201
|
Hwang CK, Svarovskaia ES, Pathak VK. Dynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching. Proc Natl Acad Sci U S A 2001; 98:12209-14. [PMID: 11593039 PMCID: PMC59793 DOI: 10.1073/pnas.221289898] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently proposed a dynamic copy-choice model for retroviral recombination in which a steady state between the rates of polymerization and RNA degradation determines the frequency of reverse transcriptase (RT) template switching. The relative contributions of polymerase-dependent and polymerase-independent RNase H activities during reverse transcription and template switching in vivo have not been determined. We developed an in vivo trans-complementation assay in which direct repeat deletion through template switching reconstitutes a functional green fluorescent protein gene in a retroviral vector. Complementation in trans between murine leukemia virus Gag-Pol proteins lacking polymerase and RNase H activities restored viral replication. Because only polymerase-independent RNase H activity is present in this cell line, the relative roles of polymerase-dependent and -independent RNase H activities in template switching could be determined. We also analyzed double mutants possessing polymerase and RNase H mutations that increased and decreased template switching, respectively. The double mutants exhibited low template switching frequency, indicating that the RNase H mutations were dominant. Trans-complementation of the double mutants with polymerase-independent RNase H did not restore the high template switching frequency, indicating that polymerase-dependent RNase H activity was essential for the increased frequency of template switching. Additionally, trans-complementation of RNase H mutants in the presence and absence of hydroxyurea, which slows the rate of reverse transcription, showed that hydroxyurea increased template switching only when polymerase-dependent RNase H activity was present. This is, to our knowledge, the first demonstration of polymerase-dependent RNase H activity in vivo. These results provide strong evidence for a dynamic association between the rates of DNA polymerization and polymerase-dependent RNase H activity, which determines the frequency of in vivo template switching.
Collapse
Affiliation(s)
- C K Hwang
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
202
|
Logg CR, Logg A, Tai CK, Cannon PM, Kasahara N. Genomic stability of murine leukemia viruses containing insertions at the Env-3' untranslated region boundary. J Virol 2001; 75:6989-98. [PMID: 11435579 PMCID: PMC114427 DOI: 10.1128/jvi.75.15.6989-6998.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses containing inserts of exogenous sequences frequently eliminate the inserted sequences upon spread in susceptible cells. We have constructed replication-competent murine leukemia virus (MLV) vectors containing internal ribosome entry site (IRES)-transgene cassettes at the env-3' untranslated region boundary in order to examine the effects of insert sequence and size on the loss of inserts during viral replication. A virus containing an insertion of 1.6 kb replicated with greatly attenuated kinetics relative to wild-type virus and lost the inserted sequences in a single infection cycle. In contrast, MLVs containing inserts of 1.15 to 1.30 kb replicated with kinetics only slightly attenuated compared to wild-type MLV and exhibited much greater stability, maintaining their genomic integrity over multiple serial infection cycles. Eventually, multiple species of deletion mutants were detected simultaneously in later infection cycles; once detected, these variants rapidly dominated the population and thereafter appeared to be maintained at a relative equilibrium. Sequence analysis of these variants identified preferred sites of recombination in the parental viruses, including both short direct repeats and inverted repeats. One instance of insert deletion through recombination with an endogenous retrovirus was also observed. When specific sequences involved in these recombination events were eliminated, deletion variants still arose with the same kinetics upon virus passage and by apparently similar mechanisms, although at different locations in the vectors. Our results suggest that while lengthened, insert-containing genomes can be maintained over multiple replication cycles, preferential deletions resulting in loss of the inserted sequences confer a strong selective advantage.
Collapse
Affiliation(s)
- C R Logg
- Department of Pathology and Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
203
|
An W, Telesnitsky A. Frequency of direct repeat deletion in a human immunodeficiency virus type 1 vector during reverse transcription in human cells. Virology 2001; 286:475-82. [PMID: 11485415 DOI: 10.1006/viro.2001.1025] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviral genetic rearrangements can result from reverse transcriptase template switching. Most published data suggest that errors such as base misincorporation occur at similar frequencies for HIV-1 and for simple retroviruses such as spleen necrosis virus (SNV) and murine leukemia virus (MuLV). However, previous reports have suggested that template switch-mediated recombination is much more frequent for HIV-1 than for simple retroviruses. In this report, direct repeat deletion vectors similar to those previously used for measuring template switching events for SNV and MuLV were developed for HIV-1. Forward mutation rates and the frequency of template switching during a single cycle of HIV-1 replication were determined. The frequency of HIV-1-mediated repeat deletion was measured for three separate internal repeats in lacZ and was compared to rates observed with identical repeats for MuLV. The results indicated that the error rate and the frequency of repeat deletion of HIV-1 were similar to those of MuLV.
Collapse
Affiliation(s)
- W An
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
204
|
McGrath KM, Hoffman NG, Resch W, Nelson JA, Swanstrom R. Using HIV-1 sequence variability to explore virus biology. Virus Res 2001; 76:137-60. [PMID: 11410314 DOI: 10.1016/s0168-1702(01)00271-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) only recently established an epidemic world-wide infection in the human population. The virus persists in the human host through active replication and is able to avoid clearance by the immune system. Active replication is an important component of the rapid evolutionary potential of HIV-1, a potential which manifests itself in the evolution of immune escape variants, drug resistant variants, and variants with the ability to use different cell surface coreceptors in conjunction with CD4. Multiple zoonotic introductions, compartmentalization of virus replication in the body, and genetic bottlenecks associated with sampling during transmission, antiretroviral therapy, and geographic and/or host population isolation further contribute to the range of sequences present in extant viruses. The sum of the history of all of these phenomena is reflected in HIV-1 sequence variability, and most of these phenomena are ongoing today. Here we review the use of HIV-1 sequence variability to explore its underlying biology.
Collapse
Affiliation(s)
- K M McGrath
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, 22-062 Lineberger Cancer Center, CB# 7295, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
205
|
Abstract
As a consequence of being diploid, retroviruses have a high recombination rate. Naturally occurring retroviruses contain two repeat sequences (R regions) flanking either end of their RNA genomes, and recombination between these two R regions occurs at a high rate. We deduced that recombination may occur between two sequences within the same RNA molecule (intramolecular) as well as between sequences present within two separate RNA molecules (intermolecular). Intramolecular recombination would usually result in a deletion within the progeny provirus. In this report, we demonstrate that intramolecular recombination between two identical sequences occurred within a chimeric RNA vector. In addition, high rates of recombination between two identical sequences within the same RNA molecule resulted mostly from intramolecular recombination.
Collapse
Affiliation(s)
- J Zhang
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0096, USA.
| | | |
Collapse
|
206
|
Abstract
Two conflicting in vitro observations suggest that retroviral recombinations are temperature dependent. Ouhammouch & Brody (Nucleic Acids Research 20, 5443–5450, 1992) suggested that retroviral recombination rates should increase as temperature increases. However, Shimomaye & Salvato (Gene Analysis Techniques 6, 25–28, 1989) and Brooks et al. (Biotechniques 19, 806–812, 814–815, 1985) found that at low temperature the tightly folded structure of RNAs may hinder reverse transcription proceeding along the RNA template, which increases its chance of dissociating from the template; therefore, raising the reaction temperature was the simplest way to overcome template secondary structure and prevent premature termination of cDNA synthesis. In this report, two vectors based on murine leukaemia virus (MLV) were constructed. The first contained two mutated gfp genes in tandem positions. The upstream gfp gene encoded a mutation at its 3′ end, while the downstream gfp gene encoded a mutation at its 5′ end. The recombination that occurred between the two mutated gfp genes restored a functional gfp gene. The cells that contained the functional gfp gene were green when observed under a fluorescence microscope. The second MLV vector contained a functional gfp gene with two identical sequences flanking either end. A recombination that occurred between the two identical sequences resulted in deletion of the gfp gene. Cells containing the vector with the gfp deletion were colourless or clear when observed under the microscope. Using these two vectors, we have demonstrated that retroviral recombination is temperature dependent and the rate of recombination decreases as temperature is raised from 31 to 43 °C.
Collapse
Affiliation(s)
- Ting Li
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, Combs Research Bldg Room 206, 800 Rose Street, KY 40536-0096, Lexington, USA1
| | - Jiayou Zhang
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, Combs Research Bldg Room 206, 800 Rose Street, KY 40536-0096, Lexington, USA1
| |
Collapse
|
207
|
Abstract
The human AIDS viruses--HIV-1 and HIV-2--impose major burdens on the health and economic status of many developing countries. Surveys of other animal species have revealed that related viruses--the SIVs are widespread in a large number of African simian primates where they do not appear to cause disease. Phylogenetic analyses indicate that these SIVs are the reservoirs for the human viruses, with SIVsm from the sooty mangabey monkey the most likely source of HIV-2, and SIVcpz from the common chimpanzee the progenitor population for HIV-1. Although it is clear that AIDS has a zoonotic origin, it is less certain when HIV-1 and HIV-2 first entered human populations and whether cross-species viral transmission is common among primates. Within infected individuals the process of HIV evolution takes the form of an arms race, with the virus continually fixing mutations by natural selection which allow it to escape from host immune responses. The arms race is less intense in SIV-infected monkeys, where a weaker immune response generates less selective pressure on the virus. Such a difference in virus-host interaction, along with a broadening of co-receptor usage such that HIV strains are able to infect cells with both CCR5 and CXCR4 chemokine receptors, may explain the increased virulence of HIV in humans compared to SIV in other primates.
