201
|
Shi M, Maique J, Shepard S, Li P, Seli O, Moe OW, Chang Hu M. In vivo evidence for therapeutic applications of beclin 1 to promote recovery and inhibit fibrosis after acute kidney injury. Kidney Int 2022; 101:63-78. [PMID: 34736972 PMCID: PMC8741729 DOI: 10.1016/j.kint.2021.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
Autophagy regulator beclin 1 activity determines the severity of kidney damage induced by ischemia reperfusion injury, but its role in kidney recovery and fibrosis are unknown and its therapeutic potentials have not been tested. Here, we explored beclin 1 effects on kidney fibrosis in three models of acute kidney injury (AKI)-ischemia reperfusion injury, cisplatin kidney toxicity, and unilateral ureteric obstruction in mouse strains with three levels of beclin 1 function: normal (wild type), low (heterozygous global deletion of beclin 1, Becn1+/-), and high beclin 1 activity (knockin gain-of-function mutant Becn1, Becn1FA). Fourteen days after AKI induction, heterozygous mice had more, but knockin mice had less kidney fibrosis than wild-type mice did. One day after ischemia reperfusion injury, heterozygous pan-kidney tubular Becn1 null mice had more severe kidney damage than homozygous distal tubular Becn1 null mice did, which was similar to the wild-type mice, implying that proximal tubular beclin 1 protects the kidney against ischemia reperfusion injury. By 14 days, both pan-kidney heterozygous Becn1 null and distal tubular homozygous Becn1 null mice had poorer kidney recovery than wild-type mice did. Injection of beclin 1 peptides increased cell proliferation in kidney tubules in normal mice. Beclin 1 peptides injection either before or after (2-5 days) ischemia reperfusion injury protected the kidney from injury and suppressed kidney fibrosis. Thus, both endogenous beclin 1 protein expression in kidney tubules and exogenous beclin 1 peptides are kidney protective via attenuation of acute kidney damage, promotion of cell proliferation, and inhibition of kidney fibrosis, consequently improving kidney recovery post-AKI. Hence, exogenous beclin 1 peptide may be a potential new therapy for AKI.
Collapse
Affiliation(s)
- Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Sierra Shepard
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Peng Li
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Olivia Seli
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Address for reprint request and other correspondence: Ming Chang Hu, MD, PhD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA, or Orson W. Moe, MD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA,
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Address for reprint request and other correspondence: Ming Chang Hu, MD, PhD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA, or Orson W. Moe, MD, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 USA,
| |
Collapse
|
202
|
Cuyler J, Murthy P, Spada NG, McGuire TF, Lotze MT, Xie XQ. Sequestsome-1/p62-targeted small molecules for pancreatic cancer therapy. Drug Discov Today 2022; 27:362-370. [PMID: 34592447 DOI: 10.1016/j.drudis.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by heightened autophagy and systemic immune dysfunction. Modest improvements in clinical outcomes have been demonstrated in completed clinical trials targeting autophagy with combination hydroxychloroquine (HCQ) and chemotherapy. Recent mechanistic insights into the role of autophagy-dependent immune evasion have prompted the need for more precise and druggable targets of autophagy inhibition. Sequestosome-1 (SQSTM-1) is a multidomain scaffold protein with well-established roles in autophagy, tumor necrosis factor alpha (TNFα)- and NF-κB-related signaling pathways. SQSTM1 overexpression is frequently observed in PDAC, correlating with clinical stage and outcome. Given the unique molecular structure of SQSTM-1 and its diverse activity, identifying means of limiting SQSTM-1-dependent autophagy to promote an effective immune response in PDAC could be a promising treatment strategy.
Collapse
Affiliation(s)
- Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pranav Murthy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Neal G Spada
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terence F McGuire
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael T Lotze
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology and Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
203
|
Zhang T, Wang Y, Yu H, Zhang T, Guo L, Xu J, Wei X, Wang N, Wu Y, Wang X, Huang L. PGK1 represses autophagy-mediated cell death to promote the proliferation of liver cancer cells by phosphorylating PRAS40. Cell Death Dis 2022; 13:68. [PMID: 35058442 PMCID: PMC8776853 DOI: 10.1038/s41419-022-04499-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
Autophagy predominantly promotes cell survival by recycling cell components, while it kills cells in specific contexts. Cell death related to autophagy plays important roles in multiple physiological and pathological situations including tumorigenesis, and the mechanism needs to be defined further. PRAS40 was found to be crucial in various cancers, and phosphorylation was reported to be involved in autophagy inhibition in monocytes. However, the detailed role of PRAS40 in autophagy and the relationship to tumorigenesis remain largely unknown. Herein we screened the binding partners of PRAS40, and found that PRAS40 interacted with Phosphoglycerate kinase 1 (PGK1). PGK1 phosphorylated PRAS40 at Threonine 246, which could be inhibited by blocking the interaction. Both in vitro and in vivo results revealed that PRAS40 mediated PGK1-induced cell growth. By tracing the mechanism, we found that PGK1 suppressed autophagy-mediated cell death, in which PRAS40 was crucial. Thus PGK1 phosphorylates PRAS40 to repress autophagy-mediated cell death under normoxia, promoting cellular proliferation. The binding of PGK1 to PRAS40 was transferred to Beclin1 under hypoxia, resulting in the increase of Beclin1 phosphorylation. These results suggest a novel model of tumorigenesis, in which PGK1 switches between repressing autophagy-mediated cell death via PRAS40 and inducing autophagy through Beclin1 according to the environmental oxygen level. Our study is anticipated to be able to offer novel insights in understanding PGK1/PRAS40 signaling hyperactivated cancers.
Collapse
|
204
|
Zou Z, Fernández ÁF, Jendrossek V, Vega-Rubín-de-Celis S. Studying Autophagy In Vivo in the Mammary Gland and in Xenograft Samples. Methods Mol Biol 2022; 2445:255-272. [PMID: 34972997 DOI: 10.1007/978-1-0716-2071-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autophagy is a dynamic process that can be monitored in multiple ways, both in vitro and in vivo. Studies in mice are a widely used tool to understand multiple diseases and conditions where autophagy plays a role, and therefore autophagic flux measurement in tissues of rodent models are of utmost importance. Here, we present some assays successfully used in determining the autophagy status in the mice mammary gland as well as in xenografts.
Collapse
Affiliation(s)
- Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Álvaro F Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), Essen University Hospital, Essen, Germany
| | | |
Collapse
|
205
|
Abstract
Autophagy is an intracellular catabolic degradative process in which damaged cellular organelles, unwanted proteins and different cytoplasmic components get recycled to maintain cellular homeostasis or metabolic balance. During autophagy, a double membrane vesicle is formed to engulf these cytosolic materials and fuse to lysosomes wherein the entire cargo degrades to be used again. Because of this unique recycling ability of cells, autophagy is a universal stress response mechanism. Dysregulation of autophagy leads to several diseases, including cancer, neurodegeneration and microbial infection. Thus, autophagy machineries have become targets for therapeutics. This chapter provides an overview of the paradoxical role of autophagy in tumorigenesis in the perspective of metabolism.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
206
|
Dai H, Meng XW, Ye K, Jia J, Kaufmann SH. Therapeutics targeting BCL2 family proteins. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:197-260. [DOI: 10.1016/b978-0-12-814208-0.00007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
207
|
Chen CG, Iozzo RV. Extracellular matrix guidance of autophagy: a mechanism regulating cancer growth. Open Biol 2022; 12:210304. [PMID: 34982945 PMCID: PMC8727153 DOI: 10.1098/rsob.210304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) exists as a dynamic network of biophysical and biochemical factors that maintain tissue homeostasis. Given its sensitivity to changes in the intra- and extracellular space, the plasticity of the ECM can be pathological in driving disease through aberrant matrix remodelling. In particular, cancer uses the matrix for its proliferation, angiogenesis, cellular reprogramming and metastatic spread. An emerging field of matrix biology focuses on proteoglycans that regulate autophagy, an intracellular process that plays both critical and contextual roles in cancer. Here, we review the most prominent autophagic modulators from the matrix and the current understanding of the cellular pathways and signalling cascades that mechanistically drive their autophagic function. We then critically assess how their autophagic functions influence tumorigenesis, emphasizing the complexities and stage-dependent nature of this relationship in cancer. We highlight novel emerging data on immunoglobulin-containing and proline-rich receptor-1, heparanase and thrombospondin 1 in autophagy and cancer. Finally, we further discuss the pro- and anti-autophagic modulators originating from the ECM, as well as how these proteoglycans and other matrix constituents specifically influence cancer progression.
