201
|
Abstract
Gap junctions (Gj) play an important role in the communication between cells of many tissues. They are composed of channels that permit the passage of ions and low molecular weight metabolites between adjacent cells, without exposure to the extracellular environment. These pathways are formed by the interaction between two hemichannels on the surface of opposing cells. These hemichannels are formed by the association of six identical subunits, named connexins (Cx), which are integral membrane proteins. Cell coupling via Gj is dependent on the specific pattern of Cx gene expression. This pattern of gene expression is altered during several pathological conditions resulting in changes of cell coupling. The regulation of Cx gene expression is affected at different levels from transcription to post translational processes during injury. In addition, Gj cellular communication is regulated by gating mechanisms. The alteration of Gj communication during injury could be rationalized by two opposite theories. One hypothesis proposes that the alteration of Gj communication attenuates the spread of toxic metabolites from the injured area to healthy organ regions. The alternative proposition is that a reduction of cellular communication reduces the loss of important cellular metabolisms, such as ATP and glucose.
Collapse
Affiliation(s)
- Antonio De Maio
- Division of Pediatric Surgery and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
202
|
Du J, Maloney RE, Hamilton KA. Video-microscopic analysis of dye coupling in the salamander olfactory bulb. J Neurosci Res 2002; 68:385-97. [PMID: 11992465 DOI: 10.1002/jnr.10220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells in the mitral cell (MCL) and granule cell (GCL) layers of the olfactory bulb shape the representation of odor information in the brain. After intracellular Lucifer Yellow (LY) injections into lightly fixed olfactory bulb slices, clusters of dye coupled cells were previously observed in the MCL and GCL, but the relative extent of coupling in the two layers was unknown in adults. In the present study, the time course of LY coupling in the adult salamander olfactory bulb was quantified using video-microscopic methods. Analysis of fluorescent cell body counts showed that the incidence and the extent of LY coupling are greater in the GCL than in the MCL. With optimal low-current injection procedures, 97% of the injections into the GCL exhibited at least one coupled cell, and on average groups of six to eight cells were counted. Fewer injections into the MCL exhibited only one to three coupled cells. Some of these coupled cells were clearly mitral cells. No staining of cells was observed after extracellular LY injections, and intracellular injections of dextran dyes stained single cells, providing evidence that the LY coupled cells were stained through an intercellular route, presumably gap junctions. In live intact preparations, rapid LY staining of cell clusters was also observed using patch pipettes. Together, these results provide evidence that robust coupling occurs among olfactory bulb neurons in adults, which could have functional significance.
Collapse
Affiliation(s)
- J Du
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana 71130-3932, USA
| | | | | |
Collapse
|
203
|
Rozental R, Andrade-Rozental AF, Zheng X, Urban M, Spray DC, Chiu FC. Gap junction-mediated bidirectional signaling between human fetal hippocampal neurons and astrocytes. Dev Neurosci 2002; 23:420-31. [PMID: 11872943 DOI: 10.1159/000048729] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gap junctions are clusters of intercellular channels that connect the interiors of coupled cells. In the brain, gap junctions function as electrotonic synapses between neurons and as pathways for the exchange of metabolites and second-messenger molecules between glial cells. Astrocytes, the most abundant glial cell type coupled by gap junctions, are intimately involved in the active control of neuronal activity including synaptic transmission and plasticity. Previous studies have suggested that astrocytic-neuronal signaling may involve gap junction-mediated intercellular connections; this issue remains unresolved. In this study, we demonstrate that second-trimester human fetal hippocampal neurons and astrocytes in culture are coupled by gap junctions bidirectionally; we show that human fetal neurons and astrocytes express both the same and different connexin subtypes. The formation of functional homotypic and heterotypic gap junction channels between neurons and astrocytes may add versatility to the signaling between these cell types during human hippocampal ontogeny; disruption of such signaling may contribute to CNS dysfunction during pregnancy.
