201
|
Adcock JJ. TRPV1 receptors in sensitisation of cough and pain reflexes. Pulm Pharmacol Ther 2008; 22:65-70. [PMID: 19141328 DOI: 10.1016/j.pupt.2008.12.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/15/2008] [Accepted: 12/18/2008] [Indexed: 02/05/2023]
Abstract
Preclinical studies suggest that the vanilloid receptor (TRPV1) is an important component of several disease areas such as pain (inflammatory, visceral, cancer and neuropathic), airway disease (including chronic cough), inflammatory bowel disease (IBD), interstitial cystitis, urinary incontinence, pancreatitis and migraine. TRPV1 is a member of a distinct subgroup of the transient receptor potential (TRP) family of ion channels. The neuronally expressed TRPV1 is a non-selective, Ca(2+)-preferring, cation channel. In addition to capsaicin, this channel is activated by a number of different stimuli including heat, acid, certain arachidonic acid derivatives and direct phosphorylation via protein kinase C (PKC). Moreover, there is also evidence that various inflammatory mediators such as adenosine triphosphate (ATP), bradykinin, nerve growth factor (NGF) or prostaglandin E(2) (PGE(2)) may indirectly lead to activation of the TRPV1 channel via activation of their respective receptors. There is strong experimental evidence that the combination of direct and indirect mechanisms finely tune the TRPV1 activity. Each of the different known modes of direct TRPV1 activation (protons, heat and vanilloids) is capable of sensitising the channel to other agonists. Similarly, inflammatory mediators from the external milieu found in disease conditions can indirectly sensitise the receptor. It is this sensitisation of the TRPV1 receptor in inflammatory disease that could hold the key and contribute to the transduction of noxious signalling for normally innocuous stimuli, i.e. either hyperalgesia in the case of chronic pain or airway hyperresponsivness/hypertussive responses in patients with chronic cough. It seems reasonable to suggest that the various mechanisms for sensitisation provide a scenario for TRPV1 to be tonically active and this activity may contribute to the underlying pathology -- providing an important convergence point of multiple pain producing stimuli in the somatosensory system and multiple cough-evoking irritants in the airways. The complex mechanisms and pathways that contribute to the pathophysiology of chronic pain and chronic cough have made it difficult for clinicians to treat patients with current therapies. There is an increasing amount of evidence supporting the hypothesis that the expression, activation and modulation of TRPV1 in sensory neurones appears to be an integral component of pain and cough pathways, although the precise contribution of TRPV1 to human disease has yet to be determined. So the question remains open as to whether TRPV1 therapeutics will be efficacious and safe in man and represent a much needed novel pain and cough therapeutic.
Collapse
Affiliation(s)
- John J Adcock
- Allergy & Respiratory Biology, Sandwich Laboratories, Pfizer Global Research & Development, Sandwich, Kent, UK.
| |
Collapse
|
202
|
Abstract
Capsaicin (CAP) has multiple pharmacological actions, and researches have been centered on its effect on visceral hyperalgesia (VHL). Relevant studies have shown that low doses of CAP may cause VHL, while high doses can inhibit VHL. This kind of mechanism may be associated with vanilloid receptor subtype 1 (VR1) phosphorylation and dephosphorylation, substance P (SP), calcitonin-gene-related peptide (CGRP) and protease-activated receptor 2 (PAR2). CAP may be promising as a new drug for VHL treatment.
Collapse
|
203
|
Vellani V, Petrosino S, De Petrocellis L, Valenti M, Prandini M, Magherini PC, McNaughton PA, Di Marzo V. Functional lipidomics. Calcium-independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. Neuropharmacology 2008; 55:1274-9. [PMID: 18329052 DOI: 10.1016/j.neuropharm.2008.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/24/2008] [Accepted: 01/26/2008] [Indexed: 01/21/2023]
Abstract
N-arachidonoylethanolamine (anandamide, AEA), is a full agonist at both cannabinoid CB(1) receptors and "transient receptor potential vanilloid" type 1 (TRPV1) channels, and N-palmitoylethanolamine (PEA) potentiates these effects. In neurons of the rat dorsal root ganglia (DRG), TRPV1 is activated and/or sensitised by AEA as well as upon activation of protein kinases C (PKC) and A (PKA). We investigated here the effect on AEA levels of PKC and PKA activators in DRG neurons. AEA levels were significantly enhanced by both phorbol-miristoyl-acetate (PMA), a typical PKC activator, and forskolin (FSK), an adenylate cyclase stimulant, as well as by thrombin, which also activates PKC by stimulating protease-activated receptors (PARs). The levels of the other endocannabinoid and TRPV1-inactive compound, 2-arachidonoylglycerol (2-AG), were enhanced only by thrombin and to a lesser extent than AEA, whereas PEA was not affected by any of the treatments. Importantly, FSK- and PMA-induced elevation of AEA levels was not sensitive to intracellular Ca2+ chelation with BAPTA-acetoxymethyl (AM) ester. In human embryonic kidney (HEK-293) cells, which constitutively express PARs, thrombin, PMA and FSK elevated AEA levels, and the effects of the two former compounds were counteracted by the PKC inhibitor, RO318220, whereas the effect of FSK was reduced by the PKA inhibitor RpcAMPs. In conclusion, we report that AEA levels are stimulated by both PKC, either directly or after thrombin receptor activation, and PKA, possibly in a way independent from intracellular calcium. Since AEA activates TRPV1, these findings may suggest the existence of an amplificatory cascades on this receptor in sensory neurons.
Collapse
Affiliation(s)
- Vittorio Vellani
- Department of Biomedical Sciences, University of Modena and Reggio, Modena (MO), Italy
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Holzer P. The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor. Br J Pharmacol 2008; 155:1145-62. [PMID: 18806809 PMCID: PMC2607216 DOI: 10.1038/bjp.2008.351] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/18/2008] [Accepted: 08/20/2008] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential vanilloid-1 (TRPV1) cation channel is a receptor that is activated by heat (>42 degrees C), acidosis (pH<6) and a variety of chemicals among which capsaicin is the best known. With these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurones, although some non-neuronal cells and neurones in the brain also express TRPV1. The activity of TRPV1 is controlled by a multitude of regulatory mechanisms that either cause sensitization or desensitization of the channel. As many proalgesic pathways converge on TRPV1 and this nocisensor is upregulated and sensitized by inflammation and injury, TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for the pharmacological control of pain. As a consequence, TRPV1 agonists causing defunctionalization of sensory neurones and a large number of TRPV1 blockers have been developed, some of which are in clinical trials. A major drawback of many TRPV1 antagonists is their potential to cause hyperthermia, and their long-term use may carry further risks because TRPV1 has important physiological functions in the peripheral and central nervous system. The challenge, therefore, is to pharmacologically differentiate between the physiological and pathological implications of TRPV1. There are several possibilities to focus therapy specifically on those TRPV1 channels that contribute to disease processes. These approaches include (i) site-specific TRPV1 antagonists, (ii) modality-specific TRPV1 antagonists, (iii) uncompetitive TRPV1 (open channel) blockers, (iv) drugs interfering with TRPV1 sensitization, (v) drugs interfering with intracellular trafficking of TRPV1 and (vi) TRPV1 agonists for local administration.
Collapse
Affiliation(s)
- P Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz, Austria.
| |
Collapse
|
205
|
McGaraughty S, Chu KL, Brown BS, Zhu CZ, Zhong C, Joshi SK, Honore P, Faltynek CR, Jarvis MF. Contributions of central and peripheral TRPV1 receptors to mechanically evoked and spontaneous firing of spinal neurons in inflamed rats. J Neurophysiol 2008; 100:3158-66. [PMID: 18829846 DOI: 10.1152/jn.90768.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TRPV1 receptors are activated and/or modulated by noxious heat, capsaicin, protons and other endogenous agents released following tissue injury. There is a growing appreciation that this molecular integrator may also have a role in mechanosensation. To further understand this role, we investigated the systemic and site-specific effects of a selective TRPV1 receptor antagonist, A-889425, on low-intensity mechanical stimulation in inflamed rats. Systemic administration of A-889425 (30 and 100 micromol/kg po) reduced mechanical allodynia in complete Freund's adjuvant (CFA)-inflamed rats. Systemic A-889425 (3 and 10 micromol/kg iv) also decreased the responses of spinal wide dynamic range (WDR) neurons to low-intensity mechanical stimulation in CFA-inflamed but not uninjured rats. This effect of A-889425 was likely mediated via multiple sites since local injection of A-889425 into the spinal cord (1-3 nmol), ipsilateral hindpaw (200 nmol), and cerebral ventricles (30-300 nmol) all attenuated WDR responses to low-intensity mechanical stimulation. In addition to an effect on mechanotransmission, systemic administration of A-889425 reduced the spontaneous firing of WDR neurons in inflamed but not uninjured rats. Spontaneous firing is elevated after injury and may reflect ongoing pain in the animal. Local injection experiments indicated that this effect of A-889425 on spontaneous firing was mainly mediated via TRPV1 receptors in the spinal cord. Thus the current data demonstrate that TRPV1 receptors have an enhanced role after an inflammatory injury, impacting both low-intensity mechanotransmission and possibly spontaneous pain. Furthermore this study delineates the differential contribution of central and peripheral TRPV1 receptors to affect spontaneous or mechanically evoked firing of WDR neurons.