Collapse
Affiliation(s)
- Carolyn G. Chen
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
208
|
Parlayan C, Sahin Y, Altan Z, Arman K, Ikeda MA, Saadat KASM. ARID3A regulates autophagy related gene BECN1 expression and inhibits proliferation of osteosarcoma cells. Biochem Biophys Res Commun 2021; 585:89-95. [PMID: 34801937 DOI: 10.1016/j.bbrc.2021.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor which has unclear pathobiology. Hence, enlightening the exact molecular mechanism underlying osteosarcoma progression is crucial for developing new treatment strategies. One member of the ARID family of DNA binding proteins is ARID3A that is implicated in osteosarcoma pathogenesis. ARID3A could bind E2F1 and regulate the transcription of E2F1 targets. At the same time, BECN1 is a well-characterized autophagy regulator gene that is a direct target of E2F1. The present study aimed to investigate the effect of ARID3A on the expression of BECN1 in osteosarcoma cells. First, we determined gene expression levels of ARID3A, BECN1, and E2F1 in U-2 OS by qPCR and confirmed with online datasets from GEO database. In addition, the prognostic value of these genes was also evaluated from Kaplan-Meier plotter database. Next, ARID3A was overexpressed and silenced in order to investigate the effect of ARID3A on BECN1 expression and proliferation of U-2 OS cells. Our results demonstrated that BECN1 was negatively correlated with E2F1 and positively correlated with ARID3A based on initial expression and prognostic effect in OS. Overexpression of ARID3A upregulated BECN1 while silenced ARID3A downregulated BECN1 expression in U-2 OS cells. Additionally, silencing of ARID3A promoted colony formation and proliferation, whereas overexpression of ARID3A suppressed colony formation and proliferation of U-2 OS cells. Taken together, these results indicate that ARID3A could function as tumor suppressor and affect the expression level of BECN1 in U-2 OS cells.
Collapse
Affiliation(s)
- Cuneyd Parlayan
- Department of Biostatistics and Medical Informatics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Yunus Sahin
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.
| | - Zekiye Altan
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.
| | - Kaifee Arman
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, H2W1R7, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Masa-Aki Ikeda
- Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Khandakar A S M Saadat
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
209
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|
210
|
Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update 2021; 28:200-231. [PMID: 34967891 PMCID: PMC8889000 DOI: 10.1093/humupd/dmab043] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular catabolic process of degrading and recycling proteins and organelles to modulate various physiological and pathological events, including cell differentiation and development. Emerging data indicate that autophagy is closely associated with male reproduction, especially the biosynthetic and catabolic processes of sperm. Throughout the fate of sperm, a series of highly specialized cellular events occur, involving pre-testicular, testicular and post-testicular events. Nonetheless, the most fundamental question of whether autophagy plays a protective or harmful role in male reproduction, especially in sperm, remains unclear. OBJECTIVE AND RATIONALE We summarize the functional roles of autophagy in the pre-testicular (hypothalamic–pituitary–testis (HPG) axis), testicular (spermatocytogenesis, spermatidogenesis, spermiogenesis, spermiation) and post-testicular (sperm maturation and fertilization) processes according to the timeline of sperm fate. Additionally, critical mechanisms of the action and clinical impacts of autophagy on sperm are identified, laying the foundation for the treatment of male infertility. SEARCH METHODS In this narrative review, the PubMed database was used to search peer-reviewed publications for summarizing the functional roles of autophagy in the fate of sperm using the following terms: ‘autophagy’, ‘sperm’, ‘hypothalamic–pituitary–testis axis’, ‘spermatogenesis’, ‘spermatocytogenesis’, ‘spermatidogenesis’, ‘spermiogenesis’, ‘spermiation’, ‘sperm maturation’, ‘fertilization’, ‘capacitation’ and ‘acrosome’ in combination with autophagy-related proteins. We also performed a bibliographic search for the clinical impact of the autophagy process using the keywords of autophagy inhibitors such as ‘bafilomycin A1’, ‘chloroquine’, ‘hydroxychloroquine’, ‘3-Methyl Adenine (3-MA)’, ‘lucanthone’, ‘wortmannin’ and autophagy activators such as ‘rapamycin’, ‘perifosine’, ‘metformin’ in combination with ‘disease’, ‘treatment’, ‘therapy’, ‘male infertility’ and equivalent terms. In addition, reference lists of primary and review articles were reviewed for additional relevant publications. All relevant publications until August 2021 were critically evaluated and discussed on the basis of relevance, quality and timelines. OUTCOMES (i) In pre-testicular processes, autophagy-related genes are involved in the regulation of the HPG axis; and (ii) in testicular processes, mTORC1, the main gate to autophagy, is crucial for spermatogonia stem cell (SCCs) proliferation, differentiation, meiotic progression, inactivation of sex chromosomes and spermiogenesis. During spermatidogenesis, autophagy maintains haploid round spermatid chromatoid body homeostasis for differentiation. During spermiogenesis, autophagy participates in acrosome biogenesis, flagella assembly, head shaping and the removal of cytoplasm from elongating spermatid. After spermatogenesis, through PDLIM1, autophagy orchestrates apical ectoplasmic specialization and basal ectoplasmic specialization to handle cytoskeleton assembly, governing spermatid movement and release during spermiation. In post-testicular processes, there is no direct evidence that autophagy participates in the process of capacitation. However, autophagy modulates the acrosome reaction, paternal mitochondria elimination and clearance of membranous organelles during fertilization. WIDER IMPLICATIONS Deciphering the roles of autophagy in the entire fate of sperm will provide valuable insights into therapies for diseases, especially male infertility.
Collapse
Affiliation(s)
- Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Harvard Reproductive Endocrine Science Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Yuan Zhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| |
Collapse
|
211
|
Diao RY, Gustafsson AB. Mitochondrial Quality Surveillance: Mitophagy in cardiovascular health and disease. Am J Physiol Cell Physiol 2021; 322:C218-C230. [PMID: 34965154 PMCID: PMC8816617 DOI: 10.1152/ajpcell.00360.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective autophagy of mitochondria, known as mitophagy, is a major quality control pathway in the heart that is involved in removing unwanted or dysfunctional mitochondria from the cell. Baseline mitophagy is critical for maintaining fitness of the mitochondrial network by continuous turnover of aged and less-functional mitochondria. Mitophagy is also critical in adapting to stress associated with mitochondrial damage or dysfunction. The removal of damaged mitochondria prevents reactive oxygen species-mediated damage to proteins and DNA and suppresses activation of inflammation and cell death. Impairments in mitophagy are associated with the pathogenesis of many diseases, including cancers, inflammatory diseases, neurodegeneration, and cardiovascular disease. Mitophagy is a highly regulated and complex process that requires the coordination of labeling dysfunctional mitochondria for degradation while simultaneously promoting de novo autophagosome biogenesis adjacent to the cargo. In this review, we provide an update on our current understanding of these steps in mitophagy induction and discuss the physiological and pathophysiological consequences of altered mitophagy in the heart.