Collapse
Affiliation(s)
- R Rozental
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
Gap junctions represent an important mode of intercellular communication. Connexin 45 (Cx45) is a member of the connexin family that forms gap junctions between adjacent cells. In this study, we demonstrate the expression of Cx45 in the olfactory epithelium and olfactory bulb in adult mice. Reverse transcription polymerase chain reaction amplification of total RNA from mouse turbinates and olfactory bulb yielded cDNA fragments partially encoding for Cx45. In situ hybridization using Cx45 cRNA probes revealed that hybridization products were more abundant in the olfactory epithelial layer than in the lamina propria underneath the epithelium. In the olfactory epithelial layer, hybridization signals were relatively intense in a band spreading from the basal cell layer to 4/5 of the distance from the basal cell layer to the apical process. The distribution of cells positive for Cx45 mRNA is largely overlapping with that of cells expressing olfactory marker protein mRNA, indicating that a substantial number of mature olfactory neurons express Cx45 mRNA. In the olfactory bulb, cells with large nuclei in the mitral cell layer, presumably mitral cells, express Cx45 mRNA. Immunoblotting with an antibody recognizing Cx45 revealed a band at approximately 46 kDa in homogenates of mouse turbinates and olfactory bulb. Immunohistochemical studies showed fine immunoreactive puncta in the olfactory epithelium. Immunoreactivity was observed surrounding cell bodies and the proximal processes of mitral cells in the olfactory bulb. The data suggest that Cx45 is a neuronal connexin that is expressed in mature neurons in adult mice. Our study implicates a functional role for Cx45 in the olfactory system deserving future study.
Collapse
Affiliation(s)
- Chunbo Zhang
- Department of Cellular and Structural Biology, Neuroscience Program and the Rocky Mountain Taste and Smell Center, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
205
|
Abstract
Neurons of the thalamic reticular nucleus (TRN) provide inhibitory input to thalamic relay cells and generate synchronized activity during sleep and seizures. It is widely assumed that TRN cells interact only via chemical synaptic connections. However, we show that many neighboring pairs of TRN neurons in rats and mice are electrically coupled. In paired-cell recordings, electrical synapses were able to mediate close correlations between action potentials when the coupling was strong; they could modulate burst-firing states even when the coupling strength was more modest. Electrical synapses between TRN neurons were absent in mice with a null mutation for the connexin36 (Cx36) gene. Surprisingly, inhibitory chemical synaptic connections between pairs of neurons were not observed, although strong extracellular stimuli could evoke inhibition in single TRN neurons. We conclude that Cx36-dependent gap junctions play an important role in the regulation of neural firing patterns within the TRN. When combined with recent observations from the cerebral cortex, our results imply that electrical synapses are a common mechanism for generating synchrony within networks of inhibitory neurons in the mammalian forebrain.
Collapse
|
206
|
Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW. Electrical synapses in the thalamic reticular nucleus. J Neurosci 2002; 22:1002-9. [PMID: 11826128 PMCID: PMC6758490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Revised: 11/08/2001] [Accepted: 11/09/2001] [Indexed: 02/23/2023] Open
Abstract
Neurons of the thalamic reticular nucleus (TRN) provide inhibitory input to thalamic relay cells and generate synchronized activity during sleep and seizures. It is widely assumed that TRN cells interact only via chemical synaptic connections. However, we show that many neighboring pairs of TRN neurons in rats and mice are electrically coupled. In paired-cell recordings, electrical synapses were able to mediate close correlations between action potentials when the coupling was strong; they could modulate burst-firing states even when the coupling strength was more modest. Electrical synapses between TRN neurons were absent in mice with a null mutation for the connexin36 (Cx36) gene. Surprisingly, inhibitory chemical synaptic connections between pairs of neurons were not observed, although strong extracellular stimuli could evoke inhibition in single TRN neurons. We conclude that Cx36-dependent gap junctions play an important role in the regulation of neural firing patterns within the TRN. When combined with recent observations from the cerebral cortex, our results imply that electrical synapses are a common mechanism for generating synchrony within networks of inhibitory neurons in the mammalian forebrain.
Collapse
Affiliation(s)
- Carole E Landisman
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
207
|
Placantonakis D, Cicirata F, Welsh JP. A dominant negative mutation of neuronal connexin 36 that blocks intercellular permeability. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 98:15-28. [PMID: 11834292 DOI: 10.1016/s0169-328x(01)00306-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rat connexin 36 (Cx36) was mutated by substituting serine for cysteine at residue 231 (C231S) and the mutant's effect on the subcellular localization of wild-type Cx36 and the intercellular permeability that it confers was determined in human HeLa and rat PC12 cells. Cells transfected with the mutant or wild-type Cx36 cDNA expressed the expected 36 kDa protein and Cx36 immunoreactivity. Co-immunoprecipitation experiments with monkey COS-7 cells transiently transfected with both mutant and wild-type Cx36 cDNAs demonstrated that the mutant protein bound to the wild-type. Double immunofluorescence microscopy of stably transfected HeLa cells demonstrated that mutant Cx36 blocked the transport of the wild-type Cx36 to the cell membrane, primarily by trapping it in the endoplasmic reticulum around the nucleus. Coexpression of the mutant Cx36 with the wild-type protein abolished the ability of the latter to permit dye transfer in both HeLa and PC12 cells. The findings are the first demonstration of a mutation of Cx36 that inhibits wild-type Cx36 function in mammalian cells.