Collapse
Affiliation(s)
- E C Holmes
- Department of Zoology, University of Oxford, UK.
| |
Collapse
|
208
|
Zhang K, Hawken M, Rana F, Welte FJ, Gartner S, Goldsmith MA, Power C. Human immunodeficiency virus type 1 clade A and D neurotropism: molecular evolution, recombination, and coreceptor use. Virology 2001; 283:19-30. [PMID: 11312658 DOI: 10.1006/viro.2001.0876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) non-B clade viral infections of the brain have not been studied to date. Among nine AIDS patients from Nairobi, Kenya, infected with HIV-1 A (N = 5) or D (N = 4) clade strains, brain-derived HIV-1 env sequences displayed greater evolutionary distance than B clade brain-derived viruses (P < 0.001). Similarly, molecular diversity between matched brain and spleen env clones was clade-dependent and concentrated in the hypervariable V4 region (P < 0.001), with phylogenetic clustering of sequences derived from the same organ. Brain-derived A and D clade sequences displayed significantly lower ratios of nonsynonymous/synonymous substitution rates (d(N)/d(S)) compared to matched spleen-derived clones and brain-derived B clade viruses. Interclade recombination events were infrequently observed among the present env sequences. A chimeric virus containing the C2V3 region from an A clade brain-derived sequence preferentially used CD4 and CCR5 for infection. These findings demonstrate that differences in molecular diversity in brain-derived sequences were dependent on the individual clade and domain within the env gene, but both B and non-B clade brain-derived viruses exhibit a preference for CCR5 as a coreceptor.
Collapse
Affiliation(s)
- K Zhang
- Department of Clinical Neuroscience, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
The high rate of recombination in retroviruses is due to the frequent template switching that occurs during reverse transcription. Although the mechanism that leads to this switch is still a matter of debate, there is increasing evidence that specific RNA structures are involved. And the implications might go beyond retroviral genetic variability.
Collapse
Affiliation(s)
- M Negroni
- Department of Molecular Biology, Institut Pasteur, 75724 Paris 15, France.
| | | |
Collapse
|
210
|
Abstract
The yeast retrotransposon Ty1 resembles retroviruses in a number of important respects but also shows several fundamental differences from them. We now report that, as in retroviruses, the genomic RNA in Ty1 virus-like particles is dimeric. The Ty1 dimers also resemble retroviral dimers in that they are stabilized during the proteolytic maturation of the particle. The stabilization of the dimer suggests that one of the cleavage products of TyA1 possesses nucleic acid chaperone activity.
Collapse
Affiliation(s)
- Y X Feng
- HIV Drug Resistance Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
211
|
DeStefano JJ, Raja A, Cristofaro JV. In vitro strand transfer from broken RNAs results in mismatch but not frameshift mutations. Virology 2000; 276:7-15. [PMID: 11021989 DOI: 10.1006/viro.2000.0533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An in vitro system to compare the fidelity of strand transfers from truncated vs full-length RNAs was constructed. A donor RNA, on which reverse transcriptase (RT)-directed DNA synthesis was initiated, shared homology with an acceptor RNA, to which DNAs initiated on the donor could transfer. All RNAs were derived from the N-terminal portion of the alpha-lac gene. On full-length donors, transfers occurred when DNAs migrated to the acceptor prior to being completed on the donor. On donors that were truncated, most transfers occurred after DNAs reached the end of the donor. Transfer products were amplified by PCR and used to replace the corresponding region in a vector containing the alpha-lac gene. Transformed Escherichia coli were screened for alpha-complementation by blue-white phenotype analysis, with white colonies scored as those with errors in alpha-lac. These errors were derived from RT synthesis and strand transfer. The mutant colony frequency approximately doubled for transfer products derived from truncated donors (0.026+/-0.005 vs. 0.053+/-0.011 (three experiments +/- SD), for full-length vs. truncated, respectively). The increases resulted from additional non-template-directed bases (mostly thymidines) added to the DNAs before transfer. Sequence analysis of DNAs synthesized on truncated donors showed that about 60% had additions (20/34); however, those without additions transferred at a much higher rate than those with. Transfer of the DNAs with additions always resulted in substitutions; no frameshifts were observed. Results are consistent with RT adding nontemplated nucleotides at template termini. Transfer and subsequent extension of these products is severely inhibited relative to products without additions. The potential relevance of these findings to retrovirus replication is discussed.
Collapse
Affiliation(s)
- J J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
212
|
Lupiani B, Hunt H, Silva R, Fadly A. Identification and characterization of recombinant subgroup J avian leukosis viruses (ALV) expressing subgroup A ALV envelope. Virology 2000; 276:37-43. [PMID: 11021992 DOI: 10.1006/viro.2000.0539] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three recombinant avian leukosis subgroup J viruses, ADOL 5701A, ADOL 5701ADelta, and ADOL 6803A, carrying a subgroup A envelope have been isolated and characterized. These viruses were identified by their ability to replicate in DF-1/J, a recombinant chicken embryo fibroblast (CEF) cell line expressing the subgroup J envelope that is resistant to subgroup J replication. Flow cytometric analysis of DF-1/J cells infected with ADOL 5701 and ADOL 6803, two subgroup J isolates, indicated cross-reactivity with subgroup A chicken polyclonal serum. Based on published sequences of subgroups A and J isolates, we designed a series of primers to PCR amplify the envelope and LTR of these viruses. PCR products were obtained when the forward primer was specific for subgroup A gp85 envelope protein gene and the reverse primer was specific for subgroup J LTR. Sequence analysis of the PCR products indicated that these viruses had a subgroup A gp85, a subgroup E gp37, and a subgroup J LTR. Interestingly, these viruses had previously been propagated in CEF from the alv6 chicken line, a line that carries a replication defective recombinant endogenous virus expressing a subgroup A envelope (RAV 0-A(1)). Sequence analysis of RAV 0-A(1) gp85 and gp37 envelope proteins indicated that they were almost identical to those of the recombinants ADOL 5701A and ADOL 6803A. These results indicate that these three recombinant viruses arose by recombination between exogenous subgroup J isolates and a recombinant defective endogenous virus with subgroup A envelope.
Collapse
Affiliation(s)
- B Lupiani
- Avian Disease and Oncology Laboratory, Agricultural Research Service, East Lansing, Michigan 48823, USA.
| | | | | | | |
Collapse
|
213
|
Mansky LM, Bernard LC. 3'-Azido-3'-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1. J Virol 2000; 74:9532-9. [PMID: 11000223 PMCID: PMC112383 DOI: 10.1128/jvi.74.20.9532-9539.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How antiretroviral drug resistance influences human immunodeficiency virus type 1 (HIV-1) evolution is not clear. This study tested the hypothesis that antiretroviral drugs such as 3'-azido-3'-deoxythymidine (AZT) can influence the in vivo mutation rate of HIV-1. It was observed that AZT can increase the rate of HIV-1 mutation by a factor of 7 in a single round of replication. In addition, (-)2',3'-dideoxy-3'-thiacytidine (3TC) was also found to increase the mutation rate of HIV-1 by a factor of 3. It was also found that HIV-1 drug-resistant reverse transcriptase (RT) variants can influence the in vivo mutation rate. Replication of HIV-1 with AZT-resistant RTs increased the mutation rate by as much as a factor of 3, while replication of HIV-1 with a 3TC-resistant RT (M184V) had no significant effect on the mutation rate. It was observed that only high-level, AZT-resistant RT variants could influence the in vivo mutation rate (i.e., M41L/T215Y and M41L/D67N/K70R/T215Y). In total, these observations indicate that both antiretroviral drugs and drug resistance mutations can influence the in vivo mutation rate of HIV-1.
Collapse
Affiliation(s)
- L M Mansky
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
214
|
Haag AL, Lin JH, Levin HL. Evidence for the packaging of multiple copies of Tf1 mRNA into particles and the trans priming of reverse transcription. J Virol 2000; 74:7164-70. [PMID: 10888658 PMCID: PMC112236 DOI: 10.1128/jvi.74.15.7164-7170.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA.
Collapse
Affiliation(s)
- A L Haag
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
215
|
Anderson JA, Pathak VK, Hu WS. Effect of the murine leukemia virus extended packaging signal on the rates and locations of retroviral recombination. J Virol 2000; 74:6953-63. [PMID: 10888634 PMCID: PMC112212 DOI: 10.1128/jvi.74.15.6953-6963.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2000] [Accepted: 05/08/2000] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptase (RT) switches templates frequently during DNA synthesis; the acceptor template can be the same RNA (intramolecular) or the copackaged RNA (intermolecular). Previous results indicated that intramolecular template switching occurred far more frequently than intermolecular template switching. We hypothesized that intermolecular template-switching events (recombination) occurred at a lower efficiency because the copackaged RNA was not accessible to the RT. To test our hypothesis, the murine leukemia virus (MLV) extended packaging signal (Psi(+)) containing a dimer linkage structure (DLS) was relocated from the 5' untranslated region (UTR) to between selectable markers, allowing the two viral RNAs to interact closely in this region. It was found that the overall maximum recombination rates of vectors with Psi(+) in the 5' UTR or Psi(+) between selectable markers were not drastically different. However, vectors with Psi(+) located between selectable markers reached a plateau of recombination rate at a shorter distance. This suggested a limited enhancement of recombination by Psi(+). The locations of the recombination events were also examined by using restriction enzyme markers. Recombination occurred in all four regions between the selectable markers; the region containing 5' Psi(+) including DLS did not undergo more recombination than expected from the size of the region. These experiments indicated that although the accessibility of the copackaged RNA was important in recombination, other factors existed to limit the number of viruses that were capable of undergoing intermolecular template switching. In addition, recombinants with multiple template switches were observed at a frequency much higher than expected, indicating the presence of high negative interference in the MLV-based system. This extends our observation with the spleen necrosis virus system and suggests that high negative interference may be a common phenomenon in retroviral recombination.