Collapse
Affiliation(s)
- Rachel Y Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Asa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
212
|
Li M, Zhao X, Yong H, Shang B, Lou W, Wang Y, Bai J. FBXO22 Promotes Growth and Metastasis and Inhibits Autophagy in Epithelial Ovarian Cancers via the MAPK/ERK Pathway. Front Pharmacol 2021; 12:778698. [PMID: 34950036 PMCID: PMC8688818 DOI: 10.3389/fphar.2021.778698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
E3 ubiquitin ligase F-box only protein 22 (FBXO22), which targets the key regulators of cellular activities for ubiquitylation and degradation, plays an important role in tumorigenesis and metastasis. However, the function of FBXO22 in epithelial ovarian cancers has not been reported. This study aims to explore the biological function of FBXO22 in epithelial ovarian cancers progression and metastasis and its specific regulation mechanism. Immunohistochemistry analysis of tissue microarray was performed to evaluate the expression of FBXO22 in epithelial ovarian cancers patients. The proliferative ability of epithelial ovarian cancers cells was examined by the CCK8. The metastasis ability was detected by the wound healing assay, migration and invasion assays. Western blot was used to verify the relationship between FBXO22 expression and mitogen-activated protein kinase related proteins. Autophagic flux was detected by electron microscopy, mRFP-GFP-LC3 adenovirus, lysosomal tracker and western blot. For in vivo experiments, the effect of FBXO22 on epithelial ovarian cancers resistance was observed in a xenograft tumor model and a metastatic mice model. We found that FBXO22 expression was significantly increased in epithelial ovarian cancers tissues and was closely correlated with clinical pathological factors. As a result, we found that FBXO22 promoted the growth and metastasis, as well as inhibited the autophagy flux. In addition, we identified that FBXO22 performed these functions via the MAPK/ERK pathway. Our results first reported the function of FBXO22 in epithelial ovarian cancer and the correlation between FBXO22 and autophagy, suggesting FBXO22 as a novel target of epithelial ovarian cancers assessment and treatment.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xue Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Bingqing Shang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Weihua Lou
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
213
|
Akkoc Y, Gozuacik D. Autophagy and Hepatic Tumor Microenvironment Associated Dormancy. J Gastrointest Cancer 2021; 52:1277-1293. [PMID: 34921672 DOI: 10.1007/s12029-021-00774-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
The goal of successful cancer treatment is targeting the eradication of cancer cells. Although surgical removal of the primary tumors and several rounds of chemo- and radiotherapy reduce the disease burden, in some cases, asymptomatic dormant cancer cells may still exist in the body. Dormant cells arise from the disseminated tumor cells (DTCs) from the primary lesion. DTCs escape from immune system and cancer therapy and reside at the secondary organ without showing no sign of proliferation. However, under some conditions. dormant cells can be re-activated and enter a proliferative state even after decades. As a stress response mechanism, autophagy may help the adaptation of DTCs at this futile foreign microenvironment and may control the survival and re-activation of dormant cells. Studies indicate that hepatic microenvironment serves a favorable condition for cancer cell dormancy. Although, no direct study was pointing out the role of autophagy in liver-assisted dormancy, involvement of autophagy in both liver microenvironment, health, and disease conditions has been indicated. Therefore, in this review article, we will summarize cancer dormancy and discuss the role and importance of autophagy and hepatic microenvironment in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.
| | - Devrim Gozuacik
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.,Koç University School of Medicine, Istanbul, 34010, Turkey
| |
Collapse
|
214
|
Iessi E, Vona R, Cittadini C, Matarrese P. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021; 9:biomedicines9121942. [PMID: 34944758 PMCID: PMC8698563 DOI: 10.3390/biomedicines9121942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.
Collapse
|
215
|
Shu Y, Sun X, Ye G, Xu M, Wu Z, Wu C, Li S, Tian J, Han H, Zhang J. DHOK Exerts Anti-Cancer Effect Through Autophagy Inhibition in Colorectal Cancer. Front Cell Dev Biol 2021; 9:760022. [PMID: 34977014 PMCID: PMC8719673 DOI: 10.3389/fcell.2021.760022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
DHOK (14,15β-dihydroxyklaineanone) is a novel diterpene isolated from roots of Eurycoma longifolia Jack, a traditional herb widely applied in Southeast Asia. It is reported that DHOK has cytotoxic effect on cancer cells, but its anti-cancer mechanism has still been not clear. In our study, we first observed that DHOK inhibits cell proliferation of colorectal cancer cells in a time- and dose-dependent manner. Next, we performed transcriptome sequencing to identify the targets of DHOK and found that autophagy-related signaling pathways are involved under DHOK treatment. Indeed, in DHOK-treated cells, the level of autophagosome marker LC3 and the formation of GFP-LC3 puncta were decreased, indicating the reduction of autophagy. Moreover, confocal microscopy results revealed the lysosomal activity and the formation of autolysosomes are also inhibited. Our western blotting results demonstrated the activation of mammalian target of rapamycin (mTOR) signaling pathway by DHOK, which may be attributed to the enhancement of ERK and AKT activity. Functionally, activation of autophagy attenuated DHOK-caused cell death, indicating that autophagy serves as cell survival. In xenograft mouse model, our results also showed that DHOK activates the mTOR signaling pathway, decreases autophagy level and inhibits the tumorigenesis of colon cancer. Taken together, we revealed the molecular mechanism of DHOK against cancer and our results also demonstrate great potential of DHOK in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yuhan Shu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Sun
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guiqin Ye
- Hangzhou Medical College, Hangzhou, China
| | - Mengting Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhipan Wu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Caixia Wu
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Haote Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Jianbin Zhang, ; Haote Han,
| | - Jianbin Zhang
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jianbin Zhang, ; Haote Han,
| |
Collapse
|
216
|
A perspective on the role of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166262. [PMID: 34481059 DOI: 10.1016/j.bbadis.2021.166262] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Autophagy refers to a ubiquitous set of catabolic pathways required to achieve proper cellular homeostasis. Aberrant autophagy has been implicated in a multitude of diseases including cancer. In this review, we highlight pioneering and groundbreaking research that centers on delineating the role of autophagy in cancer initiation, proliferation and metastasis. First, we discuss the autophagy-related (ATG) proteins and their respective roles in the de novo formation of autophagosomes and the subsequent delivery of cargo to the lysosome for recycling. Next, we touch upon the history of cancer research that centers upon ATG proteins and regulatory mechanisms that control an appropriate autophagic response and how these are altered in the diseased state. Then, we discuss the various discoveries that led to the idea of autophagy as a double-edged sword when it comes to cancer therapy. This review also briefly narrates how different types of autophagy-selective macroautophagy and chaperone-mediated autophagy, have been linked to different cancers. Overall, these studies build upon a steadfast trajectory that aims to solve the monumentally daunting challenge of finding a cure for many types of cancer by modulating autophagy either through inhibition or induction.
Collapse
|
217
|
Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY, Jiao L, Li DD, Ji J, Zhang HL, Yu Y, Chen YH, Feng GK, Deng R, Li JD, Zhu XF. CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy 2021; 17:4323-4340. [PMID: 33977871 PMCID: PMC8726624 DOI: 10.1080/15548627.2021.1912270] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Macroautophagy/autophagy plays an important role during the development of human cancer. BECN1 (beclin 1), a core player in autophagy regulation, is downregulated in many kinds of malignancy. The underlying mechanism, however, has not been fully illuminated. Here, we found that CUL3 (cullin 3), an E3 ubiquitin ligase, could interact with BECN1 and promote the K48-linked ubiquitination and degradation of this protein; In addition, CUL3 led to a decrease in autophagic activity through downregulating BECN1. We also found that KLHL38 was a substrate adaptor of the CUL3 E3 ligase complex-mediated ubiquitination and degradation of BECN1. In breast and ovarian cancer, CUL3 could promote the proliferation of tumor cells, and the expression of CUL3 was related to poor prognosis in patients. Our study reveals the underlying mechanism of BECN1 ubiquitination and degradation that affects autophagic activity and subsequently leads to tumor progression, providing a novel therapeutic strategy that regulates autophagy to combat cancer.Abbreviations: ATG: autophagy-related BECN1: beclin 1 CHX: cycloheximide CoIP: co-immunoprecipitation CUL3: cullin 3 IP: immunoprecipitation MS: mass spectrometry PtdIns3K: phosphatidylinositol 3-kinase UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai-Bin Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Qi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- The 3rd Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui-Yan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Jiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dan-Dan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiao Ji
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Dong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
218
|
Zhou A, Cai Q, Hong Y, Lv Y. Down-Regulation of Casein Kinase 1α Contributes to Endometriosis through Phosphatase and Tensin Homolog/Autophagy-Related 7-Mediated Autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2195-2202. [PMID: 34809787 DOI: 10.1016/j.ajpath.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to explore the roles of casein kinase 1α (CK1α) in endometriosis and its underlying mechanisms. Endometrial specimen were collected from the patients and healthy volunteers. The expression patterns of CK1α, phosphatase and tensin homolog (PTEN), and autophagy-related proteins were determined using immunohistochemistry staining, Western blot analysis, and quantitative RT-PCR. Besides, the CK1α-overexpressing cells and PTEN knockdown cells were constructed in the endometrial stromal cells isolated from endometriosis patients. In addition, the cells were transfected with pcDNA3.1-CK1α or pcDNA3.1-CK1α plus siRNA- PTEN. The expressions of CK1α, PTEN, and autophagy-related proteins were determined using Western blot and quantitative RT-PCR. The expressions of CK1α and autophagy-related 7 (Atg7) were significantly decreased in the ectopic endometrium compared with the eutopic endometrium. Spearman rank correlation analysis revealed positive correlations between CK1α and PTEN, CK1α and Atg7, and PTEN and Atg7. In addition, CK1α, PTEN, and autophagy-related proteins were down-regulated in ectopic endometrium. Interestingly, overexpression of CK1α significantly increased the expressions of autophagy-related proteins, whereas the protein expression of autophagy-related proteins was decreased with PTEN knock-down. CK1α regulated PTEN/Atg7-mediated autophagy in endometriosis.