Collapse
Affiliation(s)
- Steve McGaraughty
- Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064-6118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Wollemann M, Ioja E, Benyhe S. Capsaicin inhibits the in vitro binding of peptides selective for mu- and kappa-opioid, and nociceptin-receptors. Brain Res Bull 2008; 77:136-42. [PMID: 18588953 DOI: 10.1016/j.brainresbull.2008.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/03/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Capsaicin inhibited the equilibrium specific binding of endogenous opioid-like peptide ligands such as endomorphin-1, nociceptin, and dynorphin((1-17)) in rat brain membrane preparations. We studied the in vitro effect of capsaicin (1-10 microM) on homologous and heterologous competitive binding of opioid ligands, using unlabeled synthetic peptides and the following tritiated compounds: [(3)H]endomorphin-1, [(3)H]endomorphin-2, [(3)H]nociceptin((1-17)) and [(3)H]dynorphin((1-17)). Capsaicin-dependent inhibition was also observed in [(35)S]GTPgammaS stimulation assays in the presence of certain opioid peptides. The inhibition of opioid binding was further investigated using other synthetic and natural mu-opioid ligands such as [D-Ala(2),(NMe)Phe(4),Gly(5)-ol]enkephalin (DAMGO), morphine and naloxone. The decrease in opioid ligand affinity upon capsaicin treatments was most apparent with endomorphin-1, followed by nociceptin and dynorphin. The binding of other investigated opioids were not affected in the presence of capsaicin. In [(3)H]endomorphin-1 binding assays, capsazepine antagonized the inhibitory effect of capsaicin in rat brain membranes suggesting the involvement of TRPV1 receptors. In Chinese hamster ovary (CHO) cells stably expressing mu-opioid receptors, but lacking vanilloid receptors, the inhibition by capsaicin on the binding of [(3)H]endomorphin-1 was not present. It is concluded that the inhibitory effect of capsaicin on the receptor binding affinity of endogenous opioid peptides in brain membrane preparations seems not to be a direct effect, it is rather a negative feedback interaction with opioid receptors.
Collapse
Affiliation(s)
- Mária Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvari krt. 26, Hungary.
| | | | | |
Collapse
|
207
|
Zeng Y, Lv XH, Zeng SQ, Tian SL, Li M, Shi J. Sustained depolarization-induced propagation of [Ca2+]i oscillations in cultured DRG neurons: the involvement of extracellular ATP and P2Y receptor activation. Brain Res 2008; 1239:12-23. [PMID: 18804455 DOI: 10.1016/j.brainres.2008.08.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/24/2008] [Accepted: 08/24/2008] [Indexed: 12/26/2022]
Abstract
Recently emerging evidence implicates a number of neuroactive substances and their receptors in mediating complex cell-to-cell communications in the ganglia. In the present study, we characterized the nonsynaptic chemical coupling mediated by extracellular ATP in dorsal root ganglia (DRG) neuron cultures by using the real time imaging of ATP, whole-cell patch clamping, in conjunction with confocal calcium imaging. Sustained depolarization by electrical stimulation evoked intracellular Ca2+ concentrations ([Ca2+]i) oscillations in individual DRG neurons, and subsequent ATP-dependent propagation [Ca2+]i oscillations to surrounding non-stimulated neighbors. [Ca2+]i oscillations were suppressed by inositol-1,4,5-trisphosphate (IP3) receptor antagonist 2-APB, but not ryanodine. The propagation of [Ca2+]i oscillations was prevented by the presence of the ATP-degrading enzyme, apyrase, and completely abolished by the blockase of G protein-coupled purinergic receptors-PLC-IP3 pathway with suramin, U73122 or 2-APB. In parallel, sustained depolarization elicited robust ATP release and diffusion from the stimulation site. Moreover, exogenous application of ATP to DRG cultures in large concentration elicits the [Ca2+]i oscillations in most neurons. Taken together, this data demonstrates that sustained membrane depolarization elicited ATP release, acting through a highly sensitive P2Y receptors/IP3-mediated signaling pathway to mediate the propagation of intercellular Ca2+ signaling, which suggest a novel signaling pathway for neuronal communication in DRG.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, HUST, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | |
Collapse
|
208
|
Drake MJ. Mechanisms of action of intravesical botulinum treatment in refractory detrusor overactivity. BJU Int 2008; 102 Suppl 1:11-6. [PMID: 18665973 DOI: 10.1111/j.1464-410x.2008.07822.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Urinary retention is one of a multitude of autonomic deficits resulting from acute botulism (oral botulinum intoxication). The powerful influence of botulinum-A neurotoxin (BoNT-A) on autonomic function has now been harnessed to the benefit of patients with detrusor overactivity (DO), by injecting the agent intramurally, with consequent improvement in urodynamic and clinical variables. Nonetheless, the complexity of bladder cellular physiology and putative mechanisms underlying the pathophysiological basis of DO even now render the precise mechanisms of clinical response to intravesical BoNT-A uncertain. In this review, the processes by which BoNT-A affects nerve function and the state-of-the-art in the physiological understanding of bladder dysfunction are discussed together, conveying how much must be reckoned when attempting to understand the mechanisms by which this powerful agent can improve refractory and bothersome DO.
Collapse
Affiliation(s)
- Marcus J Drake
- Bristol Urological Institute, Southmead Hospital, Bristol, UK.
| |
Collapse
|
209
|
|
210
|
Wang DH. Transient receptor potential vanilloid channels in hypertension, inflammation, and end organ damage: an imminent target of therapy for cardiovascular disease? Curr Opin Cardiol 2008; 23:356-63. [PMID: 18520720 PMCID: PMC2692878 DOI: 10.1097/hco.0b013e32830460ad] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW The possible role of several neurohormonal factors in pathogenesis of hypertension has been studied extensively both in humans and in experimental animal models. However, controversial data from some previous studies are indecisive and call for reassessment and development of new targets. This mini-review presents some of the most recent findings about the role of transient receptor potential vanilloid type 1 channels in the development of hypertension and its pathology. RECENT FINDINGS The transient receptor potential vanilloid type 1, channel activated by novel endovanilloids or altered pH, temperature, and/or local hemodynamics, may serve as a distinct molecular sensor detecting sodium and water balance and may play a role in preventing salt-induced hypertension and tissue damage. Impairment of the function of the transient receptor potential vanilloid type 1 channels may contribute to increased salt sensitivity, inflammation, and end organ damage. SUMMARY Emerging evidence indicates that the transient receptor potential vanilloid type 1 channel plays a key role in cardiovascular health and disease by acting as a sensor and regulator of cardiovascular homeostasis and a protector against cardiovascular injury. Given the huge population who suffers from cardiovascular disease, the study of the transient receptor potential vanilloid channels may improve our understanding of pathogenesis of several common cardiovascular disorders and may lead to the development of therapy for hypertension, inflammation, and organ damage.
Collapse
Affiliation(s)
- Donna H Wang
- Department of Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
211
|
Kawamata T, Ji W, Yamamoto J, Niiyama Y, Furuse S, Namiki A. Contribution of transient receptor potential vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia. Neuroscience 2008; 154:1067-76. [DOI: 10.1016/j.neuroscience.2008.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/05/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
212
|
Schnizler K, Shutov LP, Van Kanegan MJ, Merrill MA, Nichols B, McKnight GS, Strack S, Hell JW, Usachev YM. Protein kinase A anchoring via AKAP150 is essential for TRPV1 modulation by forskolin and prostaglandin E2 in mouse sensory neurons. J Neurosci 2008; 28:4904-17. [PMID: 18463244 PMCID: PMC2641040 DOI: 10.1523/jneurosci.0233-08.2008] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation-dependent modulation of the vanilloid receptor TRPV1 is one of the key mechanisms mediating the hyperalgesic effects of inflammatory mediators, such as prostaglandin E(2) (PGE(2)). However, little is known about the molecular organization of the TRPV1 phosphorylation complex and specifically about scaffolding proteins that position the protein kinase A (PKA) holoenzyme proximal to TRPV1 for effective and selective regulation of the receptor. Here, we demonstrate the critical role of the A-kinase anchoring protein AKAP150 in PKA-dependent modulation of TRPV1 function in adult mouse dorsal root ganglion (DRG) neurons. We found that AKAP150 is expressed in approximately 80% of TRPV1-positive DRG neurons and is coimmunoprecipitated with the capsaicin receptor. In functional studies, PKA stimulation with forskolin markedly reduced desensitization of TRPV1. This effect was blocked by the PKA selective inhibitors KT5720 [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylicacid hexyl ester] and H89 (N-[2-(p-bromo-cinnamylamino)-ethyl]-5-isoquinoline-sulfon-amide 2HCl), as well as by the AKAP inhibitory peptide Ht31. Similarly, PGE(2) decreased TRPV1 desensitization in a manner sensitive to the PKA inhibitor KT5720. Both the forskolin and PGE(2) effects were strongly impaired in DRG neurons from knock-in mice that express a mutant AKAP150 lacking the PKA-binding domain (Delta36 mice). Protein kinase C-dependent sensitization of TRPV1 remained intact in Delta36 mice. The PGE(2)/PKA signaling defect in DRG neurons from Delta36 mice was rescued by overexpressing the full-length human ortholog of AKAP150 in these cells. In behavioral testing, PGE(2)-induced thermal hyperalgesia was significantly diminished in Delta36 mice. Together, these data suggest that PKA anchoring by AKAP150 is essential for the enhancement of TRPV1 function by activation of the PGE(2)/PKA signaling pathway.