Collapse
Affiliation(s)
- J A Anderson
- Department of Microbiology and Immunology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
216
|
Polge E, Darlix JL, Paoletti J, Fossé P. Characterization of loose and tight dimer forms of avian leukosis virus RNA. J Mol Biol 2000; 300:41-56. [PMID: 10864497 DOI: 10.1006/jmbi.2000.3832] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviral genomes consist of two identical RNA molecules joined non-covalently near their 5'-ends. Recently, we showed that an imperfect autocomplementary sequence, located in the L3 domain, plays an essential role in avian sarcoma-leukosis virus (ASLV) RNA dimerization in vitro. This sequence can adopt a stem-loop structure and is involved in ASLV replication. Here, we found that in the absence of nucleocapsid protein, RNA transcripts of avian leukosis virus (ALV) were able to form two types of dimers in vitro that differ in their stability: a loose dimer, formed at a physiological temperature, and a tight dimer, formed at a high temperature. A mutational analysis was performed to define the features of these dimers. The results of this analysis unambiguously confirm that the two L3 stem-loops interact directly in both types of dimers. A loop-loop interaction is the main linkage in the loose dimer. In contrast, in the tight dimer, the stem and the loop of the L3 hairpin form an extended duplex. Surprisingly, we also found that the dimerization properties defined for our ALV strain (type SR-A) differ from those found in other ASLV strains.
Collapse
Affiliation(s)
- E Polge
- LBPA-Alembert, Ecole Normale Supérieure de Cachan, Unité Mixte de Recherche 8532 du CNRS, Cachan cedex, 94235, France
| | | | | | | |
Collapse
|
217
|
Negroni M, Buc H. Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. Proc Natl Acad Sci U S A 2000; 97:6385-90. [PMID: 10829081 PMCID: PMC18612 DOI: 10.1073/pnas.120520497] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copy-choice recombination efficiently reshuffles genetic markers in retroviruses. In vivo, the folding of the genomic RNA is controlled by the nucleocapsid protein (NC). We show that binding of NC onto the acceptor RNA molecule is sufficient to enhance recombination, providing evidence for a mechanism where the structure of the acceptor template determines the template switch. NC as well as another RNA chaperone (StpA) converts recombination into a widespread process no longer restricted to rare hot spots, an effect maximized when both the NC and the reverse transcriptase come from HIV-1. These data suggest that RNA chaperones confer a higher genetic flexibility to retroviruses.
Collapse
Affiliation(s)
- M Negroni
- Institut Pasteur, Unité de Physicochimie des Macromolécules Biologiques, Unité de Recherche Associée 1773 du Centre National de la Recherche Scientifique, 75724 Paris cedex 15, France.
| | | |
Collapse
|
218
|
Abstract
We characterized short interspersed elements (SINEs), of the CORE-suprafamily in egg-laying (monotremes), pouched (marsupials) and placental mammals. Five families of these repeats distinguished by the presence of distinct LINE-related 3'-segments shared tRNA-like promoter and the central core region. The putative active elements were reconstructed from the alignment of genomic repeats representing molecular fossils of sequences that amplified in the past and since then underwent multiple mutations. Their mode of proliferation by retroposition was indicated by the presence of: (1) internal RNA PolIII promoter; (2) simple sequence repeated tail; (3) direct repeats; and (4) subfamilies recording the evolution of elements. The copy number of CORE-SINEs in placental genomes was estimated at about 300,000; they were highly divergent and apparently ceased to amplify before radiation of these lineages. On the other hand, among almost half a million fossil elements present in marsupials and monotremes, the youngest subfamilies could still be retropositionally active. CORE-SINEs terminate in sequence repeats of a few nucleotides similar to their 3'-segment LINE-homologues, CR1, L2 and Bov-B. These three LINE elements fall into clades distinct from that of L1 elements which, similar to their co-amplifying SINEs, end in a poly(A) tail. We propose a model in which new CORE-families, with distinct 3'-segments, are created at the RNA level due to template switching between LINE and CORE-RNA during reverse transcription. The proposed mechanism suggests that such an adaptation to the changing amplification machinery facilitated the survival and prosperity of CORE-elements over long evolutionary periods in different lineages.
Collapse
Affiliation(s)
- N Gilbert
- Centre de recherche de l'Hôpital Sainte-Justine, Centre de cancérologie Charles Bruneau, Montréal, H3T 1C5, Canada
| | | |
Collapse
|
219
|
Theilleux-Delalande V, Girard F, Huynh-Dinh T, Lancelot G, Paoletti J. The HIV-1(Lai) RNA dimerization. Thermodynamic parameters associated with the transition from the kissing complex to the extended dimer. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2711-9. [PMID: 10785394 DOI: 10.1046/j.1432-1327.2000.01292.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Retroviruses contain dimeric RNA consisting of two identical copies of the genomic RNA. The interaction between these two RNA molecules occurs near their 5' ends. A region upstream from the splice donor comprising an auto-complementary sequence has been identified as being responsible for the initiation of the formation of dimeric HIV-1(Lai) RNA. This region (SL1), part of the PSI encapsidation domain, can adopt a stem-loop structure. It has already been shown that this stem-loop structure can initiate the formation of two distinct dimers differing in their thermostability: a loop-loop dimer or 'kissing complex' and an extended dimer. We report here a study using UV and 1D NMR spectroscopy of the dimerization of a short oligoribonucleotide (23 nucleotides) spanning nucleotides 248-270 of the HIV-1(Lai) SL1 sequence, in order to derive the thermodynamic parameters associated with the transition from the loop-loop complex to the extended dimer. The temperature dependence of the UV absorbency shows an hypochromicity for this transition with a small enthalpy change equal to - 29.4 +/- 5 kcal x mol-1, together with a concentration independent transition which implies a monomolecular reaction. On the other hand, our NMR results don't indicate a dissociation of the GCGCGC sequence engaged in the loop-loop interaction during the rearrangement of the loop-loop complex into the extended dimer. Our data suggest that the loop-loop interaction is maintained during the temperature dependent conformational change while the intramolecular base-pairing of the stems is disrupted and then reconstituted to form an intermolecular base-pairing leading to an extended dimer.
Collapse
Affiliation(s)
- V Theilleux-Delalande
- Centre de Biophysique Moléculaire, UPR 4301 CNRS conventionnée avec l'Université d'Orléans, Orléans, France
| | | | | | | | | |
Collapse
|
220
|
Costa LJ, Munerato P, Diaz RS, Tanuri A. Generation of intersubtype human immunodeficiency virus type 1 recombinants in env gene in vitro: influences in the biological behavior and in the establishment of productive infections. Virology 2000; 268:440-51. [PMID: 10704352 DOI: 10.1006/viro.1999.0133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The occurrence of human immunodeficiency virus type 1 (HIV-1) recombinant genomes belonging to different subtypes is a common event in regions where more than two subtypes cocirculate. Although there are accumulating data toward an increase in the number of intersubtype recombinants, little has been addressed about the biological behavior of such mosaic genomes. This work reports the biological characterization of engineered in vitro HIV-1 intersubtype recombinants in the gp120 region. The recombinants possess the entire gp120 of B or F Brazilian isolates in the Z6 (subtype D) backbone. Here we show that this type of recombinant structure results in profound impairment to the establishment of productive infections in CD4-positive cells. The characterization of biological properties of those recombinant viruses demonstrated viral production occurring only during a transient peak early on infection and that they are not able to down-regulate the expression of CD4 receptor on the cell surface. We also report the phenotype reversion of one recombinant virus studied here, after 62 days in culture. Two amino acid substitutions in highly constant gp120 regions (C1 and C4) were identified in the revertant virus. The mutation occurring in the C4 region is localized near two amino acid residues critical for gp120/CD4 interaction. Based on these data, we suggest that failure in CD4 down-modulation by recombinant viruses can be due to a structural dysfunction of gp160 protein unable to block CD4 at the endoplasmic reticule. The possibilities that the establishment of latent infections can be directly related to the continuous expression of CD4 on the infected cell surface and that the occurrence of mutations in amino acid nearby residues critical for gp120/CD4 interaction can restore the fully productive infectious process are discussed.
