201
|
Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. Proc Natl Acad Sci U S A 2016; 113:E2983-92. [PMID: 27170188 DOI: 10.1073/pnas.1600674113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Whereas major histocompatibility class-1 (MH1) proteins present peptides to T cells displaying a large T-cell receptor (TR) repertoire, MH1Like proteins, such as CD1D and MR1, present glycolipids and microbial riboflavin precursor derivatives, respectively, to T cells expressing invariant TR-α (iTRA) chains. The groove of such MH1Like, as well as iTRA chains used by mucosal-associated invariant T (MAIT) and natural killer T (NKT) cells, respectively, may result from a coevolution under particular selection pressures. Herein, we investigated the evolutionary patterns of the iTRA of MAIT and NKT cells and restricting MH1Like proteins: MR1 appeared 170 Mya and is highly conserved across mammals, evolving more slowly than other MH1Like. It has been pseudogenized or independently lost three times in carnivores, the armadillo, and lagomorphs. The corresponding TRAV1 gene also evolved slowly and harbors highly conserved complementarity determining regions 1 and 2. TRAV1 is absent exclusively from species in which MR1 is lacking, suggesting that its loss released the purifying selection on MR1. In the rabbit, which has very few NKT and no MAIT cells, a previously unrecognized iTRA was identified by sequencing leukocyte RNA. This iTRA uses TRAV41, which is highly conserved across several groups of mammals. A rabbit MH1Like gene was found that appeared with mammals and is highly conserved. It was independently lost in a few groups in which MR1 is present, like primates and Muridae, illustrating compensatory emergences of new MH1Like/Invariant T-cell combinations during evolution. Deciphering their role is warranted to search similar effector functions in humans.
Collapse
|
202
|
Jukes J, Gileadi U, Ghadbane H, Yu T, Shepherd D, Cox LR, Besra GS, Cerundolo V. Non-glycosidic compounds can stimulate both human and mouse iNKT cells. Eur J Immunol 2016; 46:1224-34. [PMID: 26873393 PMCID: PMC4913735 DOI: 10.1002/eji.201546114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
Abstract
Invariant natural killer T (iNKT) cells recognize CD1d/glycolipid complexes and upon activation with synthetic agonists display immunostimulatory properties. We have previously described that the non-glycosidic CD1d-binding lipid, threitolceramide (ThrCer) activates murine and human iNKT cells. Here, we show that incorporating the headgroup of ThrCer into a conformationally more restricted 6- or 7-membered ring results in significantly more potent non-glycosidic analogs. In particular, ThrCer 6 was found to promote strong anti-tumor responses and to induce a more prolonged stimulation of iNKT cells than does the canonical α-galactosylceramide (α-GalCer), achieving an enhanced T-cell response at lower concentrations compared with α-GalCer both in vitro, using human iNKT-cell lines and in vivo, using C57BL/6 mice. Collectively, these studies describe novel non-glycosidic ThrCer-based analogs that have improved potency in iNKT-cell activation compared with that of α-GalCer, and are clinically relevant iNKT-cell agonists.
Collapse
Affiliation(s)
- John‐Paul Jukes
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Hemza Ghadbane
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Ting‐Fong Yu
- School of Biosciences, University of BirminghamEdgbastonBirminghamUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamUK
| | - Dawn Shepherd
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamUK
| | - Gurdyal S. Besra
- School of Biosciences, University of BirminghamEdgbastonBirminghamUK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
203
|
Gentilini MV, Pérez ME, Fernández PM, Fainboim L, Arana E. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction. Cancer Immunol Immunother 2016; 65:551-62. [PMID: 26969612 PMCID: PMC11028607 DOI: 10.1007/s00262-016-1812-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/17/2016] [Indexed: 02/07/2023]
Abstract
The expression of N-glycolyl-monosialodihexosyl-ganglioside (NGcGM3) in humans is restricted to cancer cells; therefore, it is a tumor antigen. There are measurable quantities of circulating anti-NGcGM3 antibodies (aNGcGM3 Abs) in human serum. Interestingly, some people have circulating Ag-specific immunoglobulins G (IgGs) that are capable of complement mediated cytotoxicity against NGcGM3 positive cells, which is relevant for tumor surveillance. In light of the chemical nature of Ag, we postulated it as a candidate ligand for CD1d. Furthermore, we hypothesize that the immune mechanism involved in the generation of these Abs entails cross talk between B lymphocytes (Bc) and invariant natural killer T cells (iNKT). Combining cellular techniques, such as flow cytometry and biochemical assays, we demonstrated that CD1d binds to NGcGM3 and that human Bc present NGcGM3 in a CD1d context according to two alternative strategies. We also showed that paraformaldehyde treatment of cells expressing CD1d affects the presentation. Finally, by co-culturing primary human Bc with iNKT and measuring Ki-67 expression, we detected a reproducible increment in the proliferation of the iNKT population when Ag was on the medium. Our findings identify a novel, endogenous, human CD1d ligand, which is sufficiently competent to stimulate iNKT. We postulate that CD1d-restricted Bc presentation of NGcGM3 drives effective iNKT activation, an immunological mechanism that has not been previously described for humans, which may contribute to understanding aNGcGM3 occurrence.
