201
|
Ferro M, Tardif M, Reguer E, Cahuzac R, Bruley C, Vermat T, Nugues E, Vigouroux M, Vandenbrouck Y, Garin J, Viari A. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences. J Proteome Res 2008; 7:1873-83. [PMID: 18348511 DOI: 10.1021/pr070415k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.
Collapse
Affiliation(s)
- Myriam Ferro
- CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, Grenoble, F-38054, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Stensballe A, Hald S, Bauw G, Blennow A, Welinder KG. The amyloplast proteome of potato tuber. FEBS J 2008; 275:1723-41. [DOI: 10.1111/j.1742-4658.2008.06332.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
203
|
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J. An update on abscisic acid signaling in plants and more... MOLECULAR PLANT 2008; 1:198-217. [PMID: 19825533 DOI: 10.1093/mp/ssm022] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mode of abscisic acid (ABA) action, and its relations to drought adaptive responses in particular, has been a captivating area of plant hormone research for much over a decade. The hormone triggers stomatal closure to limit water loss through transpiration, as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress. The signaling network orchestrating these various responses is, however, highly complex. This review summarizes several significant advances made within the last few years. The biosynthetic pathway of the hormone is now almost completely elucidated, with the latest identification of the ABA4 gene encoding a neoxanthin synthase, which seems essential for de novo ABA biosynthesis during water stress. This leads to the interesting question on how ABA is then delivered to perception sites. In this respect, regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response, and at the cellular level, by the identification of a beta-galactosidase that releases biologically active ABA from inactive ABA-glucose ester. Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA) and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication, both of which have been shown to bind ABA in vitro. On the other hand, the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty. Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses. Sucrose Non-Fermenting Related Kinases (SnRK), Calcium-Dependent Protein Kinases (CDPK), Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model. Identifying their direct in vivo targets of regulation, which may include H(+)-ATPases, ion channels, 14-3-3 proteins and transcription factors, will logically be the next major challenge. Emerging evidence also implicates ABA as a repressor of innate immune response, as hinted by the highly similar roster of genes elicited by certain pathogens and ABA. Undoubtedly, the most astonishing revelation is that ABA is not restricted to plants and mosses, but overwhelming evidence now indicates that it also exists in metazoans ranging from the most primitive to the most advance on the evolution scale (sponges to humans). In metazoans, ABA has healing properties, and plays protective roles against both environmental and pathogen related injuries. These cross-kingdom comparisons have shed light on the surprising ancient origin of ABA and its attendant mechanisms of signal transduction.
Collapse
Affiliation(s)
- Aleksandra Wasilewska
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, 1 Avenue de la Terrasse, Bât. 23, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Meinnel T, Giglione C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 2008; 8:626-49. [DOI: 10.1002/pmic.200700592] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
205
|
Meyer EH, Taylor NL, Millar AH. Resolving and identifying protein components of plant mitochondrial respiratory complexes using three dimensions of gel electrophoresis. J Proteome Res 2008; 7:786-94. [PMID: 18189341 DOI: 10.1021/pr700595p] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analyzing highly hydrophobic proteins is a challenge for identification protocols based on gel separation and mass spectrometry. We combined Blue Native and 2D tricine gel electrophoresis to allow separation and identification of respiratory complex subunits from Arabidopsis mitochondria. We identified many of the highly hydrophobic mitochondrion-encoded subunits (GRAVY scores between +0.6 to +1.4) and also found a number of nucleus-encoded proteins associated with complex I for the first time in plants.
Collapse
Affiliation(s)
- Etienne H Meyer
- ARC Center of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | | | | |
Collapse
|
206
|
Cahoon AB, Takacs EM, Sharpe RM, Stern DB. Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. PLANT MOLECULAR BIOLOGY 2008; 66:33-46. [PMID: 17932771 DOI: 10.1007/s11103-007-9250-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/01/2007] [Indexed: 05/09/2023]
Abstract
In maize, the chloroplast chromosome encodes 104 genes whose roles are primarily in photosynthesis and gene expression. The 2,000-3,000 nuclear gene products that localize to plastids are required both to encode and regulate plastid gene expression as well as to underpin each aspect of plastid physiology and development. We used a new "three-genome" maize biogenesis cDNA microarray to track abundance changes in nuclear, chloroplast and mitochondrial transcripts in stage 2 semi-emerged leaf blades of one month-old maize plants. We report the detection and quantification of 433 nuclear, 62 chloroplast, and 27 mitochondrial transcripts, with the majority of the nuclear transcripts predicted or known to encode plastid proteins. The data were analyzed as ratios of expression of individual transcripts in the green tip (mature chloroplasts) versus the yellow base of the leaf (etioplasts). According to the microarray data at least 51 plastid genes and 121 nuclear genes are expressed at least two-fold higher in the tip of the leaf. Almost all (25) mitochondrial and 177 nuclear transcripts were expressed at least 2-fold higher in the leaf base. Independent quantification of a subset of each transcript population by RNA gel blot analysis and/or quantitative real time RT-PCR concurred with the transcript ratios determined by the array. Ontological distribution of the transcripts suggests that photosynthesis-related RNAs were most highly abundant in the leaf tip and that energy use genes were most highly expressed in the base. Transcripts whose products are used in plastid translation constituted the largest single ontological group with relatively equal numbers of genes in the three expression categories, defined as higher in tip, higher in base, or equally expressed in tip and base.
Collapse
Affiliation(s)
- A Bruce Cahoon
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN 37132, USA.
| | | | | | | |
Collapse
|
207
|
Cvetić T, Veljović-Jovanović S, Vucinić Z. Characterization of NAD-dependent malate dehydrogenases from spinach leaves. PROTOPLASMA 2008; 232:247-253. [PMID: 18239847 DOI: 10.1007/s00709-007-0282-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 06/18/2007] [Indexed: 05/25/2023]
Abstract
Spinach leaves were used to extract isoforms of NAD-dependent malate dehydrogenase (NAD-MDH) (EC 1.1.1.37), either soluble or bound to microsomal, plasma, or chloroplast envelope membranes. All fractions were subjected to isoelectric focusing analysis, which showed that purified chloroplast envelopes contain an NAD-MDH isoform tightly bound to the membranes, since treatment with 0.5 or 1% Triton X-100 was not able to release the enzyme from the envelopes. In contrast, plasma membranes released an isoform with a pI of 3.5 following treatment with 0.5% Triton X-100. The most abundant soluble leaf isoform had a pI of 9, while the chloroplast stroma contained an isoform with a pI of 5.3. Kinetic analysis of oxaloacetate (OAA)-dependent NADH oxidation in different fractions gave different Km values for both substrates, the envelope- and plasma membrane-bound NAD-MDH exhibiting the highest affinities for OAA. Leaf plasma membrane-bound MDH exhibited a high capacity for both reaction directions (malate oxidation and OAA reduction), while the two chloroplast isoforms (stromal and envelope-bound) preferentially reduced OAA. Our results indicate that the chloroplast envelope contains a specifically attached NAD-MDH isoform that could provide direct coupling between chloroplast and cytosol adenylate pools.