Collapse
Affiliation(s)
- L J Costa
- Laboratory of Molecular Virology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
221
|
Zhang J, Tang LY, Li T, Ma Y, Sapp CM. Most retroviral recombinations occur during minus-strand DNA synthesis. J Virol 2000; 74:2313-22. [PMID: 10666262 PMCID: PMC111713 DOI: 10.1128/jvi.74.5.2313-2322.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral RNA molecules are plus, or sense in polarity, equivalent to mRNA. During reverse transcription, the first strand of the DNA molecule synthesized is minus-strand DNA. After the minus strand is polymerized, the plus-strand DNA is synthesized using the minus-strand DNA as the template. In this study, a helper cell line that contains two proviruses with two different mutated gfp genes was constructed. Recombination between the two frameshift mutant genes resulted in a functional gfp. If recombination occurs during minus-strand DNA synthesis, the plus-strand DNA will also contain the functional sequence. After the cell divides, all of its offspring will be green. However, if recombination occurs during plus-strand DNA synthesis, then only the plus-strand DNA will contain the wild-type gfp sequence and the minus-strand DNA will still carry the frameshift mutation. The double-stranded DNA containing this mismatch was subsequently integrated into the host chromosomal DNA of D17 cells, which were unable to repair the majority of mismatches within the retroviral double-strand DNA. After the cell divided, one daughter cell contained the wild-type gfp sequence and the other daughter cell contained the frameshift mutation in the gfp sequence. Under fluorescence microscopy, half the cells in the offspring were green and the other half of the cells were colorless or clear. Thus, we demonstrated that more than 98%, if not all, retroviral recombinations occurred during minus-strand DNA synthesis.
Collapse
Affiliation(s)
- J Zhang
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | | | | | | | |
Collapse
|
222
|
Skinner CR, Jones JS. Use of recombinatory PCR to insert subtle genetic markers into Moloney murine leukemia virus-based retroviral vectors. J Virol Methods 2000; 85:125-36. [PMID: 10716346 DOI: 10.1016/s0166-0934(99)00159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As tools to examine template switches and recombination events during the process of reverse transcription, two nearly identical Moloney murine leukemia virus-based (MoMLV) retroviral vectors were constructed using the technique of recombinatory polymerase chain reaction (PCR). The experimental vectors designed for this study were based on the well-characterized LN series vectors. The protein coding regions normally present in the retroviral genome have been replaced by the coding regions for two drug resistance markers, neomycin phosphotransferase (Neo) and hygromycin phosphotransferase (Hyg). With only one functional drug resistance gene in each vector, the individual vectors as well as recombination events between them can be followed by phenotypic selection. Utilization of recombinatory PCR allowed the insertion of very subtle nucleotide changes resulting in a series of restriction site polymorphisms in the two retroviral vectors. The ability to create these subtle mutations in specific locations of these retroviral vectors allowed the utilization of naturally occurring areas of variability in the vectors and avoid regions important for replication.
Collapse
Affiliation(s)
- C R Skinner
- Department of Molecular Pathology, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
223
|
Mikkelsen JG, Pedersen FS. Genetic reassortment and patch repair by recombination in retroviruses. J Biomed Sci 2000; 7:77-99. [PMID: 10754383 DOI: 10.1007/bf02256615] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Retroviral particles contain a diploid RNA genome which serves as template for the synthesis of double-stranded DNA in a complex process guided by virus-encoded reverse transcriptase. The dimeric nature of the genome allows the proceeding polymerase to switch templates during copying of the copackaged RNA molecules, leading to the generation of recombinant proviruses that harbor genetic information derived from both parental RNAs. Template switching abilities of reverse transcriptase facilitate the development of mosaic retroviruses with altered functional properties and thereby contribute to the restoration and evolution of retroviruses facing altering selective forces of their environment. This review focuses on the genetic patchwork of retroviruses and how mixing of sequence patches by recombination may lead to repair in terms of re-established replication and facilitate increased viral fitness, enhanced pathogenic potential, and altered virus tropisms. Endogenous retroelements represent an affluent source of functional viral sequences which may hitchhike with virions and serve as sequence donors in patch repair. We describe here the involvement of endogenous viruses in genetic reassortment and patch repair and review important examples derived from cell culture and animal studies. Moreover, we discuss how the patch repair phenomenon may challenge both safe usage of retrovirus-based gene vehicles in human gene therapy and the use of animal organs as xenografts in humans. Finally, the ongoing mixing of distinct human immunodeficiency virus strains and its implications for antiviral treatment is discussed.
Collapse
MESH Headings
- Animals
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Endogenous Retroviruses/genetics
- Evolution, Molecular
- Genetic Therapy/adverse effects
- Genetic Variation
- Humans
- Mice
- Models, Genetic
- Mosaicism/genetics
- Proviruses/genetics
- RNA/genetics
- RNA, Double-Stranded/biosynthesis
- RNA, Double-Stranded/genetics
- RNA, Viral/genetics
- RNA-Directed DNA Polymerase/physiology
- Recombination, Genetic
- Retroviridae/genetics
- Retroviridae Infections/genetics
- Retroviridae Infections/transmission
- Retroviridae Infections/virology
- Risk
- Safety
- Templates, Genetic
- Transplantation, Heterologous/adverse effects
- Virion/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- J G Mikkelsen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
224
|
Jetzt AE, Yu H, Klarmann GJ, Ron Y, Preston BD, Dougherty JP. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 2000; 74:1234-40. [PMID: 10627533 PMCID: PMC111457 DOI: 10.1128/jvi.74.3.1234-1240.2000] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diploid nature of human immunodeficiency virus type 1 (HIV-1) indicates that recombination serves a central function in virus replication and evolution. Previously, while examining the nature of obligatory primer strand transfers during reverse transcription, a high rate of recombination was observed at the ends of the viral genome within the viral long terminal repeats, prompting the following question: does recombination occur at a high rate throughout the genome? To address this question, two vectors based upon different strains of HIV-1 were utilized. The vectors were comprised predominantly of autologous HIV-1 sequence and were approximately the same size as the parental genome. The proviral progeny of heterodimeric virions were analyzed after a single cycle of replication, and the sequence heterogeneity between the two strains allowed direct examination of recombination crossovers. The results obtained indicate that HIV-1 undergoes approximately two to three recombination events per genome per replication cycle. These results imply that both HIV-1 RNAs are typically utilized during reverse transcription and that recombination is an important aspect of HIV-1 replication.
Collapse
Affiliation(s)
- A E Jetzt
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
225
|
Garrett E, Miller AR, Goldman JM, Apperley JF, Melo JV. Characterization of recombination events leading to the production of an ecotropic replication-competent retrovirus in a GP+envAM12-derived producer cell line. Virology 2000; 266:170-9. [PMID: 10612671 DOI: 10.1006/viro.1999.0052] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication-competent retrovirus (RCR) was identified in a GP+envAM12-derived producer cell, containing the MFG-S-Neo retroviral vector, using a marker rescue assay. Studies were undertaken to determine the origin and structure of this RCR. Receptor interference assays demonstrated that the virus was pseudotyped with an ecotropic envelope. Molecular analysis demonstrated the presence of a MoMLV ecotropic env recombinant where the neomycin resistance gene of the MFG-S-Neo vector was replaced by MoMLV ecotropic env. Additional recombinants linking the retroviral pol gene to neo and the neo gene to MoMLV env were also identified. A full-length MoMLV retroviral genome was detected by nested PCR in the contaminated amphotropic producer cells and in cells infected with its supernatant. Unexpectedly, this was also present in the GP+E86 packaging cells together with a previously undescribed envelope construct possessing a full 5' and 3' LTR, although these cells were consistently negative for the presence of RCR. These anomalies in the GP+E86 packaging cell line result in increased homology with the MFG-S-Neo vector, leading to an increased risk for the production of RCR. Our findings point to a need for increased vigilance when using these packaging lines to generate replication-defective retrovirus.
Collapse
Affiliation(s)
- E Garrett
- Department of Haematology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 ONN, United Kingdom
| | | | | | | | | |
Collapse
|
226
|
Mikkelsen JG, Lund AH, Duch M, Pedersen FS. Mutations of the kissing-loop dimerization sequence influence the site specificity of murine leukemia virus recombination in vivo. J Virol 2000; 74:600-10. [PMID: 10623721 PMCID: PMC111579 DOI: 10.1128/jvi.74.2.600-610.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic information of retroviruses is retained within a dimeric RNA genome held together by intermolecular RNA-RNA interactions near the 5' ends. Coencapsidation of retrovirus-derived RNA molecules allows frequent template switching of the virus-encoded reverse transcriptase during DNA synthesis in newly infected cells. We have previously shown that template shifts within the 5' leader of murine leukemia viruses occur preferentially within the kissing stem-loop motif, a cis element crucial for in vitro RNA dimer formation. By use of a forced recombination approach based on single-cycle transfer of Akv murine leukemia virus-based vectors harboring defective primer binding site sequences, we now report that modifications of the kissing-loop structure, ranging from a deletion of the entire sequence to introduction of a single point mutation in the loop motif, significantly disturb site specificity of recombination within the highly structured 5' leader region. In addition, we find that an intact kissing-loop sequence favors optimal RNA encapsidation and vector transduction. Our data are consistent with the kissing-loop dimerization model and suggest that a direct intermolecular RNA-RNA interaction, here mediated by palindromic loop sequences within the mature genomic RNA dimer, facilitates hotspot template switching during retroviral cDNA synthesis in vivo.
Collapse
Affiliation(s)
- J G Mikkelsen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | |
Collapse
|
227
|
Le Blanc I, Greatorex J, Dokhélar MC, Lever AM. A 37 base sequence in the leader region of human T-cell leukaemia virus type I is a high affinity dimerization site but is not essential for virus replication. J Gen Virol 2000; 81:105-8. [PMID: 10640547 DOI: 10.1099/0022-1317-81-1-105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutagenesis has demonstrated a region in the human T-cell leukaemia virus type I (HTLV-I) 5' leader RNA which, when deleted, abolishes stable RNA dimer formation in vitro. We have further mapped, using both in vitro transcribed and synthesized RNA, this site to a 37 base region, which dimerizes with high affinity. When deleted from an HTLV-I Gag-Pol-expressing plasmid which was co-transfected with an envelope protein expressor to produce virions capable of single round infection, the dimer linkage deletion did not affect viral protein production. In addition, virus infectivity was only slightly reduced, to approximately 75-80% of the wild-type.
