201
|
Seiffert P, Bugge K, Nygaard M, Haxholm GW, Martinsen JH, Pedersen MN, Arleth L, Boomsma W, Kragelund BB. Orchestration of signaling by structural disorder in class 1 cytokine receptors. Cell Commun Signal 2020; 18:132. [PMID: 32831102 PMCID: PMC7444064 DOI: 10.1186/s12964-020-00626-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Class 1 cytokine receptors (C1CRs) are single-pass transmembrane proteins responsible for transmitting signals between the outside and the inside of cells. Remarkably, they orchestrate key biological processes such as proliferation, differentiation, immunity and growth through long disordered intracellular domains (ICDs), but without having intrinsic kinase activity. Despite these key roles, their characteristics remain rudimentarily understood. METHODS The current paper asks the question of why disorder has evolved to govern signaling of C1CRs by reviewing the literature in combination with new sequence and biophysical analyses of chain properties across the family. RESULTS We uncover that the C1CR-ICDs are fully disordered and brimming with SLiMs. Many of these short linear motifs (SLiMs) are overlapping, jointly signifying a complex regulation of interactions, including network rewiring by isoforms. The C1CR-ICDs have unique properties that distinguish them from most IDPs and we forward the perception that the C1CR-ICDs are far from simple strings with constitutively bound kinases. Rather, they carry both organizational and operational features left uncovered within their disorder, including mechanisms and complexities of regulatory functions. CONCLUSIONS Critically, the understanding of the fascinating ability of these long, completely disordered chains to orchestrate complex cellular signaling pathways is still in its infancy, and we urge a perceptional shift away from the current simplistic view towards uncovering their full functionalities and potential. Video abstract.
Collapse
Affiliation(s)
- Pernille Seiffert
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mads Nygaard
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Gitte W. Haxholm
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jacob H. Martinsen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Martin N. Pedersen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen Ø, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
202
|
Desai P, Bandopadhyay R. Pathophysiological implications of RNP granules in frontotemporal dementia and ALS. Neurochem Int 2020; 140:104819. [PMID: 32763254 DOI: 10.1016/j.neuint.2020.104819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are a group of chronic, progressive, age-related disorders that are becoming increasingly prevalent in the ageing population. Despite the variety of clinical features observed, neurodegenerative diseases are characterised by protein aggregation and deposition at the molecular level. The nature of such intracellular protein aggregates is dependent on disease type and specific to disease subtype. Frontotemporal dementia and amyotrophic lateral sclerosis (ALS) are two overlapping neurodegenerative diseases, exhibiting pathological aggregates commonly composed of the proteins: Fused in Sarcoma (FUS) or Transactive Response DNA Binding Protein of 43 KDa (TDP-43). The presence of these protein aggregates in late disease stages is suggestive of a converging underlying mechanism of pathology across diseases involving disrupted proteostasis. Despite this, at present there are no effective therapeutics for the diseases, with current treatment strategies generally tending to be only for symptom management. An area of research that has gained increased interest in recent years is the formation and maintenance of ribonucleoprotein (RNP) granules. These are membraneless organelles that consist of RNA and protein elements, which can be either constitutively expressed (such as nuclear paraspeckles) or upregulated under conditions of cellular stress as an adaptive response (such as cytoplasmic stress granules). RNA-binding proteins are a key component of RNP granules, and crucially some of which, for example FUS and TDP-43, are also neurodegenerative disease-associated proteins. Therefore, a better understanding of RNA-binding proteins in RNP granule formation and the regulation and maintenance of RNP granule biophysical properties and dynamics may provide insights into mechanisms contributing to disrupted proteostasis in neurodegenerative pathology; and thus open up new avenues for therapeutic discovery and development. This review will focus on stress granule and paraspeckle RNP granules, and discuss their possible contribution to pathology in cases of frontotemporal dementia and ALS.
Collapse
Affiliation(s)
- Perlina Desai
- Alzheimer's Research UK UCL Drug Discovery Institute and Department of Neuromuscular Diseases, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Clinical and Movement Neuroscience, University College London, Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.
| |
Collapse
|
203
|
Dzuricky M, Rogers BA, Shahid A, Cremer PS, Chilkoti A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat Chem 2020; 12:814-825. [PMID: 32747754 DOI: 10.1038/s41557-020-0511-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/18/2020] [Indexed: 11/09/2022]
Abstract
Phase separation of intrinsically disordered proteins (IDPs) is a remarkable feature of living cells to dynamically control intracellular partitioning. Despite the numerous new IDPs that have been identified, progress towards rational engineering in cells has been limited. To address this limitation, we systematically scanned the sequence space of native IDPs and designed artificial IDPs (A-IDPs) with different molecular weights and aromatic content, which exhibit variable condensate saturation concentrations and temperature cloud points in vitro and in cells. We created A-IDP puncta using these simple principles, which are capable of sequestering an enzyme and whose catalytic efficiency can be manipulated by the molecular weight of the A-IDP. These results provide a robust engineered platform for creating puncta with new, phase-separation-mediated control of biological function in living cells.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Bradley A Rogers
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Abdulla Shahid
- Department of Computer Science, Duke University, Durham, NC, USA.,Department of Biology, Duke University, Durham, NC, USA
| | - Paul S Cremer
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
204
|
Blundell TL, Gupta MN, Hasnain SE. Intrinsic disorder in proteins: Relevance to protein assemblies, drug design and host-pathogen interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 156:34-42. [PMID: 32628954 DOI: 10.1016/j.pbiomolbio.2020.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Intrinsic disorder in proteins resulting in considerable variation in structure can lead to multiple functions including multi-specificity and diverse pathologies. Protein interfaces can involve disordered regions that assemble through a concerted-fold-and-bind mechanism. The binding involves both enthalpic and entropic gains by exploiting 'hot spots' on the partner and displacing water molecules placed in thermodynamically unfavorable situations. The examples of Rad51-BRCA2 and Artemis-DNA-PKCs/LigIV complexes illustrate this in the context of drug design. This overview tracks the seamless involvement of protein disorder in multi-specificity of biocatalysts, protein assembly formations and host-pathogen interactions, where intrinsic disorder can in Mycobacteria, compensate for genome reduction by carrying out multiple functions and in some RNA viruses facilitate adaption to the host. These present challenging opportunities for designing new drugs and interventions.
Collapse
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, CB21GA, UK
| | - Munishwar N Gupta
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed E Hasnain
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Prof C.R. Rao Road, Hyderabad, India.
| |
Collapse
|
205
|
Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol 2020; 64:139-147. [PMID: 32535328 DOI: 10.1016/j.ceb.2020.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
X chromosome inactivation (XCI) is the process whereby one of the X chromosomes in female mammalian cells is silenced to equalize X-linked gene expression with males. XCI depends on the long noncoding RNA Xist, which coats the inactive X chromosome in cis and triggers a cascade of events that ultimately lead to chromosome-wide transcriptional silencing that is stable for the lifetime of an organism. In recent years, the discovery of proteins that interact with Xist have led to new insights into how the initiation of XCI occurs. Nevertheless, there are still various unknowns about the mechanisms by which Xist orchestrates and maintains stable X-linked silencing. Here, we review recent work elucidating the role of Xist and its protein partners in mediating chromosome-wide transcriptional repression, as well as discuss a model by which Xist may compartmentalize proteins across the inactive X chromosome to enable both the initiation and maintenance of XCI.
