201
|
Abstract
To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.
Collapse
Affiliation(s)
- Roghaiyeh Safari
- Health Science Institute, Dokuz Eylul University, Cumhuriyet Bulvari No: 144 35210, Alsancak, Izmir, Turkey
| | | |
Collapse
|
202
|
Sato T, Muroyama Y, Saito T. Control of Gene Expression in Neurons by the Use of In Vivo Electroporation and the Tetracycline System. ELECTROPORATION METHODS IN NEUROSCIENCE 2015. [DOI: 10.1007/978-1-4939-2459-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
203
|
González-Buendía E, Pérez-Molina R, Ayala-Ortega E, Guerrero G, Recillas-Targa F. Experimental strategies to manipulate the cellular levels of the multifunctional factor CTCF. Methods Mol Biol 2014; 1165:53-69. [PMID: 24839018 DOI: 10.1007/978-1-4939-0856-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression. Among such transcription factors there is a subset of highly specialized nuclear factors with features resembling master regulators with a large variety of functions. This is turning to be the case of the multifunctional nuclear factor CCCTC-binding protein (CTCF) which is involved in gene regulation, chromatin organization, and three-dimensional conformation of the genome inside the cell nucleus. Technically its study has turned to be challenging, in particular its posttranscriptional interference by small interference RNAs. Here we describe three main strategies to downregulate the overall abundance of CTCF in culture cell lines.
Collapse
Affiliation(s)
- Edgar González-Buendía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, DF, 04510, México
| | | | | | | | | |
Collapse
|
204
|
Michael IP, Westenskow PD, Hacibekiroglu S, Greenwald AC, Ballios BG, Kurihara T, Li Z, Warren CM, Zhang P, Aguilar E, Donaldson L, Marchetti V, Baba T, Hussein SM, Sung HK, Iruela-Arispe ML, Rini JM, van der Kooy D, Friedlander M, Nagy A. Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Mol Med 2014; 6:604-23. [PMID: 24705878 PMCID: PMC4023884 DOI: 10.1002/emmm.201303708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current therapeutic antiangiogenic biologics used for the treatment of pathological ocular angiogenesis could have serious side effects due to their interference with normal blood vessel physiology. Here, we report the generation of novel antivascular endothelial growth factor-A (VEGF) biologics, termed VEGF “Sticky-traps,” with unique properties that allow for local inhibition of angiogenesis without detectable systemic side effects. Using genetic and pharmacological approaches, we demonstrated that Sticky-traps could locally inhibit angiogenesis to at least the same extent as the original VEGF-trap that also gains whole-body access. Sticky-traps did not cause systemic effects, as shown by uncompromised wound healing and normal tracheal vessel density. Moreover, if injected intravitreally, recombinant Sticky-trap remained localized to various regions of the eye, such as the inner-limiting membrane and ciliary body, for prolonged time periods, without gaining access either to the photoreceptors/choriocapillaris area or the circulation. These unique pharmacological characteristics of Sticky-trap could allow for safe treatment of pathological angiogenesis in patients with diabetic retinopathy and retinopathy of pre-maturity.
Collapse
Affiliation(s)
- Iacovos P Michael
- Lunenfeld-Tanenbaum Research Institute Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Stanton BC, Siciliano V, Ghodasara A, Wroblewska L, Clancy K, Trefzer AC, Chesnut JD, Weiss R, Voigt CA. Systematic transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth Biol 2014; 3:880-91. [PMID: 25360681 PMCID: PMC4277766 DOI: 10.1021/sb5002856] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >10(5) members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics.
Collapse
Affiliation(s)
- Brynne C. Stanton
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Velia Siciliano
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amar Ghodasara
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Liliana Wroblewska
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kevin Clancy
- Synthetic Biology R&D, Life Science Solutions Group, Thermo Fisher Scientific, Carlsbad, California 92008, United States
| | - Axel C. Trefzer
- Synthetic Biology R&D, Life Science Solutions Group, Thermo Fisher Scientific, Carlsbad, California 92008, United States
| | - Jonathan D. Chesnut
- Synthetic Biology R&D, Life Science Solutions Group, Thermo Fisher Scientific, Carlsbad, California 92008, United States
| | - Ron Weiss
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher A. Voigt
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
206
|
Aranda A, Bezunartea J, Casales E, Rodriguez-Madoz JR, Larrea E, Prieto J, Smerdou C. A quick and efficient method to generate mammalian stable cell lines based on a novel inducible alphavirus DNA/RNA layered system. Cell Mol Life Sci 2014; 71:4637-51. [PMID: 24794511 PMCID: PMC11113970 DOI: 10.1007/s00018-014-1631-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023]
Abstract
We report a new method to generate high-expressing mammalian cell lines in a quick and efficient way. For that purpose, we developed a master cell line (MCL) containing an inducible alphavirus vector expressing GFP integrated into the genome. In the MCL, recombinant RNA levels increased >4,600-fold after induction, due to a doxycycline-dependent RNA amplification loop. The MCL maintained inducibility and expression during 50 passages, being more efficient for protein expression than a conventional cell line. To generate new cell lines, mutant LoxP sites were inserted into the MCL, allowing transgene and selection gene exchange by Cre-directed recombination, leading to quick generation of inducible cell lines expressing proteins of therapeutic interest, like human cardiotrophin-1 and oncostatin-M at several mg/l/24 h. These proteins contained posttranslational modifications, showed bioactivity, and were efficiently purified. Remarkably, this system allowed production of toxic proteins, like oncostatin-M, since cells able to express it could be grown to the desired amount before induction. These cell lines were easily adapted to growth in suspension, making this methodology very attractive for therapeutic protein production.
Collapse
Affiliation(s)
- Alejandro Aranda
- 3P Biopharmaceuticals S.L., Polígono Mocholí, C/Mocholí 2, 31110 Noain, Spain
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra Spain
- Present Address: UFR des Sciences de la Santé Simone Veil, 2 Avenue de la Source de la Bievre, 78180 Montigny-Le-Bretonneux, France
| | - Jaione Bezunartea
- 3P Biopharmaceuticals S.L., Polígono Mocholí, C/Mocholí 2, 31110 Noain, Spain
| | - Erkuden Casales
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra Spain
| | - Juan R. Rodriguez-Madoz
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra Spain
| | - Esther Larrea
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra Spain
| | - Jesus Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra Spain
- Liver Unit, Clinica Universitaria de Navarra, CIBER-EHD, Pamplona, Spain
| | - Cristian Smerdou
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra Spain
| |
Collapse
|
207
|
Yeh ES, Vernon-Grey A, Martin H, Chodosh LA. Tetracycline-regulated mouse models of cancer. Cold Spring Harb Protoc 2014; 2014:pdb.top069823. [PMID: 25275112 DOI: 10.1101/pdb.top069823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetically engineered mouse models (GEMMs) have proven essential to the study of mammalian gene function in both development and disease. However, traditional constitutive transgenic mouse model systems are limited by the temporal and spatial characteristics of the experimental promoter used to drive transgene expression. To address this limitation, considerable effort has been dedicated to developing conditional and inducible mouse model systems. Although a number of approaches to generating inducible GEMMs have been pursued, several have been restricted by toxic or undesired physiological side effects of the compounds used to activate gene expression. The development of tetracycline (tet)-dependent regulatory systems has allowed for circumvention of these issues resulting in the widespread adoption of these systems as an invaluable tool for modeling the complex nature of cancer progression.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Ann Vernon-Grey
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Heather Martin
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
208
|
Lucas JS, Zhang Y, Dudko OK, Murre C. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 2014; 158:339-352. [PMID: 24998931 DOI: 10.1016/j.cell.2014.05.036] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 05/01/2014] [Indexed: 12/01/2022]
Abstract
During B lymphocyte development, immunoglobulin heavy-chain variable (VH), diversity (DH), and joining (JH) segments assemble to generate a diverse antigen receptor repertoire. Here, we have marked the distal VH and DH-JH-Eμ regions with Tet-operator binding sites and traced their 3D trajectories in pro-B cells transduced with a retrovirus encoding Tet-repressor-EGFP. We found that these elements displayed fractional Langevin motion (fLm) due to the viscoelastic hindrance from the surrounding network of proteins and chromatin fibers. Using fractional Langevin dynamics modeling, we found that, with high probability, DHJH elements reach a VH element within minutes. Spatial confinement emerged as the dominant parameter that determined the frequency of such encounters. We propose that the viscoelastic nature of the nuclear environment causes coding elements and regulatory elements to bounce back and forth in a spring-like fashion until specific genomic interactions are established and that spatial confinement of topological domains largely controls first-passage times for genomic interactions.