Collapse
Affiliation(s)
- T Cvetić
- Institute of Botany, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | | | | |
Collapse
|
208
|
Purification and proteomic analysis of chloroplasts and their sub-organellar compartments. Methods Mol Biol 2008; 432:19-36. [PMID: 18370008 DOI: 10.1007/978-1-59745-028-7_2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sub-cellular proteomics has proven to be a powerful approach to link the information contained in sequenced genomes from eukaryotic cells to the functional knowledge provided by studies of cell compartments. Chloroplasts are plant-specific organelles and are the site of photosynthesis and also of many other essential metabolic pathways, like syntheses of amino acids, vitamins, and pigments. They contain several sub-organellar compartments: the envelope (the two-membrane system surrounding the organelle), the stroma (the internal soluble phase), and the thylakoid membranes (the internal membrane system). There is a link between these compartments and the functions of their constitutive proteins. One way to bring into view the sub-proteomes of the chloroplast is to develop proteomic analyses based (1) on the use of highly purified sub-fractions of the chloroplast and (2) on mass spectrometry (MS)-based analyses for protein identification. To illustrate such strategies, this chapter describes the methods for purification of chloroplasts from Arabidopsis leaves and for the specific recovery of highly pure sub-organellar fractions of envelope, stroma, and thylakoids. Subsequently, methods are described to analyze by MS the proteins recovered from these fractions.
Collapse
|
209
|
Bogorad L. Evolution of early eukaryotic cells: genomes, proteomes, and compartments. PHOTOSYNTHESIS RESEARCH 2008; 95:11-21. [PMID: 17912611 DOI: 10.1007/s11120-007-9236-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/21/2007] [Indexed: 05/17/2023]
Abstract
Eukaryotes arose from an endosymbiotic association of an alpha-proteobacterium-like organism (the ancestor of mitochondria) with a host cell (lacking mitochondria or plastids). Plants arose by the addition of a cyanobacterium-like endosymbiont (the ancestor of plastids) to the two-member association. Each member of the association brought a unique internal environment and a unique genome. Analyses of recently acquired genomic sequences with newly developed algorithms have revealed (a) that the number of endosymbiont genes that remain in eukaryotic cells-principally in the nucleus-is surprisingly large, (b) that protein products of a large number of genes (or their descendents) that entered the association in the genome of the host are now directed to an organelle derived from an endosymbiont, and (c) that protein products of genes traceable to endosymbiont genomes are directed to the nucleo-cytoplasmic compartment. Consideration of these remarkable findings has led to the present suggestion that contemporary eukaryotic cells evolved through continual chance relocation and testing of genes as well as combinations of gene products and biochemical processes in each unique cell compartment derived from a member of the eukaryotic association. Most of these events occurred during about 300 million years, or so, before contemporary forms of eukaryotic cells appear in the fossil record; they continue today.
Collapse
Affiliation(s)
- Lawrence Bogorad
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA.
| |
Collapse
|
210
|
Salvi D, Rolland N, Joyard J, Ferro M. Assessment of organelle purity using antibodies and specific assays : the example of the chloroplast envelope. Methods Mol Biol 2008; 432:345-56. [PMID: 18370029 DOI: 10.1007/978-1-59745-028-7_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Proteomics provides a powerful tool to characterize the protein content of an organelle. However, identifications obtained through mass spectrometry and database searching only make sense if the organelle sample is not heavily cross-contaminated. Besides the proteomic analysis, which gives an overview of possible cross-contamination, biochemical methods can be used to assess sample purity. These methods use specific markers that are detected and measured. Here, we describe the use of immunological, enzymatic, lipid, and pigment markers that allow the purity of chloroplast envelope fractions to be estimated.
Collapse
Affiliation(s)
- Daniel Salvi
- Laboratoire de Physiologie Cellulaire Végétale, Grenoble, France
| | | | | | | |
Collapse
|
211
|
Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. THE NEW PHYTOLOGIST 2008; 177:889-898. [PMID: 18086223 DOI: 10.1111/j.1469-8137.2007.02331.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4. PHT4 proteins share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride. All of the PHT4 proteins mediate Pi transport in yeast with high specificity. Bioinformatic analysis and localization of PHT4-GFP fusion proteins indicate that five of the proteins are targeted to the plastid envelope, and the sixth resides in the Golgi apparatus. PHT4 genes are expressed in both roots and leaves, although two of the genes are expressed predominantly in leaves and one mostly in roots. These expression patterns, together with Pi transport activities and subcellular locations, suggest roles for PHT4 proteins in the transport of Pi between the cytosol and chloroplasts, heterotrophic plastids and the Golgi apparatus.
Collapse
Affiliation(s)
| | | | | | - E B Blancaflor
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - C M Motes
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - W K Versaw
- Department of Biology
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
212
|
Sakamoto W, Miyagishima SY, Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. THE ARABIDOPSIS BOOK 2008; 6:e0110. [PMID: 22303235 PMCID: PMC3243408 DOI: 10.1199/tab.0110] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Address correspondence to
| | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
213
|
Mudd EA, Sullivan S, Gisby MF, Mironov A, Kwon CS, Chung WI, Day A. A 125 kDa RNase E/G-like protein is present in plastids and is essential for chloroplast development and autotrophic growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2597-610. [PMID: 18515828 PMCID: PMC2486463 DOI: 10.1093/jxb/ern126] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 05/20/2023]
Abstract
Endoribonuclease E (RNase E) is a regulator of global gene expression in Escherichia coli and is the best studied member of the RNase E/G ribonuclease family. Homologues are present in other bacteria but the roles of plant RNase E/G-like proteins are not known. Arabidopsis thaliana contains a single nuclear gene (At2g04270) encoding a product with the conserved catalytic domain of RNase E/G-like proteins. At2g04270 and the adjacent At2g04280 gene form converging transcription units with a approximately 40 base overlap at their 3' ends. Several translation products were predicted from the analyses of At2g04270 cDNAs. An antibody raised against a recombinant A. thaliana RNase E/G-like protein recognized a 125 kDa protein band in purified chloroplast preparations fractionated by SDS-PAGE. The 125 kDa RNase E/G-like protein was detected in cotyledons, rosette and cauline leaves. T-DNA insertions in exon 6 or intron 11 of At2g04270 result in loss of the 125 kDa band or truncation to a 110 kDa band. Loss of At2g04270 function resulted in the arrest of chloroplast development, loss of autotrophic growth, and reduced plastid ribosomal, psbA and rbcL RNA levels. Homozygous mutant plants were pale-green, contained smaller plastids with fewer thylakoids and shorter granal stacks than wild-type chloroplasts, and required sucrose at all growth stages following germination right up to flowering and setting seeds. Recombinant A. thaliana RNase E/G-like proteins rescued an E. coli RNase E mutant and cleaved an rbcL RNA substrate. Expression of At2g04270 was highly correlated with genes encoding plastid polyribonucleotide phosphorylase, S1 RNA-binding, and CRS1/YhbY domain proteins.