Collapse
Affiliation(s)
- M Virginia Gentilini
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Av Córdoba 2351, C1120AAF, Buenos Aires, Argentina
| | - M Eugenia Pérez
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Av Córdoba 2351, C1120AAF, Buenos Aires, Argentina
- Department of Immunogenetics, School of Exact Sciences, University of Misiones, Posadas, Misiones, Argentina
| | - Pablo Mariano Fernández
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Av Córdoba 2351, C1120AAF, Buenos Aires, Argentina
- Department of Immunology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Fainboim
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Av Córdoba 2351, C1120AAF, Buenos Aires, Argentina
- Department of Immunology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Eloísa Arana
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Av Córdoba 2351, C1120AAF, Buenos Aires, Argentina.
- Department of Immunology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
204
|
Coelho-Dos-Reis JG, Huang J, Tsao T, Pereira FV, Funakoshi R, Nakajima H, Sugiyama H, Tsuji M. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells. Clin Immunol 2016; 168:6-15. [PMID: 27132023 DOI: 10.1016/j.clim.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/28/2022]
Abstract
In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation.
Collapse
Affiliation(s)
- Jordana G Coelho-Dos-Reis
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Minas Gerais 30192, Brazil.
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Felipe V Pereira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Federal University of Sao Paulo, Sao Paulo 04021, Brazil
| | - Ryota Funakoshi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
205
|
Tiper IV, Temkin SM, Spiegel S, Goldblum SE, Giuntoli RL, Oelke M, Schneck JP, Webb TJ. VEGF Potentiates GD3-Mediated Immunosuppression by Human Ovarian Cancer Cells. Clin Cancer Res 2016; 22:4249-58. [PMID: 27076627 DOI: 10.1158/1078-0432.ccr-15-2518] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Natural killer T (NKT) cells are important mediators of antitumor immune responses. We have previously shown that ovarian cancers shed the ganglioside GD3, which inhibits NKT-cell activation. Ovarian cancers also secrete high levels of VEGF. In this study, we sought to test the hypothesis that VEGF production by ovarian cancers suppresses NKT-cell-mediated antitumor responses. EXPERIMENTAL DESIGN To investigate the effects of VEGF on CD1d-mediated NKT-cell activation, a conditioned media model was established, wherein the supernatants from ovarian cancer cell lines (OV-CAR-3 and SK-OV-3) were used to treat CD1d-expressing antigen-presenting cells (APC) and cocultured with NKT hybridomas. Ovarian cancer-associated VEGF was inhibited by treatment with bevacizumab and genistein; conditioned medium was collected, and CD1d-mediated NKT-cell responses were assayed by ELISA. RESULTS Ovarian cancer tissue and ascites contain lymphocytic infiltrates, suggesting that immune cells traffic to tumors, but are then inhibited by immunosuppressive molecules within the tumor microenvironment. OV-CAR-3 and SK-OV-3 cell lines produce high levels of VEGF and GD3. Pretreatment of APCs with ascites or conditioned medium from OV-CAR-3 and SK-OV-3 blocked CD1d-mediated NKT-cell activation. Inhibition of VEGF resulted in a concomitant reduction in GD3 levels and restoration of NKT-cell responses. CONCLUSIONS We found that VEGF inhibition restores NKT-cell function in an in vitro ovarian cancer model. These studies suggest that the combination of immune modulation with antiangiogenic treatment has therapeutic potential in ovarian cancer. Clin Cancer Res; 22(16); 4249-58. ©2016 AACR.
Collapse
Affiliation(s)
- Irina V Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sarah M Temkin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland. Department of Gynecology and Obstetrics, The Kelly Gynecologic Oncology Service, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sarah Spiegel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Simeon E Goldblum
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert L Giuntoli
- Department of Gynecology and Obstetrics, The Kelly Gynecologic Oncology Service, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mathias Oelke
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jonathan P Schneck
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
206
|
Bachy E, Urb M, Chandra S, Robinot R, Bricard G, de Bernard S, Traverse-Glehen A, Gazzo S, Blond O, Khurana A, Baseggio L, Heavican T, Ffrench M, Crispatzu G, Mondière P, Schrader A, Taillardet M, Thaunat O, Martin N, Dalle S, Le Garff-Tavernier M, Salles G, Lachuer J, Hermine O, Asnafi V, Roussel M, Lamy T, Herling M, Iqbal J, Buffat L, Marche PN, Gaulard P, Kronenberg M, Defrance T, Genestier L. CD1d-restricted peripheral T cell lymphoma in mice and humans. J Exp Med 2016; 213:841-57. [PMID: 27069116 PMCID: PMC4854725 DOI: 10.1084/jem.20150794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans.