Collapse
Affiliation(s)
- Dimitris Placantonakis
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
208
|
Nagy JI, Li X, Rempel J, Stelmack G, Patel D, Staines WA, Yasumura T, Rash JE. Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol 2001; 441:302-23. [PMID: 11745652 DOI: 10.1002/cne.1414] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The connexin family of proteins (Cx) that form intercellular gap junctions in vertebrates is well represented in the mammalian central nervous system. Among these, Cx30 and Cx43 are present in gap junctions of astrocytes. Cx32 is expressed by oligodendrocytes and is present in heterologous gap junctions between oligodendrocytes and astrocytes as well as at autologous gap junctions between successive myelin layers. Cx36 mRNA has been identified in neurons, and Cx36 protein has been localized at ultrastructurally defined interneuronal gap junctions. Cx26 is also expressed in the CNS, primarily in the leptomeningeal linings, but is also reported in astrocytes and in neurons of developing brain and spinal cord. To establish further the regional, cellular, and subcellular localization of Cx26 in neural tissue, we investigated this connexin in adult mouse brain and in rat brain and spinal cord using biochemical and immunocytochemical methods. Northern blotting, western blotting, and immunofluorescence studies indicated widespread and heterogeneous Cx26 expression in numerous subcortical areas of both species. By confocal microscopy, Cx26 was colocalized with both Cx30 and Cx43 in leptomeninges as well as along blood vessels in cortical and subcortical structures. It was also localized at the surface of oligodendrocyte cell bodies, where it was coassociated with Cx32. Freeze-fracture replica immunogold labeling (FRIL) demonstrated Cx26 in most gap junctions between cells of the pia mater by postnatal day 4. By postnatal day 18 and thereafter, Cx26 was present at gap junctions between astrocytes and in the astrocyte side of most gap junctions between astrocytes and oligodendrocytes. In perinatal spinal cord and in five regions of adult brain and spinal cord examined by FRIL, no evidence was obtained for the presence of Cx26 in neuronal gap junctions. In addition to its established localization in leptomeningeal gap junctions, these results identify Cx26 as a third connexin (together with Cx30 and Cx43) within astrocytic gap junctions and suggest a further level of complexity to the heterotypic connexin channel combinations formed at these junctions.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J Neurosci 2001. [PMID: 11567043 DOI: 10.1523/jneurosci.21-19-07534.2001] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gap junctions are conductive channels that connect the interiors of coupled cells. In the hippocampus, GABA-containing hippocampal interneurons are interconnected by gap junctions, which mediate electrical coupling and synchronous firing and thereby promote inhibitory transmission. The present study was undertaken to examine the hypothesis that the gap junctional proteins connexin 32 (Cx32; expressed by oligodendrocytes, interneurons, or both), Cx36 (expressed by interneurons), and Cx43 (expressed by astrocytes) play a role in defining cell-specific patterns of neuronal death in hippocampus after global ischemia in mice. Global ischemia did not significantly alter Cx32 and Cx36 mRNA expression and slightly increased Cx43 mRNA expression in the vulnerable CA1, as assessed by Northern blot analysis and in situ hybridization. Global ischemia induced a selective increase in Cx32 and Cx36 but not Cx43 protein abundance in CA1 before onset of neuronal death, as assessed by Western blot analysis. The increase in Cx32 and Cx36 expression was intense and specific to parvalbumin-positive inhibitory interneurons of CA1, as assessed by double immunofluorescence. Protein abundance was unchanged in CA3 and dentate gyrus. The finding of increase in connexin protein without increase in mRNA suggests regulation of Cx32 and Cx36 expression at the translational or post-translational level. Cx32(Y/-) null mice exhibited enhanced vulnerability to brief ischemic insults, consistent with a role for Cx32 gap junctions in neuronal survival. These findings suggest that Cx32 and Cx36 gap junctions may contribute to the survival and resistance of GABAergic interneurons, thereby defining cell-specific patterns of global ischemia-induced neuronal death.