Collapse
Affiliation(s)
- Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
206
|
Springhower CE, Rosen MK, Chook YM. Karyopherins and condensates. Curr Opin Cell Biol 2020; 64:112-123. [PMID: 32474299 DOI: 10.1016/j.ceb.2020.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Several aggregation-prone RNA-binding proteins, including FUS, EWS, TAF15, hnRNP A1, hnRNP A2, and TDP-43, are mutated in neurodegenerative diseases. The nuclear-cytoplasmic distribution of these proteins is controlled by proteins in the karyopherin family of nuclear transport factors (Kaps). Recent studies have shown that Kaps not only transport these proteins but also inhibit their self-association/aggregation, acting as molecular chaperones. This chaperone activity is impaired for disease-causing mutants of the RNA-binding proteins. Here, we review physical data on the mechanisms of self-association of several disease-associated RNA-binding proteins, through liquid-liquid phase separation and amyloid fiber formation. In each case, we relate these data to biophysical, biochemical, and cell biological data on the inhibition of self-association by Kaps. Our analyses suggest that Kaps may be effective chaperones because they contain large surfaces with diverse physical properties that enable them to engage multiple different regions of their cargo proteins, blocking self-association.
Collapse
Affiliation(s)
- Charis E Springhower
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
207
|
Schuster BS, Dignon GL, Tang WS, Kelley FM, Ranganath AK, Jahnke CN, Simpkins AG, Regy RM, Hammer DA, Good MC, Mittal J. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc Natl Acad Sci U S A 2020; 117:11421-11431. [PMID: 32393642 PMCID: PMC7261017 DOI: 10.1073/pnas.2000223117] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854
| | - Gregory L Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Wai Shing Tang
- Department of Physics, Brown University, Providence, RI 02912
| | - Fleurie M Kelley
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854
| | | | - Craig N Jahnke
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Alison G Simpkins
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Roshan Mammen Regy
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew C Good
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015;
| |
Collapse
|
208
|
Cohan MC, Pappu RV. Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria. Trends Biochem Sci 2020; 45:668-680. [PMID: 32456986 DOI: 10.1016/j.tibs.2020.04.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins/regions (IDPs/IDRs) contribute to a diverse array of molecular functions in eukaryotic systems. There is also growing recognition that membraneless biomolecular condensates, many of which are organized or regulated by IDPs/IDRs, can enable spatial and temporal regulation of complex biochemical reactions in eukaryotes. Motivated by these findings, we assess if (and how) membraneless biomolecular condensates and IDPs/IDRs are functionally involved in key cellular processes and molecular functions in bacteria. We summarize the conceptual underpinnings of condensate assembly and leverage these concepts by connecting them to recent findings that implicate specific types of condensates and IDPs/IDRs in important cellular level processes and molecular functions in bacterial systems.
Collapse
Affiliation(s)
- Megan C Cohan
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
209
|
Allyn BM, Lee KD, Bassing CH. Genome Topology Control of Antigen Receptor Gene Assembly. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2617-2626. [PMID: 32366683 PMCID: PMC7440635 DOI: 10.4049/jimmunol.1901356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/22/2020] [Indexed: 02/02/2023]
Abstract
The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Igκ, TCRα/δ, and TCRβ loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein-mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage-specific locus compaction as well as broad usage of V segments. CTCF/cohesin-dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin-dependent and -independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.
Collapse
Affiliation(s)
- Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kyutae D Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
210
|
Abstract
Many biomolecular condensates appear to form via spontaneous or driven processes that have the hallmarks of intracellular phase transitions. This suggests that a common underlying physical framework might govern the formation of functionally and compositionally unrelated biomolecular condensates. In this review, we summarize recent work that leverages a stickers-and-spacers framework adapted from the field of associative polymers for understanding how multivalent protein and RNA molecules drive phase transitions that give rise to biomolecular condensates. We discuss how the valence of stickers impacts the driving forces for condensate formation and elaborate on how stickers can be distinguished from spacers in different contexts. We touch on the impact of sticker- and spacer-mediated interactions on the rheological properties of condensates and show how the model can be mapped to known drivers of different types of biomolecular condensates.
Collapse
Affiliation(s)
- Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Natural Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
211
|
Abstract
Biological phase separation is known to be important for cellular organization, which has recently been extended to a new class of biomolecules that form liquid-like droplets coexisting with the surrounding cellular or extracellular environment. These droplets are termed membraneless organelles, as they lack a dividing lipid membrane, and are formed through liquid-liquid phase separation (LLPS). Elucidating the molecular determinants of phase separation is a critical challenge for the field, as we are still at the early stages of understanding how cells may promote and regulate functions that are driven by LLPS. In this review, we discuss the role that disorder, perturbations to molecular interactions resulting from sequence, posttranslational modifications, and various regulatory stimuli play on protein LLPS, with a particular focus on insights that may be obtained from simulation and theory. We finally discuss how these molecular driving forces alter multicomponent phase separation and selectivity.
Collapse
Affiliation(s)
- Gregory L Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA;
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA;
| |
Collapse
|
212
|
Musashi-1: An Example of How Polyalanine Tracts Contribute to Self-Association in the Intrinsically Disordered Regions of RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21072289. [PMID: 32225071 PMCID: PMC7177541 DOI: 10.3390/ijms21072289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) have intrinsically disordered regions (IDRs) whose biophysical properties have yet to be explored to the same extent as those of the folded RNA interacting domains. These IDRs are essential to the formation of biomolecular condensates, such as stress and RNA granules, but dysregulated assembly can be pathological. Because of their structural heterogeneity, IDRs are best studied by NMR spectroscopy. In this study, we used NMR spectroscopy to investigate the structural propensity and self-association of the IDR of the RBP Musashi-1. We identified two transient α-helical regions (residues ~208–218 and ~270–284 in the IDR, the latter with a polyalanine tract). Strong NMR line broadening in these regions and circular dichroism and micrography data suggest that the two α-helical elements and the hydrophobic residues in between may contribute to the formation of oligomers found in stress granules and implicated in Alzheimer’s disease. Bioinformatics analysis suggests that polyalanine stretches in the IDRs of RBPs may have evolved to promote RBP assembly.
Collapse
|
213
|
Song J, Levenson R, Santos J, Velazquez L, Zhang F, Fygenson D, Wu W, Morse DE. Reflectin Proteins Bind and Reorganize Synthetic Phospholipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2673-2682. [PMID: 32097553 DOI: 10.1021/acs.langmuir.9b03632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reflectin proteins have been extensively studied for their role in reflectance in cephalopods. In the recently evolved Loliginid squids, these proteins and the structural color they regulate are dynamically tunable, enhancing their effectiveness for camouflage and communication. In these species, the reflectins are found in highest concentrations within the structurally tunable, membrane enclosed, periodically stacked lamellae of subcellular Bragg reflectors and in the intracellular vesicles of specialized skin cells known as iridocytes and leuocophores, respectively. To better understand the interactions between the reflectins and the membrane structures that encompass them, we analyzed the interactions of two purified reflectins with synthetic phospholipid membrane vesicles similar in composition to cellular membranes, using confocal fluorescence microscopy and dynamic light scattering. The purified recombinant reflectins were found to drive multivalent vesicle agglomeration in a ratio-dependent and saturable manner. Extensive proteolytic digestion terminated with PMSF of the reflectin A1-vesicle complexes triggered energetic membrane rearrangement, resulting in vesicle fusion, fission, and tubulation. This behavior contrasted markedly with that of vesicles complexed with reflectin C, from which PMSF-terminated proteolysis only released the original size vesicles. Clues to the basis for this difference, residing in significant differences between the structures of the two reflectins, led to the suggestion that specific reflectin-membrane interactions may play a role in the ontogenetic formation, long-term maintenance, and/or dynamic behavior of their biophotonically active host membrane nanostructures. Similar energetic remodeling has been associated with osmotic stress in other membrane systems, suggesting a path to reconstitution of the biophotonic system in vitro.