Collapse
Affiliation(s)
- Emmanuel Bachy
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France Department of Hematology, Hospices Civils de Lyon, 69004 Lyon, France Université de Lyon, Université Claude Bernard Lyon1, 69007 Lyon, France
| | - Mirjam Urb
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Rémy Robinot
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Gabriel Bricard
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | | | - Alexandra Traverse-Glehen
- Department of Pathology, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Sophie Gazzo
- Department of Cytogenetics, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Olivier Blond
- Institut Albert Bonniot, INSERM U823, Université J. Fourier, 38041 Grenoble, France
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Lucile Baseggio
- Department of Cytology, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Tayla Heavican
- Department of Pathology and Microbiology, Center for Lymphoma and Leukemia Research, University of Nebraska Medical Center, Omaha, NE 68198
| | - Martine Ffrench
- Department of Cytology, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Giuliano Crispatzu
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, 50923 Cologne, Germany
| | - Paul Mondière
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Alexandra Schrader
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, 50923 Cologne, Germany
| | - Morgan Taillardet
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Olivier Thaunat
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Nadine Martin
- INSERM U955, Créteil 94000, France Université Paris-Est, Créteil 94000, France Department of Pathology, AP-HP, Groupe Henri-Mondor Albert-Chenevier, 94000 Créteil, France
| | - Stéphane Dalle
- Department of Dermatology, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, 69004 Lyon, France University Claude Bernard Lyon 1, 69100 Lyon, France INSERM UMR-S1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69003 Lyon, France
| | - Magali Le Garff-Tavernier
- Service d'Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Universités, UPMC, Université Paris 06 et Assistance Publique-Hôpitaux de Paris, 75004 Paris, France INSERM U1138, Programmed cell death and physiopathology of tumor cells, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Gilles Salles
- Department of Hematology, Hospices Civils de Lyon, 69004 Lyon, France Université de Lyon, Université Claude Bernard Lyon1, 69007 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Joel Lachuer
- Université de Lyon, Université Claude Bernard Lyon1, 69007 Lyon, France INSERM UMR-S1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69003 Lyon, France ProfileXpert, SFR Santé Lyon-Est, UCBL UMS 3453 CNRS-US7 INSERM, 69372 Lyon, France
| | - Olivier Hermine
- Institut Imagine, Laboratoire INSERM, Unité Mixte de Recherche 1163, CNRS Équipe de Recherche Laboratoryéllisée 8254, Cellular and Molecular Basis of Hematological Disorders and Therapeutic Implications, 75015 Paris, France Service d'Hématologie, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker, 75015 Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades, INSERM U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Mikael Roussel
- Rennes University Hospital, Rennes INSERM UMR 917 Faculté de Médecine Université Rennes 1, 35000 Rennes, France
| | - Thierry Lamy
- Rennes University Hospital, Rennes INSERM UMR 917 Faculté de Médecine Université Rennes 1, 35000 Rennes, France
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, 50923 Cologne, Germany
| | - Javeed Iqbal
- Department of Pathology and Microbiology, Center for Lymphoma and Leukemia Research, University of Nebraska Medical Center, Omaha, NE 68198
| | | | - Patrice N Marche
- Institut Albert Bonniot, INSERM U823, Université J. Fourier, 38041 Grenoble, France
| | - Philippe Gaulard
- INSERM U955, Créteil 94000, France Université Paris-Est, Créteil 94000, France Department of Pathology, AP-HP, Groupe Henri-Mondor Albert-Chenevier, 94000 Créteil, France
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Thierry Defrance
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Laurent Genestier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| |
Collapse
|
207
|
Vyrla D, Nikolaidis G, Oakley F, Perugorria MJ, Tsichlis PN, Mann DA, Eliopoulos AG. TPL2 Kinase Is a Crucial Signaling Factor and Mediator of NKT Effector Cytokine Expression in Immune-Mediated Liver Injury. THE JOURNAL OF IMMUNOLOGY 2016; 196:4298-310. [DOI: 10.4049/jimmunol.1501609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|
208
|
Li M, Zhou ZH, Sun XH, Zhang X, Zhu XJ, Jin SG, Jiang Y, Gao YT, Li CZ, Gao YQ. The dynamic changes of circulating invariant natural killer T cells during chronic hepatitis B virus infection. Hepatol Int 2016; 10:594-601. [PMID: 26924524 DOI: 10.1007/s12072-015-9650-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/05/2015] [Indexed: 01/04/2023]
Abstract
AIM The protective role of invariant natural killer T cells (iNKTs) against hepatitis B virus (HBV) infection remains controversial. We sought to clarify the role of peripheral iNKT cells during chronic HBV infection. METHODS Sixty patients with chronic HBV infection were categorized into an immune tolerance phase (HBV-IT) (n = 16), an immune clearance phase (HBV-IC) (n = 19) and an inactive carrier phase (HBV-IA) (n = 25). Twenty healthy individuals were enrolled as healthy controls. Another 21 HBeAg-positive patients were administrated with entecavir (0.5 mg/day) for 6 months. The percentages of circulating iNKT cells and their IFN-γ and IL-4 expression levels were examined by flow cytometry. The relationships between serum HBV DNA, ALT levels, the percentages of iNKT cells, and their IFN-γ and IL-4 levels were analyzed. RESULTS Compared to healthy controls, the percentage of iNKT cells decreased in HBV-IT, but increased in HBV-IC and HBV-IA. Circulating IFN-γ-producing iNKT cells gradually increased, whereas IL-4-producing iNKT cells gradually decreased from HBV-IT stage to HBV-IC and HBV-IA stages. The frequency of iNKT cells and their IFN-γ levels were reversely correlated with viral load. The levels of IL-4 expressed by iNKT cells were positively correlated to viral load and the serum ALT levels. After anti-virus therapy, the percentage of IFN-γ-producing iNKT cells increased while the percentage of IL-4-producing iNKT cells decreased. CONCLUSIONS During chronic HBV infection, the percentages of peripheral iNKT cells and its cytokines expressions of IFN-γ and IL-4 showed dynamic changes. The expression levels of IFN-γ and IL-4 were correlated with the clearance of HBV and liver injury.