Collapse
|
210
|
Oguro K, Jover T, Tanaka H, Lin Y, Kojima T, Oguro N, Grooms SY, Bennett MV, Zukin RS. Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J Neurosci 2001; 21:7534-42. [PMID: 11567043 PMCID: PMC6762918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Revised: 07/10/2001] [Accepted: 07/11/2001] [Indexed: 02/21/2023] Open
Abstract
Gap junctions are conductive channels that connect the interiors of coupled cells. In the hippocampus, GABA-containing hippocampal interneurons are interconnected by gap junctions, which mediate electrical coupling and synchronous firing and thereby promote inhibitory transmission. The present study was undertaken to examine the hypothesis that the gap junctional proteins connexin 32 (Cx32; expressed by oligodendrocytes, interneurons, or both), Cx36 (expressed by interneurons), and Cx43 (expressed by astrocytes) play a role in defining cell-specific patterns of neuronal death in hippocampus after global ischemia in mice. Global ischemia did not significantly alter Cx32 and Cx36 mRNA expression and slightly increased Cx43 mRNA expression in the vulnerable CA1, as assessed by Northern blot analysis and in situ hybridization. Global ischemia induced a selective increase in Cx32 and Cx36 but not Cx43 protein abundance in CA1 before onset of neuronal death, as assessed by Western blot analysis. The increase in Cx32 and Cx36 expression was intense and specific to parvalbumin-positive inhibitory interneurons of CA1, as assessed by double immunofluorescence. Protein abundance was unchanged in CA3 and dentate gyrus. The finding of increase in connexin protein without increase in mRNA suggests regulation of Cx32 and Cx36 expression at the translational or post-translational level. Cx32(Y/-) null mice exhibited enhanced vulnerability to brief ischemic insults, consistent with a role for Cx32 gap junctions in neuronal survival. These findings suggest that Cx32 and Cx36 gap junctions may contribute to the survival and resistance of GABAergic interneurons, thereby defining cell-specific patterns of global ischemia-induced neuronal death.
Collapse
Affiliation(s)
- K Oguro
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
In the mammalian retina, rods feed into the cone pathway through electrotonic coupling, and recent histological data suggest the involvement of connexin36 (Cx36) in this pathway. We therefore generated Cx36 null mice and monitored the functional consequences of this deficiency on early visual transmission. The homozygous mutant mice had a normally developed retina and showed no changes in the cellular organization of the rod pathway. In contrast, the functional coupling between AII amacrine cells and bipolar cells was impaired. Recordings of electroretinograms revealed a significant decrease of the scotopic b-wave in mutant animals and an increased cone threshold that is compatible with a distorted, gap junctional transmission between AII amacrine cells and cone bipolar cells. Recordings of visual evoked potentials showed extended latency in mutant mice but unaffected ON and OFF components. Our results demonstrate that Cx36-containing gap junctions are essential for normal synaptic transmission within the rod pathway.
Collapse
|
212
|
Shinohara K, Funabashi T, Nakamura TJ, Kimura F. Effects of estrogen and progesterone on the expression of connexin-36 mRNA in the suprachiasmatic nucleus of female rats. Neurosci Lett 2001; 309:37-40. [PMID: 11489541 DOI: 10.1016/s0304-3940(01)02022-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine the effects of ovarian steroid hormones on gap junction communication in the suprachiasmatic nucleus (SCN), we examined the effects of estrogen and/or progesterone on the expression of connexin-36 mRNA in the SCN and cerebral cortex (CX) of female rats. Ovariectomized adult rats were injected with 20 microg 17beta-Estradiol or sesame oil 48 h before sacrifice and further injected with 1.5 mg progesterone or sesame oil 24 h before sacrifice. Northern blot revealed that estrogen significantly increased the expression of connexin-36 mRNA in the SCN and this increase was inhibited by progesterone. On the other hand, the connexin-36 mRNA level in the CX was not affected by estrogen or progesterone. These results suggest that the gap junction with connexin-36 in the SCN is specifically regulated by ovarian steroid hormones of female rats.