Collapse
Affiliation(s)
- Junyi Song
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-5100, United States
| | - Robert Levenson
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-5100, United States
| | - Jerome Santos
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-5100, United States
| | - Lourdes Velazquez
- Physics Department and California Nanosystems Institute, University of California, Santa Barbara, California 93106, United States
| | - Fan Zhang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deborah Fygenson
- Physics Department and California Nanosystems Institute, University of California, Santa Barbara, California 93106, United States
| | - Wenjian Wu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Daniel E Morse
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-5100, United States
| |
Collapse
|
214
|
Boncella AE, Shattuck JE, Cascarina SM, Paul KR, Baer MH, Fomicheva A, Lamb AK, Ross ED. Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules. Proc Natl Acad Sci U S A 2020; 117:5826-5835. [PMID: 32127480 PMCID: PMC7084078 DOI: 10.1073/pnas.1912723117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in a number of stress granule-associated proteins have been linked to various neurodegenerative diseases. Several of these mutations are found in aggregation-prone prion-like domains (PrLDs) within these proteins. In this work, we examine the sequence features governing PrLD localization to stress granules upon stress. We demonstrate that many yeast PrLDs are sufficient for stress-induced assembly into microscopically visible foci that colocalize with stress granule markers. Additionally, compositional biases exist among PrLDs that assemble upon stress, and these biases are consistent across different stressors. Using these biases, we have developed a composition-based prediction method that accurately predicts PrLD assembly into foci upon heat shock. We show that compositional changes alter PrLD assembly behavior in a predictable manner, while scrambling primary sequence has little effect on PrLD assembly and recruitment to stress granules. Furthermore, we were able to design synthetic PrLDs that were efficiently recruited to stress granules, and found that aromatic amino acids, which have previously been linked to PrLD phase separation, were dispensable for this recruitment. These results highlight the flexible sequence requirements for stress granule recruitment and suggest that PrLD localization to stress granules is driven primarily by amino acid composition, rather than primary sequence.
Collapse
Affiliation(s)
- Amy E Boncella
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jenifer E Shattuck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Kacy R Paul
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Matthew H Baer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Anastasia Fomicheva
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Andrew K Lamb
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
215
|
Bratek-Skicki A, Pancsa R, Meszaros B, Van Lindt J, Tompa P. A guide to regulation of the formation of biomolecular condensates. FEBS J 2020; 287:1924-1935. [PMID: 32080961 DOI: 10.1111/febs.15254] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include 'membraneless organelles' (MLOs) by liquid-liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase-separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post-translational modifications, and a broad range of phase-separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell.
Collapse
Affiliation(s)
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Balint Meszaros
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Joris Van Lindt
- VIB-VUB Center for Structural Biology (CSB), Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Brussels, Belgium.,Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
216
|
Fallini C, Khalil B, Smith CL, Rossoll W. Traffic jam at the nuclear pore: All roads lead to nucleocytoplasmic transport defects in ALS/FTD. Neurobiol Dis 2020; 140:104835. [PMID: 32179176 DOI: 10.1016/j.nbd.2020.104835] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/25/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease that specifically affects the function and survival of spinal and cortical motor neurons. ALS shares many genetic, clinical, and pathological characteristics with frontotemporal dementia (FTD), and these diseases are now recognized as presentations of a disease spectrum known as ALS/FTD. The molecular determinants of neuronal loss in ALS/FTD are still debated, but the recent discovery of nucleocytoplasmic transport defects as a common denominator of most if not all forms of ALS/FTD has dramatically changed our understanding of the pathogenic mechanisms of this disease. Loss of nuclear pores and nucleoporin aggregation, altered nuclear morphology, and impaired nuclear transport are some of the most prominent features that have been identified using a variety of animal, cellular, and human models of disease. Here, we review the experimental evidence linking nucleocytoplasmic transport defects to the pathogenesis of ALS/FTD and propose a unifying view on how these defects may lead to a vicious cycle that eventually causes neuronal death.
Collapse
Affiliation(s)
- Claudia Fallini
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| | - Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
217
|
Babinchak WM, Surewicz WK. Liquid-Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. J Mol Biol 2020; 432:1910-1925. [PMID: 32169484 DOI: 10.1016/j.jmb.2020.03.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) of proteins underlies the formation of membrane-less organelles. While it has been recognized for some time that these organelles are of key importance for normal cellular functions, a growing number of recent observations indicate that LLPS may also play a role in disease. In particular, numerous proteins that form toxic aggregates in neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Alzheimer's disease, were found to be highly prone to phase separation, suggesting that there might be a strong link between LLPS and the pathogenic process in these disorders. This review aims to assess the molecular basis of this link through exploration of the intermolecular interactions that underlie LLPS and aggregation and the underlying mechanisms facilitating maturation of liquid droplets into more stable assemblies, including so-called labile fibrils, hydrogels, and pathological amyloids. Recent insights into the structural basis of labile fibrils and potential mechanisms by which these relatively unstable structures could transition into more stable pathogenic amyloids are also discussed. Finally, this review explores how the environment of liquid droplets could modulate protein aggregation by altering kinetics of protein self-association, affecting folding of protein monomers, or changing aggregation pathways.
Collapse
Affiliation(s)
- W Michael Babinchak
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Witold K Surewicz
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
218
|
Liquid-liquid phase separation and extracellular multivalent interactions in the tale of galectin-3. Nat Commun 2020; 11:1229. [PMID: 32144274 PMCID: PMC7060198 DOI: 10.1038/s41467-020-15007-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/15/2020] [Indexed: 11/08/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) explains many intracellular activities, but its role in extracellular functions has not been studied to the same extent. Here we report how LLPS mediates the extracellular function of galectin-3, the only monomeric member of the galectin family. The mechanism through which galectin-3 agglutinates (acting as a “bridge” to aggregate glycosylated molecules) is largely unknown. Our data show that its N-terminal domain (NTD) undergoes LLPS driven by interactions between its aromatic residues (two tryptophans and 10 tyrosines). Our lipopolysaccharide (LPS) micelle model shows that the NTDs form multiple weak interactions to other galectin-3 and then aggregate LPS micelles. Aggregation is reversed when interactions between the LPS and the carbohydrate recognition domains are blocked by lactose. The proposed mechanism explains many of galectin-3’s functions and suggests that the aromatic residues in the NTD are interesting drug design targets. Galectin-3 consists of an unstructured N-terminal domain (NTD) and a structured carbohydrate-recognition domain and agglutinates neutrophils and glycosylated molecules in the extracellular milieu. Here the authors combine biophysical and biochemical experiments with NMR measurements and show that the galectin-3 NTD undergoes liquid-liquid phase separation (LLPS) and agglutinates other molecules through this process.