Collapse
Affiliation(s)
- Elisabeth A. Mudd
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Stuart Sullivan
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Martin F. Gisby
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Aleksandr Mironov
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chang Seob Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea 305-701
| | - Won-Il Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea 305-701
| | - Anil Day
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
214
|
Kubis SE, Lilley KS, Jarvis P. Isolation and preparation of chloroplasts from Arabidopsis thaliana plants. Methods Mol Biol 2008; 425:171-86. [PMID: 18369897 DOI: 10.1007/978-1-60327-210-0_16] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major area of research in the postgenomic era has been the proteomic analysis of various subcellular and suborganellar compartments. The success of these studies is to a large extent dependent upon efficient protocols for the preparation of highly pure organelles or suborganellar components. Here we describe a simple, rapid, and low-cost method for isolating a high yield of Arabidopsis chloroplasts. The method can readily be applied to wild-type plants and different mutants, and at different developmental stages ranging from 10-day-old seedlings to rosette leaves from older plants. The isolated chloroplast fraction is highly pure, with immunologically undetectable contamination from other cellular organelles. Chloroplasts isolated using the method described here have been successfully used for proteomic analysis, as well as in studies on chloroplast protein import and other aspects of chloroplast biology.
Collapse
|
215
|
Garmier M, Priault P, Vidal G, Driscoll S, Djebbar R, Boccara M, Mathieu C, Foyer CH, De Paepe R. Light and oxygen are not required for harpin-induced cell death. J Biol Chem 2007; 282:37556-66. [PMID: 17951254 DOI: 10.1074/jbc.m707226200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nicotiana sylvestris leaves challenged by the bacterial elicitor harpin N(Ea) were used as a model system in which to determine the respective roles of light, oxygen, photosynthesis, and respiration in the programmed cell death response in plants. The appearance of cell death markers, such as membrane damage, nuclear fragmentation, and induction of the stress-responsive element Tnt1, was observed in all conditions. However, the cell death process was delayed in the dark compared with the light, despite a similar accumulation of superoxide and hydrogen peroxide in the chloroplasts. In contrast, harpin-induced cell death was accelerated under very low oxygen (<0.1% O(2)) compared with air. Oxygen deprivation impaired accumulation of chloroplastic reactive oxygen species (ROS) and the induction of cytosolic antioxidant genes in both the light and the dark. It also attenuates the collapse of photosynthetic capacity and the respiratory burst driven by mitochondrial alternative oxidase activity observed in air. Since alternative oxidase is known to limit overreduction of the respiratory chain, these results strongly suggest that mitochondrial ROS accumulate in leaves elicited under low oxygen. We conclude that the harpin-induced cell death does not require ROS accumulation in the apoplast or in the chloroplasts but that mitochondrial ROS could be important in the orchestration of the cell suicide program.
Collapse
Affiliation(s)
- Marie Garmier
- Institut de Biotechnologie des Plantes, Université Paris-Sud 11, UMR-CNRS 8618, Bâtiment 630, 91405, Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Tripp J, Inoue K, Keegstra K, Froehlich JE. A novel serine/proline-rich domain in combination with a transmembrane domain is required for the insertion of AtTic40 into the inner envelope membrane of chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:824-38. [PMID: 17883373 DOI: 10.1111/j.1365-313x.2007.03279.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
AtTic40 is part of the chloroplastic protein import apparatus that is anchored in the inner envelope membrane by a single N-terminal transmembrane domain, and has a topology in which the bulk of the C-terminal domain is oriented toward the stroma. The targeting of AtTic40 to the inner envelope membrane involves two steps. Using an in vitro import assay, we showed that the sorting of AtTic40 requires a bipartite transit peptide, which was first cleaved by the stromal processing peptidase (SPP), thus generating a soluble AtTic40 stromal intermediate (iAtTic40). iAtTic40 was further processed by a second unknown peptidase, which generates its mature form (mAtTic40). Using deletion mutants, we identified a sequence motif N-terminal of the transmembrane domain that was essential for reinsertion of iAtTic40 into the inner envelope membrane. We have designated this region a serine/proline-rich (S/P-rich) domain and present a model describing its role in the targeting of AtTic40 to the inner envelope membrane.
Collapse
Affiliation(s)
- Joanna Tripp
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | |
Collapse
|
217
|
The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown inArabidopsis thaliana. FEBS Lett 2007; 581:5517-25. [DOI: 10.1016/j.febslet.2007.10.060] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/24/2022]
|
218
|
Marmagne A, Ferro M, Meinnel T, Bruley C, Kuhn L, Garin J, Barbier-Brygoo H, Ephritikhine G. A High Content in Lipid-modified Peripheral Proteins and Integral Receptor Kinases Features in the Arabidopsis Plasma Membrane Proteome. Mol Cell Proteomics 2007; 6:1980-96. [PMID: 17644812 DOI: 10.1074/mcp.m700099-mcp200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.
Collapse
Affiliation(s)
- Anne Marmagne
- Institut des Sciences du Végétal, CNRS-UPR 2355, Bât 22, avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
219
|
He CY, Zhang JG, Duan AG, Sun HG, Fu LH, Zheng SX. Proteins responding to drought and high-temperature stress in Pinus armandii Franch. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteomic analysis provides a powerful method for studying plant responses to stress at the protein level. To study stress-responsive molecular mechanisms for Pinus armandii Franch, one of the most important forest plantation tree species in subalpine regions of Asia, we analyzed the response of 2-year-old P. armandii seedlings to drought and high temperature using two-dimensional gel electrophoresis. More than 550 reproducible needle proteins were detected in the controls and treatments, and the abundance of 27 proteins were found to change noticeably. We identified five proteins affected by drought stress and eight proteins affected by high temperature. These proteins are functionally quite diverse and are involved in photosynthesis, cell division and elongation, antioxidant metabolism, ammonia assimilation, growth and development, and protein folding. Our results provide fundamental data for future research on responses to drought and high temperature. As drought and high temperature are two major factors limiting the growth of subalpine forests during summer under recent global warming, this research may contribute to an understanding of the development of stress tolerance in trees.
Collapse
Affiliation(s)
- Cai-Yun He
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Jian-Guo Zhang
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Ai-Guo Duan
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Hong-Gang Sun
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Li-Hua Fu
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Shu-Xing Zheng
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| |
Collapse
|
220
|
Braun L, Travier L, Kieffer S, Musset K, Garin J, Mercier C, Cesbron-Delauw MF. Purification of Toxoplasma dense granule proteins reveals that they are in complexes throughout the secretory pathway. Mol Biochem Parasitol 2007; 157:13-21. [PMID: 17959262 DOI: 10.1016/j.molbiopara.2007.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022]
Abstract
Dense granules are Apicomplexa specific secretory organelles. In Toxoplasma gondii, the dense granules proteins, named GRA proteins, are massively secreted into the parasitophorous vacuole (PV) shortly after invasion. Despite the presence of hydrophobic membrane segments, they are stored as both soluble and aggregated forms within the dense granules and are secreted as soluble forms into the vacuolar space where they further stably associate with PV membranes. In this study, we explored the unusual biochemical behavior of GRA proteins during their trafficking. Conventional chromatography indicated that the GRA proteins form high globular weight complexes within the parasite. To confirm these results, DeltaGRA knocked-out parasites were stably complemented with their respective HA-FLAG tagged GRA2 or GRA5. Purification of the tagged proteins by affinity chromatography showed that within the parasite and the PV soluble fraction, both the soluble GRA2-HA-FLAG and GRA5-HA-FLAG associate with several GRA proteins, the major ones being GRA3, GRA6 and GRA7. Following their insertion into the PV membranes, GRA2-HA-FLAG associated with GRA5 and GRA7 while GRA5-HA-FLAG associated with GRA7 only. Taken together, these data suggest that the GRA proteins form oligomeric complexes that may explain their solubility within the dense granules and the vacuolar matrix by sequestering their hydrophobic domains within the interior of the complex. Insertion into the PV membranes correlates with the decrease of the GRA partners number.