Collapse
Affiliation(s)
- I Le Blanc
- INSERM U332, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, 75014 Paris, France
| | | | | | | |
Collapse
|
228
|
Jonassen TO, Grinde B, Asjö B, Hasle G, Hungnes O. Intersubtype recombinant HIV type 1 involving HIV-MAL-like and subtype H-like sequence in four Norwegian cases. AIDS Res Hum Retroviruses 2000; 16:49-58. [PMID: 10628816 DOI: 10.1089/088922200309593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Suspected epidemiological links between three cases of human immunodeficiency virus type 1 (HIV-1) infection were verified by the finding of a shared unique virus genotype. A probable male index case was not available for testing. Case 1 was a female sexual partner of the index case. Case 2 was an adult son of case 1. Case 3 was a female sexual partner of case 2. The link to the index case was substantiated by the subsequent finding of another female sexual contact of the index case, harboring the same HIV-1 genotype as the three other cases. To characterize the genotype further, the complete provirus nucleotide sequence was obtained directly from blood cell DNA of case 3. HIV cultivated from case 3 demonstrated CCR5 dependence, an extreme slow-low phenotype, and some genotypic features not present in its directly sequenced counterpart. Most of the gag, pol, and vif genes of these viruses clustered with one of the earliest African HIV-1 strains, MAL, previously classified as a recombinant between the subtypes A, D, and I. Most of the rest of the genome was related to subtype H, albeit with less than 90% identity in most regions. These viruses are the only ones shown to display extensive similarity with MAL in the gag-pol region and among the first HIV-1 recombinants described involving subtype H. We postulate that the gag-pol genes of MAL and these viruses are derived from a common ancestor that is not necessarily intersubtype recombinant in the pol region.
Collapse
Affiliation(s)
- T O Jonassen
- Department of Virology, National Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
229
|
Cristofari G, Gabus C, Ficheux D, Bona M, Le Grice SF, Darlix JL. Characterization of active reverse transcriptase and nucleoprotein complexes of the yeast retrotransposon Ty3 in vitro. J Biol Chem 1999; 274:36643-8. [PMID: 10593967 DOI: 10.1074/jbc.274.51.36643] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) and the distantly related yeast Ty3 retrotransposon encode reverse transcriptase (RT) and a nucleic acid-binding protein designated nucleocapsid protein (NCp) with either one or two zinc fingers, required for HIV-1 replication and Ty3 transposition, respectively. In vitro binding of HIV-1 NCp7 to viral 5' RNA and primer tRNA(3)(Lys) catalyzes formation of nucleoprotein complexes resembling the virion nucleocapsid. Nucleocapsid complex formation functions in viral RNA dimerization and tRNA annealing to the primer binding site (PBS). RT is recruited in these nucleoprotein complexes and synthesizes minus-strand cDNA initiated at the PBS. Recent results on yeast Ty3 have shown that the homologous NCp9 promotes annealing of primer tRNA(i)(Met) to a 5'-3' bipartite PBS, allowing RNA:tRNA dimer formation and initiation of cDNA synthesis at the 5' PBS (). To compare specific cDNA synthesis in a retrotransposon and HIV-1, we have established a Ty3 model system comprising Ty3 RNA with the 5'-3' PBS, primer tRNA(i)(Met), NCp9, and for the first time, highly purified Ty3 RT. Here we report that Ty3 RT is as active as retroviral HIV-1 or murine leukemia virus RT using a synthetic template-primer system. Moreover, and in contrast to what was found with retroviral RTs, retrotransposon Ty3 RT was unable to direct cDNA synthesis by self-priming. We also show that Ty3 nucleoprotein complexes were formed in vitro and that the N terminus of NCp9, but not the zinc finger, is required for complex formation, tRNA annealing to the PBS, RNA dimerization, and primer tRNA-directed cDNA synthesis by Ty3 RT. These results indicate that NCp9 chaperones bona fide cDNA synthesis by RT in the yeast Ty3 retrotransposon, as illustrated for NCp7 in HIV-1, reinforcing the notion that Ty3 NCp9 is an ancestor of HIV-1 NCp7.
Collapse
Affiliation(s)
- G Cristofari
- LaboRetro, Unité de Virologie Humaine, INSERM (#412), Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
230
|
Abstract
We have developed a genetic trap for identifying sequences that promote homologous DNA recombination. The trap employs a retroviral vector that normally disables itself after one round of replication. Insertion of defined DNA sequences into the vector induced the repair of a 300 base pair deletion, which restored its ability to replicate. Tests of random sequence libraries made in the vector revealed a putative recombination signal (CCCACCC). When this heptamer or an abbreviated form (CCCACC) were reinserted into the vector, they stimulated vector repair and other DNA rearrangements. Mutant forms of these oligomers (eg CCCAACC or CCWACWS) did not. Our data suggest that the recombination events occurred within 48 h after transfection.
Collapse
Affiliation(s)
- P Olson
- The Dorrance H Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Jefferson Medical College, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Rm 329, Philadelphia, PA 19107, USA
| | | |
Collapse
|
231
|
Certo JL, Kabdulov TO, Paulson ML, Anderson JA, Hu WS. The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) Gag polyprotein to package both SNV and murine leukemia virus RNA. J Virol 1999; 73:9170-7. [PMID: 10516024 PMCID: PMC112950 DOI: 10.1128/jvi.73.11.9170-9177.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cell Line
- Dogs
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Gene Products, gag
- Genetic Vectors
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Mice
- Molecular Sequence Data
- Nucleocapsid/chemistry
- Nucleocapsid/metabolism
- Plasmids/genetics
- Protein Structure, Tertiary
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reticuloendotheliosis virus/genetics
- Reticuloendotheliosis virus/physiology
- Sequence Analysis, DNA
- Transfection
- Virus Assembly
Collapse
Affiliation(s)
- J L Certo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | |
Collapse
|
232
|
Mikkelsen JG, Lund AH, Duch M, Pedersen FS. Forced recombination of psi-modified murine leukaemia virus-based vectors with murine leukaemia-like and VL30 murine endogenous retroviruses. J Gen Virol 1999; 80 ( Pt 11):2957-2967. [PMID: 10580058 DOI: 10.1099/0022-1317-80-11-2957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Co-encapsidation of retroviral RNAs into virus particles allows for the generation of recombinant proviruses through events of template switching during reverse transcription. By use of a forced recombination system based on recombinational rescue of replication- defective primer binding site-impaired Akv-MLV-derived vectors, we here examine putative genetic interactions between vector RNAs and copackaged endogenous retroviral RNAs of the murine leukaemia virus (MLV) and VL30 retroelement families. We show (i) that MLV recombination is not blocked by nonhomology within the 5' untranslated region harbouring the supposed RNA dimer-forming cis -elements and (ii) that copackaged retroviral RNAs can recombine despite pronounced sequence dissimilarity at the cross-over site(s) and within parts of the genome involved in RNA dimerization, encapsidation and strand transferring during reverse transcription. We note that recombination-based rescue of primer binding site knock-out retroviral vectors may constitute a sensitive assay to register putative genetic interactions involving endogenous retroviral RNAs present in cells of various species.
Collapse
Affiliation(s)
- Jacob Giehm Mikkelsen
- Department of Molecular and Structural Biology1 and Department of Medical Microbiology and Immunology,2 University of Aarhus, C. F. Moellers Allé, Bldg 130, DK-8000 Aarhus, Denmark
| | - Anders H Lund
- Department of Molecular and Structural Biology1 and Department of Medical Microbiology and Immunology,2 University of Aarhus, C. F. Moellers Allé, Bldg 130, DK-8000 Aarhus, Denmark
| | - Mogens Duch
- Department of Molecular and Structural Biology1 and Department of Medical Microbiology and Immunology,2 University of Aarhus, C. F. Moellers Allé, Bldg 130, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular and Structural Biology1 and Department of Medical Microbiology and Immunology,2 University of Aarhus, C. F. Moellers Allé, Bldg 130, DK-8000 Aarhus, Denmark
| |
Collapse
|
233
|
Delviks KA, Pathak VK. Development of murine leukemia virus-based self-activating vectors that efficiently delete the selectable drug resistance gene during reverse transcription. J Virol 1999; 73:8837-42. [PMID: 10482640 PMCID: PMC112907 DOI: 10.1128/jvi.73.10.8837-8842.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the selectable drug resistance gene in retroviral vectors used for gene therapy can lead to a decreased expression of the gene of interest and may induce a host immune response, resulting in a decreased efficiency of gene therapy. In this study, we demonstrate that high-frequency deletion of direct repeats, an inherent property of reverse transcriptases, can be used to efficiently excise the drug resistance gene during reverse transcription. One retroviral vector containing a direct repeat deleted the neomycin resistance expression cassette during a single replication cycle at >99% efficiency.