Collapse
Affiliation(s)
- K Shinohara
- Department of Physiology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan.
| | | | | | | |
Collapse
|
213
|
Abstract
In this issue of Neuron, two laboratories (Deans et al. and Hormuzdi et al.) find that cortical gamma oscillation in vitro is impaired in the Cx36 knockout mouse. What are the implications?
Collapse
Affiliation(s)
- G Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| |
Collapse
|
214
|
Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 2001; 31:477-85. [PMID: 11516403 DOI: 10.1016/s0896-6273(01)00373-7] [Citation(s) in RCA: 417] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inhibitory interneurons often generate synchronous activity as an emergent property of their interconnections. To determine the role of electrical synapses in such activity, we constructed mice expressing histochemical reporters in place of the gap junction protein Cx36. Localization of the reporter with somatostatin and parvalbumin suggested that Cx36 was expressed largely by interneurons. Electrical synapses were common among cortical interneurons in controls but were nearly absent in knockouts. A metabotropic glutamate receptor agonist excited LTS interneurons, generating rhythmic inhibitory potentials in surrounding neurons of both wild-type and knockout animals. However, the synchrony of these rhythms was weaker and more spatially restricted in the knockout. We conclude that electrical synapses containing Cx36 are critical for the generation of widespread, synchronous inhibitory activity.
Collapse
Affiliation(s)
- M R Deans
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
215
|
Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, Willecke K, Weiler R. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 2001; 21:6036-44. [PMID: 11487627 PMCID: PMC6763178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2001] [Revised: 05/16/2001] [Accepted: 05/31/2001] [Indexed: 02/21/2023] Open
Abstract
In the mammalian retina, rods feed into the cone pathway through electrotonic coupling, and recent histological data suggest the involvement of connexin36 (Cx36) in this pathway. We therefore generated Cx36 null mice and monitored the functional consequences of this deficiency on early visual transmission. The homozygous mutant mice had a normally developed retina and showed no changes in the cellular organization of the rod pathway. In contrast, the functional coupling between AII amacrine cells and bipolar cells was impaired. Recordings of electroretinograms revealed a significant decrease of the scotopic b-wave in mutant animals and an increased cone threshold that is compatible with a distorted, gap junctional transmission between AII amacrine cells and cone bipolar cells. Recordings of visual evoked potentials showed extended latency in mutant mice but unaffected ON and OFF components. Our results demonstrate that Cx36-containing gap junctions are essential for normal synaptic transmission within the rod pathway.
Collapse
Affiliation(s)
- M Güldenagel
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, 53117 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Importantly, when SCN neurons are removed from the organism and maintained in a brain slice preparation, they continue to generate 24h rhythms in electrical activity, secretion, and gene expression. Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells in the SCN. If we assume that individual cells in the SCN are competent circadian oscillators, it is obviously important to understand how these cells communicate and remain synchronized with each other. Cell-to-cell communication is clearly necessary for conveying inputs to and outputs from the SCN and may be involved in ensuring the high precision of the observed rhythm. In addition, there is a growing body of evidence that a number of systems-level phenomena could be dependent on the cellular communication between circadian pacemaker neurons. It is not yet known how this cellular synchronization occurs, but it is likely that more than one of the already proposed mechanisms is utilized. The purpose of this review is to summarize briefly the possible mechanisms by which the oscillatory cells in the SCN communicate with each other.
Collapse
Affiliation(s)
- S Michel
- Institut für Zoologie, Universität Leipzig, Germany
| | | |
Collapse
|
217
|
Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 2001. [PMID: 11160382 DOI: 10.1523/jneurosci.21-04-01117.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new mouse gap junction gene that codes for a protein of 46,551 Da has been identified and designated connexin47 (Cx47). It mapped as a single-copy gene to mouse chromosome 11. In human HeLa cells and Xenopus oocytes, expression of mouse Cx47 or a fusion protein of Cx47 and enhanced green fluorescent protein induced intercellular channels that displayed strong sensitivity to transjunctional voltage. Tracer injections in Cx47-transfected HeLa cells revealed intercellular diffusion of neurobiotin, Lucifer yellow, and 4',6-diamidino-2-phenylindole. Recordings of single channels yielded a unitary conductance of 55 pS main state and 8 pS substate. Cx47 mRNA expression was high in spinal cord and brain but was not found in retina, liver, heart, and lung. A low level of Cx47 expression was detected in ovaries. In situ hybridizations demonstrated high expression in alpha motor neurons of the spinal cord, pyramidal cells of the cortex and hippocampus, granular and molecular layers of the dentate gyrus, and Purkinje cells of the cerebellum as well as several nuclei of the brainstem. This expression pattern is distinct from, although partially overlapping with, that of the neuronally expressed connexin36 gene. Thus, electrical synapses in adult mammalian brain are likely to consist of different connexin proteins depending on the neuronal subtype.