Collapse
Affiliation(s)
- Aixiu Zhou
- Department of Gynaecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qiongyi Cai
- Department of Gynaecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yiting Hong
- Department of Gynaecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yuchun Lv
- Department of Gynaecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| |
Collapse
|
219
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
220
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
221
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
222
|
Yan S, Yuan D, Li Q, Li S, Zhang F. AICAR enhances the cytotoxicity of PFKFB3 inhibitor in an AMPK signaling-independent manner in colorectal cancer cells. Med Oncol 2021; 39:10. [PMID: 34761330 DOI: 10.1007/s12032-021-01601-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 12/09/2022]
Abstract
Numerous studies have shown that 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), a pivotal enzyme in modulating glycolysis, plays vital roles in various physiological processes. PFKFB3 activity could be regulated by several factors, such as hypoxia and AMPK signaling; however, it could also function as upstream of AMPK signaling. Here, we showed that PFKFB3 inhibitor PFK-15 induced cell viability loss and apoptosis. Deprivation of PFKFB3 inhibited autophagy, while enhanced the ubiquitin-proteasome degradation pathway. Furthermore, PFK-15 reduced both the AMPK and AKT-mTORC1 signaling pathways, as the attenuated phosphorylation level of kinases themselves and their substrates. The addition of AICAR rescued the AMPK activity and autophagy, but enhanced PFK-15-induced cell viability loss. In fact, AICAR promoted the cytotoxicity of PFK-15 even in the AMPKα1/2-silenced cells, indicating AICAR might function in an AMPK-independent manner. Nevertheless, AICAR further reduced the AKT-mTORC1 activity down-regulated by PFK-15. Moreover, it failed to enhance PFK-15's cytotoxicity in the AKT1/2-silenced cells, indicating AKT-mTORC1 participated during these processes. Collectively, the presented data demonstrated that PFK-15 inhibited cell viability, AMPK, and AKT-mTORC1 signaling, and AICAR probably enhanced the cell viability loss aroused by PFK-15 in an AKT-dependent and AMPK-independent manner, thereby revealing a more intimate relationship among PFKFB3, AMPK, and AKT-mTORC1 signaling pathways.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| | - Dongdong Yuan
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Qianqian Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Shi Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Fan Zhang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|
223
|
Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers (Basel) 2021; 13:cancers13225622. [PMID: 34830777 PMCID: PMC8616104 DOI: 10.3390/cancers13225622] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The modulation of autophagy represents a potential therapeutic strategy for cancer. More than one hundred clinical trials have been conducted or are ongoing to explore the efficacy of autophagy modulators to reduce the tumor growth and potentiate the anti-cancer effects of conventional therapy. Despite this, the effective role of autophagy during tumor initiation, growth, and metastasis remains not well understood. Depending on the cancer type and stage of cancer, autophagy may have tumor suppressor properties as well as help cancer cells to proliferate and evade cancer therapy. The current review aims to summarize the current knowledge about the autophagy implications in cancer and report the therapeutic opportunities based on the modulation of the autophagy process. Abstract The malignant transformation of a cell produces the accumulation of several cellular adaptions. These changes determine variations in biological processes that are necessary for a cancerous cell to survive during stressful conditions. Autophagy is the main nutrient recycling and metabolic adaptor mechanism in eukaryotic cells, represents a continuous source of energy and biomolecules, and is fundamental to preserve the correct cellular homeostasis during unfavorable conditions. In recent decades, several findings demonstrate a close relationship between autophagy, malignant transformation, and cancer progression. The evidence suggests that autophagy in the cancer context has a bipolar role (it may act as a tumor suppressor and as a mechanism of cell survival for established tumors) and demonstrates that the targeting of autophagy may represent novel therapeutic opportunities. Accordingly, the modulation of autophagy has important clinical benefits in patients affected by diverse cancer types. Currently, about 30 clinical trials are actively investigating the efficacy of autophagy modulators to enhance the efficacy of cytotoxic chemotherapy treatments. A deeper understanding of the molecular pathways regulating autophagy in the cancer context will provide new ways to target autophagy for improving the therapeutic benefits. Herein, we describe how autophagy participates during malignant transformation and cancer progression, and we report the ultimate efforts to translate this knowledge into specific therapeutic approaches to treat and cure human cancers.
Collapse
|
224
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
225
|
Youssef Y, Karkhanis V, Chan WK, Jeney F, Canella A, Zhang X, Sloan S, Prouty A, Helmig-Mason J, Tsyba L, Hanel W, Zheng X, Zhang P, Chung JH, Lucas DM, Kauffman Z, Larkin K, Strohecker AM, Ozer HG, Lapalombella R, Zhou H, Xu-Monette ZY, Young KH, Han R, Nurmemmedov E, Nuovo G, Maddocks K, Byrd JC, Baiocchi RA, Alinari L. Transducin β-like protein 1 controls multiple oncogenic networks in diffuse large B-cell lymphoma. Haematologica 2021; 106:2927-2939. [PMID: 33054136 PMCID: PMC8561281 DOI: 10.3324/haematol.2020.268235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common Non-Hodgkin's lymphoma and is characterized by a remarkable heterogeneity with diverse variants that can be identified histologically and molecularly. Large-scale gene expression profiling studies have identified the germinal center B-cell (GCB-) and activated B-cell (ABC-) subtypes. Standard chemo-immunotherapy remains standard front line therapy, curing approximately two thirds of patients. Patients with refractory disease or those who relapse after salvage treatment have an overall poor prognosis highlighting the need for novel therapeutic strategies. Transducin β-like protein 1 (TBL1) is an exchange adaptor protein encoded by the TBL1X gene and known to function as a master regulator of the Wnt signalling pathway by binding to β-CATENIN and promoting its downstream transcriptional program. Here, we show that, unlike normal B-cells, DLBCL cells express abundant levels of TBL1 and its overexpression correlates with poor clinical outcome regardless of DLBCL molecular subtype. Genetic deletion of TBL1 and pharmacological approach using tegavivint, a first-in-class small molecule targeting TBL1 (Iterion Therapeutics), promotes DLBCL cell death in vitro and in vivo. Through an integrated genomic, biochemical, and pharmacologic analyses, we characterized a novel, β-CATENIN independent, post-transcriptional oncogenic function of TBL1 in DLBCL where TBL1 modulates the stability of key oncogenic proteins such as PLK1, MYC, and the autophagy regulatory protein BECLIN-1 through its interaction with a SKP1-CUL1-F-box (SCF) protein supercomplex. Collectively, our data provide the rationale for targeting TBL1 as a novel therapeutic strategy in DLBCL.