Collapse
|
219
|
Akkipeddi SMK, Velleca AJ, Carone DM. Probing the function of long noncoding RNAs in the nucleus. Chromosome Res 2020; 28:87-110. [PMID: 32026224 PMCID: PMC7131881 DOI: 10.1007/s10577-019-09625-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/26/2022]
Abstract
The nucleus is a highly organized and dynamic environment where regulation and coordination of processes such as gene expression and DNA replication are paramount. In recent years, noncoding RNAs have emerged as key participants in the regulation of nuclear processes. There are a multitude of functional roles for long noncoding RNA (lncRNA), mediated through their ability to act as molecular scaffolds bridging interactions with proteins, chromatin, and other RNA molecules within the nuclear environment. In this review, we discuss the diversity of techniques that have been developed to probe the function of nuclear lncRNAs, along with the ways in which those techniques have revealed insights into their mechanisms of action. Foundational observations into lncRNA function have been gleaned from molecular cytology-based, single-cell approaches to illuminate both the localization and abundance of lncRNAs in addition to their potential binding partners. Biochemical, extraction-based approaches have revealed the molecular contacts between lncRNAs and other molecules within the nuclear environment and how those interactions may contribute to nuclear organization and regulation. Using examples of well-studied nuclear lncRNAs, we demonstrate that the emerging functions of individual lncRNAs have been most clearly deduced from combined cytology and biochemical approaches tailored to study specific lncRNAs. As more functional nuclear lncRNAs continue to emerge, the development of additional technologies to study their interactions and mechanisms of action promise to continually expand our understanding of nuclear organization, chromosome architecture, genome regulation, and disease states.
Collapse
Affiliation(s)
| | - Anthony J Velleca
- Department of Molecular Phamacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
220
|
Nuclear bodies formed by polyQ-ataxin-1 protein are liquid RNA/protein droplets with tunable dynamics. Sci Rep 2020; 10:1557. [PMID: 32005838 PMCID: PMC6994494 DOI: 10.1038/s41598-020-57994-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/02/2020] [Indexed: 12/27/2022] Open
Abstract
A mutant form of the ataxin-1 protein with an expanded polyglutamine (polyQ) tract is the underlying cause of the inherited neurodegenerative disease spinocerebellar ataxia 1 (SCA1). In probing the biophysical features of the nuclear bodies (NBs) formed by polyQ-ataxin-1, we defined ataxin-1 NBs as spherical liquid protein/RNA droplets capable of rapid fusion. We observed dynamic exchange of the ataxin-1 protein into these NBs; notably, cell exposure to a pro-oxidant stress could trigger a transition to slower ataxin-1 exchange, typical of a hydrogel state, which no longer showed the same dependence on RNA or sensitivity to 1,6-hexanediol. Furthermore, we could alter ataxin-1 exchange dynamics either through modulating intracellular ATP levels, RNA helicase inhibition, or siRNA-mediated depletion of select RNA helicases. Collectively, these findings reveal the tunable dynamics of the liquid RNA/protein droplets formed by polyQ-ataxin-1.
Collapse
|
221
|
Carmicheal J, Atri P, Sharma S, Kumar S, Chirravuri Venkata R, Kulkarni P, Salgia R, Ghersi D, Kaur S, Batra SK. Presence and structure-activity relationship of intrinsically disordered regions across mucins. FASEB J 2020; 34:1939-1957. [PMID: 31908009 DOI: 10.1096/fj.201901898rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Many members of the mucin family are evolutionarily conserved and are often aberrantly expressed and glycosylated in various benign and malignant pathologies leading to tumor invasion, metastasis, and immune evasion. The large size and extensive glycosylation present challenges to study the mucin structure using traditional methods, including crystallography. We offer the hypothesis that the functional versatility of mucins may be attributed to the presence of intrinsically disordered regions (IDRs) that provide dynamism and flexibility and that the IDRs offer potential therapeutic targets. Herein, we examined the links between the mucin structure and function based on IDRs, posttranslational modifications (PTMs), and potential impact on their interactome. Using sequence-based bioinformatics tools, we observed that mucins are predicted to be moderately (20%-40%) to highly (>40%) disordered and many conserved mucin domains could be disordered. Phosphorylation sites overlap with IDRs throughout the mucin sequences. Additionally, the majority of predicted O- and N- glycosylation sites in the tandem repeat regions occur within IDRs and these IDRs contain a large number of functional motifs, that is, molecular recognition features (MoRFs), which directly influence protein-protein interactions (PPIs). This investigation provides a novel perspective and offers an insight into the complexity and dynamic nature of mucins.
Collapse
Affiliation(s)
- Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, Nebraska
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
222
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
223
|
Wong LE, Kim TH, Muhandiram DR, Forman-Kay JD, Kay LE. NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1. J Am Chem Soc 2020; 142:2471-2489. [DOI: 10.1021/jacs.9b12208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Leo E. Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tae Hun Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - D. Ranjith Muhandiram
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
224
|
Millard PS, Bugge K, Marabini R, Boomsma W, Burow M, Kragelund BB. IDDomainSpotter: Compositional bias reveals domains in long disordered protein regions-Insights from transcription factors. Protein Sci 2020; 29:169-183. [PMID: 31642121 PMCID: PMC6933863 DOI: 10.1002/pro.3754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Protein domains constitute regions of distinct structural properties and molecular functions that are retained when removed from the rest of the protein. However, due to the lack of tertiary structure, the identification of domains has been largely neglected for long (>50 residues) intrinsically disordered regions. Here we present a sequence-based approach to assess and visualize domain organization in long intrinsically disordered regions based on compositional sequence biases. An online tool to find putative intrinsically disordered domains (IDDomainSpotter) in any protein sequence or sequence alignment using any particular sequence trait is available at http://www.bio.ku.dk/sbinlab/IDDomainSpotter. Using this tool, we have identified a putative domain enriched in hydrophilic and disorder-promoting residues (Pro, Ser, and Thr) and depleted in positive charges (Arg and Lys) bordering the folded DNA-binding domains of several transcription factors (p53, GCR, NAC46, MYB28, and MYB29). This domain, from two different MYB transcription factors, was characterized biophysically to determine its properties. Our analyses show the domain to be extended, dynamic and highly disordered. It connects the DNA-binding domain to other disordered domains and is present and conserved in several transcription factors from different families and domains of life. This example illustrates the potential of IDDomainSpotter to predict, from sequence alone, putative domains of functional interest in otherwise uncharacterized disordered proteins.
Collapse
Affiliation(s)
- Peter S. Millard
- DynaMo Center, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Riccardo Marabini
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Wouter Boomsma
- Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
225
|
Zhong L, Zhao Z, Hu Q, Li Y, Zhao W, Li C, Xu Y, Rong R, Zhang J, Zhang Z, Li N, Liu Z. Identification of Maturity-Onset Diabetes of the Young Caused by Mutation in FOXM1 via Whole-Exome Sequencing in Northern China. Front Endocrinol (Lausanne) 2020; 11:534362. [PMID: 33633681 PMCID: PMC7900535 DOI: 10.3389/fendo.2020.534362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a highly heterogeneous disorder encompassing different types with particular clinical manifestations, while maturity-onset diabetes of the young (MODY) is an early-onset monogenenic diabetes. Most genetic predisposition of MODY has been identified in European and American populations. A large number of Chinese individuals are misdiagnosed due to defects of unknown genes. In this study, we analyzed the genetic and clinical characteristics of the Northern China. A total of 200 diabetic patients, including 10 suspected MODY subjects, were enrolled, and the mutational analysis of monogenic genes was performed by whole-exome sequencing and confirmed by familial information and Sanger sequencing. We found that clinical features and genetic characteristics have varied widely between MODY and other diabetic subjects in Northern China. FOXM1, a key molecule in the proliferation of pancreatic β-cells, has a rare mutation rs535471991, which leads to instability within the phosphorylated domain that impairs its function. Our findings indicate that FOXM1 may play a critical role in MODY, which could reduce the misdiagnose rate and provide promising therapy for MODY patients.