Collapse
Affiliation(s)
- Joseph S Lucas
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yaojun Zhang
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olga K Dudko
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Cornelis Murre
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
209
|
Kustikova OS, Stahlhut M, Ha TC, Scherer R, Schambach A, Baum C. Dose response and clonal variability of lentiviral tetracycline-regulated vectors in murine hematopoietic cells. Exp Hematol 2014; 42:505-515.e7. [DOI: 10.1016/j.exphem.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 12/14/2022]
|
210
|
Kobayashi-Ishihara M, Takahashi H, Ohnishi K, Nishimura K, Terahara K, Ato M, Itamura S, Kageyama T, Tsunetsugu-Yokota Y. Broad cross-reactive epitopes of the H5N1 influenza virus identified by murine antibodies against the A/Vietnam/1194/2004 hemagglutinin. PLoS One 2014; 9:e99201. [PMID: 24945805 PMCID: PMC4063728 DOI: 10.1371/journal.pone.0099201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/12/2014] [Indexed: 01/07/2023] Open
Abstract
There is an urgent need for a rapid diagnostic system to detect the H5 subtype of the influenza A virus. We previously developed monoclonal antibodies (mAbs) against the H5 hemagglutinin (HA) for use in a rapid diagnostic kit. In this study, we determined the epitopes of the anti-H5 HA murine mAbs OM-b, AY-2C2, and YH-1A1. Binding assays of the mAbs to different strains of H5 HAs indicated that OM-b and AY-2C2 cross-reacted with HAs from clades 1, 2.1.3.2, 2.2, and 2.3.4, whereas YH-1A1 failed to bind to those of clades 2.1.3.2 and 2.3.4. HA chimeras revealed that the epitopes for each of the mAbs were in the HA1 region. Analysis of escape mutants revealed that OM-b and AY-2C2 mAbs interacted mainly with amino acid residues D43 and G46, and the YH-1A1 mAb interacted with G139 and K or R140 of H5 HA. Multiple alignments of H5 HA protein sequences showed that D43 and G46 were very conserved among H5N1 HAs, except those in clade 2.2.1 and clade 7 (88.7%). The epitope for YH-1A1 mAb was highly variable in the HAs of H5N1, although it was well conserved in those of H5N2-N9. The OM-b and AY-2C2 mAbs could bind to the HAs of clades 1.1 and 2.3.2.1 that are currently epidemic in Asia, and we conclude that these would be effective for the detection of H5N1 infections in this region.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kengo Nishimura
- Tsuruga Institute of Biotechnology, Toyobo, Co., Ltd., Tsuruga, Fukui, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shigeyuki Itamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Ohta-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
211
|
Zhou X, Smith AJH, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I, Lowell S. Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 2014; 31:1511-22. [PMID: 23649667 PMCID: PMC4063271 DOI: 10.1002/stem.1426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 04/03/2013] [Indexed: 01/22/2023]
Abstract
Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously. Stem Cells 2013;31:1511–1522
Collapse
Affiliation(s)
- Xinzhi Zhou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Rand U, Hillebrand U, Sievers S, Willenberg S, Köster M, Hauser H, Wirth D. Uncoupling of the dynamics of host-pathogen interaction uncovers new mechanisms of viral interferon antagonism at the single-cell level. Nucleic Acids Res 2014; 42:e109. [PMID: 24895433 PMCID: PMC4117750 DOI: 10.1093/nar/gku492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antiviral defence in mammals is mediated through type-I interferons (IFNs). Viruses antagonise this process through expression of IFN antagonist proteins (IAPs). Understanding and modelling of viral escape mechanisms and the dynamics of IAP action has the potential to facilitate the development of specific and safe drugs. Here, we describe the dynamics of interference by selected viral IAPs, NS1 from Influenza A virus and NS3/4A from Hepatitis C virus. We used Tet-inducible IAP gene expression to uncouple this process from virus-driven dynamics. Stochastic activation of the IFN-β gene required the use of single-cell live imaging to define the efficacy of the inhibitors during the virus-induced signalling processes. We found significant correlation between the onset of IAP expression and halted IFN-β expression in cells where IFN-β induction had already occurred. These data indicate that IAPs not only prevent antiviral signalling prior to IFN-β induction, but can also stop the antiviral response even after it has been activated. We found reduced NF-κB activation to be the underlying mechanism by which activated IFN expression can be blocked. This work demonstrates a new mechanism by which viruses can antagonise the IFN response.
Collapse
Affiliation(s)
- Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Upneet Hillebrand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephanie Sievers
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Steffi Willenberg
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mario Köster
- Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hansjörg Hauser
- Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
213
|
Tumor-Suppressive Lipoxygenases Inhibit the Expression of c-mycmRNA Coding Region Determinant-Binding Protein/Insulin-Like Growth Factor II mRNA-Binding Protein 1 in Human Prostate Carcinoma PC-3 Cells. Biosci Biotechnol Biochem 2014; 73:1811-7. [DOI: 10.1271/bbb.90185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
214
|
Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 2014; 54:698-710. [PMID: 24837679 PMCID: PMC4077618 DOI: 10.1016/j.molcel.2014.04.022] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/23/2023]
Abstract
RNA-based regulation and CRISPR/Cas transcription factors (CRISPR-TFs) have the potential to be integrated for the tunable modulation of gene networks. A major limitation of this methodology is that guide RNAs (gRNAs) for CRISPR-TFs can only be expressed from RNA polymerase III promoters in human cells, limiting their use for conditional gene regulation. We present new strategies that enable expression of functional gRNAs from RNA polymerase II promoters and multiplexed production of proteins and gRNAs from a single transcript in human cells. We use multiple RNA regulatory strategies, including RNA-triple-helix structures, introns, microRNAs, and ribozymes, with Cas9-based CRISPR-TFs and Cas6/Csy4-based RNA processing. Using these tools, we efficiently modulate endogenous promoters and implement tunable synthetic circuits, including multistage cascades and RNA-dependent networks that can be rewired with Csy4 to achieve complex behaviors. This toolkit can be used for programming scalable gene circuits and perturbing endogenous networks for biology, therapeutic, and synthetic biology applications.