Collapse
Affiliation(s)
- K A Delviks
- Department of Genetics and Developmental Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
234
|
Wisniewski M, Palaniappan C, Fu Z, Le Grice SF, Fay P, Bambara RA. Mutations in the primer grip region of HIV reverse transcriptase can increase replication fidelity. J Biol Chem 1999; 274:28175-84. [PMID: 10497170 DOI: 10.1074/jbc.274.40.28175] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the primer grip region of human immunodeficiency virus reverse transcriptase (HIV-RT) affect its replication fidelity. The primer grip region (residues 227-235) correctly positions the 3'-ends of primers. Point mutations were created by alanine substitution at positions 224-235. Error frequencies were measured by extension of a dG:dA primer-template mismatch. Mutants E224A, P225A, P226A, L228A, and E233A were approximately equal to the wild type in their ability to extend the mismatch. Mutants F227A, W229A, M230A, G231A, and Y232A extended 40, 66, 54, 72, and 76% less efficiently past a dG:dA mismatch compared with the wild type. We also examined the misinsertion rates of dG, dC, or dA across from a DNA template dA using RT mutants F227A and W229A. Mutant W229A exhibited high fidelity and did not produce a dG:dA or dC:dA mismatch. Interestingly, mutant F227A displayed high fidelity for dG:dA and dC:dA mismatches but low fidelity for dA:dA misinsertions. This indicates that F227A discriminates against particular base substitutions. However, a primer extension assay with three dNTPs showed that F227A generally displays higher fidelity than the wild type RT. Clearly, primer grip mutations can improve or worsen either the overall or base-specific fidelity of HIV-RT. We hypothesize that wild type RT has evolved to a fidelity that allows genetic variation without compromising yield of viable viruses.
Collapse
Affiliation(s)
- M Wisniewski
- Department of Biochemistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
235
|
Delviks KA, Pathak VK. Effect of distance between homologous sequences and 3' homology on the frequency of retroviral reverse transcriptase template switching. J Virol 1999; 73:7923-32. [PMID: 10482539 PMCID: PMC112806 DOI: 10.1128/jvi.73.10.7923-7932.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of direct repeats in retroviral genomes provides an in vivo system for analysis of reverse transcriptase (RT) template switching. The effect of distance between direct repeats on the rate of deletion was determined for 16 murine leukemia virus (MLV)-based vectors containing a 701-bp direct repeat of overlapping fragments of the herpes simplex virus thymidine kinase gene (HTK). The direct repeats were separated by spacer fragments of various lengths (0.1 to 3.5 kb). Southern analysis of infected cells after one replication cycle indicated that all vectors in which the distance between homologous sequences was >1,500 bp deleted at very high rates (>90%). In contrast, vectors containing <1,500 bp between homologous sequences exhibited lower frequencies of deletion (37 to 82%). To analyze the pattern of locations at which RT switched templates, restriction site markers were introduced to divide the downstream direct repeat into five regions. RT switched templates within all five regions of the 701-bp direct repeat and the frequency of template switching was greater within the 5' regions in comparison to the 3' regions. The probability of RT switching templates within the 5' regions doubled when the MLV packaging sequence (Psi) was placed between the 701-bp direct repeats. However, Psi did not increase the rate of template switching for shorter direct repeats. These results indicate that linear distance between homologous sequences increases the rate of template switching and suggest that duplex formation between nascent DNA and homologous template sequences 3' of RT promote template switching.
Collapse
Affiliation(s)
- K A Delviks
- Department of Genetics and Developmental Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
236
|
Pfeiffer JK, Topping RS, Shin NH, Telesnitsky A. Altering the intracellular environment increases the frequency of tandem repeat deletion during Moloney murine leukemia virus reverse transcription. J Virol 1999; 73:8441-7. [PMID: 10482596 PMCID: PMC112863 DOI: 10.1128/jvi.73.10.8441-8447.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During retroviral DNA synthesis reverse transcriptase frequently performs nonrequired template switches that can lead to genetic rearrangements or recombination. It has been postulated that template switching occurs after pauses in the action of reverse transcriptase. Hence factors which affect pausing, such as polymerization rate, may affect the frequency of template switching. To address the hypothesis that increasing the time required to complete reverse transcription increases the frequency of template switching, we established conditions that lengthened the time required to complete a single round of intracellular Moloney murine leukemia virus reverse transcription approximately threefold. Under these conditions, which resulted from intracellular nucleotide pool imbalances generated with hydroxyurea, we examined template switching frequency using a lacZ-based tandem repeat deletion assay. We observed that the frequency of deletion during reverse transcription in hydroxyurea-treated cells was approximately threefold higher than that in untreated control cells. These findings suggest that rates of retroviral recombination may vary when the intracellular environment is altered.
Collapse
Affiliation(s)
- J K Pfeiffer
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
237
|
Abstract
As a consequence of being diploid viruses, members of the Retroviridae have a high recombination rate. To measure recombination between two identical sequences within the same RNA molecule per round of retroviral replication cycle, a murine leukemia virus based vector (JZ442 + 3' Hyg) has been constructed. It carries a drug resistance gene, hyg, and a 290-bp repeat sequence of the 3' hyg gene inserted into the 3' untranslated region of the green fluorescent protein gene (gfp). Under fluorescence microscopy, Hygr cells containing the recombinant proviruses were clear, while a green color was observed in the drug-resistant cells carrying the parental proviruses. The rate of recombination was determined by the ratio of the number of clear colonies to the total number of Hygr colonies (green and clear colonies). The rate of recombination was found to be 62% by this method. The intermolecular recombination rate between an infectious virus bearing two copies of the 290-bp segment and a noninfectious chimeric RNA virus containing only a single copy of this sequence was also measured.
Collapse
Affiliation(s)
- J Zhang
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
238
|
Girard F, Barbault F, Gouyette C, Huynh-Dinh T, Paoletti J, Lancelot G. Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex. J Biomol Struct Dyn 1999; 16:1145-57. [PMID: 10447199 DOI: 10.1080/07391102.1999.10508323] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The genome of all retrovirus consists of two copies of genomic RNA which are noncovalently linked near their 5' end. A sequence localized immediately upstream from the splice donor site inside the HIV-1 psi-RNA region was identified as the domain responsible for the dimerization initiation. It was shown that a kissing complex and a stable dimer are both involved in the HIV-1Lai RNA dimerization process in vitro. The NCp7 protein activates the dimerization by converting a transient loop-loop complex into a more stable dimer. The structure of this transitory loop-loop complex was recently elucidated by Mujeeb et al. In work presented here, we use NMR spectroscopy to determine the stable extended dimer structure formed from a 23 nucleotides RNA fragment, part of the 35 nucleotides SL1 sequence. By heating to 90 degrees C, then slowly cooling this sequence, we were able to show that an extended dimer is formed. We present evidence for the three dimensional structure of this dimer. NMR data yields evidence for a zipper like motif A8A9.A16 existence. This motif enables the surrounding bases to be positioned more closely and permit the G7 and C17 bases to be paired. This is different to other related sequences where only the kissing complex is observed, we suggest that the zipper like motif AA.A could be an important stabilization factor of the extended duplex.
Collapse
Affiliation(s)
- F Girard
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | | | | | | | | |
Collapse
|
239
|
Nasioulas G, Paraskevis D, Magiorkinis E, Theodoridou M, Hatzakis A. Molecular analysis of the full-length genome of HIV type 1 subtype I: evidence of A/G/I recombination. AIDS Res Hum Retroviruses 1999; 15:745-58. [PMID: 10357470 DOI: 10.1089/088922299310836] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analysis of partial env sequences of HIV-1 isolates from Cyprus and Greece suggested the existence of a distinct subtype of the virus, designated as I. We examined whether this subtype represents a distinct group, or a mosaic consisting of previously characterized subtypes. The full-length sequences under consideration were recovered from serum samples of "subtype I" obtained from two nonepidemiologically linked HIV-1-infected subjects in Greece. The first subject was an intravenous drug user (IDU), while the second was a vertically infected child born in 1984 whose parents were both IDUs. A variety of methods, such as diversity plots as well as phylogenetic and informative site analyses, were used to classify the DNA sequences. Subsequent detailed analysis revealed a unique genomic organization composed of alternating portions of subtypes A, G, and I. The two Greek isolates formed a distinct group in most of the pol, gp120, and gp41 regions, and in the vif/vpr, vpu, LTR, and 5' terminus of nef. In contrast, different parts of env and gag as well as the 3' pol region, and the first exons of tat and rev, appeared to have arisen from subtypes A and G. Our results indicate that subtype I, which was probably circulating in Greece in the early 1980s, is a triple mosaic consisting of A, G, and I sequences.