Collapse
Affiliation(s)
- Liang Zhong
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zengyi Zhao
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Qingshan Hu
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Yang Li
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Weili Zhao
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Chuang Li
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Yunqiang Xu
- The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Ruijuan Rong
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Jing Zhang
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zifeng Zhang
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Nan Li
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zanchao Liu
- The Shijiazhuang Second Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- *Correspondence: Zanchao Liu,
| |
Collapse
|
226
|
Babinchak WM, Surewicz WK. Studying Protein Aggregation in the Context of Liquid-liquid Phase Separation Using Fluorescence and Atomic Force Microscopy, Fluorescence and Turbidity Assays, and FRAP. Bio Protoc 2020; 10:e3489. [PMID: 32775538 DOI: 10.21769/bioprotoc.3489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) underlies the physiological assembly of many membrane-less organelles throughout the cell. However, dysregulation of LLPS may mediate the formation of pathological aggregates associated with neurodegenerative diseases. Here, we present complementary experimental approaches to study protein aggregation within and outside the context of LLPS in order to ascertain the impact of LLPS on aggregation kinetics. Techniques described include imaging-based approaches [fluorescence microscopy, atomic force microscopy (AFM), fluorescence recovery after photobleaching (FRAP)] as well as plate reader assays [Thioflavin-T (ThT) fluorescence intensity and turbidity]. Data and conclusions utilizing these approaches were recently reported for the low complexity domain (LCD) of the transactive response DNA binding protein of 43 kDa (TDP-43).
Collapse
Affiliation(s)
- W Michael Babinchak
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH USA
| | - Witold K Surewicz
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
227
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
228
|
Guthmann M, Burton A, Torres‐Padilla M. Expression and phase separation potential of heterochromatin proteins during early mouse development. EMBO Rep 2019; 20:e47952. [PMID: 31701657 PMCID: PMC6893284 DOI: 10.15252/embr.201947952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
In most eukaryotes, constitutive heterochromatin is associated with H3K9me3 and HP1α. The latter has been shown to play a role in heterochromatin formation through liquid-liquid phase separation. However, many other proteins are known to regulate and/or interact with constitutive heterochromatic regions in several species. We postulate that some of these heterochromatic proteins may play a role in the regulation of heterochromatin formation by liquid-liquid phase separation. Indeed, an analysis of the constitutive heterochromatin proteome shows that proteins associated with constitutive heterochromatin are significantly more disordered than a random set or a full nucleome set of proteins. Interestingly, their expression begins low and increases during preimplantation development. These observations suggest that the preimplantation embryo is a useful model to address the potential role for phase separation in heterochromatin formation, anticipating exciting research in the years to come.
Collapse
Affiliation(s)
- Manuel Guthmann
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| | - Adam Burton
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
229
|
Gabryelczyk B, Cai H, Shi X, Sun Y, Swinkels PJM, Salentinig S, Pervushin K, Miserez A. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides. Nat Commun 2019; 10:5465. [PMID: 31784535 PMCID: PMC6884462 DOI: 10.1038/s41467-019-13469-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) is involved in both intracellular membraneless organelles and extracellular tissues. Despite growing understanding of LLPS, molecular-level mechanisms behind this process are still not fully established. Here, we use histidine-rich squid beak proteins (HBPs) as model IDPs to shed light on molecular interactions governing LLPS. We show that LLPS of HBPs is mediated though specific modular repeats. The morphology of separated phases (liquid-like versus hydrogels) correlates with the repeats' hydrophobicity. Solution-state NMR indicates that LLPS is a multistep process initiated by deprotonation of histidine residues, followed by transient hydrogen bonding with tyrosine, and eventually by hydrophobic interactions. The microdroplets are stabilized by aromatic clustering of tyrosine residues exhibiting restricted molecular mobility in the nano-to-microsecond timescale according to solid-state NMR experiments. Our findings provide guidelines to rationally design pH-responsive peptides with LLPS ability for various applications, including bioinspired protocells and smart drug-delivery systems.
Collapse
Affiliation(s)
- Bartosz Gabryelczyk
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Hao Cai
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, NTU, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Sun
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Piet J M Swinkels
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
- Physical Chemistry and Soft Matter, Wageningen University, 6708 WE, Wageningen, Netherlands
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Department Materials Meet Life, EMPA, CH-9014, St-Gallen, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Konstantin Pervushin
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Ali Miserez
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore.
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
230
|
Peran I, Mittag T. Molecular structure in biomolecular condensates. Curr Opin Struct Biol 2019; 60:17-26. [PMID: 31790873 DOI: 10.1016/j.sbi.2019.09.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Evidence accumulated over the past decade provides support for liquid-liquid phase separation as the mechanism underlying the formation of biomolecular condensates, which include not only 'membraneless' organelles such as nucleoli and RNA granules, but additional assemblies involved in transcription, translation and signaling. Understanding the molecular mechanisms of condensate function requires knowledge of the structures of their constituents. Current knowledge suggests that structures formed via multivalent domain-motif interactions remain largely unchanged within condensates. Two different viewpoints exist regarding structures of disordered low-complexity domains within condensates; one argues that low-complexity domains remain largely disordered in condensates and their multivalency is encoded in short motifs called 'stickers', while the other argues that the sequences form cross-β structures resembling amyloid fibrils. We review these viewpoints and highlight outstanding questions that will inform structure-function relationships for biomolecular condensates.
Collapse
Affiliation(s)
- Ivan Peran
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
231
|
Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019; 176:419-434. [PMID: 30682370 DOI: 10.1016/j.cell.2018.12.035] [Citation(s) in RCA: 1744] [Impact Index Per Article: 290.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Evidence is now mounting that liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in cells. This realization has motivated major efforts to delineate the function of such biomolecular condensates in normal cells and their roles in contexts ranging from development to age-related disease. There is great interest in understanding the underlying biophysical principles and the specific properties of biological condensates with the goal of bringing insights into a wide range of biological processes and systems. The explosion of physiological and pathological contexts involving LLPS requires clear standards for their study. Here, we propose guidelines for rigorous experimental characterization of LLPS processes in vitro and in cells, discuss the caveats of common experimental approaches, and point out experimental and theoretical gaps in the field.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center, 01307 Dresden, Germany.
| | - Amy Gladfelter
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Tanja Mittag
- Department for Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
232
|
Fernandopulle M, Wang G, Nixon-Abell J, Qamar S, Balaji V, Morihara R, St George-Hyslop PH. Inherited and Sporadic Amyotrophic Lateral Sclerosis and Fronto-Temporal Lobar Degenerations arising from Pathological Condensates of Phase Separating Proteins. Hum Mol Genet 2019; 28:R187-R196. [PMID: 31595953 PMCID: PMC6872449 DOI: 10.1093/hmg/ddz162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Recent work on the biophysics of proteins with low complexity, intrinsically disordered domains that have the capacity to form biological condensates has profoundly altered the concepts about the pathogenesis of inherited and sporadic neurodegenerative disorders associated with pathological accumulation of these proteins. In the present review, we use the FUS, TDP-43 and A11 proteins as examples to illustrate how missense mutations and aberrant post-translational modifications of these proteins cause amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD).