Collapse
Affiliation(s)
- Man Li
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhen-Hua Zhou
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xue-Hua Sun
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiao-Jun Zhu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Shu-Gen Jin
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yun Jiang
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Ya-Ting Gao
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Cheng-Zhong Li
- Department of Infectious Diseases, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Yue-Qiu Gao
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China. .,Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
209
|
Roy S, Zhuang Y. Orchestration of invariant natural killer T cell development by E and Id proteins. Crit Rev Immunol 2016; 35:33-48. [PMID: 25746046 DOI: 10.1615/critrevimmunol.2015012207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural killer T (NKT) cells are αβ T cells that express a semi-invariant T-cell receptor (TCR) along with natural killer (NK) cell markers and have an innate cell-like ability to produce a myriad of cytokines very quickly upon antigen exposure and subsequent activation. These cells are diverted from conventional single positive (SP) T-cell fate at the double positive (DP) stage, where TCR-mediated recognition of a lipid antigen presented on a CD1d molecule promotes their selection into the NKT lineage. Although many key regulatory molecules have been shown to play important roles in the development of NKT cells, the mechanism of lineage specification and acquisition of effector functions in these cells still remain to be fully addressed. In this review, we specifically discuss the role of a family of class-I helix-loop-helix proteins known as E proteins, and their antagonists Id proteins in NKT celldevelopment. Recent work has shown that these proteins play key roles in invariant NKT (iNKT) development, from the invariant TCR rearrangement to terminal differentiation and maturation. Elucidating these roles provides an opportunity to uncover the transcriptional network that separates NKT cells from concurrently developed conventional αβ T cells.
Collapse
Affiliation(s)
- Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
210
|
Van Rhijn I, Moody DB. Donor Unrestricted T Cells: A Shared Human T Cell Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:1927-32. [PMID: 26297792 DOI: 10.4049/jimmunol.1500943] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The now-famous term "restriction" derived from experiments in which T cells from Donor A failed to recognize Ags presented by cells from Donor B. Restriction results from interdonor variation in MHC genes. Donor restriction dominates immunologists' thinking about the T cell response because it governs organ transplantation and hinders the discovery of disease-associated Ags. However, other T cells can be considered "donor unrestricted" because their targets, CD1a, CD1b, CD1c, CD1d, or MR1, are expressed in a similar form among all humans. A striking feature of donor unrestricted T cells is the expression of invariant TCRs with nearly species-wide distribution. In this article, we review new evidence that donor unrestricted T cells are common in humans. NKT cells, mucosa-associated invariant T cells, and germline-encoded mycolyl-reactive T cells operate outside of the familiar principles of the MHC system, providing a broader picture of T cell function and new opportunities for therapy.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
211
|
Species Specific Differences of CD1d Oligomer Loading In Vitro. PLoS One 2015; 10:e0143449. [PMID: 26599805 PMCID: PMC4657966 DOI: 10.1371/journal.pone.0143449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
CD1d molecules are MHC class I-like molecules that present glycolipids to iNKT cells. The highly conserved interaction between CD1d:α-Galactosylceramide (αGC) complexes and the iNKT TCR not only defines this population of αβ T cells but can also be used for its direct identification. Therefore, CD1d oligomers are a widely used tool for iNKT cell related investigations. To this end, the lipid chains of the antigen have to be inserted into the hydrophobic pockets of the CD1d binding cleft, often with help of surfactants. In this study, we investigated the influence of different surfactants (Triton X-100, Tween 20, Tyloxapol) on in vitro loading of CD1d molecules derived from four different species (human, mouse, rat and cotton rat) with αGC and derivatives carrying modifications of the acyl-chain (DB01-1, PBS44) and a 6-acetamido-6-deoxy-addition at the galactosyl head group (PBS57). We also compared rat CD1d dimers with tetramers and staining of an iNKT TCR transductant was used as readout for loading efficacy. The results underlined the importance of CD1d loading efficacy for proper analysis of iNKT TCR binding and demonstrated the necessity to adjust loading conditions for each oligomer/glycolipid combination. The efficient usage of surfactants as a tool for CD1d loading was revealed to be species-specific and depending on the origin of the CD1d producing cells. Additional variation of surfactant-dependent loading efficacy between tested glycolipids was influenced by the acyl-chain length and the modification of the galactosyl head group with PBS57 showing the least dependence on surfactants and the lowest degree of species-dependent differences.