Collapse
Affiliation(s)
- Katrin Schnizler
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Leonid P. Shutov
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Michael J. Van Kanegan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Michelle A. Merrill
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Blake Nichols
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - G. Stanley McKnight
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Stefan Strack
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Yuriy M. Usachev
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| |
Collapse
|
213
|
Lu ZM, Xie F, Fu H, Liu MG, Cao FL, Hao J, Chen J. Roles of peripheral P2X and P2Y receptors in the development of melittin-induced nociception and hypersensitivity. Neurochem Res 2008; 33:2085-91. [PMID: 18404374 DOI: 10.1007/s11064-008-9689-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 03/26/2008] [Indexed: 01/16/2023]
Abstract
A recent report from our laboratory shows that subcutaneous (s.c.) injection of melittin could induce persistent spontaneous nociception (PSN) and primary thermal or mechanical hyperalgesia. However, the exact peripheral mechanisms underlying melittin-induced multiple pain-related behaviors remain unclear. In this study, behavioral tests combined with pharmacological manipulations were used to explore potential roles of local P2X and P2Y receptors in melittin-induced inflammatory pain and hyperalgesia. Post-treatment of the primary injury site with s.c. injection of A-317491 (a potent P2X(3)/P2X(2/3) receptor antagonist) and Reactive Blue 2 (a potent P2Y receptor antagonist) could significantly suppress the development of melittin-evoked PSN and hypersensitivity (thermal and mechanical). Our control experiments demonstrated that local administration of either antagonist into the contralateral hindpaw produced no significant effect on any kind of pain-associated behaviors. Taken together, these data indicate that activation of P2X and P2Y receptors might be essential to the maintenance of melittin-induced primary thermal and mechanical hyperalgesia as well as on-going pain.
Collapse
Affiliation(s)
- Zhuo-Min Lu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Baqiao, Xi'an 710038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
214
|
P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 2008; 28:2892-902. [PMID: 18337420 DOI: 10.1523/jneurosci.5589-07.2008] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microglia in the spinal cord may play an important role in the development and maintenance of neuropathic pain. A metabotropic ATP receptor, P2Y(12), has been shown to be expressed in spinal microglia constitutively and be involved in chemotaxis. Activation of p38 mitogen-activated protein kinase (MAPK) occurs in spinal microglia after nerve injury and may be related to the production of cytokines and other mediators, resulting in neuropathic pain. However, it remains unknown whether any type of P2Y receptor in microglia is involved in the activation of p38 MAPK and the pain behaviors after nerve injury. Using the partial sciatic nerve ligation (PSNL) model in the rat, we found that P2Y(12) mRNA and protein increased in the spinal cord and peaked at 3 d after PSNL. Double labeling studies revealed that cells expressing increased P2Y(12) mRNA and protein after nerve injury were exclusively microglia. Both pharmacological blockades by intrathecal administration of P2Y(12) antagonist and antisense knockdown of P2Y(12) expression suppressed the development of pain behaviors and the phosphorylation of p38 MAPK in spinal microglia after PSNL. The intrathecal infusion of the P2Y(12) agonist 2-(methythio) adenosine 5'-diphosphate trisodium salt into naive rats mimicked the nerve injury-induced activation of p38 in microglia and elevated pain behaviors. These data suggest a new mechanism of neuropathic pain, in which the increased P2Y(12) works as a gateway of the following events in microglia after nerve injury. Activation of this receptor by released ATP or the hydrolyzed products activate p38 MAPK pathway and may play a crucial role in the generation of neuropathic pain.
Collapse
|
215
|
Rohacs T, Thyagarajan B, Lukacs V. Phospholipase C mediated modulation of TRPV1 channels. Mol Neurobiol 2008; 37:153-63. [PMID: 18528787 PMCID: PMC2568872 DOI: 10.1007/s12035-008-8027-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 05/13/2008] [Indexed: 12/31/2022]
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) channels are involved in both thermosensation and nociception. They are activated by heat, protons, and capsaicin and modulated by a plethora of other agents. This review will focus on the consequences of phospholipase C (PLC) activation, with special emphasis on the effects of phosphatidylinositol 4,5-bisphosphate (PIP2) on these channels. Two opposing effects of PIP2 have been reported on TRPV1. PIP2 has been proposed to inhibit TRPV1, and relief from this inhibition was suggested to be involved in sensitization of these channels by pro-inflammatory agents. In excised patches, however, PIP2 was shown to activate TRPV1. Calcium flowing through TRPV1 activates PLC and the resulting depletion of PIP2 was proposed to play a role in capsaicin-induced desensitization of these channels. We will describe the data indicating involvement of PLC and PIP2 in sensitization and desensitization of TRPV1 and will also discuss other pathways potentially contributing to these two phenomena. We attempt to resolve the seemingly contradictory data by proposing that PIP2 can both activate and inhibit TRPV1 depending on the experimental conditions, more specifically on the level of stimulation of these channels. Finally, we also discuss data in the literature indicating that other TRP channels, TRPA1 and some members of the TRPC subfamily, may also be under a similar dual control by PIP2.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | | | |
Collapse
|
216
|
Pabbidi RM, Yu SQ, Peng S, Khardori R, Pauza ME, Premkumar LS. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 2008; 4:9. [PMID: 18312687 PMCID: PMC2275252 DOI: 10.1186/1744-8069-4-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 03/01/2008] [Indexed: 12/24/2022] Open
Abstract
A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN). The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ)-induced and transgene-mediated murine models of type 1 diabetes (T1D), we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1) expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL). An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG) neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX) binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG), and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception.
Collapse
Affiliation(s)
- Reddy M Pabbidi
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | | | | | | | | | | |
Collapse
|
217
|
Donnelly-Roberts D, McGaraughty S, Shieh CC, Honore P, Jarvis MF. Painful purinergic receptors. J Pharmacol Exp Ther 2008; 324:409-15. [PMID: 18042830 DOI: 10.1124/jpet.106.105890] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple P2 receptor-mediated mechanisms exist by which ATP can alter nociceptive sensitivity following tissue injury. Evidence from a variety of experimental strategies, including genetic disruption studies and the development of selective antagonists, has indicated that the activation of P2X receptor subtypes, including P2X(3), P2X(2/3), P2X(4) and P2X(7), and P2Y (e.g., P2Y(2)) receptors, can modulate pain. For example, administration of a selective P2X(3) antagonist, A-317491, has been shown to effectively block both hyperalgesia and allodynia in different animal models of pathological pain. Intrathecally delivered antisense oligonucleotides targeting P2X(4) receptors decrease tactile allodynia following nerve injury. Selective antagonists for the P2X(7) receptor also reduce sensitization in animal models of inflammatory and neuropathic pain, providing evidence that purinergic glial-neural interactions are important modulators of noxious sensory neurotransmission. Furthermore, activation of P2Y(2) receptors leads to sensitization of polymodal transient receptor potential-1 receptors. Thus, ATP acting at multiple purinergic receptors, either directly on neurons (e.g., P2X(3), P2X(2/3), and P2Y receptors) or indirectly through neural-glial cell interactions (P2X(4) and P2X(7) receptors), alters nociceptive sensitivity. The development of selective antagonists for some of these P2 receptors has greatly aided investigations into the nociceptive role of ATP. This perspective highlights some of the recent advances to identify selective P2 receptor ligands, which has enhanced the investigation of ATP-related modulation of pain sensitivity.