Collapse
|
218
|
Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 2001. [PMID: 11245683 DOI: 10.1523/jneurosci.21-06-01983.2001] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus that gap junctions link neurons to neurons and astrocytes to oligodendrocytes, ependymocytes, and other astrocytes. However, unresolved are the existence and degree to which gap junctions occur between oligodendrocytes, between oligodendrocytes and neurons, and between astrocytes and neurons. Using light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling of adult rat CNS, we investigated whether four of the best-characterized CNS connexins are each present in one or more cell types, whether oligodendrocytes also share gap junctions with other oligodendrocytes or with neurons, and whether astrocytes share gap junctions with neurons. Connexin32 (Cx32) was found only in gap junctions of oligodendrocyte plasma membranes, Cx30 and Cx43 were found only in astrocyte membranes, and Cx36 was only in neurons. Oligodendrocytes shared intercellular gap junctions only with astrocytes, with each oligodendrocyte isolated from other oligodendrocytes except via astrocyte intermediaries. Finally, neurons shared gap junctions only with other neurons and not with glial cells. Thus, the different cell types of the CNS express different connexins, which define separate pathways for neuronal versus glial gap junctional communication.
Collapse
|
219
|
Söhl G, Eiberger J, Jung YT, Kozak CA, Willecke K. The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development. Biol Chem 2001; 382:973-8. [PMID: 11501764 DOI: 10.1515/bc.2001.122] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel mouse gap junction gene, coding for a presumptive protein of 258 amino acids (molecular mass: 28 981 Da), has been designated connexin29. This single copy gene was mapped to distal mouse chromosome 5 and shows 75% sequence identity to a human connexin30.2 sequence in the database. Connexin29 mRNA (4.4 kb) is highly expressed in mouse sciatic nerve and less abundant in spinal cord as well as in adult brain, where it increased 12-fold between day 7 and 14 post partum. Our expression data suggest that the new connexin gene is active in myelin-forming glial cells.
Collapse
Affiliation(s)
- G Söhl
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
220
|
Abstract
Although gap junctions were first demonstrated in the mammalian brain about 30 years ago, the distribution and role of electrical synapses have remained elusive. A series of recent reports has demonstrated that inhibitory interneurons in the cerebral cortex, thalamus, striatum and cerebellum are extensively interconnected by electrical synapses. Investigators have used paired recordings to reveal directly the presence of electrical synapses among identified cell types. These studies indicate that electrical coupling is a fundamental feature of local inhibitory circuits and suggest that electrical synapses define functionally diverse networks of GABA-releasing interneurons. Here, we discuss these results, their possible functional significance and the insights into neuronal circuit organization that have emerged from them.
Collapse
Affiliation(s)
- M Galarreta
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5330, USA.
| | | |
Collapse
|
221
|
Lynn BD, Rempel JL, Nagy JI. Enrichment of neuronal and glial connexins in the postsynaptic density subcellular fraction of rat brain. Brain Res 2001; 898:1-8. [PMID: 11292443 DOI: 10.1016/s0006-8993(01)02062-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The similar dense, protein-rich and detergent-resistant characteristics of postsynaptic densities (PSDs) and gap junctions led us to investigate the distribution of gap junctions and their constituent connexins in CNS subcellular fractions containing PSDs. Western blot analysis showed these fractions to be enriched in both neuronal and glial connexins, namely, connexin26, connexin30, connexin36 and connexin43. Connexins were retained in these fractions after treatment with n-lauroyl sarcosine to remove loosely associated proteins. Confocal double immunofluorescence confirmed the presence of connexins in PSD fractions and showed a near total co-localization of glial connexin30 and connexin43, demonstrating preservation of inter-connexin relationships that have been observed in vivo. In contrast, none of the connexins were co-localized with the PSD structural protein PSD-95, indicating their lack of direct association with PSDs. These results show that PSD preparations contain significant levels of connexin proteins, which appear to remain assembled as gap junctions. Thus, protocols used to isolate PSDs may serve as a basis for development of methods to isolate CNS gap junctions, which would aid biochemical identification of regulatory and structural proteins associated with these structures.