Collapse
Affiliation(s)
- Lior Nissim
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Samuel D Perli
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexandra Fridkin
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Pablo Perez-Pinera
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
215
|
Schmidt S, Berens C, Klotzsche M. A novel TetR-regulating peptide turns off rtTA-mediated activation of gene expression. PLoS One 2014; 9:e96546. [PMID: 24810590 PMCID: PMC4014509 DOI: 10.1371/journal.pone.0096546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Conditional regulation of gene expression is a powerful and indispensable method for analyzing gene function. The “Tet-On” system is a tool widely used for that purpose. Here, the transregulator rtTA mediates expression of a gene of interest after addition of the small molecule effector doxycycline. Although very effective in rapidly turning on gene expression, the system is hampered by the long half-life of doxycycline which makes shutting down gene expression rapidly very difficult to achieve. We isolated an rtTA-binding peptide by in vivo selection that acts as a doxycycline antagonist and leads to rapid and efficient shut down of rtTA-mediated reporter gene expression in a human cell line. This peptide represents the basis for novel effector molecules which complement the “Tet-system” by enabling the investigator to rapidly turn gene expression not just on at will, but now also off.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Berens
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Klotzsche
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
216
|
Farber-Katz SE, Dippold HC, Buschman MD, Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM, Fuchs GJ, Zhou H, Field SJ. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156:413-27. [PMID: 24485452 DOI: 10.1016/j.cell.2013.12.023] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/04/2013] [Accepted: 11/14/2013] [Indexed: 01/29/2023]
Abstract
The response to DNA damage, which regulates nuclear processes such as DNA repair, transcription, and cell cycle, has been studied thoroughly. However, the cytoplasmic response to DNA damage is poorly understood. Here, we demonstrate that DNA damage triggers dramatic reorganization of the Golgi, resulting in its dispersal throughout the cytoplasm. We further show that DNA-damage-induced Golgi dispersal requires GOLPH3/MYO18A/F-actin and the DNA damage protein kinase, DNA-PK. In response to DNA damage, DNA-PK phosphorylates GOLPH3, resulting in increased interaction with MYO18A, which applies a tensile force to the Golgi. Interference with the Golgi DNA damage response by depletion of DNA-PK, GOLPH3, or MYO18A reduces survival after DNA damage, whereas overexpression of GOLPH3, as is observed frequently in human cancers, confers resistance to killing by DNA-damaging agents. Identification of the DNA-damage-induced Golgi response reveals an unexpected pathway through DNA-PK, GOLPH3, and MYO18A that regulates cell survival following DNA damage.
Collapse
Affiliation(s)
- Suzette E Farber-Katz
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Holly C Dippold
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Matthew D Buschman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Marshall C Peterman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Mengke Xing
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Christopher J Noakes
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - John Tat
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Michelle M Ng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Juliati Rahajeng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - David M Cowan
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Greg J Fuchs
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0653, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0653, USA
| | - Seth J Field
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA.
| |
Collapse
|
217
|
Glass KA, Link JM, Brunger JM, Moutos FT, Gersbach CA, Guilak F. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials 2014; 35:5921-31. [PMID: 24767790 DOI: 10.1016/j.biomaterials.2014.03.073] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/27/2014] [Indexed: 11/25/2022]
Abstract
The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.
Collapse
Affiliation(s)
- Katherine A Glass
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jarrett M Link
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan M Brunger
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Franklin T Moutos
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A Gersbach
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
218
|
Dow LE, Nasr Z, Saborowski M, Ebbesen SH, Manchado E, Tasdemir N, Lee T, Pelletier J, Lowe SW. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice. PLoS One 2014; 9:e95236. [PMID: 24743474 PMCID: PMC3990578 DOI: 10.1371/journal.pone.0095236] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/24/2014] [Indexed: 01/13/2023] Open
Abstract
Tetracycline or doxycycline (dox)-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs) downstream of the tetracycline-regulated element (TRE) requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis.
Collapse
Affiliation(s)
- Lukas E. Dow
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Zeina Nasr
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Michael Saborowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Saya H. Ebbesen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Eusebio Manchado
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nilgun Tasdemir
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
- * E-mail: (JP); (SWL)
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (JP); (SWL)
| |
Collapse
|
219
|
Benedetto A, Accetta G, Fujita Y, Charras G. Spatiotemporal control of gene expression using microfluidics. LAB ON A CHIP 2014; 14:1336-1347. [PMID: 24531367 DOI: 10.1039/c3lc51281a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accurate spatiotemporal regulation of genetic expression and cell microenvironment are both essential to epithelial morphogenesis during development, wound healing and cancer. In vivo, this is achieved through the interplay between intrinsic cellular properties and extrinsic signals. Amongst these, morphogen gradients induce specific concentration- and time-dependent gene expression changes that influence a target cell's fate. As systems biology attempts to understand the complex mechanisms underlying morphogenesis, the lack of experimental setup to recapitulate morphogen-induced patterning in vitro has become limiting. For this reason, we developed a versatile microfluidic-based platform to control the spatiotemporal delivery of chemical gradients to tissues grown in Petri dishes. Using this setup combined with a synthetic inducible gene expression system, we were able to restrict a target gene's expression within a confluent epithelium to bands of cells as narrow as four cell diameters with a one cell diameter accuracy. Applied to the targeted delivery of growth factor gradients to a confluent epithelium, this method further enabled the localized induction of epithelial-mesenchymal transitions and associated morphogenetic changes. Our approach paves the way for replicating in vitro the morphogen gradients observed in vivo to determine the relative contributions of known intrinsic and extrinsic factors in differential tissue patterning, during development and cancer. It could also be readily used to spatiotemporally control cell differentiation in ES/iPS cell cultures for re-engineering of complex tissues. Finally, the reversibility of the microfluidic chip assembly allows for pre- and post-treatment sample manipulations and extends the range of patternable samples to animal explants.
Collapse
|
220
|
Hoyng SA, Gnavi S, de Winter F, Eggers R, Ozawa T, Zaldumbide A, Hoeben RC, Malessy MJA, Verhaagen J. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Ther 2014; 21:549-57. [PMID: 24694534 DOI: 10.1038/gt.2014.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/18/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Viral vector-mediated gene transfer of neurotrophic factors is an emerging and promising strategy to promote the regeneration of injured peripheral nerves. Unfortunately, the chronic exposure to neurotrophic factors results in local trapping of regenerating axons or other unwanted side effects. Therefore, tight control of therapeutic gene expression is required. The tetracycline/doxycycline-inducible system is considered to be one of the most promising systems for regulating heterologous gene expression. However, an immune response directed against the transactivator protein rtTA hampers further translational studies. Immunogenic proteins fused with the Gly-Ala repeat of the Epstein-Barr virus Nuclear Antigen-1 protein have been shown to successfully evade the immune system. In this article, we used this strategy to demonstrate that a chimeric transactivator, created by fusing the Gly-Ala repeat with rtTA and embedded in a lentiviral vector (i) retained its transactivator function in vitro, in muscle explants, and in vivo following injection into the rat peripheral nerve, (ii) exhibited a reduced leaky expression, and (iii) had an immune-evasive advantage over rtTA as shown in a novel bioassay for human antigen presentation. The current findings are an important step toward creating a clinically applicable potentially immune-evasive tetracycline-regulatable viral vector system.