Collapse
|
212
|
|
213
|
Cameron G, Pellicci DG, Uldrich AP, Besra GS, Illarionov P, Williams SJ, La Gruta NL, Rossjohn J, Godfrey DI. Antigen Specificity of Type I NKT Cells Is Governed by TCR β-Chain Diversity. THE JOURNAL OF IMMUNOLOGY 2015; 195:4604-14. [DOI: 10.4049/jimmunol.1501222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
|
214
|
Neumann S, Young K, Compton B, Anderson R, Painter G, Hook S. Synthetic TRP2 long-peptide and α-galactosylceramide formulated into cationic liposomes elicit CD8+ T-cell responses and prevent tumour progression. Vaccine 2015; 33:5838-5844. [PMID: 26363382 DOI: 10.1016/j.vaccine.2015.08.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 12/22/2022]
Abstract
The lipid antigen α-galactosylceramide (α-GalCer) is a potent activator of invariant natural killer T-cells (iNKT cells) and can stimulate cytotoxic and anti-tumour immune responses. However optimal responses appear to be induced by α-GalCer when cell-based vaccines are delivered intravenously. Here we investigated if co-delivery of protein and peptide antigens along with α-GalCer in a liposomal formulation could stimulate therapeutic anti-tumour immune responses. Cationic liposomes were inherently immune-stimulatory and induced cytotoxic immune responses when delivered both by intravenous and subcutaneous injection. However, only vaccine delivered intravenously stimulated therapeutic anti-tumour immune responses to a peptide antigen. Surface modification with polyethylene glycol (PEG) did not improve immune responses to either intravenously or subcutaneously delivered vaccines. Immune responses to short and long peptide sequences (CD8 and CD4 epitopes) of the self-antigen tyrosinase-related protein 2 (TRP2) as a vaccine antigen, co-delivered with α-GalCer in either cationic liposomes or PBS were further examined. Enhanced production of IFN-γ, increased cytotoxic T-cell responses and tumour survival were observed when a long TRP2-peptide was delivered with α-GalCer in cationic liposomes.
Collapse
Affiliation(s)
- Silke Neumann
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Katie Young
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Benji Compton
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone, 5046 Wellington, New Zealand
| | - Regan Anderson
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone, 5046 Wellington, New Zealand
| | - Gavin Painter
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone, 5046 Wellington, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
215
|
Abstract
Over two decades ago, it was discovered that the human T-cell repertoire contains T cells that do not recognize peptide antigens in the context of MHC molecules but instead respond to lipid antigens presented by CD1 antigen-presenting molecules. The ability of T cells to 'see' lipid antigens bound to CD1 enables these lymphocytes to sense changes in the lipid composition of cells and tissues as a result of infections, inflammation, or malignancies. Although foreign lipid antigens have been shown to function as antigens for CD1-restricted T cells, many CD1-restricted T cells do not require foreign antigens for activation but instead can be activated by self-lipids presented by CD1. This review highlights recent developments in the field, including the identification of common mammalian lipids that function as autoantigens for αβ and γδ T cells, a novel mode of T-cell activation whereby CD1a itself rather than lipids serves as the autoantigen, and various mechanisms by which the activation of CD1-autoreactive T cells is regulated. As CD1 can induce T-cell effector functions in the absence of foreign antigens, multiple mechanisms are in place to regulate this self-reactivity, and stimulatory CD1-lipid complexes appear to be tightly controlled in space and time.