Collapse
Affiliation(s)
- Youssef Youssef
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Vrajesh Karkhanis
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Frankie Jeney
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Alessandro Canella
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Xiaoli Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Shelby Sloan
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Alexander Prouty
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Liudmyla Tsyba
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Walter Hanel
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Xuguang Zheng
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Pu Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Ji-Hyun Chung
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - David M Lucas
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Zachary Kauffman
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Karilyn Larkin
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Anne M Strohecker
- Department of Cancer Biology and Genetics, The Ohio State University Columbus, OH, USA.; Department of Surgery, Division of Surgical Oncology, The Ohio State University Columbus, OH
| | - Hatice G Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Rosa Lapalombella
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Hui Zhou
- Department of Pathology, Division of Hematopathology, Duke University, Durham, NC
| | - Zijun Y Xu-Monette
- Department of Pathology, Division of Hematopathology, Duke University, Durham, NC
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University, Durham, NC
| | | | - Elmar Nurmemmedov
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA
| | | | - Kami Maddocks
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - John C Byrd
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Robert A Baiocchi
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH.
| |
Collapse
|
226
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
227
|
Moss JJ, Wirth M, Tooze SA, Lane JD, Hammond CL. Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB J 2021; 35:e22002. [PMID: 34708458 DOI: 10.1096/fj.202101167r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process responsible for the removal of waste and damaged cellular components by lysosomal degradation. It plays a key role in fundamental cell processes, including ER stress mitigation, control of cell metabolism, and cell differentiation and proliferation, all of which are essential for cartilage cell (chondrocyte) development and survival, and for the formation of cartilage. Correspondingly, autophagy dysregulation has been implicated in several skeletal disorders such as osteoarthritis and osteoporosis. To test the requirement for autophagy during skeletal development in zebrafish, we generated an atg13 CRISPR knockout zebrafish line. This line showed a complete loss of atg13 expression, and restricted autophagic activity in vivo. In the absence of autophagy, chondrocyte maturation was accelerated, with chondrocytes exhibiting signs of premature hypertrophy. Focussing on the jaw element, autophagy disruption affected joint articulation causing restricted mouth opening. This gross behavioural phenotype corresponded with a failure to thrive, and death in homozygote atg13 nulls within 17 days. Taken together, our results are consistent with autophagy contributing to the timely regulation of chondrocyte maturation and for extracellular matrix formation.
Collapse
Affiliation(s)
- Joanna J Moss
- School of Biochemistry, University of Bristol, Bristol, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Jon D Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
228
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
229
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
230
|
Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H, Chamling X, Tian S, Sullivan ML, Calderon MJ, Fitting CS, Weiss J, Jayagopal A, Handa JT, Sahel JA, Zigler JS, Kinchington PR, Zack DJ, Sinha D. BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. Autophagy 2021; 17:3140-3159. [PMID: 33404293 PMCID: PMC8526037 DOI: 10.1080/15548627.2020.1871204] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Retinal ganglion cell axons are heavily myelinated (98%) and myelin damage in the optic nerve (ON) severely affects vision. Understanding the molecular mechanism of oligodendrocyte progenitor cell (OPC) differentiation into mature oligodendrocytes will be essential for developing new therapeutic approaches for ON demyelinating diseases. To this end, we developed a new method for isolation and culture of ON-derived oligodendrocyte lineage cells and used it to study OPC differentiation. A critical aspect of cellular differentiation is macroautophagy/autophagy, a catabolic process that allows for cell remodeling by degradation of excess or damaged cellular molecules and organelles. Knockdown of ATG9A and BECN1 (pro-autophagic proteins involved in the early stages of autophagosome formation) led to a significant reduction in proliferation and survival of OPCs. We also found that autophagy flux (a measure of autophagic degradation activity) is significantly increased during progression of oligodendrocyte differentiation. Additionally, we demonstrate a significant change in mitochondrial dynamics during oligodendrocyte differentiation, which is associated with a significant increase in programmed mitophagy (selective autophagic clearance of mitochondria). This process is mediated by the mitophagy receptor BNIP3L (BCL2/adenovirus E1B interacting protein 3-like). BNIP3L-mediated mitophagy plays a crucial role in the regulation of mitochondrial network formation, mitochondrial function and the viability of newly differentiated oligodendrocytes. Our studies provide novel evidence that proper mitochondrial dynamics is required for establishment of functional mitochondria in mature oligodendrocytes. These findings are significant because targeting BNIP3L-mediated programmed mitophagy may provide a novel therapeutic approach for stimulating myelin repair in ON demyelinating diseases.Abbreviations: A2B5: a surface antigen of oligodendrocytes precursor cells, A2B5 clone 105; ACTB: actin, beta; APC: an antibody to label mature oligodendrocytes, anti-adenomatous polyposis coli clone CC1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG9A: autophagy related 9A; AU: arbitrary units; BafA1: bafilomycin A1; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CNP: 2',3'-cyclic nucleotide 3'-phosphodiesterase; Ctl: control; COX8: cytochrome c oxidase subunit; CSPG4/NG2: chondroitin sulfate proteoglycan 4; DAPI: 4'6-diamino-2-phenylindole; DNM1L: dynamin 1-like; EGFP: enhanced green fluorescent protein; FACS: fluorescence-activated cell sorting; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary growth factor; GFP: green fluorescent protein; HsESC: human embryonic stem cell; IEM: immunoelectron microscopy; LAMP1: lysosomal-associated membrane protein 1; LC3B: microtubule-associated protein 1 light chain 3; MBP: myelin basic protein; MFN2: mitofusin 2; Mito-Keima: mitochondria-targeted monomeric keima-red; Mito-GFP: mitochondria-green fluorescent protein; Mito-RFP: mitochondria-red fluorescent protein; MitoSOX: red mitochondrial superoxide probe; MKI67: antigen identified by monoclonal antibody Ki 67; MMP: mitochondrial membrane potential; O4: oligodendrocyte marker O4; OLIG2: oligodendrocyte transcription factor 2; ON: optic nerve; OPA1: OPA1, mitochondrial dynamin like GTPase; OPC: oligodendrocyte progenitor cell; PDL: poly-D-lysine; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; RGC: retinal ganglion cell; ROS: reactive oxygen species; RT-PCR: real time polymerase chain reaction; SEM: standard error of the mean; SOD2: superoxide dismutase 2, mitochondrial; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin, beta; TUBB3: tubulin, beta 3 class III.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shenghe Tian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mara L.G. Sullivan
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Joseph Calderon
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S. Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - James T. Handa
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut De La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - J. Samuel Zigler
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul R. Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
231
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 938] [Impact Index Per Article: 234.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
232
|
Inoue T, Hayashi Y, Tsujii Y, Yoshii S, Sakatani A, Kimura K, Uema R, Kato M, Saiki H, Shinzaki S, Iijima H, Takehara T. Suppression of autophagy promotes fibroblast activation in p53-deficient colorectal cancer cells. Sci Rep 2021; 11:19524. [PMID: 34593902 PMCID: PMC8484348 DOI: 10.1038/s41598-021-98865-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Deficiency of p53 in cancer cells activates the transformation of normal tissue fibroblasts into carcinoma-associated fibroblasts; this promotes tumor progression through a variety of mechanisms in the tumor microenvironment. The role of autophagy in carcinoma-associated fibroblasts in tumor progression has not been elucidated. We aimed to clarify the significance of autophagy in fibroblasts, focusing on the TP53 status in co-cultured human colorectal cancer cell lines (TP53-wild-type colon cancer, HCT116; TP53-mutant colon cancer, HT29; fibroblast, CCD-18Co) in vitro. Autophagy in fibroblasts was significantly suppressed in association with ACTA2, CXCL12, TGFβ1, VEGFA, FGF2, and PDGFRA mRNA levels, when co-cultured with p53-deficient HCT116sh p53 cells. Exosomes isolated from the culture media of HCT116sh p53 cells significantly suppressed autophagy in fibroblasts via inhibition of ATG2B. Exosomes derived from TP53-mutant HT29 cells also suppressed autophagy in fibroblasts. miR-4534, extracted from the exosomes of HCT116sh p53 cells, suppressed ATG2B in fibroblasts. In conclusion, a loss of p53 function in colon cancer cells promotes the activation of surrounding fibroblasts through the suppression of autophagy. Exosomal miRNAs derived from cancer cells may play a pivotal role in the suppression of autophagy.