Collapse
Affiliation(s)
- S A Hoyng
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - S Gnavi
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - F de Winter
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - R Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - T Ozawa
- Department of Chemistry, School of Science, University of Tokyo, Tokyo, Japan
| | - A Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - R C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - M J A Malessy
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J Verhaagen
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
221
|
Anatomy of plasmid DNAs with anti-silencing elements. Int J Pharm 2014; 464:27-33. [DOI: 10.1016/j.ijpharm.2014.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/07/2014] [Accepted: 01/18/2014] [Indexed: 12/13/2022]
|
222
|
Pertek A, Meier F, Irmler M, Beckers J, Skylaki S, Endele M, Wurst W, Prakash N, Kühn R. Simple Derivation of Transgene-Free iPS Cells by a Dual Recombinase Approach. Mol Biotechnol 2014; 56:697-713. [DOI: 10.1007/s12033-014-9748-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
223
|
A modular gain-of-function approach to generate cortical interneuron subtypes from ES cells. Neuron 2014; 80:1145-58. [PMID: 24314726 DOI: 10.1016/j.neuron.2013.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/18/2023]
Abstract
Whereas past work indicates that cortical interneurons (cINs) can be generically produced from stem cells, generating large numbers of specific subtypes of this population has remained elusive. This reflects an information gap in our understanding of the transcriptional programs required for different interneuron subtypes. Here, we have utilized the directed differentiation of stem cells into specific subpopulations of cortical interneurons as a means to identify some of these missing factors. To establish this approach, we utilized two factors known to be required for the generation of cINs, Nkx2-1 and Dlx2. As predicted, their regulated transient expression greatly improved the differentiation efficiency and specificity over baseline. We extended upon this "cIN-primed" model in order to establish a modular system whereby a third transcription factor could be systematically introduced. Using this approach, we identified Lmo3 and Pou3f4 as genes that can augment the differentiation and/or subtype specificity of cINs in vitro.
Collapse
|
224
|
Chen J, Tu X, Esen E, Joeng KS, Lin C, Arbeit JM, Rüegg MA, Hall MN, Ma L, Long F. WNT7B promotes bone formation in part through mTORC1. PLoS Genet 2014; 10:e1004145. [PMID: 24497849 PMCID: PMC3907335 DOI: 10.1371/journal.pgen.1004145] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022] Open
Abstract
WNT signaling has been implicated in both embryonic and postnatal bone formation. However, the pertinent WNT ligands and their downstream signaling mechanisms are not well understood. To investigate the osteogenic capacity of WNT7B and WNT5A, both normally expressed in the developing bone, we engineered mouse strains to express either protein in a Cre-dependent manner. Targeted induction of WNT7B, but not WNT5A, in the osteoblast lineage dramatically enhanced bone mass due to increased osteoblast number and activity; this phenotype began in the late-stage embryo and intensified postnatally. Similarly, postnatal induction of WNT7B in Runx2-lineage cells greatly stimulated bone formation. WNT7B activated mTORC1 through PI3K-AKT signaling. Genetic disruption of mTORC1 signaling by deleting Raptor in the osteoblast lineage alleviated the WNT7B-induced high-bone-mass phenotype. Thus, WNT7B promotes bone formation in part through mTORC1 activation. The human bone tissue is of considerable regenerative capacity as reflected in bone remodeling and in fracture healing. However, bone tissue regeneration deteriorates with age, and tremendous unmet medical needs exist for safe and effective strategies to stimulate bone formation in older individuals commonly inflicted with osteoporosis or osteopenia. WNT signaling has emerged as a promising target pathway for developing novel bone anabolic therapeutics. Identifying bone-promoting WNT ligands and elucidating the underlying mechanisms may lead to useful therapeutic targets. The present study reports that WNT7B potently enhances bone formation through activation of mTORC1 in the mouse.
Collapse
Affiliation(s)
- Jianquan Chen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaolin Tu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Emel Esen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kyu Sang Joeng
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Congxin Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey M. Arbeit
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Liang Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
225
|
Tata PR, Pardo-Saganta A, Prabhu M, Vinarsky V, Law BM, Fontaine BA, Tager AM, Rajagopal J. Airway-specific inducible transgene expression using aerosolized doxycycline. Am J Respir Cell Mol Biol 2014; 49:1048-56. [PMID: 23848320 DOI: 10.1165/rcmb.2012-0412oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter-driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell-specific transgene expression using a cytokeratin 5 (also known as keratin 5)-driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype.
Collapse
|
226
|
Jin YX, Jeon Y, Lee SH, Kwon MS, Kim T, Cui XS, Hyun SH, Kim NH. Production of pigs expressing a transgene under the control of a tetracycline-inducible system. PLoS One 2014; 9:e86146. [PMID: 24454957 PMCID: PMC3893280 DOI: 10.1371/journal.pone.0086146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022] Open
Abstract
Pigs are anatomically and physiologically closer to humans than other laboratory animals. Transgenic (TG) pigs are widely used as models of human diseases. The aim of this study was to produce pigs expressing a tetracycline (Tet)-inducible transgene. The Tet-on system was first tested in infected donor cells. Porcine fetal fibroblasts were infected with a universal doxycycline-inducible vector containing the target gene enhanced green fluorescent protein (eGFP). At 1 day after treatment with 1 µg/ml doxycycline, the fluorescence intensity of these cells was increased. Somatic cell nuclear transfer (SCNT) was then performed using these donor cells. The Tet-on system was then tested in the generated porcine SCNT-TG embryos. Of 4,951 porcine SCNT-TG embryos generated, 850 were cultured in the presence of 1 µg/ml doxycycline in vitro. All of these embryos expressed eGFP and 15 embryos developed to blastocyst stage. The remaining 4,101 embryos were transferred to thirty three surrogate pigs from which thirty eight cloned TG piglets were obtained. PCR analysis showed that the transgene was inserted into the genome of each of these piglets. Two TG fibroblast cell lines were established from these TG piglets, and these cells were used as donor cells for re-cloning. The re-cloned SCNT embryos expressed the eGFP transgene under the control of doxycycline. These data show that the expression of transgenes in cloned TG pigs can be regulated by the Tet-on/off systems.
Collapse
Affiliation(s)
- Yong-Xun Jin
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Yubyeol Jeon
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sung-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Mo-Sun Kwon
- School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Teoan Kim
- School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- * E-mail: (NHK); (SHH)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
- * E-mail: (NHK); (SHH)
| |
Collapse
|
227
|
Sakai N. Principles for the use of in vivo transgene techniques: overview and an introductory practical guide for the selection of tetracycline-controlled transgenic mice. Methods Mol Biol 2014; 1142:33-40. [PMID: 24706272 DOI: 10.1007/978-1-4939-0404-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transgenic mice are a beneficial tool that can allow researchers to investigate the roles of specific genes in physiology and disease. However, conventional transgenic mice have the limitation that constitutive expression of a transgene from the embryonic stage may affect the normal development of the mice or cause compensating effects. To overcome these disadvantages, tetracycline-controlled transgenic mice, which can express target gene products in a tissue-specific and time-dependent manner, have been developed. In this section, the principles of tetracycline-controlled systems are discussed first. In addition, useful information for generating transgenic mice using this system is introduced.