Collapse
|
218
|
De Schepper HU, De Man JG, Ruyssers NE, Deiteren A, Van Nassauw L, Timmermans JP, Martinet W, Herman AG, Pelckmans PA, De Winter BY. TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats. Am J Physiol Gastrointest Liver Physiol 2008; 294:G245-G253. [PMID: 17991707 DOI: 10.1152/ajpgi.00351.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rats with experimental colitis suffer from impaired gastric emptying (GE). We previously showed that this phenomenon involves afferent neurons within the pelvic nerve. In this study, we aimed to identify the mediators involved in this afferent hyperactivation. Colitis was induced by trinitrobenzene sulfate (TNBS) instillation. We determined GE, distal front, and geometric center (GC) of intestinal transit 30 min after intragastric administration of a semiliquid Evans blue solution. We evaluated the effects of the transient receptor potential vanilloid type 1 (TRPV1) antagonists capsazepine (5-10 mg/kg) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 1-10 mg/kg) and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP-(8-37) (150 microg/kg). To determine TRPV1 receptor antagonist sensitivity, we examined their effect on capsaicin-induced relaxations of isolated gastric fundus muscle strips. Immunocytochemical staining of TRPV1 and RT-PCR analysis of TRPV1 mRNA were performed in dorsal root ganglion (DRG) L6-S1. TNBS-induced colitis reduced GE but had no effect on intestinal motility. Capsazepine reduced GE in controls but had no effect in rats with colitis. At doses that had no effects in controls, BCTC and CGRP-(8-37) significantly improved colitis-induced gastroparesis. Capsazepine inhibited capsaicin-induced relaxations by 35% whereas BCTC completely abolished them. TNBS-induced colitis increased TRPV1-like immunoreactivity and TRPV1 mRNA content in pelvic afferent neuronal cell bodies in DRG L6-S1. In conclusion, distal colitis in rats impairs GE via sensitized pelvic afferent neurons. We provided pharmacological, immunocytochemical, and molecular biological evidence that this sensitization is mediated by TRPV1 receptors and involves CGRP release.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/pharmacology
- Calcitonin Gene-Related Peptide Receptor Antagonists
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Colitis/chemically induced
- Colitis/complications
- Colitis/metabolism
- Colitis/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Gastric Emptying
- Gastrointestinal Motility/drug effects
- Gastroparesis/etiology
- Gastroparesis/metabolism
- Gastroparesis/physiopathology
- Intestinal Mucosa/metabolism
- Intestines/drug effects
- Intestines/innervation
- Intestines/physiopathology
- Male
- Muscle Relaxation
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Peptide Fragments/pharmacology
- Pyrazines/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Signal Transduction/drug effects
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Time Factors
- Trinitrobenzenesulfonic Acid
Collapse
Affiliation(s)
- H U De Schepper
- Laboratory of Gastroenterology, Faculty of Medicine, Univ. of Antwerp, Universiteitsplein 1, 2610 Antwerp (Belgium )
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Mitani O, Masui K, Tsujimoto H, Jinbo K, Watanabe Y, Ohkura T, Taya K, Ikeda H. Histopathological Changes of Streptozotocin-induced Painful Diabetes and Antihyperalgesic Effect of Capsaicin Cream in Rats. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Osamu Mitani
- Central Research Laboratory, Maruishi Pharmaceutical Co., Ltd
| | - Kuniharu Masui
- Central Research Laboratory, Maruishi Pharmaceutical Co., Ltd
| | | | - Keisuke Jinbo
- Central Research Laboratory, Maruishi Pharmaceutical Co., Ltd
| | | | - Takako Ohkura
- Central Research Laboratory, Maruishi Pharmaceutical Co., Ltd
| | - Koji Taya
- Central Research Laboratory, Maruishi Pharmaceutical Co., Ltd
| | - Hitoshi Ikeda
- Central Research Laboratory, Maruishi Pharmaceutical Co., Ltd
| |
Collapse
|
220
|
Köles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P. Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:1-33. [DOI: 10.1007/s00210-007-0222-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/12/2007] [Indexed: 02/04/2023]
|
221
|
Plant TD, Zöllner C, Kepura F, Mousa SS, Eichhorst J, Schaefer M, Furkert J, Stein C, Oksche A. Endothelin potentiates TRPV1 via ETA receptor-mediated activation of protein kinase C. Mol Pain 2007; 3:35. [PMID: 18001466 PMCID: PMC2206006 DOI: 10.1186/1744-8069-3-35] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 11/14/2007] [Indexed: 01/26/2023] Open
Abstract
Background Endothelin-1 (ET-1) both stimulates nociceptors and sensitizes them to noxious stimuli, an effect probably mediated by the ETA receptor (ETAR) expressed in sensory neurons. The cellular mechanisms of this ET-1-mediated effect are only poorly understood. TRPV1, the heat-, pH- and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators released in response to noxious stimuli and during inflammation, is a potential target for the action of ET-1. Results We studied the effects of ET-1 on TRPV1 in sensory neurons from the dorsal root ganglion (DRG) and in HEK293 cells coexpressing TRPV1 and the ETAR. Specific 125I-ET-1 binding sites (817 ± 92 fmol/mg) were detected in membrane preparations of DRG with an ETAR/ETBR ratio of 60:40. In an immunofluorescence analysis, coexpression of TRPV1 and the ETAR was found in a subpopulation of primary sensory neurons. ET-1 strongly potentiated capsaicin-induced TRPV1 currents in some neurons, and in HEK293 cells co-expressing TRPV1 and the ETAR. Weaker potentiation was observed in HEK293 cells coexpressing TRPV1 and the ETBR. ETAR activation also increased responses to low pH and heat. In HEK293 cells, strong potentiation of TRPV1 like that induced by ET-1 via the ETAR could be induced by PKC activation, but not with activators of the adenylyl cyclase or the PKA pathway. Furthermore, inhibition of PKC with bisindolylmaleimide X (BIM X) or mutation of the PKC phosphorylation site S800 completely prevented ETAR-mediated potentiation. Conclusion We conclude that ET-1 potentiates TRPV1 by a PKC-dependent mechanism and that this could play a major role in the algogenic and hyperalgesic effects of ET-1 described in previous studies.
Collapse
Affiliation(s)
- Tim D Plant
- Institut für Pharmakologie und Toxikologie, FB-Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Str, 1, 35032 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Alexander SPH, Kendall DA. The complications of promiscuity: endocannabinoid action and metabolism. Br J Pharmacol 2007; 152:602-23. [PMID: 17876303 PMCID: PMC2190010 DOI: 10.1038/sj.bjp.0707456] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 01/27/2023] Open
Abstract
In this review, we present our understanding of the action and metabolism of endocannabinoids and related endogenous molecules. It is clear that the interactions between the multiple endocannabinoid-like molecules (ECLs) are highly complex, both at the level of signal transduction and metabolism. Thus, ECLs are a group of ligands active at 7-transmembrane and nuclear receptors, as well as transmitter-gated and ion channels. ECLs and their metabolites can converge on common endpoints (either metabolic or signalling) through contradictory or reinforcing pathways. We highlight the complexity of the endocannabinoid system, based on the promiscuous nature of ECLs and their metabolites, as well as the synthetic modulators of the endocannabinoid system.
Collapse
Affiliation(s)
- S P H Alexander
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Nottingham NG7 7LP, UK.
| | | |
Collapse
|
223
|
McLeod RL, Correll CC, Jia Y, Anthes JC. TRPV1 antagonists as potential antitussive agents. Lung 2007; 186 Suppl 1:S59-65. [PMID: 17926096 DOI: 10.1007/s00408-007-9032-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/15/2007] [Indexed: 12/17/2022]
Abstract
Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, "codeine-like" drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current efforts in clinical validation of TRPV1 antagonists revolve around various pain indications; therefore, clinical evaluation of TRPV1 antagonists as antitussive agents will have to await those outcomes.
Collapse
Affiliation(s)
- Robbie L McLeod
- Department of Neurobiology, Schering-Plough Research Institute, Kenilworth, NJ 07033-0539, USA.
| | | | | | | |
Collapse
|
224
|
Pei L, Lin CY, Dai JP, Yin GF. Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci Bull 2007; 23:92-100. [PMID: 17592531 PMCID: PMC5550592 DOI: 10.1007/s12264-007-0013-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To investigate the involvement of transient receptor potential vanilloid receptor 1 (TRPV1) in the facial inflammatory pain in relation to thermal hyperalgesia and cold pain sensation. METHODS Facial inflammatory pain model was developed by subcutaneous injection of turpentine oil (TO) into rat facial area. Head withdrawal thermal latency (HWTL) and head withdrawal cold latency (HWCL) were measured once a day for 21 d after TO treatment using thermal and cold measurement apparatus. The immunohistochemical staining, cell-size frequency analysis and the survey of average optical density (OD) value were used to observe the changes of TRPV1 expression in the neurons of the trigeminal ganglion (TG), peripheral nerve fibers in the vibrissal pad, and central projection processes in the trigeminal sensory nuclei caudalis (Vc) on day 3, 5, 7, 14, and 21 after TO injection. RESULTS HWTL and HWCL decreased significantly from day 1 to day 14 after TO injection with the lowest value on day 5 and day 3, respectively, and both recovered on day 21. The number of TRPV1-labeled neurons increased remarkably from day 1 to day 14 with a peak on day 7, and returned back to the normal level on day 21. In control rats, only small and medium-sized TG neurons were immunoreactive (IR) to TRPV1, and the TRPV1-IR terminals were abundant in both the vibrissal pad and the Vc. Within 2 weeks of inflammation, the expression of TRPV1 in small and medium-sized TG neurons increased obviously. Also the TRPV1 stained terminals and fibers appeared more frequent and denser in both the vibrissal pad skin and throughout laminae I and the outer zone of laminae II (IIo) of Vc. CONCLUSION Facial inflammatory pain could induce hyperalgesia to noxious heat and cold stimuli, and result in increase of the numbers of TRPV1 positive TG neurons and the peripheral and central terminals of TG. These results suggest that the phenotypic changes of TRPV1 expression in small and medium-sized TG neurons and terminals might play an important role in the development and maintenance of TO-induced inflammatory thermal hyperalgesia and cold pain sensation.
Collapse
Affiliation(s)
- Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chuan-You Lin
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jia-Pei Dai
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Guang-Fu Yin
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
225
|
Bíró T, Tóth BI, Marincsák R, Dobrosi N, Géczy T, Paus R. TRP channels as novel players in the pathogenesis and therapy of itch. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1004-21. [PMID: 17462867 DOI: 10.1016/j.bbadis.2007.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/08/2007] [Accepted: 03/08/2007] [Indexed: 11/23/2022]
Abstract
Itch (pruritus) is a sensory phenomenon characterized by a (usually) negative affective component and the initiation of a special behavioral act, i.e. scratching. Older studies predominantly have interpreted itch as a type of pain. Recent neurophysiological findings, however, have provided compelling evidence that itch (although it indeed has intimate connections to pain) rather needs to be understood as a separate sensory modality. Therefore, a novel pruriceptive system has been proposed, within which itch-inducing peripheral mediators (pruritogens), itch-selective receptors (pruriceptors), sensory afferents and spinal cord neurons, and defined, itch-processing central nervous system regions display complex, layered responses to itch. In this review, we begin with a current overview on the neurophysiology of pruritus, and distinguish it from that of pain. We then focus on the functional characteristics of the large family of transient receptor potential (TRP) channels in skin-coupled sensory mechanisms, including itch and pain. In particular, we argue that - due to their expression patterns, activation mechanisms, regulatory roles, and pharmacological sensitivities - certain thermosensitive TRP channels are key players in pruritus pathogenesis. We close by proposing a novel, TRP-centered concept of pruritus pathogenesis and sketch important future experimental directions towards the therapeutic targeting of TRP channels in the clinical management of itch.