Collapse
Affiliation(s)
- Laurence Braun
- UMR 5163/CNRS-Université Joseph Fourier, Domaine de la Merci, 38700 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
221
|
Damari-Weissler H, Ginzburg A, Gidoni D, Mett A, Krassovskaya I, Weber APM, Belausov E, Granot D. Spinach SoHXK1 is a mitochondria-associated hexokinase. PLANTA 2007; 226:1053-8. [PMID: 17530285 DOI: 10.1007/s00425-007-0546-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 05/06/2007] [Indexed: 05/08/2023]
Abstract
Hexokinase, a hexose-phosphorylating enzyme, has emerged as a central enzyme in sugar-sensing processes. A few HXK isozymes have been identified in various plant species. These isozymes have been classified into two major groups; plastidic (type A) isozymes located in the plastid stroma and those containing a membrane anchor domain (type B) located mainly adjacent to the mitochondria, but also found in the nucleus. Of all the hexokinases that have been characterized to date, the only exception to this rule is a spinach type B HXK (SoHXK1) that, by means of subcellular fractionation, has been localized to the outer membrane of plastids. However, SoHXK1 has a membrane anchor domain that is almost identical to that of the other type B HXKs. To determine the localization of SoHXK1 enzyme by other means, we expressed SoHXK1::GFP fusion protein in tobacco and Arabidopsis protoplasts and compared its localization with that of the Arabidopsis AtHXK1::GFP fusion protein that shares a similar N-terminal membrane anchor domain. SoHXK1::GFP is localized adjacent to the mitochondria, similar to AtHXK1::GFP and all other previously examined type B HXKs. Proteomic analysis had previously identified AtHXK1 on the outside of the mitochondrial membrane. We, therefore, suggest that SoHXK1 enzyme is located adjacent to the mitochondria like the other type B HXKs that share the same N-terminal membrane anchor domain.
Collapse
Affiliation(s)
- Hila Damari-Weissler
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Böttcher C, Weiler EW. cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics. PLANTA 2007; 226:629-37. [PMID: 17404756 DOI: 10.1007/s00425-007-0511-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 03/14/2007] [Indexed: 05/14/2023]
Abstract
cyclo-Oxylipin-galactolipids (cGL) are mono- or digalactosyldiglycerides carrying a cyclo-oxylipin in the sn1- and/or sn2-position or esterified to the galactose moiety. These compounds were recently identified in Arabidopsis thaliana. We provide evidence that cGL are mainly, if not exclusively, part of the thylakoid and can be hydrolysed by lipolytic activities associated with photosynthesis-related protein complexes in vitro. Using HPLC/ESI-mass spectrometry, cGL are shown to be restricted in occurrence to the genus Arabidopsis, they do not occur in other plants tested. A. thaliana cGL are rapidly and transiently formed upon wounding with characteristic changes in composition of the cGL-fraction. While the biological role of cGL is not understood, the genus Arabidopsis may present a model-case of chemical evolution of a novel class of regulatory molecules.
Collapse
Affiliation(s)
- Christine Böttcher
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
| | | |
Collapse
|
223
|
Nicolaï M, Duprat A, Sormani R, Rodriguez C, Roncato MA, Rolland N, Robaglia C. Higher plant chloroplasts import the mRNA coding for the eucaryotic translation initiation factor 4E. FEBS Lett 2007; 581:3921-6. [PMID: 17662723 DOI: 10.1016/j.febslet.2007.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 06/25/2007] [Accepted: 07/08/2007] [Indexed: 11/20/2022]
Abstract
Plant chloroplasts probably originate from an endosymbiosis event between a photosynthetic bacteria and a eucaryotic cell. The proper functioning of this association requires a high level of integration between the chloroplastic genome and the plant cell genome. Many chloroplastic genes have been transferred to the nucleus of the host cell and the proteins coded by these genes are imported into the chloroplast. Chloroplastic activity also regulates the expression of these genes at the transcriptional and post-transcriptional levels. The importation of nucleic acids from the host cell into the chloroplast has never been observed. This work show that the mRNA coding for the eucaryotic translation factor 4E, an essential regulator of translation, enters the chloroplast in four different plant species, and is located in the stroma. Furthermore, the localization in the chloroplast of an heterologous GFP mRNA fused to the eIF4E RNA was also observed.
Collapse
Affiliation(s)
- Maryse Nicolaï
- Laboratoire de Génétique et Biophysique des Plantes, SBVME, IBEB, DSV, CEA, CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, Marseille, F-13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
224
|
Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, Rolland N. Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J Biol Chem 2007; 282:29482-92. [PMID: 17636260 DOI: 10.1074/jbc.m611112200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplast envelope quinone oxidoreductase (ceQORH) is an inner plastid envelope protein that is synthesized without cleavable chloroplast transit sequence for import. In the present work, we studied the in vitro-import characteristics of Arabidopsis ceQORH. We demonstrate that ceQORH import requires ATP and is dependent on proteinaceous receptor components exposed at the outer plastid surface. Competition experiments using small subunit precursor of ribulose-bisphosphate carboxylase/oxygenase and precursor of ferredoxin, as well as antibody blocking experiments, revealed that ceQORH import does not involve the main receptor and translocation channel proteins Toc159 and Toc75, respectively, which operate in import of proteins into the chloroplast. Molecular dissection of the ceQORH amino acid sequence by site-directed mutagenesis and subsequent import experiments in planta and in vitro highlighted that ceQORH consists of different domains that act concertedly in regulating import. Collectively, our results provide unprecedented evidence for the existence of a specific import pathway for transit sequence-less inner plastid envelope membrane proteins into chloroplasts.
Collapse
Affiliation(s)
- Stéphane Miras
- Laboratoire de Physiologie Cellulaire Végétale, CNRS Unité Mixte de Recherche (UMR) (5168), Grenoble 38054 cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Mi J, Kirchner E, Cristobal S. Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics 2007; 7:1916-28. [PMID: 17474143 DOI: 10.1002/pmic.200600638] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The peroxisome plays a central role in the catabolic and anabolic pathways that contribute to the lipid homeostasis. Besides this main function, this organelle has gained functional diversity. Although several approaches have been used for peroxisomal proteome analysis, a quantitative protein expression analysis of peroxisomes from different tissues has not been elucidated yet. Here, we applied a 2-DE-based method on mouse liver and kidney peroxisomal enriched fractions to study the tissue-dependent protein expression. Ninety-one spots were identified from the 2-DE maps from pH 3.0-10.0 and 51 spots from the basic range corresponding to 31 peroxisomal proteins, 10 putative peroxisomal, 6 cytosolic, 17 mitochondrial and 1 protein from endoplasmic reticulum. Based on the identification and on the equivalent quality of both tissue preparations, the differences emerging from the comparison could be quantified. In liver, proteins involved in pathways such as alpha- and beta-oxidation, isoprenoid biosynthesis, amino acid metabolism and purine and pyrimidine metabolism were more abundant whereas in kidney, proteins from the straight-chain fatty acid beta-oxidation were highly expressed. These results indicate that tissue-specific functional classes of peroxisomal proteins could be relevant to study peroxisomal cellular responses or pathologies. Finally, a web-based peroxisomal proteomic database was built.