Collapse
Affiliation(s)
- Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Minami-ku Kasumi, Hiroshima, 734-8551, Japan,
| |
Collapse
|
228
|
Puttini S, van Zwieten RW, Saugy D, Lekka M, Hogger F, Ley D, Kulik AJ, Mermod N. MAR-mediated integration of plasmid vectors for in vivo gene transfer and regulation. BMC Mol Biol 2013; 14:26. [PMID: 24295286 PMCID: PMC4219123 DOI: 10.1186/1471-2199-14-26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
Collapse
Affiliation(s)
- Stefania Puttini
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
McClain MS, Duncan SS, Gaddy JA, Cover TL. Control of gene expression in Helicobacter pylori using the Tet repressor. J Microbiol Methods 2013; 95:336-41. [PMID: 24113399 PMCID: PMC3856897 DOI: 10.1016/j.mimet.2013.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 01/15/2023]
Abstract
The lack of a versatile system to control gene expression in Helicobacter pylori has hampered efforts to study H. pylori physiology and pathogenesis. To overcome these limitations, we evaluated the utility of an inducible system based on the well-characterized Tet repressor (TetR) and Tet operator (tetO). As validation of this system, we introduced three copies of tetO into the promoter region upstream of the cagUT operon (encoding two virulence factors required for function of the H. pylori Cag type IV secretion system) and expressed tetR by introducing a codon-optimized gene into the chromosomal ureA locus. Introduction of the tetO copies upstream of cagUT did not disrupt promoter activity, as determined by immunoblotting for CagT. The subsequent introduction of tetR, however, did repress CagT synthesis. Production of CagT was restored when strains were cultured in the presence of the inducer, anhydrotetracycline. To demonstrate one potential application of this new tool, we analyzed the function of the Cag type IV secretion system. When the modified H. pylori strains were co-cultured with AGS cells, activity of the Cag type IV secretion system was dependent on the presence of anhydrotetracycline as evidenced by inducer-dependent induction of IL-8 secretion, CagA translocation, and appearance of type IV secretion system pili at the bacteria-host interface. These studies demonstrate the effectiveness of the tetR-tetO system to control gene expression in H. pylori and provide an improved system for studying H. pylori physiology and pathogenesis.
Collapse
Affiliation(s)
- Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stacy S. Duncan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jennifer A. Gaddy
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| |
Collapse
|
230
|
Lipps C, May T, Hauser H, Wirth D. Eternity and functionality – rational access to physiologically relevant cell lines. Biol Chem 2013; 394:1637-48. [DOI: 10.1515/hsz-2013-0158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023]
Abstract
Abstract
In the first 50 years of cell culture, the development of new cell lines was mainly based on trial and error. Due to the understanding of the molecular networks of aging, senescence, proliferation, and adaption by mutation, the generation of new cell lines with physiologic properties has become more systematic. This endeavor has been supported by the availability of new technological achievements and increasing knowledge about the biology of cell differentiation and cell-cell communication. Here, we review some promising developments that are contributing toward this goal. These include molecular tools frequently used for the immortalization process. In addition to these broadly acting immortalization regimens, we focus on the developments of cell type-specific immortalization and on the methodologies of how to control the growth of newly established cell lines.
Collapse
|
231
|
Zhang S, Blount AC, McNicholas CM, Skinner DF, Chestnut M, Kappes JC, Sorscher EJ, Woodworth BA. Resveratrol enhances airway surface liquid depth in sinonasal epithelium by increasing cystic fibrosis transmembrane conductance regulator open probability. PLoS One 2013; 8:e81589. [PMID: 24282612 PMCID: PMC3839872 DOI: 10.1371/journal.pone.0081589] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease. METHODS Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR), and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction. RESULTS Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05). There was no increase CFTR mRNA. CONCLUSION Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR channel open probability. The foundation for a clinical trial utilizing resveratrol as a therapeutic intervention to increase mucociliary transport and airway surface liquid hydration in sinus disease is strongly supported by these findings.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Department of Surgery/Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Angela C. Blount
- Department of Surgery/Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carmel M. McNicholas
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel F. Skinner
- Department of Surgery/Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael Chestnut
- Department of Surgery/Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John C. Kappes
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eric J. Sorscher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradford A. Woodworth
- Department of Surgery/Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
232
|
Müller N, Hartmann C, Genssler S, Koch J, Kinner A, Grez M, Wels WS. A bispecific transmembrane antibody simultaneously targeting intra- and extracellular epitopes of the epidermal growth factor receptor inhibits receptor activation and tumor cell growth. Int J Cancer 2013; 134:2547-59. [PMID: 24243620 DOI: 10.1002/ijc.28585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in essential cellular processes such as proliferation, survival and migration. Aberrant activation of EGFR is frequently found in human cancers of various origins and has been implicated in cancer pathogenesis. The therapeutic antibody cetuximab (Erbitux) inhibits tumor growth by binding to the extracellular domain of EGFR, thereby preventing ligand binding and receptor activation. This activity is shared by the single chain antibody fragment scFv(225) that contains the same antigen binding domain. The unrelated EGFR-specific antibody fragment scFv(30) binds to the intracellular domain of the receptor and retains antigen binding upon expression as an intrabody in the reducing environment of the cytosol. Here, we used scFv(225) and scFv(30) domains to generate a novel type of bispecific transmembrane antibody termed 225.TM.30, that simultaneously targets intra- and extracellular EGFR epitopes. Bispecific 225.TM.30 and related membrane-anchored monospecific 225.TM and TM.30 proteins carrying extracellular scFv(225) or intracellular scFv(30) antibody fragments linked to a transmembrane domain were expressed in EGFR-overexpressing tumor cells using a doxycycline-inducible retroviral system. Induced expression of 225.TM.30 and 225.TM, but not TM.30 reduced EGFR surface levels and ligand-induced EGFR activation, while all three molecules markedly inhibited tumor cell growth. Co-localization of 225.TM with EGFR was predominantly found on the cell surface, while interaction with 225.TM.30 and TM.30 proteins resulted in the redistribution of EGFR to perinuclear compartments. Our data demonstrate functionality of this novel type of membrane-anchored intrabodies in tumor cells and suggest distinct modes of action of mono- and bispecific variants.
Collapse
Affiliation(s)
- Nina Müller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
233
|
Delerue F, White M, Ittner LM. Inducible, tightly regulated and non-leaky neuronal gene expression in mice. Transgenic Res 2013; 23:225-33. [PMID: 24214494 DOI: 10.1007/s11248-013-9767-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
Abstract
The Tetracycline (Tet)-controlled inducible system is the most widely used reversible system for transgene expression in mice with over 500 lines created to date. Although this system has been optimized over the years, it still has limitations such as residual transgene expression when turned off, referred to as leakiness. Here, we present a series of new Tet-OFF transgenic mice based on the second generation tetracycline-responsive transactivator system. The tTA-Advanced (tTA2(S)) is expressed under control of the neuron-specific Thy1.2 promoter (Thy-OFF), to regulate expression in the mouse brain. In addition, we generated a lacZ reporter line, utilizing the P tight Tet-responsive promoter (P(tight)-lacZ), to test our system. Two Thy-OFF transgenic lines displaying two distinct patterns of expression were selected. Oral doxycycline treatment of Thy-OFF/P tight-lacZ mice demonstrated tight transgene regulation with no leak expression. These new Thy-OFF mice are valuable for studies in a broad range of neurodegenerative diseases such as Alzheimer's disease and related forms of dementia, where control of transgene expression is critical to understanding mechanisms underlying the disease. Furthermore, P tight-lacZ reporter mice may be widely applicable.
Collapse
Affiliation(s)
- Fabien Delerue
- Transgenic Animal Unit, School of Medical Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
234
|
Chtarto A, Bockstael O, Tshibangu T, Dewitte O, Levivier M, Tenenbaum L. A next step in adeno-associated virus-mediated gene therapy for neurological diseases: regulation and targeting. Br J Clin Pharmacol 2013; 76:217-32. [PMID: 23331189 DOI: 10.1111/bcp.12065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/07/2012] [Indexed: 02/04/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.