Collapse
Affiliation(s)
- Tamás Bíró
- Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, 4032 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
226
|
Nakayama T, Harada N, Asano M, Nomura N, Saito T, Mishima A, Okajima K. Atrial natriuretic peptide reduces ischemia/reperfusion-induced spinal cord injury in rats by enhancing sensory neuron activation. J Pharmacol Exp Ther 2007; 322:582-90. [PMID: 17522345 DOI: 10.1124/jpet.107.120725] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that calcitonin gene-related peptide (CGRP) released from sensory neurons reduces spinal cord injury (SCI) by inhibiting neutrophil activation through an increase in the endothelial production of prostacyclin (PGI(2)). Carperitide, a synthetic alpha-human atrial natriuretic peptide (ANP), reduces ischemia/reperfusion (I/R)-induced tissue injury. However, its precise therapeutic mechanism(s) remains to be elucidated. In the present study, we examined whether ANP reduces I/R-induced spinal cord injury by enhancing sensory neuron activation using rats. ANP increased CGRP release and cellular cAMP levels in dorsal root ganglion neurons isolated from rats in vitro. The increase in CGRP release induced by ANP was reversed by pretreatment with capsazepine, an inhibitor of vanilloid receptor-1 activation, or with (9S, 10S, 12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]-benzodiazocine-10-carboxylic acid hexyl ester (KT5720), an inhibitor of protein kinase A (PKA), suggesting that ANP might increase CGRP release from sensory neurons by activating PKA through an increase in the cellular cAMP level. Spinal cord ischemia was induced in rats using a balloon catheter placed in the aorta. ANP reduced mortality and motor disturbances by inhibiting reduction of the number of motor neurons in animals subjected to SCI. ANP significantly enhanced I/R-induced increases in spinal cord tissue levels of CGRP and 6-keto-prostaglandin F(1alpha). a stable metabolite of PGI(2). ANP inhibited I/R-induced increases in spinal cord tissue levels of tumor necrosis factor and myeloperoxidase. Pretreatment with 4'-chloro-3-methoxycinnamanilide (SB366791), a specific vanilloid receptor-1 antagonist, and indomethacin reversed the effects of ANP. These results strongly suggest that ANP might reduce I/R-induced SCI in rats by inhibiting neutrophil activation through enhancement of sensory neuron activation.
Collapse
Affiliation(s)
- Takuya Nakayama
- Departments of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
227
|
Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. Dual regulation of TRPV1 by phosphoinositides. J Neurosci 2007; 27:7070-80. [PMID: 17596456 PMCID: PMC6672228 DOI: 10.1523/jneurosci.1866-07.2007] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PIP2] regulates many ion channels. There are conflicting reports on the effect of PtdIns(4,5)P2 on transient receptor potential vanilloid 1 (TRPV1) channels. We show that in excised patches PtdIns(4,5)P2 and other phosphoinositides activate and the PIP2 scavenger poly-Lys inhibits TRPV1. TRPV1 currents undergo desensitization on exposure to high concentrations of capsaicin in the presence of extracellular Ca2+. We show that in the presence of extracellular Ca2+, capsaicin activates phospholipase C (PLC) in TRPV1-expressing cells, inducing depletion of both PtdIns(4,5)P2 and its precursor PtdIns(4)P (PIP). The PLC inhibitor U73122 and dialysis of PtdIns(4,5)P2 or PtdIns(4)P through the patch pipette inhibited desensitization of TRPV1, indicating that Ca2+-induced activation of PLC contributes to desensitization of TRPV1 by depletion of PtdIns(4,5)P2 and PtdIns(4)P. Selective conversion of PtdIns(4,5)P2 to PtdIns(4)P by a rapamycin-inducible PIP2 5-phosphatase did not inhibit TRPV1 at high capsaicin concentrations, suggesting a significant role for PtdIns(4)P in maintaining channel activity. Currents induced by low concentrations of capsaicin and moderate heat, however, were potentiated by conversion of PtdIns(4,5)P2 to PtdIns(4)P. Increasing PtdIns(4,5)P2 levels by coexpressing phosphatidylinositol-4-phosphate 5-kinase inhibited TRPV1 at low but not at saturating capsaicin concentrations. These data show that at low capsaicin concentrations and other moderate stimuli, PtdIns(4,5)P2 partially inhibits TRPV1 in a cellular context, but this effect is likely to be indirect, because it is not detectable in excised patches. We conclude that phosphoinositides have both inhibitory and activating effects on TRPV1, resulting in complex and distinct regulation at various stimulation levels.
Collapse
Affiliation(s)
- Viktor Lukacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey 07103, and
| | - Baskaran Thyagarajan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey 07103, and
| | - Peter Varnai
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Andras Balla
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tamas Balla
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey 07103, and
| |
Collapse
|
228
|
Abstract
The electrophysiological properties of peripheral neurons activated by noxious stimuli, the primary afferent nociceptors, have been investigated intensively, and our knowledge about the molecular basis of transducers for noxious stimuli has increased greatly. In contrast, understanding of the intracellular signaling mechanisms regulating nociceptor sensitization downstream of ligand binding to the receptors is still at a relatively nascent stage. After outlining the initiated signaling cascades, we discuss the emerging plasticity within these cascades and the importance of subcellular compartmentalization. In addition, the recently realized importance of functional interactions with the extracellular matrix, cytoskeleton, intracellular organelles such as mitochondria, and sex hormones will be introduced. This burgeoning literature establishes new cellular features crucial for the function of nociceptive neurons and argues that additional focus should be placed on understanding the complex integration of cellular events that make up the "cell biology of pain."
Collapse
Affiliation(s)
- Tim Hucho
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | | |
Collapse
|
229
|
Abstract
An important, but not well understood, function of epithelial cells is their ability to sense changes in their extracellular environment and then communicate these changes to the underlying nervous, connective, and muscular tissues. This communication is likely to be important for tube- and sac-shaped organs such as blood vessels, the lungs, the gut, and the bladder, whose normal function can be modulated by stimuli initiated within the epithelium. We propose that the uroepithelium, which lines the renal pelvis, ureters, and inner surface of the bladder, functions as an integral part of a 'sensory web.' Through uroepithelial-associated channels and receptors, the uroepithelium receives sensory 'inputs' such as changes in hydrostatic pressure and binding of mediators including adenosine triphosphate (ATP). These input signals stimulate membrane turnover in the outermost umbrella cell layer and release of sensory 'outputs' from the uroepithelium in the form of neurotransmitters and other mediators that communicate changes in the uroepithelial milieu to the underlying tissues, altering their function. The global consequence of this sensory web is the coordinated function of the bladder during the cycles of filling and voiding, and disruption of this web is likely to lead to bladder dysfunction.
Collapse
Affiliation(s)
- G Apodaca
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
230
|
Kanai Y, Hara T, Imai A, Sakakibara A. Differential involvement of TRPV1 receptors at the central and peripheral nerves in CFA-induced mechanical and thermal hyperalgesia. J Pharm Pharmacol 2007; 59:733-8. [PMID: 17524240 DOI: 10.1211/jpp.59.5.0015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) antagonists are known to attenuate two typical symptoms of inflammatory hyperalgesia: thermal and mechanical. However, it is not clear whether the sites of participation of TRPV1 for each symptom are different. In this study, we clarified the difference between the site of TRPV1 involvement in both symptoms by analysing the anti-hyperalgesic activity of two kinds of TRPV1 antagonists given locally (i.e. intraplantarly and intrathecally) in rats with CFA (complete Freund's adjuvant)-induced inflammation. TRPV1 antagonists BCTC (N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide, 1-300 microg) and SB-366791 (N-(3-methoxyphenyl)-4-chlorocinnamide, 30-300 microg) administered intraplantarly in a dose-dependent manner inhibited CFA-induced thermal hyperalgesia. In addition, CFA-induced thermal hyperalgesia was significantly reversed by intrathecal administration of 1-100 microg of BCTC and SB-366791. While intraplantar BCTC (1-300 microg) and SB-366791 (30-300 microg) did not reverse CFA-induced mechanical hyperalgesia, 1-100 microg of intrathecally administered BCTC and SB-366791 dose-dependently reduced mechanical hyperalgesia. Regression analysis showed that a correlation exists between the inhibitory effects on thermal hyperalgesia and mechanical hyperalgesia after intrathecal administration (correlation factor = 0.6521), but not after intraplantar administration (correlation factor = 0.0215). These data suggest that TRPV1 in the peripheral endings of the primary afferents plays a key role in thermal hyperalgesia, but it makes only a minor contribution in CFA-induced mechanical hyperalgesia. Furthermore, it is suggested that the spinal TRPV1 is critical in the development of both types of hyperalgesia.
Collapse
Affiliation(s)
- Yoshihito Kanai
- Discovery Biology Research, Nagoya Laboratories, Pfizer Global Research and Development, Pfizer Inc., 5-2 Taketoyo, Aichi, 470-2393, Japan.
| | | | | | | |
Collapse
|
231
|
Sikand P, Premkumar LS. Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse. J Physiol 2007; 581:631-47. [PMID: 17363391 PMCID: PMC2075166 DOI: 10.1113/jphysiol.2006.118620] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 03/08/2007] [Indexed: 11/08/2022] Open
Abstract
Sensory input from the periphery to the CNS is critically dependent on the strength of synaptic transmission at the first sensory synapse formed between primary afferent dorsal root ganglion (DRG) and superficial dorsal horn (DH) neurons of the spinal cord. Transient receptor potential vanilloid 1 (TRPV1) expressed on a subset of sensory neurons plays an important role in chronic inflammatory thermal nociception. Activation of protein kinase C (PKC) sensitizes TRPV1, which may contribute to the pathophysiology of chronic pain conditions. In this study, we have examined the modulation of TRPV1-mediated enhancement of excitatory synaptic transmission in response to PKC activation. Miniature excitatory postsynaptic currents (mEPSCs) from embryonic rat DRG-DH neuronal cocultures were recorded by patch clamping DH neurons. Capsaicin potently increased the frequency but not the amplitude of mEPSCs in a calcium-dependent manner, suggesting TRPV1-mediated glutamate release from presynaptic terminals of sensory neurons. Continued or repeated applications of capsaicin reduced the frequency of mEPSCs over time. The PKC activator phorbol 12,13-dibutyrate (PDBu) alone increased mEPSC events to a certain extent in a reversible manner but capsaicin further synergistically enhanced the frequency of mEPSCs. The PKC inhibitor bisindolylmaleimide (BIM) abolished PDBu-mediated potentiation of TRPV1-dependent increases in mEPSC frequency, suggesting modulation of TRPV1 by PKC-induced phosphorylation. In addition, at normal body temperatures ( approximately 37 degrees C) PKC-mediated enhancement of mEPSC frequency is significantly decreased by a specific TRPV1 antagonist, suggesting a physiological role of TRPV1 at the central terminals. Furthermore, bradykinin (BK) significantly potentiated TRPV1-modulated synaptic responses by activating the PLC-PKC pathway. Our results indicate that TRPV1 activation can modulate excitatory synaptic transmission at the first sensory synapse and its effects can further be augmented by activation of PKC. Increased gain of sensory input by TRPV1-induced enhancement of glutamate release and its potentiation by various inflammatory mediators may contribute to persistent pain conditions. Selective targeting of TRPV1 expressed on the central terminals of sensory neurons may serve as a strategy to alleviate chronic intractable pain conditions.