Collapse
Affiliation(s)
- Jia Mi
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
226
|
North HM, De Almeida A, Boutin JP, Frey A, To A, Botran L, Sotta B, Marion-Poll A. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:810-24. [PMID: 17470058 DOI: 10.1111/j.1365-313x.2007.03094.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A novel abscisic acid (ABA)-deficient mutant, aba4, was identified in a screen for paclobutrazol-resistant germination. Compared with wild-type, the mutant showed reduced endogenous ABA levels in both dehydrated rosettes and seeds. Carotenoid composition analysis demonstrated that the defective locus affects neoxanthin synthesis. The ABA4 gene was identified by map-based cloning, and found to be a unique gene in the Arabidopsis genome. The predicted protein has four putative helical transmembrane domains and shows significant similarity to predicted proteins from tomato, rice and cyanobacteria. Constitutive expression of the ABA4 gene in Arabidopsis transgenic plants led to increased accumulation of trans-neoxanthin, indicating that the ABA4 protein has a direct role in neoxanthin synthesis. aba4 mutant phenotypes were mild compared with previously identified ABA-deficient mutants that exhibit vegetative tissue phenotypes. Indeed, ABA levels in seeds of aba4 mutants were higher than those of aba1 mutants. As aba1 mutants are also affected in a unique gene, this suggests that ABA can be produced in the aba4 mutant by an alternative pathway using violaxanthin as a substrate. It appears, therefore, that in Arabidopsis both violaxanthin and neoxanthin are in vivo substrates for 9-cis-epoxycarotenoid dioxygenases. Furthermore, significantly reduced levels of ABA were synthesized in the aba4 mutant on dehydration, demonstrating that ABA biosynthesis in response to stress must occur mainly via neoxanthin isomer precursors.
Collapse
Affiliation(s)
- Helen M North
- Laboratoire de Biologie des Semences UMR204, INRA, INAPG, Institut Jean-Pierre Bourgin, F-78026 Versailles cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Block MA, Douce R, Joyard J, Rolland N. Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. PHOTOSYNTHESIS RESEARCH 2007; 92:225-44. [PMID: 17558548 PMCID: PMC2394710 DOI: 10.1007/s11120-007-9195-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/03/2007] [Indexed: 05/15/2023]
Abstract
Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells.
Collapse
|
228
|
Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T. Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. PLANT PHYSIOLOGY 2007; 144:513-23. [PMID: 17384167 PMCID: PMC1913801 DOI: 10.1104/pp.106.094581] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many plants acquire increased freezing tolerance when they are exposed to nonfreezing temperatures of a certain duration. This process is known as cold acclimation and allows plants to protect themselves from freezing injury. A wide variety of polypeptides are induced during cold acclimation, among which is one encoded by COR15A in Arabidopsis (Arabidopsis thaliana). Previous studies showed that the COR15A gene encodes a small, plastid-targeted polypeptide that is processed to a mature form called Cor15am. In this study, we examined the biochemical properties and activities of Cor15am in more detail. We provide evidence that Cor15am localizes almost exclusively to the chloroplast stroma. In addition, the cold-regulated accumulation of Cor15am is affected by chloroplast functionality. Both gel-filtration chromatography and protein cross-linking reveal that Cor15am forms oligomers in the stroma of chloroplasts. Although Cor15am accumulates in response to low temperature, cold acclimation is not a prerequisite for oligomerization of Cor15am. Structural analysis suggests that Cor15am is composed of both ordered and random structures, and can stay soluble with small structural change after boiling and freeze-thaw treatments. Recombinant Cor15am exhibits in vitro cryoprotection of a freeze-labile enzyme, l-lactate dehydrogenase. Furthermore, Cor15am is capable of associating with l-lactate dehydrogenase in vitro and with potential stromal substrates in vivo. On the basis of these results, we propose that Arabidopsis Cor15am is a cryoprotective protein that forms oligomers in the chloroplast stroma, and that direct association of Cor15am with its substrates is part of its cryoprotective mechanism.
Collapse
Affiliation(s)
- Katsuhiro Nakayama
- The 21st Century Centers of Excellence Program, Cryobiosystem Research Center, Iwate University, Morioka 020-8550, Japan
| | | | | | | | | | | |
Collapse
|
229
|
Mitra SK, Gantt JA, Ruby JF, Clouse SD, Goshe MB. Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. J Proteome Res 2007; 6:1933-50. [PMID: 17432890 DOI: 10.1021/pr060525b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study presents a comparative proteomic analysis of the membrane subproteome of whole Arabidopsis seedlings using 2% Brij-58 or 60% methanol to enrich and solubilize membrane proteins for strong cation exchange fractionation and reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 441 proteins were identified by our Brij-58 method, and 300 proteins were detected by our methanol-based solubilization approach. Although the total number of proteins obtained using the nonionic detergent was higher than the total obtained by organic solvent, the ratio of predicted membrane proteins to total proteins identified indicates up to an 18.6% greater enrichment efficiency using methanol. Using two different bioinformatics approaches, between 31.0 and 40.0% of the total proteins identified by the methanol-based method were classified as containing at least one putative transmembrane domain as compared to 22.0-23.4% for Brij-58. In terms of protein hydrophobicity as determined by the GRAVY index, it was revealed that methanol was more effective than Brij-58 for solubilizing membrane proteins ranging from -0.4 (hydrophilic) to +0.4 (hydrophobic). Methanol was also approximately 3-fold more effective than Brij-58 in identifying leucine-rich repeat receptor-like kinases. The ability of methanol to effectively solubilize and denature both hydrophobic and hydrophilic proteins was demonstrated using bacteriorhodopsin and cytochrome c, respectively, where both proteins were identified with at least 82% sequence coverage from a single reversed-phase LC-MS/MS analysis. Overall, our data show that methanol is a better alternative for identifying a wider range of membrane proteins than the nonionic detergent Brij-58.
Collapse
Affiliation(s)
- Srijeet K Mitra
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695-7609, USA
| | | | | | | | | |
Collapse
|
230
|
Kashino Y, Harayama T, Pakrasi HB, Satoh K. Preparation of membrane proteins for analysis by two-dimensional gel electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:282-92. [PMID: 17113836 DOI: 10.1016/j.jchromb.2006.10.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/23/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
In order to separate hydrophobic membrane proteins, we have developed a novel two-dimensional electrophoresis system. For the iso-electric focusing, agarose was used as a supporting matrix and n-dodecyl-beta-D-maltopyranoside was used as a surfactant. In combination with a previously developed Tris/MES electrophoresis system in the second dimension, distinct spots were reproducibly detected from hydrophobic membrane proteins whose grand average hydropathicity (GRAVY) exceed 0.3. In contrast to the immobilized pH gradient system, c-type heme was also visualized in this system.