Collapse
Affiliation(s)
- B D Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, R3E 3J7, Manitoba, Canada
| | | | | |
Collapse
|
222
|
Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 2001; 21:1983-2000. [PMID: 11245683 PMCID: PMC1804287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Revised: 01/02/2001] [Accepted: 01/03/2001] [Indexed: 02/19/2023] Open
Abstract
The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus that gap junctions link neurons to neurons and astrocytes to oligodendrocytes, ependymocytes, and other astrocytes. However, unresolved are the existence and degree to which gap junctions occur between oligodendrocytes, between oligodendrocytes and neurons, and between astrocytes and neurons. Using light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling of adult rat CNS, we investigated whether four of the best-characterized CNS connexins are each present in one or more cell types, whether oligodendrocytes also share gap junctions with other oligodendrocytes or with neurons, and whether astrocytes share gap junctions with neurons. Connexin32 (Cx32) was found only in gap junctions of oligodendrocyte plasma membranes, Cx30 and Cx43 were found only in astrocyte membranes, and Cx36 was only in neurons. Oligodendrocytes shared intercellular gap junctions only with astrocytes, with each oligodendrocyte isolated from other oligodendrocytes except via astrocyte intermediaries. Finally, neurons shared gap junctions only with other neurons and not with glial cells. Thus, the different cell types of the CNS express different connexins, which define separate pathways for neuronal versus glial gap junctional communication.
Collapse
Affiliation(s)
- J E Rash
- Department of Anatomy , Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
223
|
Mercier F, Hatton GI. Connexin 26 and basic fibroblast growth factor are expressed primarily in the subpial and subependymal layers in adult brain parenchyma: roles in stem cell proliferation and morphological plasticity? J Comp Neurol 2001; 431:88-104. [PMID: 11169992 DOI: 10.1002/1096-9861(20010226)431:1<88::aid-cne1057>3.0.co;2-d] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gap junction protein connexin 26 (Cx26) has been detected previously in the parenchyma of the developing brain and in the developing and adult meninges, but there is no clear evidence for the presence of this connexin in adult brain parenchyma. Confocal mapping of Cx26 through serial sections of the meningeal-intact rat brain with four antibodies revealed an intense Cx26 immunoreactivity in both parenchyma and extraparenchyma. In the extraparenchyma, a continuum of Cx26-immunoreactive puncta was observed throughout the three meningeal layers, the perineurium of cranial nerves, and meningeal projections into the brain, including sheaths of blood vessels and stroma of the choroid plexus. In the parenchyma, Cx26-immunoreactive puncta were located primarily in subependymal, subpial, and perivascular zones and were associated primarily with glial fibrillary acidic protein-positive (GFAP+) astrocytes, the nuclei of which are strongly immunoreactive for basic fibroblast growth factor (bFGF). Although it was found to a lesser extent than in astrocytes, bFGF immunoreactivity also was intense in the nuclei of meningeal fibroblasts. In addition, we have found a close correlation between the distribution of Cx26 and vimentin immunoreactivities in the meninges and their projections into the brain. We previously showed vimentin and S100beta immunoreactivities through a network of meningeal fibroblasts in the three layers of meninges, perivascular cells, and ependymocytes and in a population of astrocytes. The related topography of this network with GFAP+ astrocytes has also been demonstrated. Considering that connexin immunoreactivity may reflect the presence of functional gap junctions, the present results are consistent with our hypothesis that all of these various cell types may communicate in a cooperative network.