Collapse
Affiliation(s)
- Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Free University of Brussels (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
235
|
Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2013; 2:604-13. [PMID: 23977949 PMCID: PMC3805333 DOI: 10.1021/sb400081r] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Transcriptional regulation is central
to the complex behavior of
natural biological systems and synthetic gene circuits. Platforms
for the scalable, tunable, and simple modulation of transcription
would enable new abilities to study natural systems and implement
artificial capabilities in living cells. Previous approaches to synthetic
transcriptional regulation have relied on engineering DNA-binding
proteins, which necessitate multistep processes for construction and
optimization of function. Here, we show that the CRISPR/Cas system
of Streptococcus pyogenes can be programmed
to direct both activation and repression to natural and artificial
eukaryotic promoters through the simple engineering of guide RNAs
with base-pairing complementarity to target DNA sites. We demonstrate
that the activity of CRISPR-based transcription factors (crisprTFs)
can be tuned by directing multiple crisprTFs to different positions
in natural promoters and by arraying multiple crisprTF-binding sites
in the context of synthetic promoters in yeast and human cells. Furthermore,
externally controllable regulatory modules can be engineered by layering
gRNAs with small molecule-responsive proteins. Additionally, single
nucleotide substitutions within promoters are sufficient to render
them orthogonal with respect to the same gRNA-guided crisprTF. We
envision that CRISPR-based eukaryotic gene regulation will enable
the facile construction of scalable synthetic gene circuits and open
up new approaches for mapping natural gene networks and their effects
on complex cellular phenotypes.
Collapse
Affiliation(s)
- Fahim Farzadfard
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
- MIT Microbiology
Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samuel D. Perli
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Timothy K. Lu
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
- MIT Microbiology
Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Biophysics Program, Harvard University, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
236
|
Soden ME, Gore BB, Zweifel LS. Defining functional gene-circuit interfaces in the mouse nervous system. GENES BRAIN AND BEHAVIOR 2013; 13:2-12. [PMID: 24007626 DOI: 10.1111/gbb.12082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 08/30/2013] [Indexed: 12/21/2022]
Abstract
Complexity in the nervous system is established by developmental genetic programs, maintained by differential genetic profiles and sculpted by experiential and environmental influence over gene expression. Determining how specific genes define neuronal phenotypes, shape circuit connectivity and regulate circuit function is essential for understanding how the brain processes information, directs behavior and adapts to changing environments. Mouse genetics has contributed greatly to current percepts of gene-circuit interfaces in behavior, but considerable work remains. Large-scale initiatives to map gene expression and connectivity in the brain, together with advanced techniques in molecular genetics, now allow detailed exploration of the genetic basis of nervous system function at the level of specific circuit connections. In this review, we highlight several key advances for defining the function of specific genes within a neural network.
Collapse
Affiliation(s)
- M E Soden
- Department of Pharmacology; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
237
|
Vigna E, Pacchiana G, Chiriaco C, Cignetto S, Fontani L, Michieli P, Comoglio PM. Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J Mol Med (Berl) 2013; 92:65-76. [PMID: 24013625 DOI: 10.1007/s00109-013-1079-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
UNLABELLED Due to the key role played in critical sub-populations, Met is considered a relevant therapeutic target for glioblastoma multiforme and lung cancers. The anti-Met DN30 antibody, engineered to a monovalent Fab (Mv-DN30), proved to be a potent antagonist, inducing physical removal of Met receptor from the cell surface. In this study, we designed a gene therapy approach, challenging Mv-DN30 in preclinical models of Met-driven human glioblastoma and lung carcinoma. Mv-DN30 was delivered by a Tet-inducible-bidirectional lentiviral vector. Gene therapy solved the limitations dictated by the short half-life of the low molecular weight form of the antibody. In vitro, upon doxycycline induction, the transgene: (1) drove synthesis and secretion of the correctly assembled Mv-DN30; (2) triggered the displacement of Met receptor from the surface of target cancer cells; (3) suppressed the Met-mediated invasive growth phenotype. Induction of transgene expression in cancer cells-transplanted either subcutaneously or orthotopically in nude mice-resulted in inhibition of tumor growth. Direct Mv-DN30 gene transfer in nude mice, intra-tumor or systemic, was followed by a therapeutic response. These results provide proof of concept for a gene transfer immunotherapy strategy by a Fab fragment and encourage clinical studies targeting Met-driven cancers with Mv-DN30. KEY MESSAGE Gene transfer allows the continuous in vivo production of therapeutic Fab fragments. Mv-DN30 is an excellent tool for the treatment of Met-driven cancers. Mv-DN30 gene therapy represents an innovative route for Met targeting.
Collapse
Affiliation(s)
- Elisa Vigna
- IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada Provinciale 142-Km 3.95, 10060, Candiolo, Turin, Italy,
| | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
Systemic amyloid A (AA) amyloidosis is a serious complication of chronic inflammation. Serum AA protein (SAA), an acute phase plasma protein, is deposited extracellularly as insoluble amyloid fibrils that damage tissue structure and function. Clinical AA amyloidosis is typically preceded by many years of active inflammation before presenting, most commonly with renal involvement. Using dose-dependent, doxycycline-inducible transgenic expression of SAA in mice, we show that AA amyloid deposition can occur independently of inflammation and that the time before amyloid deposition is determined by the circulating SAA concentration. High level SAA expression induced amyloidosis in all mice after a short, slightly variable delay. SAA was rapidly incorporated into amyloid, acutely reducing circulating SAA concentrations by up to 90%. Prolonged modest SAA overexpression occasionally produced amyloidosis after long delays and primed most mice for explosive amyloidosis when SAA production subsequently increased. Endogenous priming and bulk amyloid deposition are thus separable events, each sensitive to plasma SAA concentration. Amyloid deposits slowly regressed with restoration of normal SAA production after doxycycline withdrawal. Reinduction of SAA overproduction revealed that, following amyloid regression, all mice were primed, especially for rapid glomerular amyloid deposition leading to renal failure, closely resembling the rapid onset of renal failure in clinical AA amyloidosis following acute exacerbation of inflammation. Clinical AA amyloidosis rarely involves the heart, but amyloidotic SAA transgenic mice consistently had minor cardiac amyloid deposits, enabling us to extend to the heart the demonstrable efficacy of our unique antibody therapy for elimination of visceral amyloid.
Collapse
|
239
|
Generation and characterization of a transgenic zebrafish expressing the reverse tetracycline transactivator. J Genet Genomics 2013; 40:523-31. [PMID: 24156918 DOI: 10.1016/j.jgg.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/20/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Conditional expression of a target gene during zebrafish development is a powerful approach to elucidate gene functions. The tetracycline-controlled systems have been successfully used in the modulation of gene expression in mammalian cells, but few lines of zebrafish carrying these systems are currently available. In this study, we had generated a stable transgenic zebrafish line that ubiquitously expressed the second-generation of reverse Tet transactivator (rtTA-M2). Southern blotting analysis and high-throughput genome sequencing verified that a single copy of rtTA-M2 gene had stably integrated into the zebrafish genome. After induction with doxycycline (Dox), a strong green fluorescent protein (GFP) was seen in rtTA-transgenic eggs injected with pTRE-EGFP plasmids. The fluorescent signal gradually decreased after the withdrawal of Dox and disappeared. However, leaky expression of GFP was undetectable before Dox-induction. Additionally, transgenic embryos expressing rtTA-M2 exhibited no obvious defects in morphological phenotypes, hatching behavior and expression patterns of developmental marker genes, suggesting that rtTA-M2 had little effect on the development of transgenic zebrafish. Moreover, expressed Dickkopf-1 (DKK1) in pTRE-DKK1-injected embryos led to alterations in the expression of marker genes associated with Wnt signaling. Thus, this rtTA-transgenic zebrafish can be utilized to dissect functions of genes in a temporal manner.