Collapse
Affiliation(s)
- Takanori Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiko Sakatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Kimura
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Uema
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Saiki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
233
|
Siedlecka-Kroplewska K, Wrońska A, Kmieć Z. Piceatannol, a Structural Analog of Resveratrol, Is an Apoptosis Inducer and a Multidrug Resistance Modulator in HL-60 Human Acute Myeloid Leukemia Cells. Int J Mol Sci 2021; 22:10597. [PMID: 34638937 PMCID: PMC8509003 DOI: 10.3390/ijms221910597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Despite recent advances in the treatment of this disease, the prognosis and overall long-term survival for patients remain poor, which drives the search for new chemotherapeutics and treatment strategies. Piceatannol, a polyphenolic compound present in grapes and wine, appears to be a promising chemotherapeutic agent in the treatment of leukemia. The aim of the present study was to examine whether piceatannol induces autophagy and/or apoptosis in HL-60 human acute myeloid leukemia cells and whether HL-60 cells are able to acquire resistance to piceatannol toxicity. We found that piceatannol at the IC90 concentration of 14 µM did not induce autophagy in HL-60 cells. However, it induced caspase-dependent apoptosis characterized by phosphatidylserine externalization, disruption of the mitochondrial membrane potential, caspase-3 activation, internucleosomal DNA fragmentation, PARP1 cleavage, chromatin condensation, and fragmentation of cell nuclei. Our findings also imply that HL-60 cells are able to acquire resistance to piceatannol toxicity via mechanisms related to MRP1 activity. Our results suggest that the use of piceatannol as a potential chemotherapeutic agent may be associated with the risk of multidrug resistance, warranting its use in combination with other chemotherapeutic agents.
Collapse
|
234
|
Endosomal trafficking and DNA damage checkpoint kinases dictate survival to replication stress by regulating amino acid uptake and protein synthesis. Dev Cell 2021; 56:2607-2622.e6. [PMID: 34534458 DOI: 10.1016/j.devcel.2021.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Atg6Beclin 1 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6Beclin 1-Vps38UVRAG-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote survival to replication stress by reversing this process. An impaired AA uptake triggers activation of Gcn2, which attenuates protein synthesis by phosphorylating eIF2α. Mec1Atr-Rad53Chk1/Chk2 activation during replication stress further hinders translation efficiency by counteracting eIF2α dephosphorylation through Glc7PP1. AA shortage-induced hyperphosphorylation of eIF2α inhibits the synthesis of 65 stress response proteins, thus resulting in cell sensitization to replication stress, while TORC1 promotes cell survival. Our findings reveal an integrated network mediated by endosomal trafficking, translational control pathways, and checkpoint kinases linking AA availability to the response to replication stress.
Collapse
|
235
|
Shan D, Dong R, Hu Y. Current understanding of autophagy in intrahepatic cholestasis of pregnancy. Placenta 2021; 115:53-59. [PMID: 34560328 DOI: 10.1016/j.placenta.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease during pregnancy. Manifested with pruritus and elevation in bile acids, the etiology of ICP is still poorly understood. Although ICP is considered relatively benign for the mother, increased rates of adverse fetal outcomes including sudden fetal demise are possible devastating outcomes associated with ICP. Limited understanding of the underlying mechanisms restricted treatment options and managements of ICP. In recent decades, evolving evidence indicated the significance of autophagy in pregnancy and pregnancy complications. Autophagy is an ancient self-defense mechanism which is essential for cell survival, differentiation and development. Autophagy has pivotal roles in embryogenesis, implantation, and maintenance of pregnancy, and is involved in the orchestration of diverse physiological and pathological cellular responses in patients with pregnancy complications. Recent advances in these research fields provide tantalizing targets on autophagy to improve the care of pregnant women. This review summarizes recent advances in understanding autophagy in ICP and its possible roles in the causation and prevention of ICP.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ruihong Dong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
236
|
Yang Q, Qiu X, Zhang X, Yu Y, Li N, Wei X, Feng G, Li Y, Zhao Y, Wang R. Optimization of Beclin 1-Targeting Stapled Peptides by Staple Scanning Leads to Enhanced Antiproliferative Potency in Cancer Cells. J Med Chem 2021; 64:13475-13486. [PMID: 34506131 DOI: 10.1021/acs.jmedchem.1c00870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Beclin 1 is an essential autophagy gene and a haploinsufficient tumor suppressor. Beclin 1 is the scaffolding member of the Class III phosphatidylinositol-3-kinase complex (PI3KC3) and recruits two positive regulators Atg14L and UVRAG through its coiled-coil domain to upregulate PI3KC3 activity. Our previous work has shown that hydrocarbon-stapled peptides targeted to the Beclin 1 coiled-coil domain reduced Beclin 1 homodimerization and promoted the Beclin 1-Atg14L/UVRAG interaction. These peptides also induced autophagy and enhanced the endolysosomal degradation of cell surface receptors like EGFR. Here, we present the optimization of these Beclin 1-targeting peptides by staple scanning and sequence permutation. Placing the hydrocarbon staple closer to the Beclin 1-peptide interface enhanced their binding affinity by ∼10- to 30-fold. Optimized peptides showed potent antiproliferative efficacy in cancer cells that overexpressed EGFR and HER2 by inducing necrotic cell death but not apoptosis. Our Beclin 1-targeting stapled peptides may serve as effective therapeutic candidates for EGFR- or HER2-driven cancer.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xianxiu Qiu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Xiaozhe Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Yingting Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Na Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Xing Wei
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Guoqin Feng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yanxiang Zhao
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
237
|
Deng Y, Chen QS, Huang WF, Dai JW, Wu ZJ. XPA serves as an autophagy and apoptosis inducer by suppressing hepatocellular carcinoma in a PI3K/Akt/mTOR dependent manner. J Gastrointest Oncol 2021; 12:1797-1810. [PMID: 34532129 DOI: 10.21037/jgo-21-310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background To explore the potential biological function of XPA (Xeroderma pigmentosum group A) in hepatic neoplasms and the underlying molecular mechanisms. Methods Liver cells were used as experimental models to establish HCC (hepatocellular carcinoma) in vitro. Protein extractions were subjected to Western blotting to detect the proteins expression. The lentivirus transfection efficiency was confirmed by Western blot and RT-qPCR, Tunnel staining was used to detect apoptosis, and Transwell assays were used to observe cell migration and invasion. Cell proliferation was detected with colony formation and CCK-8 (cell counting kit-8) assays. Results XPA expression was obviously lower in HCC tissue and liver cancer cell lines. XPA overexpression induced autophagy and apoptosis by increasing LC3B II/I, Beclin1, cleaved-caspase-3, and Bax expression and decreasing p62 and Bcl2 protein levels. XPA also suppressed HCC EMT (Epithelial-Mesenchymal Transition) by increasing E-cadherin and decreasing N-cadherin and vimentin protein expression. Cell proliferation, migration and invasion in vivo were significantly inhibited by the overexpression of XPA, and p-PI3K, p-Akt, and p-mTOR expression were decreased in LV-XPA cells. In general, XPA inhibited HCC by inducing autophagy and apoptosis and by modulating the expression of PI3K/Akt/mTOR proteins. Conclusions XPA overexpression was found to suppress HCC by inducing autophagy and apoptosis and repressing EMT and proliferation. Each of these effects may be involved in modulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yi Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Song Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Traumatology, Chongqing University Central Hospital, Chongqing, China
| | - Wei-Feng Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang-Wen Dai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
238
|
Saygisever K, Faikoglu G, Celik H, Ugur SA, Gokhan Akk A, Kelicen-Ug P, Ozyazgan S. Effect of Three PDEIs on Neuroprotective and Autophagy Proteins in vitro AD Model. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.169.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
239
|
Foth M, Garrido-Laguna I, Kinsey CG. Therapeutic Targeting of Autophagy in Pancreatic Cancer. Surg Oncol Clin N Am 2021; 30:709-718. [PMID: 34511191 DOI: 10.1016/j.soc.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides a brief review of the therapeutic opportunity of inhibiting autophagy in pancreatic cancer. The autophagic process, importance of autophagy in pancreatic cancer, relevant clinical trials, and new agents in preclinical and clinical development are discussed.