Collapse
Affiliation(s)
- F Mercier
- Department of Neuroscience, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
224
|
Teubner B, Odermatt B, Guldenagel M, Sohl G, Degen J, Bukauskas F, Kronengold J, Verselis VK, Jung YT, Kozak CA, Schilling K, Willecke K. Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 2001; 21:1117-26. [PMID: 11160382 PMCID: PMC3671913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
A new mouse gap junction gene that codes for a protein of 46,551 Da has been identified and designated connexin47 (Cx47). It mapped as a single-copy gene to mouse chromosome 11. In human HeLa cells and Xenopus oocytes, expression of mouse Cx47 or a fusion protein of Cx47 and enhanced green fluorescent protein induced intercellular channels that displayed strong sensitivity to transjunctional voltage. Tracer injections in Cx47-transfected HeLa cells revealed intercellular diffusion of neurobiotin, Lucifer yellow, and 4',6-diamidino-2-phenylindole. Recordings of single channels yielded a unitary conductance of 55 pS main state and 8 pS substate. Cx47 mRNA expression was high in spinal cord and brain but was not found in retina, liver, heart, and lung. A low level of Cx47 expression was detected in ovaries. In situ hybridizations demonstrated high expression in alpha motor neurons of the spinal cord, pyramidal cells of the cortex and hippocampus, granular and molecular layers of the dentate gyrus, and Purkinje cells of the cerebellum as well as several nuclei of the brainstem. This expression pattern is distinct from, although partially overlapping with, that of the neuronally expressed connexin36 gene. Thus, electrical synapses in adult mammalian brain are likely to consist of different connexin proteins depending on the neuronal subtype.
Collapse
Affiliation(s)
- B Teubner
- Institut für Genetik, Universität Bonn, D-53117 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Peinado A. Immature neocortical neurons exist as extensive syncitial networks linked by dendrodendritic electrical connections. J Neurophysiol 2001; 85:620-9. [PMID: 11160498 DOI: 10.1152/jn.2001.85.2.620] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The properties of immature cortex that may enable it to exhibit large-scale wavelike activity during a brief critical developmental period were investigated by imaging neuronal calcium signals in neonatal cortical slices under conditions of artificially enhanced excitability, conditions that produce a more frequent and robust version of the naturally occurring waves. Using pharmacological manipulation to probe the underlying mechanisms, I show that waves can propagate effectively when excitatory synaptic transmission is blocked. In contrast, propagation is very sensitive to reductions in gap junctional communication. In the barrel field cortex wave propagation is affected by the underlying cytoarchitecture in a way that is consistent with a role for dendrodendritic gap junctions. The ability of cortex to sustain wave activity ends around postnatal day 12, precisely when a major reduction in neuronal gap junctions takes place in cortex. These results suggest that in immature cortex gap junctions link neurons into extensive networks that may allow electrical activity to spread over long distances.
Collapse
Affiliation(s)
- A Peinado
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
226
|
Deans MR, Paul DL. Mouse horizontal cells do not express connexin26 or connexin36. CELL COMMUNICATION & ADHESION 2001; 8:361-6. [PMID: 12064619 PMCID: PMC2834531 DOI: 10.3109/15419060109080754] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gap junctions between neurons function as electrical synapses, and are present in all layers of mammalian and teleost retina. These synapses are largest and most prominent between horizontal cells where they function to increase the receptive field of a single neuron beyond the width of its dendrites. Receptive field size and the extent of gap junctional coupling between horizontal cells is regulated by ambient light levels and may mediate light/dark adaptation. Furthermore, teleost horizontal cell gap junction hemichannels may facilitate a mechanism of feedback inhibition between horizontal cells and cone photoreceptors. As a prelude to using mouse genetic models to study horizontal cell gap junctions and hemichannels, we sought to determine the connexin complement of mouse horizontal cells. Cx36, Cx37, Cx43, Cx45 and Cx57 mRNA could be detected in mouse retina by RT-PCR. Microscopy was used to further examine the distribution of Cx26 and Cx36. Cx26 immunofluorescence and a beta-gal reporter under regulatory control of the Cx36 promoter did not colocalize with a horizontal cell marker, indicating that these genes are not expressed by horizontal cells. The identity of the connexin(s) forming electrical synapses between mouse horizontal cells and the connexin that may form hemichannels in the horizontal cell telodendria remains unknown.
Collapse
Affiliation(s)
- Michael R. Deans
- Department of Neurobiology, Harvard Medical School, Boston MA 02115
| | - David L. Paul
- Department of Neurobiology, Harvard Medical School, Boston MA 02115
| |
Collapse
|
227
|
Rash JE, Yasumura T, Davidson KG, Furman CS, Dudek FE, Nagy JI. Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. CELL COMMUNICATION & ADHESION 2001; 8:315-20. [PMID: 12064610 PMCID: PMC1805789 DOI: 10.3109/15419060109080745] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with "permissive" connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.
Collapse
Affiliation(s)
- J E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins 80523, USA.
| | | | | | | | | | | |
Collapse
|