Collapse
Affiliation(s)
- Yasuhiro Kashino
- Department of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | |
Collapse
|
231
|
Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot MB, Barre A, Le Provost G, Dumazet H, Jacob D, Bastien C, Dreyer E, de Daruvar A, Guehl JM, Schmitter JM, Martin F, Bonneu M. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 2007; 6:6509-27. [PMID: 17163438 DOI: 10.1002/pmic.200600362] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poplar is the first forest tree genome to be decoded. As an initial step to the comprehensive analysis of poplar proteome, we described reference 2-D-maps for eight tissues/organs of the plant, and the functional characterization of some proteins. A total of 398 proteins were excised from the gels. About 91.2% were identified by nanospray LC-MS/MS, based on comparison with 260,000 Populus sp. ESTs. In comparison, reliable PMFs were obtained for only 51% of the spots by MALDI-TOF-MS, from which 43% (83 spots) positively matched gene models of the Populus trichocarpa genome sequence. Among these 83 spots, 58% matched with the same proteins as identified by LC-MS/MS, 21.7% with unknown function proteins and 19.3% with completely different functions. In the second phase, we studied the effect of drought stress on poplar root and leaf proteomes. The function of up- and down-regulated proteins is discussed with respect to the physiological response of the plants and compared with transcriptomic data. Some important clues regarding the way poplar copes with water deficit were revealed.
Collapse
Affiliation(s)
- Christophe Plomion
- UMR Biodiversité Gènes Communautés, INRA, Equipe de génétique, Cestas, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Weber APM, Fischer K. Making the connections--the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 2007; 581:2215-22. [PMID: 17316618 DOI: 10.1016/j.febslet.2007.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Eukaryotic cells are most fascinating because of their high degree of compartmentation. This is particularly true for plant cells, due to the presence of chloroplasts, photosynthetic organelles of endosymbiotic origin that can be traced back to a single cyanobacterial ancestor. Plastids are major hubs in the metabolic network of plant cells, their metabolism being heavily intertwined with that of the cytosol and of other organelles. Solute transport across the plastid envelope by metabolite transporters is key to integrating plastid metabolism with that of other cellular compartments. Here, we review the advances in understanding metabolite transport across the plastid envelope membrane.
Collapse
Affiliation(s)
- Andreas P M Weber
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
233
|
Allmer J, Naumann B, Markert C, Zhang M, Hippler M. Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Proteomics 2007; 6:6207-20. [PMID: 17078018 DOI: 10.1002/pmic.200600208] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new high-throughput computational strategy was established that improves genomic data mining from MS experiments. The MS/MS data were analyzed by the SEQUEST search algorithm and a combination of de novo amino acid sequencing in conjunction with an error-tolerant database search tool, operating on a 256 processor computer cluster. The error-tolerant search tool, previously established as GenomicPeptideFinder (GPF), enables detection of intron-split and/or alternatively spliced peptides from MS/MS data when deduced from genomic DNA. Isolated thylakoid membranes from the eukaryotic green alga Chlamydomonas reinhardtii were separated by 1-D SDS gel electrophoresis, protein bands were excised from the gel, digested in-gel with trypsin and analyzed by coupling nano-flow LC with MS/MS. The concerted action of SEQUEST and GPF allowed identification of 2622 distinct peptides. In total 448 peptides were identified by GPF analysis alone, including 98 intron-split peptides, resulting in the identification of novel proteins, improved annotation of gene models, and evidence of alternative splicing.
Collapse
Affiliation(s)
- Jens Allmer
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
234
|
Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W, Baginsky S. Proteome dynamics during plastid differentiation in rice. PLANT PHYSIOLOGY 2007; 143:912-23. [PMID: 17189339 PMCID: PMC1803725 DOI: 10.1104/pp.106.090738] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch).
Collapse
Affiliation(s)
- Torsten Kleffmann
- Institute of Plant Sciences, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
235
|
Thuswaldner S, Lagerstedt JO, Rojas-Stütz M, Bouhidel K, Der C, Leborgne-Castel N, Mishra A, Marty F, Schoefs B, Adamska I, Persson BL, Spetea C. Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis. J Biol Chem 2007; 282:8848-59. [PMID: 17261580 DOI: 10.1074/jbc.m609130200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.
Collapse
Affiliation(s)
- Sophie Thuswaldner
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J. Chloroplast biogenesis: the use of mutants to study the etioplast-chloroplast transition. Proc Natl Acad Sci U S A 2007; 104:678-83. [PMID: 17202255 PMCID: PMC1766443 DOI: 10.1073/pnas.0610062104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In angiosperm plants, the etioplast-chloroplast transition is light-dependent. A key factor in this process is the protochlorophyllide oxidoreductase A (PORA), which catalyzes the light-induced reduction of protochlorophyllide to chlorophyllide. The import pathway of the precursor protein prePORA into chloroplasts was analyzed in vivo and in vitro by using homozygous loss-of-function mutants in genes coding for chlorophyllide a oxygenase (CAO) or for members of the outer-envelope solute-channel protein family of 16 kDa (OEP16), both of which have been implied to be key factors for the import of prePORA. Our in vivo analyses show that cao or oep16 mutants contain a normally structured prolamellar body that contains the protochlorophyllide holochrome. Furthermore, etioplasts from cao and oep16 mutants contain PORA protein as found by mass spectrometry. Our data demonstrate that both CAO and OEP16 are dispensable for chloroplast biogenesis and play no central role in the import of prePORA in vivo and in vitro as further indicated by protein import studies.
Collapse
Affiliation(s)
- Katrin Philippar
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Tina Geis
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Iryna Ilkavets
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Ulrike Oster
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Serena Schwenkert
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Jörg Meurer
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Jürgen Soll
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
237
|
|
238
|
Murcha MW, Elhafez D, Lister R, Tonti-Filippini J, Baumgartner M, Philippar K, Carrie C, Mokranjac D, Soll J, Whelan J. Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:199-212. [PMID: 17098851 PMCID: PMC1761978 DOI: 10.1104/pp.106.090688] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Seventeen loci encode proteins of the preprotein and amino acid transporter family in Arabidopsis (Arabidopsis thaliana). Some of these genes have arisen from recent duplications and are not in annotated duplicated regions of the Arabidopsis genome. In comparison to a number of other eukaryotic organisms, this family of proteins has greatly expanded in plants, with 24 loci in rice (Oryza sativa). Most of the Arabidopsis and rice genes are orthologous, indicating expansion of this family before monocot and dicot divergence. In vitro protein uptake assays, in vivo green fluorescent protein tagging, and immunological analyses of selected proteins determined either mitochondrial or plastidic localization for 10 and six proteins, respectively. The protein encoded by At5g24650 is targeted to both mitochondria and chloroplasts and, to our knowledge, is the first membrane protein reported to be targeted to mitochondria and chloroplasts. Three genes encoded translocase of the inner mitochondrial membrane (TIM)17-like proteins, three TIM23-like proteins, and three outer envelope protein16-like proteins in Arabidopsis. The identity of Arabidopsis TIM22-like proteins is most likely a protein encoded by At3g10110/At1g18320, based on phylogenetic analysis, subcellular localization, and complementation of a yeast (Saccharomyces cerevisiae) mutant and coexpression analysis. The lack of a preprotein and amino acid transporter domain in some proteins, localization in mitochondria, plastids, or both, variation in gene structure, and the differences in expression profiles indicate that the function of this family has diverged in plants beyond roles in protein translocation.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH. SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res 2007; 35:D213-8. [PMID: 17071959 PMCID: PMC1635339 DOI: 10.1093/nar/gkl863] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/14/2006] [Accepted: 10/03/2006] [Indexed: 12/02/2022] Open
Abstract
Knowledge of protein localisation contributes towards our understanding of protein function and of biological inter-relationships. A variety of experimental methods are currently being used to produce localisation data that need to be made accessible in an integrated manner. Chimeric fluorescent fusion proteins have been used to define subcellular localisations with at least 1100 related experiments completed in Arabidopsis. More recently, many studies have employed mass spectrometry to undertake proteomic surveys of subcellular components in Arabidopsis yielding localisation information for approximately 2600 proteins. Further protein localisation information may be obtained from other literature references to analysis of locations (AmiGO: approximately 900 proteins), location information from Swiss-Prot annotations (approximately 2000 proteins); and location inferred from gene descriptions (approximately 2700 proteins). Additionally, an increasing volume of available software provides location prediction information for proteins based on amino acid sequence. We have undertaken to bring these various data sources together to build SUBA, a SUBcellular location database for Arabidopsis proteins. The localisation data in SUBA encompasses 10 distinct subcellular locations, >6743 non-redundant proteins and represents the proteins encoded in the transcripts responsible for 51% of Arabidopsis expressed sequence tags. The SUBA database provides a powerful means by which to assess protein subcellular localisation in Arabidopsis (http://www.suba.bcs.uwa.edu.au).