Collapse
Affiliation(s)
- Parul Sikand
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | | |
Collapse
|
232
|
Velázquez KT, Mohammad H, Sweitzer SM. Protein kinase C in pain: involvement of multiple isoforms. Pharmacol Res 2007; 55:578-89. [PMID: 17548207 PMCID: PMC2140050 DOI: 10.1016/j.phrs.2007.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 02/02/2007] [Accepted: 04/16/2007] [Indexed: 01/23/2023]
Abstract
Pain is the primary reason that people seek medical care. At present, chronic unremitting pain is the third greatest health problem after heart disease and cancer. Chronic pain is an economic burden in lost wages, lost productivity, medical expenses, legal fees and compensation. Chronic pain is defined as a pain of greater than 2 months duration. It can be of inflammatory or neuropathic origin that can arise following nerve injury or in the absence of any apparent injury. Chronic pain is characterized by an altered pain perception that includes allodynia (a response to a normally non-noxious stimuli) and hyperalgesia (an exaggerated response to a normally noxious stimuli). This type of pain is often insensitive to the traditional analgesics or surgical intervention. The study of the cellular and molecular mechanisms that contribute to chronic pain are of the up-most importance for the development of a new generation of analgesic agents. Protein kinase C isozymes are under investigation as potential therapeutics for the treatment of chronic pain conditions. The anatomical localization of protein kinase C isozymes in both peripheral and central nervous system sites that process pain have made them the topic of basic science research for close to two decades. This review will outline the research to date on the involvement of protein kinase C in pain and analgesia. In addition, this review will try to synthesize these works to begin to develop a comprehensive mechanistic understanding of how protein kinase C may function as a master regulator of the peripheral and central sensitization that underlies many chronic pain conditions.
Collapse
Affiliation(s)
- Kandy T Velázquez
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | |
Collapse
|
233
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
234
|
Rohacs T, Nilius B. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 2007; 455:157-68. [PMID: 17479281 DOI: 10.1007/s00424-007-0275-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/13/2007] [Indexed: 11/28/2022]
Abstract
This review summarizes the modulation of transient receptor potential (TRP) channels, by phosphoinositides. TRP channels are characterized by polymodal activation and a surprising complexity of regulation mechanisms. Possibly, most if not all TRP channels are modulated by phosphoinositides. Modulation by phosphatidylinositol 4,5-biphosphate (PIP(2)) has been shown in detail for TRP vanilloid (TRPV) 1, TRPV5, TRP melastatin (TRPM) 4, TRPM5, TRPM7, TRPM8, TRP polycystin 2, and the Drosophila TPR-like (TRPL) channels. This review describes mechanisms of modulation of TRP channels mainly by PIP(2) and discusses some future challenges of this fascinating topic.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, 07103, USA.
| | | |
Collapse
|
235
|
Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 2007; 6:357-72. [PMID: 17464295 DOI: 10.1038/nrd2280] [Citation(s) in RCA: 651] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The clinical use of TRPV1 (transient receptor potential vanilloid subfamily, member 1; also known as VR1) antagonists is based on the concept that endogenous agonists acting on TRPV1 might provide a major contribution to certain pain conditions. Indeed, a number of small-molecule TRPV1 antagonists are already undergoing Phase I/II clinical trials for the indications of chronic inflammatory pain and migraine. Moreover, animal models suggest a therapeutic value for TRPV1 antagonists in the treatment of other types of pain, including pain from cancer. We argue that TRPV1 antagonists alone or in conjunction with other analgesics will improve the quality of life of people with migraine, chronic intractable pain secondary to cancer, AIDS or diabetes. Moreover, emerging data indicate that TRPV1 antagonists could also be useful in treating disorders other than pain, such as urinary urge incontinence, chronic cough and irritable bowel syndrome. The lack of effective drugs for treating many of these conditions highlights the need for further investigation into the therapeutic potential of TRPV1 antagonists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey 07740, USA.
| | | | | | | |
Collapse
|
236
|
Donnelly-Roberts DL, Jarvis MF. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 2007; 151:571-9. [PMID: 17471177 PMCID: PMC2013998 DOI: 10.1038/sj.bjp.0707265] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ATP-sensitive P2X(7) receptors are localized on cells of immunological origin including peripheral macrophages and glial cells in the CNS. Activation of P2X(7) receptors leads to rapid changes in intracellular calcium concentrations, release of the proinflammatory cytokine interleukin-1beta and following prolonged agonist exposure, the formation of cytolytic pores in plasma membranes. Both the localization and functional consequences of P2X(7) receptor activation indicate a role in inflammatory processes. The phenotype of P2X(7) receptor gene-disrupted mice also indicates that P2X(7) receptor activation contributes to ongoing inflammation. More recently, P2X(7) receptor knockout data has also suggested a specific role in inflammatory and neuropathic pain states. The recent discovery of potent and highly selective antagonists for P2X(7) receptors has helped to further clarify P2X receptor pharmacology, expanded understanding of P2X(7) receptor signaling, and offers new evidence that P2X(7) receptors play a specific role in nociceptive signaling in chronic pain states. In this review, we incorporate the recent discoveries of novel P2X(7) receptor-selective antagonists with a brief update on P2X(7) receptor pharmacology and its therapeutic potential.
Collapse
Affiliation(s)
- D L Donnelly-Roberts
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories Abbott Park, IL, USA
| | - M F Jarvis
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories Abbott Park, IL, USA
- Author for correspondence:
| |
Collapse
|
237
|
Ma W, Quirion R. Inflammatory mediators modulating the transient receptor potential vanilloid 1 receptor: therapeutic targets to treat inflammatory and neuropathic pain. Expert Opin Ther Targets 2007; 11:307-20. [PMID: 17298290 DOI: 10.1517/14728222.11.3.307] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The transient receptor potential vanilloid 1 receptor (TRPV1) plays an important role in inflammatory heat hyperalgesia. TRPV1 is a non-selective cation channel gated by noxious heat, protons and capsaicin, thus being regarded as a polymodal molecular integrator in nociception. Abundant evidence has demonstrated that TRPV1 is also modulated by numerous inflammatory mediators, including growth factors, neurotransmitters, peptides or small proteins, lipids, chemokines and cytokines. By activating multiple protein kinases to increase the phosphorylation of TRPV1, pronociceptive inflammatory mediators sensitise the TRPV1 response to noxious heat, protons and capsaicin, thus augmenting thermal hyperalgesia. In contrast, by inhibiting protein kinases or other mechanisms, antinociceptive inflammatory mediators suppress the response of TRPV1 to these stimuli, thus damping thermal hyperalgesia. The positive modulation of TRPV1 by inflammatory mediators may constitute a novel mechanism underlying sustained inflammatory or neuropathic pain. Blocking pronociceptive inflammatory mediator-exerted sensitising effects or boosting antinociceptive inflammatory mediator-induced suppressing effects on TRPV1 should be considered as sources of novel potential therapies to more effectively treat chronic pain conditions.
Collapse
Affiliation(s)
- Weiya Ma
- Douglas Hospital Research Center, McGill University, Montréal, Quebec, H4H 1R3, Canada
| | | |
Collapse
|
238
|
Denda M, Nakatani M, Ikeyama K, Tsutsumi M, Denda S. Epidermal keratinocytes as the forefront of the sensory system. Exp Dermatol 2007; 16:157-61. [PMID: 17286806 DOI: 10.1111/j.1600-0625.2006.00529.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Various sensors that respond to physical or chemical environmental factors have been identified in the peripheral nervous system. Some of them, which respond to mechanical stress, osmotic pressure, temperature and chemical stimuli (such as pH), are also expressed in epidermal keratinocytes. Neurotransmitters and their receptors, as well as receptors that regulate the neuroendocrine system of the skin, are also present in keratinocytes. Thus, broadly speaking, epidermal keratinocytes appear to be equipped with sensing systems similar to those of the peripheral and central nervous systems. It had long been considered that only nerve C-terminals in the epidermis play a role in skin surface perception. However, building on earlier work on skin receptors and new findings introduced here, we present in this review a novel hypothesis of skin sensory perception, i.e. first, keratinocytes recognize various environmental factors, and then the information is processed and conveyed to the nervous system.