Collapse
|
240
|
Epperly MW, Chaillet JR, Kalash R, Shaffer B, Goff J, Franicola D, Zhang X, Dixon T, Houghton F, Wang H, Berhane H, Romero C, Kim JH, Greenberger JS. Conditional radioresistance of Tet-inducible manganese superoxide dismutase bone marrow stromal cell lines. Radiat Res 2013; 180:189-204. [PMID: 23862693 DOI: 10.1667/rr3177.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial targeted manganese superoxide dismutase is a major antioxidant enzyme, the levels of which modulate the response of cells, tissues and organs to ionizing irradiation. We developed a Tet-regulated MnSOD mouse (MnSOD(tet)) to examine the detailed relationship between cellular MnSOD concentration and radioresistance and carried out in vitro studies using bone marrow culture derived stromal cell lines (mesenchymal stem cells). Homozygous MnSOD(tet/tet) cells had low levels of MnSOD, reduced viability and proliferation, increased radiosensitivity, elevated overall antioxidant stores, and defects in cell proliferation and DNA strand-break repair. Doxycycline (doxy) treatment of MnSOD(tet/tet) cells increased MnSOD levels and radioresistance from ñ of 2.79 ± 1.04 to 8.69 ± 1.09 (P = 0.0060) and normalized other biologic parameters. In contrast, MnSOD(tet/tet) cells showed minimal difference in baseline and radiation induced mRNA and protein levels of TGF-β, Nrf2 and NF-κB and radiation induced cell cycle arrest was not dependent upon MnSOD level. These novel MnSOD(tet/tet) mouse derived cells should be valuable for elucidating several parameters of the oxidative stress response to ionizing radiation.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Kim J, Hoffman JP, Alpaugh RK, Rhim AD, Reichert M, Stanger BZ, Furth EE, Sepulveda AR, Yuan CX, Won KJ, Donahue G, Sands J, Gumbs AA, Zaret KS. An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 2013; 3:2088-2099. [PMID: 23791528 PMCID: PMC3726210 DOI: 10.1016/j.celrep.2013.05.036] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/11/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis and lacks a human cell model of early disease progression. When human PDAC cells are injected into immunodeficient mice, they generate advanced-stage cancer. We hypothesized that if human PDAC cells were converted to pluripotency and then allowed to differentiate back into pancreatic tissue, they might undergo early stages of cancer. Although most induced pluripotent stem cell (iPSC) lines were not of the expected cancer genotype, one PDAC line, 10-22 cells, when injected into immunodeficient mice, generated pancreatic intraepithelial neoplasia (PanIN) precursors to PDAC that progressed to the invasive stage. The PanIN-like cells secrete or release proteins from many genes that are known to be expressed in human pancreatic cancer progression and that predicted an HNF4α network in intermediate-stage lesions. Thus, rare events allow iPSC technology to provide a live human cell model of early pancreatic cancer and insights into disease progression.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cattle
- Cell Line, Tumor
- Disease Models, Animal
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Induced Pluripotent Stem Cells/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplastic Stem Cells/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Prognosis
Collapse
Affiliation(s)
- Jungsun Kim
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5157, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Nevozhay D, Zal T, Balázsi G. Transferring a synthetic gene circuit from yeast to mammalian cells. Nat Commun 2013; 4:1451. [PMID: 23385595 PMCID: PMC3573884 DOI: 10.1038/ncomms2471] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/10/2013] [Indexed: 01/22/2023] Open
Abstract
The emerging field of synthetic biology builds gene circuits for scientific, industrial, and therapeutic needs. Adaptability of synthetic gene circuits across different organisms could enable a synthetic biology pipeline, where circuits are designed in silico, characterized in microbes and reimplemented in mammalian settings for practical usage. However, the processes affecting gene circuit adaptability have not been systematically investigated. Here we construct a mammalian version of a negative feedback-based “linearizer” gene circuit previously developed in yeast. The first naïve mammalian prototype was non-functional, but a computational model suggested that we could recover function by improving gene expression and protein localization. After rationally developing and combining new parts as the model suggested, we regained function and could tune target gene expression in human cells linearly and precisely as in yeast. The steps we have taken should be generally relevant for transferring any gene circuit from yeast into mammalian cells.
Collapse
Affiliation(s)
- Dmitry Nevozhay
- Department of Systems Biology-Unit 950, The University of Texas MD Anderson Cancer Center, 7435 Fannin Street, Houston, Texas 77054, USA
| | | | | |
Collapse
|
243
|
|
244
|
Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W, Yang N, Danko T, Chen L, Wernig M, Südhof TC. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013; 78:785-798. [PMID: 23764284 PMCID: PMC3751803 DOI: 10.1016/j.neuron.2013.05.029] [Citation(s) in RCA: 1097] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 12/19/2022]
Abstract
Available methods for differentiating human embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs) into neurons are often cumbersome, slow, and variable. Alternatively, human fibroblasts can be directly converted into induced neuronal (iN) cells. However, with present techniques conversion is inefficient, synapse formation is limited, and only small amounts of neurons can be generated. Here, we show that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2 weeks by forced expression of a single transcription factor. The resulting ES-iN or iPS-iN cells exhibit quantitatively reproducible properties independent of the cell line of origin, form mature pre- and postsynaptic specializations, and integrate into existing synaptic networks when transplanted into mouse brain. As illustrated by selected examples, our approach enables large-scale studies of human neurons for questions such as analyses of human diseases, examination of human-specific genes, and drug screening.
Collapse
Affiliation(s)
- Yingsha Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - ChangHui Pak
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Yan Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Henrik Ahlenius
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Zhenjie Zhang
- Department of Psychiatry, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Soham Chanda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Samuele Marro
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Claudio Acuna
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Jason Covy
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Wei Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Tamas Danko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Lu Chen
- Department of Psychiatry, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Psychiatry, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
245
|
Khattak S, Schuez M, Richter T, Knapp D, Haigo SL, Sandoval-Guzmán T, Hradlikova K, Duemmler A, Kerney R, Tanaka EM. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports 2013; 1:90-103. [PMID: 24052945 PMCID: PMC3757742 DOI: 10.1016/j.stemcr.2013.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16 (INK4a) , which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible.
Collapse
Affiliation(s)
- Shahryar Khattak
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany ; Technische Universität Dresden, DFG Center for Regenerative Therapies, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Laryea G, Arnett MG, Wieczorek L, Muglia LJ. Site-specific modulation of brain glucocorticoid receptor and corticotropin-releasing hormone expression using lentiviral vectors. Mol Cell Endocrinol 2013; 371:160-5. [PMID: 23261985 PMCID: PMC3625448 DOI: 10.1016/j.mce.2012.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/16/2022]
Abstract
The glucocorticoid receptor (GR) and corticotropin-releasing hormone (CRH) are important molecular regulators of an individual's ability to respond to stressful stimuli in an adaptive manner. Impaired signaling of both GR and CRH often leads to dysfunction of the hypothalamic-pituitary-adrenal axis, which underlies the etiology of many affective disorders such as anxiety and depression. Studies focusing on how GR and CRH influence the stress response are limited as they generalize to broad brain regions, thus hindering identification of how specific CNS nuclei contribute to maladaptive stress responses. Our objective is to distinguish the site-specific involvement of GR and CRH in limbic regions involved in the stress response. With that intent, we use lentiviral (LV) vectors in combination with transgenic mouse lines, enabling us to modify expression of GR or CRH in a very localized manner. This paper describes the generation of several distinct LV vectors and transgenic mice models that will help further elucidate the site-specific actions of GR and CRH.