Collapse
Affiliation(s)
- Joshua L Heazlewood
- ARC Centre of Excellence in Plant Energy Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
240
|
Millar AH, Whelan J, Small I. Recent surprises in protein targeting to mitochondria and plastids. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:610-5. [PMID: 17008120 DOI: 10.1016/j.pbi.2006.09.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
The functions of mitochondria and chloroplasts rely on thousands of proteins, mostly imported from the cytosol through specialized import channels. Neither the detailed import mechanisms nor the identities of all targeted proteins are known. Recent surprises include unexpected results concerning import receptors, unexpectedly frequent dual-targeting of proteins, and the discovery of novel routes of protein trafficking. Such findings make it more difficult to predict which proteins really are targeted to organelles. By combining experimental and bioinformatics data, we estimate the size of the mitochondrial and plastid proteomes to be approximately 2000 and 2700 proteins, respectively. Advances in cell and organelle fractionation coupled with modern proteomics techniques are probably the best route to understanding organellar protein composition.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Molecular and Chemical Sciences Building (M316), University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | | | | |
Collapse
|
241
|
Siddique MA, Grossmann J, Gruissem W, Baginsky S. Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts. PLANT & CELL PHYSIOLOGY 2006; 47:1663-73. [PMID: 17098784 DOI: 10.1093/pcp/pcl033] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report a comprehensive proteome analysis of chromoplasts from bell pepper (Capsicum annuum L.). The combination of a novel strategy for database-independent detection of proteins from tandem mass spectrometry (MS/MS) data with standard database searches allowed us to identify 151 proteins with a high level of confidence. These include several well-known plastid proteins but also novel proteins that were not previously reported from other plastid proteome studies. The majority of the identified proteins are active in plastid carbohydrate and amino acid metabolism. Among the most abundant individual proteins are capsanthin/capsorubin synthase and fibrillin, which are involved in the synthesis and storage of carotenoids that accumulate to high levels in chromoplasts. The relative abundances of the identified chromoplast proteins differ remarkably compared with their abundances in other plastid types, suggesting a chromoplast-specific metabolic network. Our results provide an overview of the major metabolic pathways active in chromoplasts and extend existing knowledge about prevalent metabolic activities of different plastid types.
Collapse
Affiliation(s)
- Muhammad Asim Siddique
- Institute of Plant Sciences, ETH Zürich, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
242
|
Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S. Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J 2006; 273:5589-97. [PMID: 17096689 DOI: 10.1111/j.1742-4658.2006.05548.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Arabidopsis thaliana contains eight glutathione peroxidase (GPX) homologs (AtGPX1-8). Four mature GPX isoenzymes with different subcellular distributions, AtGPX1, -2, -5 and -6, were overexpressed in Escherichia coli and characterized. Interestingly, these recombinant proteins were able to reduce H2O2, cumene hydroperoxide, phosphatidylcholine and linoleic acid hydroperoxides using thioredoxin but not glutathione or NADPH as an electron donor. The reduction activities of the recombinant proteins with H2O2 were 2-7 times higher than those with cumene hydroperoxide. Km values for thioredoxin and H2O2 were 2.2-4.0 and 14.0-25.4 microM, respectively. These finding suggest that GPX isoenzymes may function to detoxify H2O2 and organic hydroperoxides using thioredoxin in vivo and may also be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP balance.
Collapse
Affiliation(s)
- Aqib Iqbal
- Department of Applied Biological Chemistry, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | |
Collapse
|
243
|
Bouvier F, Linka N, Isner JC, Mutterer J, Weber APM, Camara B. Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. THE PLANT CELL 2006; 18:3088-105. [PMID: 17098813 PMCID: PMC1693945 DOI: 10.1105/tpc.105.040741] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 09/01/2006] [Accepted: 10/24/2006] [Indexed: 05/12/2023]
Abstract
S-Adenosylmethionine (SAM) is formed exclusively in the cytosol but plays a major role in plastids; SAM can either act as a methyl donor for the biogenesis of small molecules such as prenyllipids and macromolecules or as a regulator of the synthesis of aspartate-derived amino acids. Because the biosynthesis of SAM is restricted to the cytosol, plastids require a SAM importer. However, this transporter has not yet been identified. Here, we report the molecular and functional characterization of an Arabidopsis thaliana gene designated SAM TRANSPORTER1 (SAMT1), which encodes a plastid metabolite transporter required for the import of SAM from the cytosol. Recombinant SAMT1 produced in yeast cells, when reconstituted into liposomes, mediated the counter-exchange of SAM with SAM and with S-adenosylhomocysteine, the by-product and inhibitor of transmethylation reactions using SAM. Insertional mutation in SAMT1 and virus-induced gene silencing of SAMT1 in Nicotiana benthamiana caused severe growth retardation in mutant plants. Impaired function of SAMT1 led to decreased accumulation of prenyllipids and mainly affected the chlorophyll pathway. Biochemical analysis suggests that the latter effect represents one prominent example of the multiple events triggered by undermethylation, when there is decreased SAM flux into plastids.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
244
|
Xu C, Garrett WM, Sullivan J, Caperna TJ, Natarajan S. Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry. PHYTOCHEMISTRY 2006; 67:2431-40. [PMID: 17046036 DOI: 10.1016/j.phytochem.2006.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/17/2006] [Accepted: 09/01/2006] [Indexed: 05/12/2023]
Abstract
To establish a proteomic reference map for soybean leaves, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 260 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. Fifty-three of these protein spots were identified by searching NCBInr and SwissProt databases using the Mascot search engine. Sixty-seven spots that were not identified by MALDI-TOF-MS analysis were analyzed with liquid chromatography tandem mass spectrometry (LC-MS/MS), and 66 of these spots were identified by searching against the NCBInr, SwissProt and expressed sequence tag (EST) databases. We have identified a total of 71 unique proteins. The majority of the identified leaf proteins are involved in energy metabolism. The results indicate that 2D-PAGE, combined with MALDI-TOF-MS and LC-MS/MS, is a sensitive and powerful technique for separation and identification of soybean leaf proteins. A summary of the identified proteins and their putative functions is discussed.