Collapse
MESH Headings
- Adolescent
- Cyprus
- DNA, Viral/genetics
- Genes, env
- Genes, gag
- Genes, nef
- Genes, pol
- Genes, vpr
- Genes, vpu
- Genome, Viral
- Greece
- HIV Infections/complications
- HIV Infections/transmission
- HIV Infections/virology
- HIV Long Terminal Repeat/genetics
- HIV-1/classification
- HIV-1/genetics
- Humans
- Infectious Disease Transmission, Vertical
- Phylogeny
- Polymerase Chain Reaction
- Recombination, Genetic
- Sequence Analysis, DNA
- Substance Abuse, Intravenous/complications
Collapse
Affiliation(s)
- G Nasioulas
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, Athens University Medical School, Greece
| | | | | | | | | |
Collapse
|
240
|
Neilson JR, John GC, Carr JK, Lewis P, Kreiss JK, Jackson S, Nduati RW, Mbori-Ngacha D, Panteleeff DD, Bodrug S, Giachetti C, Bott MA, Richardson BA, Bwayo J, Ndinya-Achola J, Overbaugh J. Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virol 1999; 73:4393-403. [PMID: 10196337 PMCID: PMC104220 DOI: 10.1128/jvi.73.5.4393-4403.1999] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1998] [Accepted: 02/04/1999] [Indexed: 11/20/2022] Open
Abstract
In sub-Saharan Africa, where the effects of human immunodeficiency virus type 1 (HIV-1) have been most devastating, there are multiple subtypes of this virus. The distribution of different subtypes within African populations is generally not linked to particular risk behaviors. Thus, Africa is an ideal setting in which to examine the diversity and mixing of viruses from different subtypes on a population basis. In this setting, it is also possible to address whether infection with a particular subtype is associated with differences in disease stage. To address these questions, we analyzed the HIV-1 subtype, plasma viral loads, and CD4 lymphocyte levels in 320 women from Nairobi, Kenya. Subtype was determined by a combination of heteroduplex mobility assays and sequence analyses of envelope genes, using geographically diverse subtype reference sequences as well as envelope sequences of known subtype from Kenya. The distribution of subtypes in this population was as follows: subtype A, 225 (70.3%); subtype D, 65 (20.5%); subtype C, 22 (6.9%); and subtype G, 1 (0.3%). Intersubtype recombinant envelope genes were detected in 2.2% of the sequences analyzed. Given that the sequences analyzed represented only a small fraction of the proviral genome, this suggests that intersubtype recombinant viral genomes may be very common in Kenya and in other parts of Africa where there are multiple subtypes. The plasma viral RNA levels were highest in women infected with subtype C virus, and women infected with subtype C virus had significantly lower CD4 lymphocyte levels than women infected with the other subtypes. Together, these data suggest that women in Kenya who are infected with subtype C viruses are at more advanced stages of immunosuppression than women infected with subtype A or D. There are at least two models to explain the data from this cross-sectional study; one is that infection with subtype C is associated with a more rapid disease progression, and the second is that subtype C represents an older epidemic in Kenya. Discriminating between these possibilities in a longitudinal study will be important for increasing our understanding of the role of specific subtypes in the transmission and pathogenesis of HIV-1.
Collapse
Affiliation(s)
- J R Neilson
- Departments of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Bagnarelli P, Mazzola F, Menzo S, Montroni M, Butini L, Clementi M. Host-specific modulation of the selective constraints driving human immunodeficiency virus type 1 env gene evolution. J Virol 1999; 73:3764-77. [PMID: 10196271 PMCID: PMC104154 DOI: 10.1128/jvi.73.5.3764-3777.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To address the evolution of human immunodeficiency virus type 1 (HIV-1) within a single host, we analyzed the HIV-1 C2-V5 env regions of both cell-free genomic-RNA- and proviral-DNA-derived clones. Sequential samples were collected over a period of 3 years from six untreated subjects (three typical progressors [TPs] and three slow progressors [SPs], all with a comparable length of infection except one. The evolutionary analysis of the C2-V5 env sequences performed on 506 molecular clones (253 RNA- and 253 DNA-derived sequences) highlighted a series of differences between TPs and SPs. In particular, (i) clonal sequences from SPs (DNA and RNA) showed lower nucleotide similarity than those from TPs (P = 0. 0001), (ii) DNA clones from SPs showed higher intra- and intersample nucleotide divergence than those from TPs (P < 0.05), (iii) higher host-selective pressure was generally detectable in SPs (DNA and RNA sequences), and (iv) the increase in the genetic distance of DNA and RNA sequences over time was paralleled by an increase in both synonymous (Ks) and nonsynonymous (Ka) substitutions in TPs but only in nonsynonymous substitutions in SPs. Several individual peculiarities of the HIV-1 evolutionary dynamics emerged when the V3, V4, and V5 env regions of both TPs and SPs were evaluated separately. These peculiarities, probably reflecting host-specific features of selective constraints and their continuous modulation, are documented by the dynamics of Ka/Ks ratios of hypervariable env domains.
Collapse
Affiliation(s)
- P Bagnarelli
- Institute of Microbiology, University of Ancona, Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
242
|
Yuste E, Sánchez-Palomino S, Casado C, Domingo E, López-Galíndez C. Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J Virol 1999; 73:2745-51. [PMID: 10074121 PMCID: PMC104031 DOI: 10.1128/jvi.73.4.2745-2751.1999] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1998] [Accepted: 12/07/1998] [Indexed: 11/20/2022] Open
Abstract
Muller's ratchet predicts fitness losses in small populations of asexual organisms because of the irreversible accumulation of deleterious mutations and genetic drift. This effect should be enhanced if population bottlenecks intervene and fixation of mutations is not compensated by recombination. To study whether Muller's ratchet could operate in a retrovirus, 10 biological clones were derived from a human immunodeficiency virus type 1 (HIV-1) field isolate by MT-4 plaque assay. Each clone was subjected to 15 plaque-to-plaque passages. Surprisingly, genetic deterioration of viral clones was very drastic, and only 4 of the 10 initial clones were able to produce viable progeny after the serial plaque transfers. Two of the initial clones stopped forming plaques at passage 7, two others stopped at passage 13, and only four of the remaining six clones yielded infectious virus. Of these four, three displayed important fitness losses. Thus, despite virions carrying two copies of genomic RNA and the system displaying frequent recombination, HIV-1 manifested a drastic fitness loss as a result of an accentuation of Muller's ratchet effect.
Collapse
Affiliation(s)
- E Yuste
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | | | | | | | | |
Collapse
|
243
|
Negroni M, Buc H. Recombination during reverse transcription: an evaluation of the role of the nucleocapsid protein. J Mol Biol 1999; 286:15-31. [PMID: 9931246 DOI: 10.1006/jmbi.1998.2460] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immuno deficiency virus type 1 nucleocapsid protein 7 (HIV-1 NCp7) is a major component of the reverse transcription complex. Its effect on reverse transcription and homologous recombination has been studied in vitro under strictly identical experimental conditions. For high enzyme concentrations, NCp7 did not stimulate DNA synthesis. The time-course for completion of reverse transcription as well as the processivity and the pattern of pausing were similar in the presence or absence of NCp7. However, the addition of NCp7 significantly affected the yield of the reaction, a decrease exacerbated as the length of the copied RNA increased. We attribute this phenomenon to a destabilization of the RNA/DNA duplex at intermediate stages of reverse transcription.In contrast, NCp7 enhanced homologous recombination during synthesis mediated by HIV-1 RT (reverse transcriptase), as it did for Moloney murine leukemia virus RT. On naked RNA the process of recombination was dependent on the concentration of RT, suggesting that binding of RT to an intermediate of strand transfer was the limiting step. This dependence was relieved in the presence of NCp7. This effect does not imply a direct interaction between RT and NCp7, since similar results were obtained when NCp7 was substituted by the bacterial RNA chaperon StpA. The dominant effect of NCp7 is therefore most probably exerted at the level of condensation of the RNA templates, leading to the formation of productive interactions between the nascent DNA and the acceptor template.
Collapse
Affiliation(s)
- M Negroni
- Unité de Physicochimie des Macromolécules Biologiques, (URA1773 du CNRS), Paris Cedex 15, 75724, France.
| | | |
Collapse
|
244
|
Van Den Broeke A, Bagnis C, Ciesiolka M, Cleuter Y, Gelderblom H, Kerkhofs P, Griebel P, Mannoni P, Burny A. In vivo rescue of a silent tax-deficient bovine leukemia virus from a tumor-derived ovine B-cell line by recombination with a retrovirally transduced wild-type tax gene. J Virol 1999; 73:1054-65. [PMID: 9882306 PMCID: PMC103925 DOI: 10.1128/jvi.73.2.1054-1065.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
The lack of bovine leukemia virus (BLV) expression is a consistent finding in freshly isolated ovine tumor cells and in the B-cell lines derived from these tumors. In order to gain further insight into the mechanisms of BLV silencing in these tumors, we have used the YR2 B-cell line, which was derived from the leukemic cells of a BLV-infected sheep. This cell line contains a single, monoclonally integrated, silent provirus, which cannot be reactivated either by stimulation in vitro or by in vivo injection of the tumor cells or cloned proviral DNA in sheep. Sequence analysis of the tax gene from the YR2 cell line identified two G-to-A transitions (G7924 to A7924 and G8149 to A8149) that result in E-to-K amino acid changes at positions 228 and 303 in the Tax protein. Following retroviral vector-mediated transfer of a wild-type tax gene into YR2 cells, we showed that BLV mRNA, viral proteins, and virions were produced, demonstrating that the cellular factors required for virus expression were present in the original YR2 cell line. Injection of this transduced YR2 cell line in sheep led to the rescue of replication-competent BLV proviruses. The integrated competent proviruses exhibited unique chimeric tax genes, which arose from homologous recombination between the transduced wild-type tax and the YR2-derived tax sequences. Furthermore, in one of these functional recombinant proviruses, only the A8149-to-G8149 reversion was present, providing clear evidence that the defect underlying the silent phenotype in YR2 cells results from a single C-terminal E303-to-K303 amino acid substitution in the BLV Tax protein. Our observations suggest that a single strategically located mutation in tax provides a mechanism for BLV inactivation in B-cell tumors.