Collapse
Affiliation(s)
- Mona Foth
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Ignacio Garrido-Laguna
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA.
| |
Collapse
|
240
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
241
|
GATA3 improves the protective effects of bone marrow-derived mesenchymal stem cells against ischemic stroke induced injury by regulating autophagy through CREG. Brain Res Bull 2021; 176:151-160. [PMID: 34500038 DOI: 10.1016/j.brainresbull.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been demonstrated to benefit functional recovery after ischemic stroke, however, the low survival rate of BMSCs in ischemic microenvironment largely limits its use. METHODS Rat BMSCs (rBMSCs) were isolated from SD rats and treated with oxygen glucose deprivation/reoxygenation (OGD) to mimic ischemic microenvironment in vitro. Expression of mRNAs and proteins were assessed by qRT-PCR and western blot, respectively. Cell viability was detected using MTT. ROS level was evaluated by DCFH-DA Assay Kit. TUNEL and flow cytometry analysis were adopted to detect cell apoptosis. Immunofluorescence analysis was used to examine LC3 expression. Dual-luciferase reporter and ChIP assays were employed to determine the interaction between CREG and GATA3. Middle cerebral artery occlusion (MCAO) model was established to mimic ischemic stroke in vivo. TTC staining was used to measure the infarcts area in the brain of MCAO rats. Nissl staining was used to examine the quantity of neurons, and mNSS test was applied to compare behavioral functions of animals. RESULTS The rBMSCs were successfully isolated from SD rats. OGD exposure decreased the expression of GATA3 in rBMSCs, GATA3 overexpression alleviated OGD-induced cell injury and enhanced autophagy. Treatment with autophagy inhibitor (3-MA) abolished the protective effects of GATA3 against OGD-induced cell injury. GATA3 targeted the promoter of CREG and positively regulated its expression. The protective effect of GATA3 overexpression on autophagy during OGD exposure was reversed by CREG knockdown. Moreover, GATA3 overexpression improved the therapeutic effects of BMSCs transplantation on ischemic stroke in vivo. CONCLUSION Our results indicated that GATA3 overexpression improved the therapeutic effects of rBMSCs transplantation against ischemic stroke induced injury by regulating autophagy through CREG.
Collapse
|
242
|
Mustafa MF, Saliluddin SM, Fakurazi S, Tizen Laim NMS, Md Pauzi SH, Nik Yahya NH, S Raja Gopal N, Abdullah MA, Maniam S. Expression of Autophagy and Mitophagy Markers in Breast Cancer Tissues. Front Oncol 2021; 11:612009. [PMID: 34490076 PMCID: PMC8416475 DOI: 10.3389/fonc.2021.612009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play important roles in regulating cell bioenergetics status and reactive oxygen species (ROS) generation. ROS-induced mitochondrial damage is among the main intracellular signal inducers of autophagy. Autophagy is a cellular catabolic process that regulates protein and organelle turnover, while a selective form of autophagy, mitophagy, specifically targets dysfunctional mitochondrial degradation. This study aims to measure the levels of autophagy, mitophagy, oxidative stress, and apoptosis in invasive breast carcinoma tissues using immunohistochemistry (IHC). Tissue microarrays of 76 patients with breast cancer were stained with six IHC markers (MnSOD, Beclin-1, LC3, BNIP3, Parkin, and cleaved caspase 3). The expression intensity was determined for each tumor tissue and the adjacent tumor-matched control tissues. Intermediate and strong staining scores of MnSOD, Beclin-1, LC-3, BNIP-3, and Parkin were significantly higher in tumor tissues compared to the adjacent matched control. The scoring intensity was further classified into tissues with negative staining and positive staining, which showed that positive scores of Beclin-1 and Parkin were significantly high in tumor tissues compared to other markers. Positive association was also noted between BNIP-3 and Beclin-1 as well as LC-3 and cleaved caspase-3 immunostaining. To our knowledge, this is one of the first studies that measure both mitophagy and autophagy in the same breast cancer tissues and the adjacent matched control. The findings from this study will be of great potential in identifying new cancer biomarkers and inspire significant interest in applying anti-autophagy therapies as a possible treatment for breast cancer.
Collapse
Affiliation(s)
- Mohd Fazirul Mustafa
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Suhainizam Muhamad Saliluddin
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | | | - Suria Hayati Md Pauzi
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
243
|
Sendeng-4 Suppressed Melanoma Growth by Induction of Autophagy and Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5519973. [PMID: 34475961 PMCID: PMC8407990 DOI: 10.1155/2021/5519973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
Sendeng-4 is a traditional Chinese medicine that has been successfully applied to anti-inflammatory diseases in clinical practice. Monomers within Sendeng-4 showed promising antitumor activity against lung cancer, colon cancer, and cutaneous cancer. However, potency of Sendeng-4 in melanoma has not been explored. This study aims to explore the potential application of Sendeng-4 in melanoma treatment. In the present study, we systemically investigate the possibility of Sendeng-4 for treatment of melanoma cancer in vitro by proliferation assay, colony formation, flow cell cytometry, RNA-seq, western blot, and fluorescence-based assay. Our data demonstrated that Sendeng-4 suppresses the proliferation and colony formation capacity of melanoma cells and induces cell cycle block at G2/M phase and eventually cell death. Mechanistically, transcriptome sequencing demonstrates that the PI3K-AKT pathway was significantly inactivated upon Sendeng-4 exposure, which was confirmed by western blot showing decreased phosphorylation of AKT. In addition, decreased BCL-2 expression and increased BAX expression were observed, suggesting programmed cell death via apoptosis. Moreover, LC3-II production as well as autophagosomes formation was observed as demonstrated by western blot and immunofluorescence, indicating elevated autophagy network by Sendeng-4 stimulation. Collectively, we concluded that Sendeng-4 might be used as an anticancer drug for melanoma.
Collapse
|
244
|
Prizad H, Sheikholeslami F, Mahmoudi M, Fazeli M, Fadajan Z. The role of assaying recombinant Beclin1 by in vitro and in vivo tests. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
245
|
Wei Z, Li X, Li W, Fu Q, Mu Y, Chen X. Molecular characterization and role in virus infection of Beclin-1 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2021; 116:30-41. [PMID: 34147615 DOI: 10.1016/j.fsi.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Beclin-1, the ortholog of yeast autophagy-related gene 6 (Atg6), has a central role in autophagy, which has been linked to diverse biological processes including immunity, development, tumor suppression, and lifespan extension. However, understanding of function of fish Beclin-1 is limited now. In this study, the complete Beclin-1 cDNA of large yellow croaker Larimichthys crocea (LcBeclin-1) was cloned, whose open reading frame (ORF) is 1344 bp long and encodes a protein of 447 amino acids (aa). The deduced LcBeclin-1 possesses a typical Bcl-2 homology domain 3(BH3) and an APG6 domain that contains a central coiled-coil domain (CCD, residues 174 to 231) and a C-terminal evolutionarily conserved domain (ECD, residues 241 to 334). LcBeclin-1 shared a high amino acid identity of 81.66-98.66% with reported Beclin-1 molecules from other vertebrate species. LcBeclin-1 gene was constitutively expressed in all tissues tested, with the highest levels in heart. LcBeclin-1 transcripts were also detected in primary head kidney granulocytes (PKGs), primary head kidney macrophages (PKMs), primary head kidney leukocytes (PKLs), and large yellow croaker head kidney cell line (LYCK), and were significantly upregulated by poly (I:C) in PKMs and LYCK cells. Subcellular localization showed that LcBeclin-1 was evenly distributed in the cytoplasm and nucleus of LYCK cells. Overexpression of LcBeclin-1 significantly increased the replication of SVCV, as evidenced by increased severity of the cytopathic effects, enhanced viral titre, and upregulated transcriptional levels of viral genes. Further studies showed that LcBeclin-1 induced the occurrence of autophagy in LYCK cells. Additionally, LcBeclin-1 also decreased the expression levels of large yellow croaker interferons (IFNs; IFNc, IFNd, and IFNh), interferon regulatory factor 3 (IRF3) and IRF7, IFN-stimulated genes (ISGs; Mx, PKR, and Viperin) in LYCK cells. All these data suggest that LcBeclin-1 promoted the viral replication possibly by inducing autophagy or negatively modulating IFN response, which will help us to further understand the function of fish Beclin-1.