Collapse
|
216
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
217
|
Wen X, Kim S, Xiong R, Li M, Lawrenczyk A, Huang X, Chen SY, Rao P, Besra GS, Dellabona P, Casorati G, Porcelli SA, Akbari O, Exley MA, Yuan W. A Subset of CD8αβ+ Invariant NKT Cells in a Humanized Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1459-69. [PMID: 26157173 PMCID: PMC4530047 DOI: 10.4049/jimmunol.1500574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/12/2015] [Indexed: 11/19/2022]
Abstract
Invariant NKT (iNKT) cells are unconventional innate-like T cells demonstrating potent antitumor function in conventional mouse models. However, the iNKT cell ligands have had limited efficacy in human antitumor clinical trials, mostly due to the profound differences in the properties and compositions of iNKT cells between the two species, including the presence of a CD8(+) subset of iNKT cells only in humans. To build reliable in vivo models for studying human iNKT cells, we recently developed the first humanized mouse model (hCD1d-KI) with human CD1d knocked in. To further humanize the mouse model, we now introduced the human invariant NKT TCRα-chain (Vα24Jα18) into the hCD1d-knockin mice. Similar to humans, this humanized mouse model developed a subset of CD8αβ(+) iNKT cells among other human-like iNKT subsets. The presence of the CD8αβ(+) iNKT cells in the thymus suggests that these cells developed in the thymus. In the periphery, these NKT cells showed a strong Th1-biased cytokine response and potent cytotoxicity for syngeneic tumor cells upon activation, as do human CD8αβ(+) iNKT cells. The low binding avidity of iNKT TCRs to the human CD1d/lipid complex and high prevalence of Vβ7 TCRβ among the CD8(+) iNKT cells strongly point to a low avidity-based developmental program for these iNKT cells, which included the suppression of Th-POK and upregulation of eomesodermin transcriptional factors. Our establishment of this extensively humanized mouse model phenotypically and functionally reflecting the human CD1d/iNKT TCR system will greatly facilitate the future design and optimization of iNKT cell-based immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/metabolism
- CD8 Antigens/metabolism
- Cytotoxicity, Immunologic
- Humans
- Immunologic Memory
- Immunophenotyping
- Mice
- Mice, Knockout
- Models, Animal
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Phenotype
- Protein Binding
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Seil Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ran Xiong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Michelle Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Agnieszka Lawrenczyk
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Xue Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ping Rao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20134 Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20134 Milano, Italy
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Mark A Exley
- Faculty of Medical and Human Sciences, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, United Kingdom; and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
218
|
Wolf BJ, Tatituri RVV, Almeida CF, Le Nours J, Bhowruth V, Johnson D, Uldrich AP, Hsu FF, Brigl M, Besra GS, Rossjohn J, Godfrey DI, Brenner MB. Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2540-51. [PMID: 26254340 DOI: 10.4049/jimmunol.1501019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/10/2015] [Indexed: 01/17/2023]
Abstract
Semi-invariant/type I NKT cells are a well-characterized CD1d-restricted T cell subset. The availability of potent Ags and tetramers for semi-invariant/type I NKT cells allowed this population to be extensively studied and revealed their central roles in infection, autoimmunity, and tumor immunity. In contrast, diverse/type II NKT (dNKT) cells are poorly understood because the lipid Ags that they recognize are largely unknown. We sought to identify dNKT cell lipid Ag(s) by interrogating a panel of dNKT mouse cell hybridomas with lipid extracts from the pathogen Listeria monocytogenes. We identified Listeria phosphatidylglycerol as a microbial Ag that was significantly more potent than a previously characterized dNKT cell Ag, mammalian phosphatidylglycerol. Further, although mammalian phosphatidylglycerol-loaded CD1d tetramers did not stain dNKT cells, the Listeria-derived phosphatidylglycerol-loaded tetramers did. The structure of Listeria phosphatidylglycerol was distinct from mammalian phosphatidylglycerol because it contained shorter, fully-saturated anteiso fatty acid lipid tails. CD1d-binding lipid-displacement studies revealed that the microbial phosphatidylglycerol Ag binds significantly better to CD1d than do counterparts with the same headgroup. These data reveal a highly potent microbial lipid Ag for a subset of dNKT cells and provide an explanation for its increased Ag potency compared with the mammalian counterpart.
