is catalytically inactive but binds substrate with normal affinity is activated by peptides. These findings suggest that peptides bind to one subunit of IDE and induce a conformational change that shifts the equilibrium to the more active dimer as well as activates the adjacent subunit. The selective activation of IDE toward amyloid beta peptide relative to insulin suggests the potential for development of compounds that increase IDE activity toward amyloid beta peptide as a therapeutic intervention for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Eun-Suk Song
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
227
|
Leissring MA, Lu A, Condron MM, Teplow DB, Stein RL, Farris W, Selkoe DJ. Kinetics of amyloid beta-protein degradation determined by novel fluorescence- and fluorescence polarization-based assays. J Biol Chem 2003; 278:37314-20. [PMID: 12867419 DOI: 10.1074/jbc.m305627200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases that degrade the amyloid beta-protein (Abeta) are important regulators of brain Abeta levels in health and in Alzheimer's disease, yet few practical methods exist to study their detailed kinetics. Here, we describe robust and quantitative Abeta degradation assays based on the novel substrate, fluorescein-Abeta-(1-40)-Lys-biotin (FAbetaB). Liquid chromatography/mass spectrometric analysis shows that FAbetaB is hydrolyzed at closely similar sites as wild-type Abeta by neprilysin and insulin-degrading enzyme, the two most widely studied Abeta-degrading proteases. The derivatized peptide is an avid substrate and is suitable for use with biological samples and in high throughput compound screening. The assays we have developed are easily implemented and are particularly useful for the generation of quantitative kinetic data, as we demonstrate by determining the kinetic parameters of FAbetaB degradation by several Abeta-degrading proteases, including plasmin, which has not previously been characterized. The use of these assays should yield additional new insights into the biology of Abeta-degrading proteases and facilitate the identification of activators and inhibitors of such enzymes.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Prince JA, Feuk L, Gu HF, Johansson B, Gatz M, Blennow K, Brookes AJ. Genetic variation in a haplotype block spanningIDE influences Alzheimer disease. Hum Mutat 2003; 22:363-71. [PMID: 14517947 DOI: 10.1002/humu.10282] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Linkage studies have identified a large (>60-Mb) region on chromosome 10q that segregates with Alzheimer Disease (AD). Within the region, the gene for insulin degrading enzyme (IDE) represents a notable biological candidate given that it degrades amyloid beta-protein (one of the major constituents of senile plaques) and the intracellular amyloid precursor protein (APP) domain released by gamma-secretase processing. We have used a single nucleotide polymorphism (SNP) genetic association strategy to investigate AD in relation to a 480-kb region encompassing IDE. A 276-kb linkage disequilibrium block was revealed that spans three genes (IDE, KNSL1, and HHEX). Assessing this block in several independent sets of case-control materials (early- and late-onset AD) and focusing also upon quantitative measures that are pertinent to AD diagnosis and severity (MMSE scores, microtubule-associated protein Tau [MAPT] levels in CSF, degree of brain pathology, and age-at-onset) produced extensive evidence for significant AD association. Signals (p-values ranging from 0.05 to <1x10(-9)) were generally stronger when examining haplotypes rather than individual SNPs, and quantitative trait tests most uniformly revealed the detected associations. Consistent risk alleles and haplotypes were apparent across the study, with effects in some cases as large as that of the epsilon4 allele of APOE. A subsequent mutation screen of exons in all three suspect genes provided no evidence for common causative mutations. These results provide substantial evidence that genetic variation within or extremely close to IDE impacts both disease risk and traits related to the severity of AD.
Collapse
Affiliation(s)
- Jonathan A Prince
- Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|