Collapse
|
239
|
Ferrini F, Salio C, Vergnano AM, Merighi A. Vanilloid receptor-1 (TRPV1)-dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse. Pain 2007; 129:195-209. [PMID: 17317009 DOI: 10.1016/j.pain.2007.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 01/02/2007] [Accepted: 01/10/2007] [Indexed: 11/18/2022]
Abstract
Inhibitory neurotransmission in spinal cord dorsal horn is mainly mediated by gamma-amino butyric acid (GABA) and glycine. By patch clamp recordings and correlative immunocytochemistry, we studied here the effect of 2 microM capsaicin-induced vanilloid receptor-1 (TRPV1) activation on IPSCs in spinal lamina II neurons from post-natal mice. Specificity was confirmed after pre-incubation with the competitive antagonist SB366791 (10 microM). After a single capsaicin pulse, an intense increase of spontaneous IPSC (sIPSC) frequency was observed in the presence of NBQX 10 microM (62/81 neurons; approximately 76%) or NBQX 10 microM + AP-5 20-100 microM (27/42 neurons; approximately 64%). Only a subpopulation (approximately 40%) of responsive neurons showed a significant amplitude increase. Seventy-two percent of the neurons displayed pure GABA(A) receptor-mediated sIPSCs, whereas the remaining ones showed mixed GABAergic/glycinergic events. After two consecutive capsaicin pulses, frequency rises were very similar, and both significantly higher than controls. When the second pulse was given in the presence of 4 microM L732,138, a selective antagonist of the substance P (SP) preferred receptor NK1, we observed a significant loss in frequency increase (63.90% with NBQX and 52.35% with NBQX + AP-5). TTX (1 microM) largely (approximately 81.5%) blocked the effect of capsaicin. These results show that TRPV1 activation on primary afferent fibers releases SP. The peptide then excites inhibitory neurons in laminae I, III and IV, leading to an increased release of GABA/glycine in lamina II via a parallel alternative pathway to glutamate.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy
| | | | | | | |
Collapse
|
240
|
Rau KK, Jiang N, Johnson RD, Cooper BY. Heat sensitization in skin and muscle nociceptors expressing distinct combinations of TRPV1 and TRPV2 protein. J Neurophysiol 2007; 97:2651-62. [PMID: 17287441 DOI: 10.1152/jn.00840.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recordings were made from small and medium diameter dorsal root ganglia (DRG) neurons that expressed transient receptor potential (TRP) proteins. Physiologically characterized skin nociceptors expressed either TRPV1 (type 2) or TRPV2 (type 4) in isolation. Other nociceptors co-expressed both TRP proteins and innervated deep tissue sites (gastrocnemius muscle, distal colon; type 5, type 8) and skin (type 8). Subpopulations of myelinated (type 8) and unmyelinated (type 5) nociceptors co-expressed both TRPs. Cells that expressed TRPV1 were excellent transducers of intense heat. Proportional inward currents were obtained from a threshold of approximately 46.5 to approximately 56 degrees C. In contrast, cells expressing TRPV2 alone (52 degrees C threshold) did not reliably transduce the intensity of thermal events. Studies were undertaken to assess the capacity of skin and deep nociceptors to exhibit sensitization to repeated intense thermal stimuli [heat-heat sensitization (HHS)]. Only nociceptors that expressed TRPV2, alone or in combination with TRPV1, exhibited HHS. HHS was shown to be Ca(2+) dependent in either case. Intracellular Ca(2+) dependent pathways to HHS varied with the pattern of TRP protein expression. Cells co-expressing both TRPs modulated heat reactivity through serine/threonine phosphorylation or PLA(2)-dependent pathways. Cells expressing only TRPV2 may have relied on tyrosine kinases for HHS. We conclude that heat sensitization in deep and superficial capsaicin and capsaicin-insensitive C and Adelta nociceptors varies with the distribution of TRPV1 and TRPV2 proteins. The expression pattern of these proteins are specific to subclasses of physiologically identified C and A fiber nociceptors with highly restricted tissue targets.
Collapse
MESH Headings
- Animals
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Colon/innervation
- Colon/metabolism
- Colon/physiology
- Histocytochemistry
- Hot Temperature
- Male
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscle, Smooth/innervation
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiology
- Muscles/innervation
- Muscles/metabolism
- Muscles/physiology
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Unmyelinated/physiology
- Neurofilament Proteins/biosynthesis
- Neurons, Afferent/drug effects
- Nociceptors/metabolism
- Nociceptors/physiology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/physiology
- Skin/innervation
- Skin/metabolism
- TRPV Cation Channels/biosynthesis
Collapse
Affiliation(s)
- K K Rau
- Dept. of Oral Surgery and Diagnostic Sciences, Div. of Neuroscience, Box 100416, JHMHC, Univ. of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
241
|
Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 2007; 114:13-33. [PMID: 17349697 DOI: 10.1016/j.pharmthera.2007.01.005] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 11/28/2022]
Abstract
Endovanilloids are defined as endogenous ligands and activators of transient receptor potential (TRP) vanilloid type 1 (TRPV1) channels. The first endovanilloid to be identified was anandamide (AEA), previously discovered as an endogenous agonist of cannabinoid receptors. In fact, there are several similarities, in terms of opposing actions on the same intracellular signals, role in the same pathological conditions, and shared ligands and tissue distribution, between TRPV1 and cannabinoid CB(1) receptors. After AEA and some of its congeners (the unsaturated long chain N-acylethanolamines), at least 2 other families of endogenous lipids have been suggested to act as endovanilloids: (i) unsaturated long chain N-acyldopamines and (ii) some lipoxygenase (LOX) metabolites of arachidonic acid (AA). Here we discuss the mechanisms for the regulation of the levels of the proposed endovanilloids, as well as their TRPV1-mediated pharmacological actions in vitro and in vivo. Furthermore, we outline the possible pathological conditions in which endovanilloids, acting at sometimes aberrantly expressed TRPV1 receptors, might play a role.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, C.N.R., Pozzuoli, Naples, Italy
| | | | | |
Collapse
|
242
|
Abstract
Adenosine and ATP, via P1 and P2 receptors respectively, can modulate pain transmission under physiological, inflammatory, and neuropathic pain conditions. Such influences reflect peripheral and central actions and effects on neurons as well as other cell types. In general, adenosine A1 receptors produce inhibitory effects on pain in a number of preclinical models and are a focus of attention. In humans, i.v. infusions of adenosine reduce some aspects of neuropathic pain and can reduce postoperative pain. For P2X receptors, there is a significant body of information indicating that inhibition of P2X3 receptors may be useful for relieving inflammatory and neuropathic pain. More recently, data have begun to emerge implicating P2X4, P2X7 and P2Y receptors in aspects of pain transmission. Both P1 and P2 receptors may represent novel targets for pain relief.
Collapse
Affiliation(s)
- J Sawynok
- Department of Pharmacology, Dalhousie University, Halifax NS, B3H 1X5, Canada.
| |
Collapse
|
243
|
Sugiura T, Bielefeldt K, Gebhart GF. Mouse colon sensory neurons detect extracellular acidosis via TRPV1. Am J Physiol Cell Physiol 2007; 292:C1768-74. [PMID: 17251322 DOI: 10.1152/ajpcell.00440.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular acidification contributes to pain by activating or modulating nociceptor activity. To evaluate acidic signaling from the colon, we characterized acid-elicited currents in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglion (DRG) neurons identified by content of a fluorescent dye (DiI) previously injected into the colon wall. In 13% of unidentified LS DRG neurons (not labeled with DiI) and 69% of LS colon neurons labeled with DiI, protons activated a sustained current that was significantly and reversibly attenuated by the transient receptor potential vanilloid receptor 1 (TRPV1) antagonist capsazepine. In contrast, 63% of unidentified LS DRG neurons and 4% of LS colon neurons exhibited transient amiloride-sensitive acid-sensing ion channel (ASIC) currents. The peak current density of acid-elicited currents was significantly reduced in colon sensory neurons from TRPV1-null mice, supporting predominant expression of TRPV1 in LS colon sensory neurons, which was also confirmed immunohistochemically. Similar to LS colon DRG neurons, acid-elicited currents in TL colon DRG neurons were mediated predominantly by TRPV1. However, the pH producing half-activation of responses significantly differed between TL and LS colon DRG neurons. The properties of acid-elicited currents in colon DRG neurons suggest differential contributions of ASICs and TRPV1 to colon sensation and likely nociception.
Collapse
Affiliation(s)
- Takeshi Sugiura
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
244
|
Abstract
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan,
| |
Collapse
|
245
|
Abstract
Pain is initiated when noxious stimuli excite the peripheral terminals of specialized primary afferent neurons called nociceptors. Many molecules are involved in conversion of the noxious stimuli to the electrical signals in the nociceptor endings. Among them, TRP channels play important roles in detecting noxious stimuli.