Collapse
Affiliation(s)
- Benjamin J Wolf
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Raju V V Tatituri
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Catarina F Almeida
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jérôme Le Nours
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Veemal Bhowruth
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Darryl Johnson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, MO 63110
| | - Manfred Brigl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
219
|
Birkholz AM, Girardi E, Wingender G, Khurana A, Wang J, Zhao M, Zahner S, Illarionov PA, Wen X, Li M, Yuan W, Porcelli SA, Besra GS, Zajonc DM, Kronenberg M. A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-γ Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:924-33. [PMID: 26078271 PMCID: PMC4506857 DOI: 10.4049/jimmunol.1500070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022]
Abstract
In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Petr A Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Michelle Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037;
| |
Collapse
|
220
|
Salio M, Cerundolo V. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials. Front Immunol 2015; 6:388. [PMID: 26284072 PMCID: PMC4517378 DOI: 10.3389/fimmu.2015.00388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Since initial reports, more than 25 years ago, that T cells recognize lipids in the context on non-polymorphic CD1 molecules, our understanding of antigen presentation to non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a variety of self and non-self lipids and contribute to shaping immune responses via cross talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another population of semi-invariant T cells. Novel insights in the biological relevance of non-peptide-specific T cells have emerged with the development of tetrameric CD1 and MR1 molecules, which has allowed accurate enumeration and functional analysis of CD1- and MR1-restricted T cells in humans and discovery of novel populations of semi-invariant T cells. The phenotype and function of non-peptide-specific T cells will be discussed in the context of the known distribution of CD1 and MR1 molecules by different subsets of antigen-presenting cells at steady state and following infection. Concurrent modulation of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled with efficient lipid antigen processing, result in the increased cell surface expression of antigenic CD1-lipid complexes. Similarly, MR1 expression is almost undetectable in resting APC and it is upregulated following bacterial infection, likely due to stabilization of MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression at steady state and during infection may represent an important mechanism to limit autoreactivity, while promoting T cell responses to foreign antigens.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
221
|
Reconstitution models to evaluate natural killer T cell function in tumor control. Immunol Cell Biol 2015; 94:90-100. [DOI: 10.1038/icb.2015.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
|
222
|
Chung BK, Priatel JJ, Tan R. CD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections. Front Immunol 2015; 6:312. [PMID: 26161082 PMCID: PMC4479820 DOI: 10.3389/fimmu.2015.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.
Collapse
Affiliation(s)
- Brian K. Chung
- NIHR Birmingham Liver Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John J. Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rusung Tan
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
223
|
Slauenwhite D, Johnston B. Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 2015; 6:255. [PMID: 26074921 PMCID: PMC4445310 DOI: 10.3389/fimmu.2015.00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.
Collapse
Affiliation(s)
- Drew Slauenwhite
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada ; Beatrice Hunter Cancer Research Institute , Halifax, NS , Canada
| |
Collapse
|
224
|
Paletta D, Fichtner AS, Hahn AM, Starick L, Beyersdorf N, Monzon-Casanova E, Mueller TD, Herrmann T. The hypervariable region 4 (HV4) and position 93 of the α chain modulate CD1d-glycolipid binding of iNKT TCRs. Eur J Immunol 2015; 45:2122-33. [PMID: 25900449 DOI: 10.1002/eji.201545534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 11/08/2022]
Abstract
TCRs of invariant NKT (iNKT) cells bind α-galactosylceramide (αGC) loaded CD1d in a highly conserved fashion and show a characteristic TCR gene usage: An "invariant" α chain with a canonical AV14/AJ18 rearrangement in mice (AV24/AJ18 in humans) is paired with β chains containing characteristic Vβ segments. In the rat, a multimember AV14 gene family increases the variability within this system. This study characterizes CD1d binding of rat AV14 gene segments in TCR transductants as well as CD1d binding and iNKT TCR expression of expanded polyclonal F344 rat iNKT populations. It defines an important role of position 93 at the V-J transition for TCR avidity and species cross-reactivity of the rat iNKT TCR. Furthermore, for the first time we identified variability within the fourth hypervariable loop (HV4) of the α chain as a modulator of CD1d:αGC binding in rat and mouse. Additionally, we confirmed the importance of the CDR2β for CD1d:αGC binding, but also show that the CDR3β may even have opposite effects on binding depending on the pairing α chain. Altogether, we characterized naturally occurring sources of variability for the iNKT TCR and speculate that they rather level than increase the largely germline encoded differences of iNKT TCR ligand avidity.
Collapse
Affiliation(s)
- Daniel Paletta
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Anne Maria Hahn
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, Würzburg, Germany
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
225
|
Abstract
The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins.
Collapse
Affiliation(s)
- Mihalis Verykokakis
- Committee on Immunology and Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
226
|
Abstract
Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the interface between the innate and adaptive immune systems, and are important mediators of immune responses and tumor surveillance. iNKT cells recognize lipid antigens in a CD1d-dependent manner; their subsequent activation results in a rapid and specific downstream response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to modify the immune microenvironment influences the ability of the host to control tumor growth, making them an important population to be harnessed in the clinic for the development of anticancer therapeutics. Indeed, the identification of strong iNKT-cell agonists, such as α-galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids that have shown potential in vaccination and treatment against cancers. In this Masters of Immunology article, we discuss these latest findings and summarize the major discoveries in iNKT-cell biology, which have enabled the design of potent strategies for immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Rosanna M McEwen-Smith
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom.