Collapse
Affiliation(s)
- Zuyun Wei
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Li
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanru Li
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuling Fu
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinnan Mu
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
246
|
Zhang X, Deibert CP, Kim WJ, Jaman E, Rao AV, Lotze MT, Amankulor NM. Autophagy inhibition is the next step in the treatment of glioblastoma patients following the Stupp era. Cancer Gene Ther 2021; 28:971-983. [PMID: 32759988 DOI: 10.1038/s41417-020-0205-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023]
Abstract
It has now been nearly 15 years since the last major advance in the treatment of patients with glioma. "The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity". Autophagy is primarily a survival pathway, literally self-eating, that is utilized in response to stress (such as radiation and chemotherapy), enabling clearance of effete protein aggregates and multimolecular assemblies. Promising results have been observed in patients with glioma for over a decade now when autophagy inhibition with chloroquine derivatives coupled with conventional therapy. The application of autophagy inhibitors, the role of immune cell-induced autophagy, and the potential role of novel cellular and gene therapies, should now be considered for development as part of this well-established regimen.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christopher P Deibert
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wi-Jin Kim
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aparna V Rao
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
247
|
Cho KJ, Shin SY, Moon H, Kim BK, Ro SW. Knockdown of Atg7 suppresses Tumorigenesis in a murine model of liver cancer. Transl Oncol 2021; 14:101158. [PMID: 34174688 PMCID: PMC8243000 DOI: 10.1016/j.tranon.2021.101158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer in adults and a leading cause of cancer-related deaths worldwide. Studies have shown that autophagy is significantly involved in carcinogenesis, in particular, driven by activated RAS signaling. Autophagy related 7 (Atg7) is a critical component for the formation of autophagosome and required for autophagy processes. We investigated the role of autophagy in RAS-driven tumorigenesis in the liver, via the knockdown of Atg7 in the model. Transposon vectors encoding short hairpin RNAs targeting Atg7 (Atg7 shRNA) were constructed. Inhibition of autophagy via Atg7 knockdown was tested in Hep3B cells cultured in nutrient-starved medium. Formation of autophagosome was suppressed in nutrient-starved Hep3B cells expressing Atg7 shRNA, demonstrating that it efficiently inhibited autophagy in HCC cells. Transposons encoding Atg7 shRNA were mixed with those expressing HRASG12V and p53 shRNA, and subsequently used for hydrodynamic injection to 5-week-old C57BL/6 mice. Tumorigenesis in livers induced by HRASG12V and p53 shRNA was significantly suppressed by Atg7 knockdown. The inhibition of autophagy led to a decreased proliferation of cancer cells, as determined by Ki-67 staining. Our data indicate that knockdown of Atg7 led to a significant decrease in tumorigenesis in a murine HCC model induced by activated RAS. Inhibition of autophagosome formation is expected to be a therapeutic option for liver cancer.
Collapse
Affiliation(s)
- Kyung Joo Cho
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sun Yeong Shin
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyuk Moon
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Beom Kyung Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Gastroenterology, Yonsei University College of medicine, Seoul, Republic of Korea.
| | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
248
|
Kumar P, Jagtap YA, Patwa SM, Kinger S, Dubey AR, Prajapati VK, Dhiman R, Poluri KM, Mishra A. Autophagy based cellular physiological strategies target oncogenic progression. J Cell Physiol 2021; 237:258-277. [PMID: 34448206 DOI: 10.1002/jcp.30567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Evidence accumulated from past findings indicates that defective proteostasis may contribute to risk factors for cancer generation. Irregular assembly of abnormal proteins catalyzes the disturbance of cellular proteostasis and induces the ability of abnormal cellular proliferation. The autophagy mechanism plays a key role in the regular clearance of abnormal/poor lipids, proteins, and various cellular organelles. The results of functional and effective autophagy deliver normal cellular homeostasis, which establishes supportive metabolism and avoids unexpected tumorigenesis events. Still, the precise molecular mechanism of autophagy in tumor suppression has not been clear. How autophagy triggers selective or nonselective bulk degradation to dissipate tumor promotion under stress conditions is not clear. Under proteotoxic insults to knockdown the drive of tumorigenesis, it is critical for us to figure out the detailed molecular functions of autophagy in human cancers. The current article summarizes autophagy-based theragnostic strategies targeting various phases of tumorigenesis and suggests the preventive roles of autophagy against tumor progression. A better understanding of various molecular partners of autophagic flux will improve and innovate therapeutic approaches based on autophagic-susceptible effects against cellular oncogenic transformation.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som Mohanlal Patwa
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
249
|
Boustani H, Khodadi E, Shahidi M. Autophagy in Hematological Malignancies: Molecular Aspects in Leukemia and Lymphoma. Lab Med 2021; 52:16-23. [PMID: 32634208 DOI: 10.1093/labmed/lmaa027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The organization of the hematopoietic system is dependent on hematopoietic stem cells (HSCs) that are capable of self-renewal and multilineage differentiation to produce different blood cell lines. Autophagy has a central role in energy production and metabolism of the cells during starvation, cellular stress adaption, and removing mechanisms for aged or damaged organelles. The role and importance of autophagy pathways are becoming increasingly recognized in the literature because these pathways can be useful in organizing intracellular circulation, molecular complexes, and organelles to meet the needs of various hematopoietic cells. There is supporting evidence in the literature that autophagy plays an emerging role in the regulation of normal cells and that it also has important features in malignant hematopoiesis. Understanding the molecular details of the autophagy pathway can provide novel methods for more effective treatment of patients with leukemia. Overall, our review will emphasize the role of autophagy and its different aspects in hematological malignant neoplasms.
Collapse
Affiliation(s)
- Hassan Boustani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Khodadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
250
|
Zhang C, Xu J, Xue S, Ye J. Prognostic Value of L-Type Amino Acid Transporter 1 (LAT1) in Various Cancers: A Meta-Analysis. Mol Diagn Ther 2021; 24:523-536. [PMID: 32410110 DOI: 10.1007/s40291-020-00470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The L-type amino acid transporter 1 (LAT1, SLC7A5) is overexpressed in various types of cancer and has been thought to assist cancer progression through its uptake of neutral amino acids. However, the prognostic role of LAT1 in human cancers remains uncharacterized. Therefore, we conducted this meta-analysis to determine the prognostic significance of LAT1 in various cancers. METHODS We systematically searched the PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure, and WanFang databases to collect relevant cohort studies investigating the prognostic value of LAT1 expression in patients with cancer. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were pooled to clarify the association between the LAT1 expression and the survival of patients with cancer. Odds ratios (ORs) with 95% CIs were calculated to appraise the correlation between LAT1 and the clinicopathological characteristics in patients with cancer. RESULTS A total of 32 eligible articles, including 34 cohorts and 6410 patients, were enrolled in this meta-analysis. Our results demonstrated that high LAT1 expression was significantly associated with poor overall survival (HR = 1.66, 95% CI 1.41-1.96, P < 0.001), cancer-specific survival (HR = 1.64, 95% CI 1.31-2.05, P < 0.001), disease-free survival (HR = 1.55, 95% CI 1.31-1.83, P < 0.001), and progression-free survival (HR = 1.18, 95% CI 1.02-1.37, P = 0.026) in patients with cancer. In addition, we found that the elevated expression level of LAT1 was significantly related to certain phenotypes of tumor aggressiveness, such as tumor size, clinical stage, T stage, lymphatic invasion, vascular invasion, tumor differentiation, Ki-67, CD34, CD98, p53, and system ASC amino acid transporter-2. CONCLUSIONS Elevated expression of LAT1 is associated with poor prognosis in human cancers and may serve as a potential prognostic marker and therapeutic target for patients with malignancies.
Collapse
Affiliation(s)
- Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jun Ye
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China.
| |
Collapse
|