Collapse
Affiliation(s)
- Gloria Laryea
- Neuroscience Graduate Program, School of Medicine, Vanderbilt University, 465 21st. Avenue South, Nashville, TN 37232, USA;
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA;
| | - Melinda G. Arnett
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue Cincinnati, OH 45229;
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA;
| | - Lindsay Wieczorek
- Program in Neuroscience, Washington University, 660 S. Euclid, St. Louis, MO 63110, USA.
| | - Louis J. Muglia
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue Cincinnati, OH 45229;
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA;
| |
Collapse
|
247
|
Regulated expression of lentivirus-mediated GDNF in human bone marrow-derived mesenchymal stem cells and its neuroprotection on dopaminergic cells in vitro. PLoS One 2013; 8:e64389. [PMID: 23717608 PMCID: PMC3661514 DOI: 10.1371/journal.pone.0064389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022] Open
Abstract
Gene regulation remains one of the major challenges for gene therapy in clinical trials. In the present study, we first generated a binary tetracycline-on (Tet-On) system based on two lentivirus vectors, one expressing both human glial cell line-derived neurotrophic factor (hGDNF) and humanized recombinant green fluorescent protein (hrGFP) genes under second-generation tetracycline response element (TRE), and the other expressing the advanced reverse tetracycline-controlled transactivator--rtTA2S-M2 under a human minimal cytomegalovirus immediate early (CMV-IE) promoter. This system allows simultaneous expression of hGDNF and hrGFP genes in the presence of doxycycline (Dox). Human bone marrow-derived mesenchymal stem cells (hMSCs) were transduced with the binary Tet-On lentivirus vectors and characterized in vitro in the presence (On) or absence (Off) of Dox. The expression of hGDNF and hrGFP transgenes in transduced hMSCs was tightly regulated as determined by flow cytometry (FCM), GDNF enzyme-linked immunosorbent assay (ELISA) and quantitative real time-polymerase chain reaction (qRT-PCR). There was a dose-dependent regulation for hrGFP transgene expression. The levels of hGDNF protein in culture medium were correlated with the mean fluorescence intensity (MFI) units of hrGFP. The levels of transgene background expression were very low in the absence of Dox. The treatment of the conditioned medium from cultures of transduced hMSCs in the presence of Dox protected SH-SY5Y cells against 6-hydroxydopamine (6-OHDA) toxicity as determined by cell viability using 3, [4,5-dimethylthiazol-2-yl]-diphenyltetrazolium bromide (MTT) assay. The treatment of the conditioned medium was also found to improve the survival of dopaminergic (DA) neurons of ventral mesencephalic (VM) tissue in serum-free culture conditions as assessed by cell body area, the number of neurites and dendrite branching points, and proportion of tyrosine hydroxylase (TH)-immunoreactive (IR) cells. Our inducible lentivirus-mediated hGDNF gene delivery system may provide useful tools for basic research on gene therapy for chronic neurological disorders such as Parkinson's disease (PD).
Collapse
|
248
|
Tu YJ, Ye AF, Pan ZM, Zheng C, Wu TL, Cheng XG, Guo F. Regulation of expression of HGF in BM-MSCs by baculovirus-mediated transduction. Cell Biol Int 2013; 37:659-68. [PMID: 23404631 DOI: 10.1002/cbin.10071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/26/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Yi Ji Tu
- Department of Orthopedics; The Second Affiliated Hospital of Nanchang University; No. 1, Minde Road, Nanchang, Jiangxi 330006; China
| | - Ai Fang Ye
- Nanchang University; No. 461, Bayi Road, Nanchang, Jiangxi 330006; China
| | - Zhi Min Pan
- Nanchang University; No. 461, Bayi Road, Nanchang, Jiangxi 330006; China
| | - Chao Zheng
- Nanchang University; No. 461, Bayi Road, Nanchang, Jiangxi 330006; China
| | - Tian Long Wu
- Department of Orthopedics; The Second Affiliated Hospital of Nanchang University; No. 1, Minde Road, Nanchang, Jiangxi 330006; China
| | - Xi Gao Cheng
- Department of Orthopedics; The Second Affiliated Hospital of Nanchang University; No. 1, Minde Road, Nanchang, Jiangxi 330006; China
| | - Fei Guo
- Nanchang University; No. 461, Bayi Road, Nanchang, Jiangxi 330006; China
| |
Collapse
|
249
|
Bai J, Li J, Mao Q. Construction of a single lentiviral vector containing tetracycline-inducible Alb-uPA for transduction of uPA expression in murine hepatocytes. PLoS One 2013; 8:e61412. [PMID: 23626683 PMCID: PMC3634076 DOI: 10.1371/journal.pone.0061412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/08/2013] [Indexed: 01/22/2023] Open
Abstract
The SCID-beige/Alb-uPA mouse model is currently the best small animal model available for viral hepatitis infection studies [1]. But the construction procedure is often costly and time-consuming due to logistic and technical difficulties. Thus, the widespread application of these chimeric mice has been hampered [2]. In order to optimize the procedure, we constructed a single lentiviral vector containing modified tetracycline-regulated system to control Alb-uPA gene expression in the cultured hepatocytes. The modified albumin promoter controlled by tetracycline (Tet)-dependent transactivator rtTA2S-M2 was integrated into a lentiviral vector. The full-length uPA cDNA was inserted into another lentiviral vector containing PTight, a modified Tet-responsive promoter. Two vectors were then digested by specific enzymes and ligated by DNA ligase 4. The ligated DNA fragment was inserted into a modified pLKO.1 cloning vector and the final lentiviral vector was then successfully constructed. H2.35 cell, Lewis lung carcinoma, primary kidney, primary hepatic interstitial and CT26 cells were infected with recombinant lentivirus at selected MOI. The expression of uPA induced by DOX was detectable only in the infected H2.35 cells, which was confirmed by real-time PCR and Western blot analysis. Moreover, DOX induced uPA expression on the infected H2.35 cells in a dose-dependent manner. The constructed single lentiviral vector has many biological advantages, including that the interested gene expression under "Tet-on/off" system is controlled by DOX in a dose-depending fashion only in murine liver cells, which provides an advantage for simplifying generation of conditional transgenic animals.
Collapse
Affiliation(s)
- Jiasi Bai
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jungang Li
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qing Mao
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
250
|
Tatsuke T, Lee JM, Kusakabe T, Iiyama K, Sezutsu H, Uchino K. Tightly controlled tetracycline-inducible transcription system for explosive gene expression in cultured silkworm cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:173-182. [PMID: 23371880 DOI: 10.1002/arch.21083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tetracycline-inducible gene expression (Tet-on) system is a particularly powerful tool for transgenic research and has become one of the first choices for the control of transgene expression in a mammal and a fly. Previously, we have generated the modified reverse tetracycline-controlled transactivators and tetO promoters for a Bombyx mori Tet-on system. In order to further improve this system, Giant, a transcriptional silencer from Drosophila melanogaster, is introduced to repress leaky transcription in the absence of doxycycline. Further, the promoter responsibility to the tetracycline-controlled transactivators is facilitated by introducing a synthetic minimal core promoter. With the tightly regulated second-generation silkworm Tet-on system, we obtain up to 300-fold induction of gene expression with the addition of doxycycline.
Collapse
Affiliation(s)
- Tsuneyuki Tatsuke
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|