Collapse
Affiliation(s)
- Michael Fernandopulle
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - GuoZhen Wang
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Varun Balaji
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3H2
| | - Ryuta Morihara
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3H2
| | - Peter H St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3H2
| |
Collapse
|
233
|
Wang X, Li C, Li F, Sharma VS, Song J, Webb GI. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models. BMC Bioinformatics 2019; 20:602. [PMID: 31752668 PMCID: PMC6868744 DOI: 10.1186/s12859-019-3178-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND S-sulphenylation is a ubiquitous protein post-translational modification (PTM) where an S-hydroxyl (-SOH) bond is formed via the reversible oxidation on the Sulfhydryl group of cysteine (C). Recent experimental studies have revealed that S-sulphenylation plays critical roles in many biological functions, such as protein regulation and cell signaling. State-of-the-art bioinformatic advances have facilitated high-throughput in silico screening of protein S-sulphenylation sites, thereby significantly reducing the time and labour costs traditionally required for the experimental investigation of S-sulphenylation. RESULTS In this study, we have proposed a novel hybrid computational framework, termed SIMLIN, for accurate prediction of protein S-sulphenylation sites using a multi-stage neural-network based ensemble-learning model integrating both protein sequence derived and protein structural features. Benchmarking experiments against the current state-of-the-art predictors for S-sulphenylation demonstrated that SIMLIN delivered competitive prediction performance. The empirical studies on the independent testing dataset demonstrated that SIMLIN achieved 88.0% prediction accuracy and an AUC score of 0.82, which outperforms currently existing methods. CONCLUSIONS In summary, SIMLIN predicts human S-sulphenylation sites with high accuracy thereby facilitating biological hypothesis generation and experimental validation. The web server, datasets, and online instructions are freely available at http://simlin.erc.monash.edu/ for academic purposes.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
- Division of Cancer Epidemiology, Cancer Council Victoria, Melbourne, VIC 3004 Australia
| | - Chen Li
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Fuyi Li
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Varun S. Sharma
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jiangning Song
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800 Australia
| | - Geoffrey I. Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
234
|
Sørensen CS, Kjaergaard M. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. Proc Natl Acad Sci U S A 2019; 116:23124-23131. [PMID: 31659043 PMCID: PMC6859346 DOI: 10.1073/pnas.1904813116] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many multidomain proteins contain disordered linkers that regulate interdomain contacts, and thus the effective concentrations that govern intramolecular reactions. Effective concentrations are rarely measured experimentally, and therefore little is known about how they relate to linker architecture. We have directly measured the effective concentrations enforced by disordered protein linkers using a fluorescent biosensor. We show that effective concentrations follow simple geometric models based on polymer physics, offering an indirect method to probe the structural properties of the linker. The compaction of the disordered linker depends not only on net charge, but also on the type of charged residues. In contrast to theoretical predictions, we found that polyampholyte linkers can contract to similar dimensions as globular proteins. Hydrophobicity has little effect in itself, but aromatic residues lead to strong compaction, likely through π-interactions. Finally, we find that the individual contributors to chain compaction are not additive. We thus demonstrate that direct measurement of effective concentrations can be used in systematic studies of the relationship between sequence and structure of intrinsically disordered proteins. A quantitative understanding of the relationship between effective concentration and linker sequence will be crucial for understanding disorder-based allosteric regulation in multidomain proteins.
Collapse
Affiliation(s)
- Charlotte S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark, DK-8000
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark, DK-8000
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark, DK-8000;
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark, DK-8000
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark, DK-8000
- Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Aarhus, Denmark, DK-8000
| |
Collapse
|
235
|
Owen I, Shewmaker F. The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins. Int J Mol Sci 2019; 20:ijms20215501. [PMID: 31694155 PMCID: PMC6861982 DOI: 10.3390/ijms20215501] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/23/2022] Open
Abstract
Advances in genomics and proteomics have revealed eukaryotic proteomes to be highly abundant in intrinsically disordered proteins that are susceptible to diverse post-translational modifications. Intrinsically disordered regions are critical to the liquid-liquid phase separation that facilitates specialized cellular functions. Here, we discuss how post-translational modifications of intrinsically disordered protein segments can regulate the molecular condensation of macromolecules into functional phase-separated complexes.
Collapse
|
236
|
Fakhree MAA, Blum C, Claessens MMAE. Shaping membranes with disordered proteins. Arch Biochem Biophys 2019; 677:108163. [PMID: 31672499 DOI: 10.1016/j.abb.2019.108163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.
Collapse
Affiliation(s)
| | - Christian Blum
- Nanobiophysics Group, University of Twente, 7522, NB, Enschede, the Netherlands
| | | |
Collapse
|
237
|
Andrusiak MG, Sharifnia P, Lyu X, Wang Z, Dickey AM, Wu Z, Chisholm AD, Jin Y. Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules. Neuron 2019; 104:290-304.e8. [PMID: 31378567 PMCID: PMC6813885 DOI: 10.1016/j.neuron.2019.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/19/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
Phase separation into liquid-like compartments is an emerging property of proteins containing prion-like domains (PrLDs), yet the in vivo roles of phase separation remain poorly understood. TIA proteins contain a C-terminal PrLD, and mutations in the PrLD are associated with several diseases. Here, we show that the C. elegans TIAR-2/TIA protein functions cell autonomously to inhibit axon regeneration. TIAR-2 undergoes liquid-liquid phase separation in vitro and forms granules with liquid-like properties in vivo. Axon injury induces a transient increase in TIAR-2 granule number. The PrLD is necessary and sufficient for granule formation and inhibiting regeneration. Tyrosine residues within the PrLD are important for granule formation and inhibition of regeneration. TIAR-2 is also serine phosphorylated in vivo. Non-phosphorylatable TIAR-2 variants do not form granules and are unable to inhibit axon regeneration. Our data demonstrate an in vivo function for phase-separated TIAR-2 and identify features critical for its function in axon regeneration.
Collapse
Affiliation(s)
- Matthew G Andrusiak
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Panid Sharifnia
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaohui Lyu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhiping Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea M Dickey
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zilu Wu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
238
|
Choi JM, Dar F, Pappu RV. LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol 2019; 15:e1007028. [PMID: 31634364 PMCID: PMC6822780 DOI: 10.1371/journal.pcbi.1007028] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/31/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Many biomolecular condensates form via spontaneous phase transitions that are driven by multivalent proteins. These molecules are biological instantiations of associative polymers that conform to a so-called stickers-and-spacers architecture. The stickers are protein-protein or protein-RNA interaction motifs and / or domains that can form reversible, non-covalent crosslinks with one another. Spacers are interspersed between stickers and their preferential interactions with solvent molecules determine the cooperativity of phase transitions. Here, we report the development of an open source computational engine known as LASSI (LAttice simulation engine for Sticker and Spacer Interactions) that enables the calculation of full phase diagrams for multicomponent systems comprising of coarse-grained representations of multivalent proteins. LASSI is designed to enable computationally efficient phenomenological modeling of spontaneous phase transitions of multicomponent mixtures comprising of multivalent proteins and RNA molecules. We demonstrate the application of LASSI using simulations of linear and branched multivalent proteins. We show that dense phases are best described as droplet-spanning networks that are characterized by reversible physical crosslinks among multivalent proteins. We connect recent observations regarding correlations between apparent stoichiometry and dwell times of condensates to being proxies for the internal structural organization, specifically the convolution of internal density and extent of networking, within condensates. Finally, we demonstrate that the concept of saturation concentration thresholds does not apply to multicomponent systems where obligate heterotypic interactions drive phase transitions. This emerges from the ellipsoidal structures of phase diagrams for multicomponent systems and it has direct implications for the regulation of biomolecular condensates in vivo.