Collapse
Affiliation(s)
- A Van Den Broeke
- Laboratoire d'Investigation Clinique et d'Oncologie Expérimentale, Institut Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Benson SJ, Ruis BL, Fadly AM, Conklin KF. The unique envelope gene of the subgroup J avian leukosis virus derives from ev/J proviruses, a novel family of avian endogenous viruses. J Virol 1998; 72:10157-64. [PMID: 9811756 PMCID: PMC110557 DOI: 10.1128/jvi.72.12.10157-10164.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1998] [Accepted: 09/11/1998] [Indexed: 11/20/2022] Open
Abstract
A new subgroup of avian leukosis virus (ALV), designated subgroup J, was identified recently. Viruses of this subgroup do not cross-interfere with viruses of the avian A, B, C, D, and E subgroups, are not neutralized by antisera raised against the other virus subgroups, and have a broader host range than the A to E subgroups. Sequence comparisons reveal that while the subgroup J envelope gene includes some regions that are related to those found in env genes of the A to E subgroups, the majority of the subgroup J gene is composed of sequences either that are more similar to those of a member (E51) of the ancient endogenous avian virus (EAV) family of proviruses or that appear unique to subgroup J viruses. These data led to the suggestion that the ALV-J env gene might have arisen by multiple recombination events between one or more endogenous and exogenous viruses. We initiated studies to investigate the origin of the subgroup J envelope gene and in particular to determine the identity of endogenous sequences that may have contributed to its generation. Here we report the identification of a novel family of avian endogenous viruses that include env coding sequences that are over 95% identical to both the gp85 and gp37 coding regions of subgroup J viruses. We call these viruses the ev/J family. We also report the isolation of ev/J-encoded cDNAs, indicating that at least some members of this family are expressed. These data support the hypothesis that the subgroup J envelope gene was acquired by recombination with expressed endogenous sequences and are consistent with acquisition of this gene by only one recombination event.
Collapse
Affiliation(s)
- S J Benson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
246
|
Yu H, Jetzt AE, Ron Y, Preston BD, Dougherty JP. The nature of human immunodeficiency virus type 1 strand transfers. J Biol Chem 1998; 273:28384-91. [PMID: 9774465 DOI: 10.1074/jbc.273.43.28384] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diploid nature of human immunodeficiency virus type 1 (HIV-1) suggests that recombination serves a central function in virus replication and evolution. A system was developed to examine HIV-1 strand transfers, including the obligatory DNA primer strand transfers as well as recombinational crossovers during reverse transcription. Sequence heterogeneity between different strains of HIV-1 was exploited for examining primer transfer events. Both intra- and intermolecular primer transfers were observed at similar frequencies during minus-strand DNA synthesis, whereas primer transfers during plus-strand DNA synthesis were primarily intramolecular. Sequence analysis of long terminal repeats from progeny proviruses also revealed a high rate of homologous recombination during minus-strand synthesis, corresponding to an overall rate of approximately three crossovers per HIV-1 genome per cycle of replication. These results imply that both viral genomic RNAs serve as templates during HIV-1 reverse transcription and that primer strand transfers and recombination may contribute substantially to the rapid genetic variation of HIV-1.
Collapse
Affiliation(s)
- H Yu
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
247
|
Julias JG, Pathak VK. Deoxyribonucleoside triphosphate pool imbalances in vivo are associated with an increased retroviral mutation rate. J Virol 1998; 72:7941-9. [PMID: 9733832 PMCID: PMC110126 DOI: 10.1128/jvi.72.10.7941-7949.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deoxyribonucleoside triphosphate (dNTP) pool imbalances are associated with an increase in the rate of misincorporation and hypermutation during in vitro reverse transcription reactions. However, the effects of in vivo dNTP pool imbalances on the accuracy of reverse transcription are unknown. We sought to determine the effects of in vivo dNTP pool imbalances on retroviral mutation rates and to test our hypothesis that 3'-azido-3'-deoxythymidine (AZT) increases the retroviral mutation rates through induction of dNTP pool imbalances. D17 cells were treated with thymidine, hydroxyurea (HU), or AZT, and the effects on in vivo dNTP pools were measured. Thymidine and HU treatments induced significant dNTP pool imbalances. In contrast, AZT treatment had very little effect on the dNTP pools. The effects of in vivo dNTP pool imbalances induced by thymidine and HU treatments on the retroviral mutation rates were also determined. Spleen necrosis virus (SNV)-based and murine leukemia virus (MLV)-based retroviral vectors that expressed the lacZ mutant reporter gene were used. The frequencies of inactivating mutations introduced in the lacZ gene in a single replication cycle provided a measure of the retroviral mutation rates. Treatment of D17 target cells with 500 microM thymidine increased the SNV and MLV mutant frequencies 4.7- and 4-fold, respectively. Treatment of D17 target cells with 2 mM HU increased the SNV and MLV mutant frequencies 2.1- and 2.7-fold, respectively. These results demonstrate that dNTP pool imbalances are associated with an increase in the in vivo retroviral mutation rates, but AZT treatment results in an increase in the retroviral mutation rates by a mechanism not involving alterations in dNTP pools.
Collapse
Affiliation(s)
- J G Julias
- Department of Biochemistry and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
248
|
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet 1998; 20:43-5. [PMID: 9731528 DOI: 10.1038/1695] [Citation(s) in RCA: 647] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Retrotransposons, transposable elements related to animal retroviruses, are found in all eukaryotes investigated and make up the majority of many plant genomes. Their ubiquity points to their importance, especially in their contribution to the large-scale structure of complex genomes. The nature and frequency of retro-element appearance, activation and amplification are poorly understood in all higher eukaryotes. Here we employ a novel approach to determine the insertion dates for 17 of 23 retrotransposons found near the maize adh1 gene, and two others from unlinked sites in the maize genome, by comparison of long terminal repeat (LTR) divergences with the sequence divergence between adh1 in maize and sorghum. All retrotransposons examined have inserted within the last six million years, most in the last three million years. The structure of the adh1 region appears to be standard relative to the other gene-containing regions of the maize genome, thus suggesting that retrotransposon insertions have increased the size of the maize genome from approximately 1200 Mb to 2400 Mb in the last three million years. Furthermore, the results indicate an increased mutation rate in retrotransposons compared with genes.
Collapse
Affiliation(s)
- P SanMiguel
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | |
Collapse
|
249
|
Mikkelsen JG, Lund AH, Duch M, Pedersen FS. Recombination in the 5' leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias toward the kissing-loop dimerization region. J Virol 1998; 72:6967-78. [PMID: 9696788 PMCID: PMC109916 DOI: 10.1128/jvi.72.9.6967-6978.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral recombination occurs frequently during reverse transcription of the dimeric RNA genome. By a forced recombination approach based on the transduction of Akv murine leukemia virus vectors harboring a primer binding site knockout mutation and the entire 5' untranslated region, we studied recombination between two closely related naturally occurring retroviral sequences. On the basis of 24 independent template switching events within a 481-nucleotide target sequence containing multiple sequence identity windows, we found that shifting from vector RNA to an endogenous retroviral RNA template during minus-strand DNA synthesis occurred within defined areas of the genome and did not lead to misincorporations at the crossover site. The nonrandom distribution of recombination sites did not reflect a bias for specific sites due to selection at the level of marker gene expression. We address whether template switching is affected by the length of sequence identity, by palindromic sequences, and/or by putative stem-loop structures. Sixteen of 24 sites of recombination colocalized with the kissing-loop dimerization region, and we propose that RNA-RNA interactions between palindromic sequences facilitate template switching. We discuss the putative role of the dimerization domain in the overall structure of the reverse-transcribed RNA dimer and note that related mechanisms of template switching may be found in remote RNA viruses.
Collapse
Affiliation(s)
- J G Mikkelsen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | |
Collapse
|
250
|
Gabus C, Ficheux D, Rau M, Keith G, Sandmeyer S, Darlix JL. The yeast Ty3 retrotransposon contains a 5'-3' bipartite primer-binding site and encodes nucleocapsid protein NCp9 functionally homologous to HIV-1 NCp7. EMBO J 1998; 17:4873-80. [PMID: 9707446 PMCID: PMC1170816 DOI: 10.1093/emboj/17.16.4873] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retroviruses, including HIV-1 and the distantly related yeast retroelement Ty3, all encode a nucleoprotein required for virion structure and replication. During an in vitro comparison of HIV-1 and Ty3 nucleoprotein function in RNA dimerization and cDNA synthesis, we discovered a bipartite primer-binding site (PBS) for Ty3 composed of sequences located at opposite ends of the genome. Ty3 cDNA synthesis requires the 3' PBS for primer tRNAiMet annealing to the genomic RNA, and the 5' PBS, in cis or in trans, as the reverse transcription start site. Ty3 RNA alone is unable to dimerize, but formation of dimeric tRNAiMet bound to the PBS was found to direct dimerization of Ty3 RNA-tRNAiMet. Interestingly, HIV-1 nucleocapsid protein NCp7 and Ty3 NCp9 were interchangeable using HIV-1 and Ty3 RNA template-primer systems. Our findings impact on the understanding of non-canonical reverse transcription as well as on the use of Ty3 systems to screen for anti-NCp7 drugs.
Collapse
Affiliation(s)
- C Gabus
- LaboRetro, Unité de Virologie Humaine, INSERM (#412), Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | |
Collapse
|