Collapse
Affiliation(s)
- M Tominaga
- Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan.
| |
Collapse
|
246
|
Birder LA, de Groat WC. Mechanisms of disease: involvement of the urothelium in bladder dysfunction. NATURE CLINICAL PRACTICE. UROLOGY 2007; 4:46-54. [PMID: 17211425 PMCID: PMC3119256 DOI: 10.1038/ncpuro0672] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/23/2006] [Indexed: 12/19/2022]
Abstract
Although the urinary bladder urothelium has classically been thought of as a passive barrier to ions and solutes, a number of novel properties have been recently attributed to urothelial cells. Studies have revealed that the urothelium is involved in sensory mechanisms (i.e. the ability to express a number of sensor molecules or respond to thermal, mechanical and chemical stimuli) and can release chemical mediators. Localization of afferent nerves next to the urothelium suggests that urothelial cells could be targets for neurotransmitters released from bladder nerves or that chemicals released by urothelial cells could alter afferent nerve excitability. Taken together, these and other findings highlighted in this article suggest a sensory function for the urothelium. Elucidation of mechanisms that influence urothelial function might provide insights into the pathology of bladder dysfunction.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
247
|
Lilja J, Laulund F, Forsby A. Insulin and insulin-like growth factor type-I up-regulate the vanilloid receptor-1 (TRPV1) in stably TRPV1-expressing SH-SY5Y neuroblastoma cells. J Neurosci Res 2007; 85:1413-9. [PMID: 17385724 DOI: 10.1002/jnr.21255] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The capsaicin receptor, transient receptor potential, vanilloid type 1 (TRPV1), is a Ca(2+)-permeable ion channel activated by noxious stimuli eliciting pain. Several reports have shown modulation of TRPV1 activity and expression by neuronal growth factors. Here, we study the long-term effects on TRPV1 expression mediated by insulin-like growth factor type-I (IGF-I) and insulin in a stably TRPV1-expressing SH-SY5Y neuroblastoma cell line. We show that, after 72 hr of 10 nM IGF-I or insulin exposure, the TRPV1 protein level was up-regulated 2.5- and 2-fold, respectively. By blocking phosphatidylinositol-3-kinase [PI(3)K] or mitogen-activated protein kinase (MAPK) signaling, we concluded that the increase in total TRPV1 protein content induced by IGF-I was controlled by PI(3)K signaling, whereas insulin seemed to regulate TRPV1 protein expression via both PI(3)K and MAPK pathways. Inhibiting protein kinase C (PKC) blocked the effects of both IGF-I and insulin. Furthermore, the concentrations causing a 50% Ca(2+) increase (EC(50)) after insulin and IGF-I treatments were significantly lowered compared with untreated cells. We conclude that IGF-I and insulin enhance TRPV1 protein expression and activity, and impaired pain sensation might result from distorted TRPV1 regulation in the peripheral nervous system.
Collapse
Affiliation(s)
- Johanna Lilja
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
248
|
McLeod RL, Fernandez X, Correll CC, Phelps TP, Jia Y, Wang X, Hey JA. TRPV1 antagonists attenuate antigen-provoked cough in ovalbumin sensitized guinea pigs. Cough 2006; 2:10. [PMID: 17173683 PMCID: PMC1764418 DOI: 10.1186/1745-9974-2-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 12/15/2006] [Indexed: 11/10/2022] Open
Abstract
We examined the molecular pharmacology and in vivo effects of a TRPV1 receptor antagonist, N-(4-Tertiarybutylphenyl)-4(3-cholorphyridin-2-yl)-tetrahydro-pyrazine1(2H) - carboxamide (BCTC) on the guinea pig TRPV1 cation channel. BCTC antagonized capsaicin-induced activation and PMA-mediated activation of guinea pig TRPV1 with IC50 values of 12.2 +/- 5.2 nM, and 0.85 +/- 0.10 nM, respectively. In addition, BCTC (100 nM) completely blocked the ability of heterologously expressed gpTRPV1 to respond to decreases in pH. Thus, BCTC is able to block polymodal activation of gpTRPV1. Furthermore, in nodose ganglia cells, capsaicin induced Ca2+ influx through TRPV1 channel was inhibited via BCTC in a concentration dependent manner. In in vivo studies capsaicin (10 - 300 muM) delivered by aerosol to the pulmonary system of non-sensitized guinea pigs produced an increase in cough frequency. In these studies, the tussigenic effects of capsaicin (300 muM) were blocked in a dose dependent fashion when BCTC (0.01-3.0 mg/kg, i.p.) was administered 30 minutes before challenge. The high dose of BCTC (3.0 mg/kg, i.p) produced a maximum inhibition of capsaicin-induced cough of 65%. We also studied the effects of BCTC (0.03 and 3.0) when administered 60 minutes before capsaicin. Under these conditions, BCTC (3.0 mg/kg, i.p) produced a maximum decrease in capsaicin-induced cough of 31%. In ovalbumin passively sensitized guinea pigs, we found that BCTC (1 and 3 mg/kg, i.p.) attenuated antigen ovalbumin (0.3%) cough responses by 27% and 60%, respectively. We conclude that TRPV1 channel activation may play role in cough mediated by antigen in sensitized guinea pigs. Our results supports increasing evidence that TRPV1 may play a role in the generation of the cough response.
Collapse
Affiliation(s)
- Robbie L McLeod
- Peripheral and Pulmonary Neurobiology Schering-Plough Research Institute, Kenilworth, NJ, 07033-0539, USA
| | - Xiomara Fernandez
- Peripheral and Pulmonary Neurobiology Schering-Plough Research Institute, Kenilworth, NJ, 07033-0539, USA
| | - Craig C Correll
- Peripheral and Pulmonary Neurobiology Schering-Plough Research Institute, Kenilworth, NJ, 07033-0539, USA
| | - Tara P Phelps
- Peripheral and Pulmonary Neurobiology Schering-Plough Research Institute, Kenilworth, NJ, 07033-0539, USA
| | - Yanlin Jia
- Peripheral and Pulmonary Neurobiology Schering-Plough Research Institute, Kenilworth, NJ, 07033-0539, USA
| | - Xin Wang
- Peripheral and Pulmonary Neurobiology Schering-Plough Research Institute, Kenilworth, NJ, 07033-0539, USA
| | - John A Hey
- Peripheral and Pulmonary Neurobiology Schering-Plough Research Institute, Kenilworth, NJ, 07033-0539, USA
| |
Collapse
|
249
|
Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 2006; 319:1376-85. [PMID: 16982702 DOI: 10.1124/jpet.106.111559] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATP-sensitive P2X(7) receptors are localized on cells of immunological origin including glial cells in the central nervous system. Activation of P2X(7) receptors leads to rapid changes in intracellular calcium concentrations, release of the proinflammatory cytokine interleukin-1beta (IL-1beta), and following prolonged agonist exposure, cytolytic plasma membrane pore formation. P2X(7) knockout mice show reduced inflammation as well as decreased nociceptive sensitivity following peripheral nerve injury. A-740003 (N-(1-{[(cyanoimino)(5-quinolinylamino) methyl] amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide) is a novel competitive antagonist of P2X(7) receptors (IC(50) values = 40 nM for human and 18 nM for rat) as measured by agonist-stimulated changes in intracellular calcium concentrations. A-740003 showed weak or no activity (IC(50) > 10 muM) at other P2 receptors and an array of other neurotransmitter and peptide receptors, ion channels, reuptake sites, and enzymes. A-740003 potently blocked agonist-evoked IL-1beta release (IC(50) = 156 nM) and pore formation (IC(50) = 92 nM) in differentiated human THP-1 cells. Systemic administration of A-740003 produced dose-dependent antinociception in a spinal nerve ligation model (ED(50) = 19 mg/kg i.p.) in the rat. A-740003 also attenuated tactile allodynia in two other models of neuropathic pain, chronic constriction injury of the sciatic nerve and vincristine-induced neuropathy. In addition, A-740003 effectively reduced thermal hyperalgesia observed following intraplantar administration of carrageenan or complete Freund's adjuvant (ED(50) = 38-54 mg/kg i.p.). A-740003 was ineffective in attenuating acute thermal nociception in normal rats and did not alter motor performance at analgesic doses. These data demonstrate that selective blockade of P2X(7) receptors in vivo produces significant antinociception in animal models of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Prisca Honore
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Wang LH, Luo M, Wang Y, Galligan JJ, Wang DH. Impaired vasodilation in response to perivascular nerve stimulation in mesenteric arteries of TRPV1-null mutant mice. J Hypertens 2006; 24:2399-408. [PMID: 17082722 DOI: 10.1097/01.hjh.0000251900.78051.56] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The role of the transient receptor potential vanilloid type 1 (TRPV1) channels expressed in perivascular sensory nerves in the regulation of vascular reactivity is largely unknown. This study was designed to test the hypothesis that vasodilation induced by electrical field stimulation (EFS) of perivascular sensory nerves is mediated by the TRPV1 via release of sensory neurotransmitters in wild-type (WT) mice, and this effect is abolished in gene-targeted TRPV1-null mutant (TRPV1(-/-)) mice. METHODS Isolated mesenteric resistance arteries from WT and TRPV1(-/-)) mice were perfused and pretreated with guanethedine and atropine to block sympathetic and parasympathetic nerve activity, respectively. After precontracting with phenylephrine, changes of vascular diameters induced by EFS were monitored in the absence or presence of the TRPV1 receptor antagonist capsazepine; the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP8-37; or the substance P (SP) receptor antagonist, RP67580. RESULTS EFS-induced vasodilation was significantly reduced in arteries in TRPV1(-/-)) mice when compared to that of WT mice. Capsazepine and CGRP8-37 attenuated vasodilation induced by EFS in WT but not TRPV1(-/-)) mice. In contrast, RP67580 had no effect on the EFS-induced vasodilation in WT or TRPV1(-/-)) mice. The release of CGRP in the face of EFS challenge was significantly increased in both WT and TRPV1(-/-)) arteries, which was attenuated by capsazepine in WT but not TRPV1(-/-)) arteries. Exogenous CGRP caused dose-dependent vasodilation to a similar degree in WT and TRPV1(-/-)) arteries. CONCLUSIONS Our data show that in WT mice transmural stimulation of perivascular sensory nerves activates the TRPV1, leading to CGRP release from sensory nerve endings; and blockade of CGRP, but not SP, receptors abolishes TRPV1-mediated vasodilation during EFS. All these effects are impaired in TRPV1(-/-)) mice, indicating that TRPV1 plays a key role in modulating perivascular sensory nerve-mediated vasodilation.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Cardiovascular Sciences, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | | | | | | | | |
Collapse
|