Collapse
Affiliation(s)
- Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, United States of America
| | - Furqan Dar
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, United States of America
- Department of Physics, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
239
|
Manguy J, Shields DC. Implications of kappa-casein evolutionary diversity for the self-assembly and aggregation of casein micelles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190939. [PMID: 31824707 PMCID: PMC6837221 DOI: 10.1098/rsos.190939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Milk alpha-, beta- and kappa-casein proteins assemble into casein micelles in breast epithelial cells. The glycomacropeptide (GMP) tails of kappa-casein that extend from the surface of the micelle are key to assembly and aggregation. Aggregation is triggered by stomach pepsin cleavage of GMP from para-kappa-casein (PKC). While one casein micelle model emphasizes the importance of hydrophobic interactions, another focuses on polar residues. We performed an evolutionary analysis of kappa-casein primary sequence and predicted features that potentially impact on protein interactions. We noted more rapid change in the earlier period (166 to 60 Ma). Pepsin and plasmin cleavage sites were avoided in the GMP, which may partly explain its amino acid composition. Short tandem repeats have led to modest expansions of PKC, and to large GMP expansions, suggesting the GMP is less length constrained. Amino acid compositional constraints were assessed across species. Polarity and hydrophobicity properties were insufficient to explain differences between PKC and GMP. Among polar residues, threonine dominates the GMP, compared to serine, probably reflecting its preference for O-glycosylation over phosphorylation. Glutamine, enriched in the bovine PQ-rich region, is not positionally conserved in other species. Among hydrophobic residues, isoleucine is clearly preferred over leucine in the GMP, and patches of hydrophobicity are not markedly positionally conserved. PKC tyrosine and charged residues showed stronger conservation of position, suggesting a role for pi-interactions, seen in other structurally dynamic protein membraneless assemblies. Independent acquisitions of cysteines are consistent with a trend of increasing stabilization of multimers by covalent disulphide bonds, over evolutionary time. In conclusion, kappa-casein compositional and positional constraints appear to be influenced by modification preferences, protease evasion and protein-protein interactions.
Collapse
Affiliation(s)
- Jean Manguy
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Denis C. Shields
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
240
|
Ryan VH, Fawzi NL. Physiological, Pathological, and Targetable Membraneless Organelles in Neurons. Trends Neurosci 2019; 42:693-708. [PMID: 31493925 PMCID: PMC6779520 DOI: 10.1016/j.tins.2019.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/03/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Neurons require unique subcellular compartmentalization to function efficiently. Formed from proteins and RNAs through liquid-liquid phase separation, membraneless organelles (MLOs) have emerged as one way in which cells form distinct, specialized compartments in the absence of lipid membranes. We first discuss MLOs that are common to many cell types as well as those that are specific to neurons. Interestingly, many proteins associated with neurodegenerative disease are found in MLOs, particularly in stress and transport granules. We next review possible links between neurodegeneration and MLOs, and the hypothesis that the protein and RNA inclusions formed in disease are related to the functional complexes occurring inside these MLOs. Finally, we discuss the hypothesis that protein post-translational modifications (PTMs), which can alter phase separation, can modulate MLO formation and provide potential new therapeutic strategies for currently untreatable neurodegenerative diseases.
Collapse
Affiliation(s)
- Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
241
|
Parker MW, Bell M, Mir M, Kao JA, Darzacq X, Botchan MR, Berger JM. A new class of disordered elements controls DNA replication through initiator self-assembly. eLife 2019; 8:e48562. [PMID: 31560342 PMCID: PMC6764820 DOI: 10.7554/elife.48562] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
The initiation of DNA replication in metazoans occurs at thousands of chromosomal sites known as origins. At each origin, the Origin Recognition Complex (ORC), Cdc6, and Cdt1 co-assemble to load the Mcm2-7 replicative helicase onto chromatin. Current replication models envisage a linear arrangement of isolated origins functioning autonomously; the extent of inter-origin organization and communication is unknown. Here, we report that the replication initiation machinery of D. melanogaster unexpectedly undergoes liquid-liquid phase separation (LLPS) upon binding DNA in vitro. We find that ORC, Cdc6, and Cdt1 contain intrinsically disordered regions (IDRs) that drive LLPS and constitute a new class of phase separating elements. Initiator IDRs are shown to regulate multiple functions, including chromosome recruitment, initiator-specific co-assembly, and Mcm2-7 loading. These data help explain how CDK activity controls replication initiation and suggest that replication programs are subject to higher-order levels of inter-origin organization.
Collapse
Affiliation(s)
- Matthew W Parker
- Department of Biophysics and Biophysical ChemistryJohns Hopkins School of MedicineBaltimoreUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Maren Bell
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Mustafa Mir
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jonchee A Kao
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Michael R Botchan
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - James M Berger
- Department of Biophysics and Biophysical ChemistryJohns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
242
|
Levenson R, Bracken C, Sharma C, Santos J, Arata C, Malady B, Morse DE. Calibration between trigger and color: Neutralization of a genetically encoded coulombic switch and dynamic arrest precisely tune reflectin assembly. J Biol Chem 2019; 294:16804-16815. [PMID: 31558609 DOI: 10.1074/jbc.ra119.010339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/14/2019] [Indexed: 12/28/2022] Open
Abstract
Reflectin proteins are widely distributed in reflective structures in cephalopods. However, only in loliginid squids are they and the subwavelength photonic structures they control dynamically tunable, driving changes in skin color for camouflage and communication. The reflectins are block copolymers with repeated canonical domains interspersed with cationic linkers. Neurotransmitter-activated signal transduction culminates in catalytic phosphorylation of the tunable reflectins' cationic linkers; the resulting charge neutralization overcomes coulombic repulsion to progressively allow condensation, folding, and assembly into multimeric spheres of tunable well-defined size and low polydispersity. Here, we used dynamic light scattering, transmission EM, CD, atomic force microscopy, and fluorimetry to analyze the structural transitions of reflectins A1 and A2. We also analyzed the assembly behavior of phosphomimetic, deletion, and other mutants in conjunction with pH titration as an in vitro surrogate of phosphorylation. Our experiments uncovered a previously unsuspected, precisely predictive relationship between the extent of neutralization of a reflectin's net charge density and the size of resulting multimeric protein assemblies of narrow polydispersity. Comparisons of mutants revealed that this sensitivity to neutralization resides in the linkers and is spatially distributed along the protein. Imaging of large particles and analysis of sequence composition suggested that assembly may proceed through a dynamically arrested liquid-liquid phase-separated intermediate. Intriguingly, it is this dynamic arrest that enables the observed fine-tuning by charge and the resulting calibration between neuronal trigger and color in the squid. These results offer insights into the basis of reflectin-based biophotonics, opening paths for the design of new materials with tunable properties.
Collapse
Affiliation(s)
- Robert Levenson
- Department of Molecular, Cellular and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-5100
| | - Colton Bracken
- Department of Molecular, Cellular and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-5100
| | - Cristian Sharma
- Department of Molecular, Cellular and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-5100
| | - Jerome Santos
- Department of Molecular, Cellular and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-5100
| | - Claire Arata
- Department of Molecular, Cellular and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-5100
| | - Brandon Malady
- Department of Molecular, Cellular and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-5100
| | - Daniel E Morse
- Department of Molecular, Cellular and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106-5100
| |
Collapse
|
243
|
Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds. Cell 2019; 175:1467-1480.e13. [PMID: 30500534 DOI: 10.1016/j.cell.2018.10.048] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 11/24/2022]
Abstract
Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, "Corelets," and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes. VIDEO ABSTRACT.