Collapse
Affiliation(s)
- Chenping Xu
- Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
245
|
Li M, Schnell DJ. Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. J Cell Biol 2006; 175:249-59. [PMID: 17060496 PMCID: PMC2064566 DOI: 10.1083/jcb.200605162] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 09/20/2006] [Indexed: 11/22/2022] Open
Abstract
The chloroplast envelope plays critical roles in the synthesis and regulated transport of key metabolites, including intermediates in photosynthesis and lipid metabolism. Despite this importance, the biogenesis of the envelope membranes has not been investigated in detail. To identify the determinants of protein targeting to the inner envelope membrane (IM), we investigated the targeting of the nucleus-encoded integral IM protein, atTic40. We found that pre-atTic40 is imported into chloroplasts and processed to an intermediate size (int-atTic40) before insertion into the IM. Int-atTic40 is soluble and inserts into the IM from the internal stromal compartment. We also show that atTic40 and a second IM protein, atTic110, can target and insert into isolated IM vesicles in vitro. Collectively, our experiments are consistent with a "postimport" mechanism in which the IM proteins are first imported from the cytoplasm and subsequently inserted into the IM from the stroma.
Collapse
Affiliation(s)
- Ming Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
246
|
Hemmerlin A, Tritsch D, Hartmann M, Pacaud K, Hoeffler JF, van Dorsselaer A, Rohmer M, Bach TJ. A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway. PLANT PHYSIOLOGY 2006; 142:441-57. [PMID: 16920870 PMCID: PMC1586049 DOI: 10.1104/pp.106.086652] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are able to integrate exogenous 1-deoxy-D-xylulose (DX) into the 2C-methyl-D-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-D-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing D-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as "xylulose kinase" might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Centre National de la Recherche Scientifique, UPR 2357, Université Louis Pasteur, Institut de Biologie Moléculaire des Plantes, 67083 Strasbourg cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Brosson D, Kuhn L, Delbac F, Garin J, P Vivarès C, Texier C. Proteomic analysis of the eukaryotic parasite Encephalitozoon cuniculi (microsporidia): a reference map for proteins expressed in late sporogonial stages. Proteomics 2006; 6:3625-35. [PMID: 16691553 DOI: 10.1002/pmic.200500796] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microsporidian Encephalitozoon cuniculi is a unicellular obligate intracellular parasite considered as an emerging opportunistic human pathogen. The differentiation phase of its life cycle leads to the formation of stress-resistant spores. The E. cuniculi genome (2.9 Mbp) having been sequenced, we undertook a descriptive proteomic study of a spore-rich cell population isolated from culture supernatants. A combination of 2-DE and 2-DE-free techniques was applied to whole-cell protein extracts. Protein identification was performed using an automated MALDI-TOF-MS platform and a nanoLC-MS/MS instrument. A reference 2-DE map of about 350 major spots with multiple isoforms was obtained, and for the first time in microsporidia, a large set of unique proteins (177) including proteins with unknown function in a proportion of 25.6% was identified. The data are mainly discussed with reference to secretion and spore structural features, energy and carbohydrate metabolism, cell cycle control and parasite survival in the environment.
Collapse
Affiliation(s)
- Damien Brosson
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | |
Collapse
|
248
|
Yamaryo Y, Motohashi K, Takamiya KI, Hisabori T, Ohta H. In vitro reconstitution of monogalactosyldiacylglycerol (MGDG) synthase regulation by thioredoxin. FEBS Lett 2006; 580:4086-90. [PMID: 16824521 DOI: 10.1016/j.febslet.2006.06.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 11/15/2022]
Abstract
Monogalactosyldiacylglycerol (MGDG), a major membrane lipid of chloroplasts, is synthesized by MGDG synthase (MGD) localized in chloroplast envelope membranes. We investigated whether MGD activity is regulated in a redox-dependent manner using recombinant cucumber MGD overexpressed in Escherichia coli. We found that MGD activity is reversibly regulated by reduction and oxidation in vitro and that an intramolecular disulfide bond(s) is involved in MGD activation. Because thioredoxin efficiently reduced disulfide bonds to enhance MGD activity in vitro, MGD is potentially an envelope-bound thioredoxin target protein in higher plants.
Collapse
Affiliation(s)
- Yoshiki Yamaryo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-14 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | |
Collapse
|
249
|
Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, Monnet J, Reinbothe S. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci U S A 2006; 103:4777-82. [PMID: 16537436 PMCID: PMC1450246 DOI: 10.1073/pnas.0511066103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis CAO gene encodes a 52-kDa protein with predicted localization in the plastid compartment. Here, we report that CAO is an intrinsic Rieske iron-sulfur protein of the plastid-envelope inner and thylakoid membranes. Activity measurements revealed that CAO catalyzes chlorophyllide a to chlorophyllide b conversion in vitro and that the enzyme was only slightly active with protochlorophyllide a, the nonreduced precursor of chlorophyllide a. Protein import and organelle fractionation studies identified CAO to be distinct from Ptc52 in the substrate-dependent transport pathway of NADPH:protochlorophyllide oxidoreductase A but instead to be part of a separate translocon complex. This complex was involved in the regulated import and stabilization of the chlorophyllide b-binding light-harvesting proteins Lhcb1 (LHCII) and Lhcb4 (CP29) in chloroplasts. Together, our results provide insights into the plastid subcompartmentalization and evolution of chlorophyll precursor biosynthesis in relation to protein import in higher plants.
Collapse
Affiliation(s)
- Christiane Reinbothe
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Sandra Bartsch
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Laura L. Eggink
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
| | - J. Kenneth Hoober
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
| | - Judy Brusslan
- Department of Biological Science, California State University, Long Beach, CA 90840-3702; and
| | - Ricardo Andrade-Paz
- Department of Biological Science, California State University, Long Beach, CA 90840-3702; and
| | - Julie Monnet
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5575, CERMO, BP53, F-38041 Grenoble Cedex 9, France
| | - Steffen Reinbothe
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5575, CERMO, BP53, F-38041 Grenoble Cedex 9, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
250
|
Glinski M, Weckwerth W. The role of mass spectrometry in plant systems biology. MASS SPECTROMETRY REVIEWS 2006; 25:173-214. [PMID: 16284938 DOI: 10.1002/mas.20063] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Large-scale analyses of proteins and metabolites are intimately bound to advancements in MS technologies. The aim of these non-targeted "omic" technologies is to extend our understanding beyond the analysis of only parts of the system. Here, metabolomics and proteomics emerged in parallel with the development of novel mass analyzers and hyphenated techniques such as gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and multidimensional liquid chromatography coupled to mass spectrometry (LC-MS). The analysis of (i) proteins (ii) phosphoproteins, and (iii) metabolites is discussed in the context of plant physiology and environment and with a focus on novel method developments. Recently published studies measuring dynamic (quantitative) behavior at these levels are summarized; for these works, the completely sequenced plants Arabidopsis thaliana and Oryza sativa (rice) have been the primary models of choice. Particular emphasis is given to key physiological processes such as metabolism, development, stress, and defense. Moreover, attempts to combine spatial, tissue-specific resolution with systematic profiling are described. Finally, we summarize the initial steps to characterize the molecular plant phenotype as a corollary of environment and genotype.
Collapse
Affiliation(s)
- Mirko Glinski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|