Collapse
|
244
|
Feng Z, Chen X, Wu X, Zhang M. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J Biol Chem 2019; 294:14823-14835. [PMID: 31444270 DOI: 10.1074/jbc.rev119.007895] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of condensed biological assemblies with well-delineated physical boundaries, but without lipid membrane barriers. LLPS is increasingly recognized as a common mechanism for cells to organize and maintain different cellular compartments in addition to classical membrane-delimited organelles. Membraneless condensates have many distinct features that are not present in membrane-delimited organelles and that are likely indispensable for the viability and function of living cells. Malformation of membraneless condensates is increasingly linked to human diseases. In this review, we summarize commonly used methods to investigate various forms of LLPS occurring both in 3D aqueous solution and on 2D membrane bilayers, such as LLPS condensates arising from intrinsically disordered proteins or structured modular protein domains. We then discuss, in the context of comparisons with membrane-delimited organelles, the potential functional implications of membraneless condensate formation in cells. We close by highlighting some challenges in the field devoted to studying LLPS-mediated membraneless condensate formation.
Collapse
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China .,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
245
|
Ghosh S, T D, Baul U, Vemparala S. Aggregation dynamics of charged peptides in water: Effect of salt concentration. J Chem Phys 2019; 151:074901. [DOI: 10.1063/1.5100890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Susmita Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Devanand T
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Upayan Baul
- Institue of Physics, Albert-Ludwigs-University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
246
|
Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH, Mittal J, Fawzi NL. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 2019; 26:637-648. [PMID: 31270472 PMCID: PMC6613800 DOI: 10.1038/s41594-019-0250-x] [Citation(s) in RCA: 446] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
The low complexity domain of the RNA-binding protein FUS (FUS LC) mediates liquid-liquid phase separation (LLPS), but interactions between the repetitive SYGQ-rich sequence of FUS LC that stabilize the liquid phase are not known in detail. By combining NMR and Raman spectroscopy, mutagenesis, and molecular simulation, we demonstrate that heterogeneous interactions involving all residue types underlie LLPS of human FUS LC. We find no evidence that FUS LC adopts conformations with traditional secondary structure elements in the condensed phase, rather it maintains conformational heterogeneity. We show that hydrogen bonding, π/sp2 and hydrophobic interactions all contribute to stabilizing LLPS of FUS LC. In addition to contributions from tyrosine residues, we find that glutamine residues participate in contacts leading to LLPS of FUS LC. These results support a model in which FUS LC forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase.
Collapse
Affiliation(s)
- Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Gregory L Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Yelena Kan
- LUT School of Engineering Science, LUT University, Lappeenranta, Finland.,Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Sapun H Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany.,Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA.
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.
| |
Collapse
|
247
|
Lee IH, Imanaka MY, Modahl EH, Torres-Ocampo AP. Lipid Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. ACS OMEGA 2019; 4:6551-6559. [PMID: 31179407 PMCID: PMC6547621 DOI: 10.1021/acsomega.9b00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 05/11/2023]
Abstract
Cell plasma membranes are a heterogeneous mixture of lipids and membrane proteins. The importance of heterogeneous lipid domains (also called lipid rafts) as a molecular sorting platform has been implicated in many physiological processes. Cell plasma membranes that are detached from the cytoskeletal structure spontaneously phase separate into distinct domains at equilibrium, which show their inherent demixing properties. Recently, researchers have discovered that proteins with strong interprotein interactions also spontaneously phase separate into distinct protein domains, thus enabling the maintenance of many membraneless organelles. Protein phase separation may also take place on the lipid membranes via lipid-anchored proteins, which suggests another potential molecular sorting platform for physiological processes on the cell membrane. When two-phase separation properties coexist physiologically, they may change the resulting phase behavior or serve as independent sorting platforms. In this paper, we used in vitro reconstitution and fluorescence imaging to systematically quantify the phase behavior that arises when proteins with inherent phase separation properties interact with raft mixture lipid membranes. Our observations and simulations show both that the proteins may enhance lipid phase separation and that this is a general property of phase-separating protein systems with a diverse number of components involved. This suggests that we should consider the overall effect of the properties of both membrane-anchored proteins and lipids when interpreting molecular sorting phenomena on the membranes.
Collapse
Affiliation(s)
- Il-Hyung Lee
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
- E-mail:
| | - Matthew Y. Imanaka
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
| | - Emmi H. Modahl
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
| | - Ana P. Torres-Ocampo
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts at Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
248
|
Yang Y, Jones HB, Dao TP, Castañeda CA. Single Amino Acid Substitutions in Stickers, but Not Spacers, Substantially Alter UBQLN2 Phase Transitions and Dense Phase Material Properties. J Phys Chem B 2019; 123:3618-3629. [PMID: 30925840 DOI: 10.1021/acs.jpcb.9b01024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UBQLN2 450-624 oligomerizes and undergoes temperature-responsive liquid-liquid phase transitions following a closed-loop temperature-concentration phase diagram. We recently showed that disease-linked mutations to UBQLN2 450-624 impart highly varying effects to its phase behavior, ranging from little change to significant decrease of saturation concentration and formation of gels and aggregates. However, how single mutations lead to these properties is unknown. Here, we use UBQLN2 450-624 as a model system to study the sequence determinants of phase separation. We hypothesized that UBQLN2 450-624 regions previously identified to promote its oligomerization are the "stickers" that drive interchain interactions and phase separation. We systematically investigated how phase behavior is affected by all 19 possible single amino acid substitutions at three sticker and two "spacer" (sequences separating stickers) positions. Overall, substitutions to stickers, but not spacers, substantially altered the shape of the phase diagram. Within the sticker regions, increasing hydrophobicity decreased saturation concentrations at low temperatures and enhanced oligomerization propensity and viscoelasticity of the dense phase. Conversely, substitutions to acidic residues at all positions greatly increased saturation concentrations. Our data demonstrate that single amino acid substitutions follow a molecular code to tune phase transition behavior of biopolymers.
Collapse
|
249
|
Kato M, Yang YS, Sutter BM, Wang Y, McKnight SL, Tu BP. Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain. Cell 2019; 177:711-721.e8. [PMID: 30982603 DOI: 10.1016/j.cell.2019.02.044] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-β polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H2O2)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.
Collapse
Affiliation(s)
- Masato Kato
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yu-San Yang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Steven L McKnight
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
250
|
ALS-Linked Mutations Affect UBQLN2 Oligomerization and Phase Separation in a Position- and Amino Acid-Dependent Manner. Structure 2019; 27:937-951.e5. [PMID: 30982635 DOI: 10.1016/j.str.2019.03.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/22/2018] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
Proteasomal shuttle factor UBQLN2 is recruited to stress granules and undergoes liquid-liquid phase separation (LLPS) into protein-containing droplets. Mutations to UBQLN2 have recently been shown to cause dominant X-linked inheritance of amyotrophic lateral sclerosis (ALS) and ALS/dementia. Interestingly, most of these UBQLN2 mutations reside in its proline-rich (Pxx) region, an important modulator of LLPS. Here, we demonstrated that ALS-linked Pxx mutations differentially affect UBQLN2 LLPS, depending on both amino acid substitution and sequence position. Using size-exclusion chromatography, analytical ultracentrifugation, microscopy, and NMR spectroscopy, we determined that those Pxx mutants that enhanced UBQLN2 oligomerization decreased saturation concentrations needed for LLPS and promoted solid-like and viscoelastic morphological changes to UBQLN2 liquid assemblies. Ubiquitin disassembled all LLPS-induced mutant UBQLN2 aggregates. We postulate that the changes in physical properties caused by ALS-linked Pxx mutations modify UBQLN2 behavior in vivo, possibly contributing to aberrant stress granule morphology and dynamics, leading to formation of inclusions, pathological characteristics of ALS.
Collapse
|