| |
Collapse
|
227
|
Kim JC, Jin HM, Cho YN, Kwon YS, Kee SJ, Park YW. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Acute Cholecystitis. J Korean Med Sci 2015; 30:606-11. [PMID: 25931792 PMCID: PMC4414645 DOI: 10.3346/jkms.2015.30.5.606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/14/2015] [Indexed: 01/10/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play crucial roles in a variety of diseases, including autoimmunity, infectious diseases, and cancers. However, little is known about the roles of these invariant T cells in acute cholecystitis. The purposes of this study were to examine the levels of MAIT cells and NKT cells in patients with acute cholecystitis and to investigate potential relationships between clinical parameters and these cell levels. Thirty patients with pathologically proven acute cholecystitis and 47 age- and sex-matched healthy controls were enrolled. Disease grades were classified according to the revised Tokyo guidelines (TG13) for the severity assessment for acute cholecystitis. Levels of MAIT and NKT cells in peripheral blood were measured by flow cytometry. Circulating MAIT and NKT cell numbers were significantly lower in acute cholecystitis patients than in healthy controls, and these deficiencies in MAIT cells and NKT cell numbers were associated with aging in acute cholecystitis patients. Notably, a reduction in NKT cell numbers was found to be associated with severe TG13 grade, death, and high blood urea nitrogen levels. The study shows numerical deficiencies of circulating MAIT and NKT cells and age-related decline of these invariant T cells. In addition, NKT cell deficiency was associated with acute cholecystitis severity and outcome. These findings provide an information regarding the monitoring of these changes in circulating MAIT and NKT cell numbers during the course of acute cholecystitis and predicting prognosis.
Collapse
Affiliation(s)
- Jung-Chul Kim
- Department of Hepatobiliary Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong-Soo Kwon
- Department of Pulmonary and Critical Care Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| |
Collapse
|
228
|
Abstract
Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.
Collapse
Affiliation(s)
- Shilpi Chandra
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | |
Collapse
|
229
|
Obata F, Subrahmanyam PB, Vozenilek AE, Hippler LM, Jeffers T, Tongsuk M, Tiper I, Saha P, Jandhyala DM, Kolling GL, Latinovic O, Webb TJ. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice. Front Microbiol 2015; 6:262. [PMID: 25904903 PMCID: PMC4389548 DOI: 10.3389/fmicb.2015.00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.
Collapse
Affiliation(s)
- Fumiko Obata
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Molecular Pathology, University of Yamanashi Graduate School of Medicine Chuo, Japan
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Aimee E Vozenilek
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Lauren M Hippler
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tynae Jeffers
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Methinee Tongsuk
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Irina Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Progyaparamita Saha
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Dakshina M Jandhyala
- Department of Molecular Biology and Microbiology, Tufts University Boston, MA, USA
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Charlottesville, VA, USA
| | - Olga Latinovic
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Institute of Human Virology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
230
|
Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality. Blood 2015; 125:3491-500. [PMID: 25795920 DOI: 10.1182/blood-2014-11-612762] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/12/2015] [Indexed: 12/11/2022] Open
Abstract
Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4(+) iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4(+) iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4(+) iNKT cells from third-party mice were as protective as CD4(+) iNKT cells from donor mice although third-party CD4(+) iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4(+) iNKT cells resulted in a robust expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation.
Collapse
|
231
|
Chen Q, Ross AC. α-Galactosylceramide stimulates splenic lymphocyte proliferation in vitro and increases antibody production in vivo in late neonatal-age mice. Clin Exp Immunol 2015; 179:188-96. [PMID: 25178151 DOI: 10.1111/cei.12447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
The neonatal stage is characterized by weak responses to various infections and vaccines, thus the development of efficient formulas to improve vaccine effectiveness is of high priority. The glycolipid alpha galactosylceramide (αGalCer) is known as a potent immune modulator due mainly to natural killer (NK) T cell activation. Using a mouse tetanus toxoid (TT) immunization model, we observed that neonatal mice given αGalCer at the time of primary immunization on postnatal day (pnd) 17 had a significantly higher TT-specific immunoglobulin (Ig)M response as well as a memory IgG response, while αGalCer given on pnd 7 resulted in only marginal boosting. Consistently, immunostaining of the spleen sections from αGalCer-treated pnd 17 immunized neonates showed a higher number of Ki67(+) cells in the splenic germinal centre area, suggesting a stronger response after immunization. In-vitro kinetic studies revealed that spleen cells from newborn to pnd 7 neonates did not respond to αGalCer stimulation, whereas cell proliferation was increased markedly by αGalCer after pnd 7, and became dramatic around neonatal pnd 17-18, which was accompanied by increased B, T and NK T cell populations in the spleen. In addition, in pnd 17 spleen cells, αGalCer significantly stimulated the production of NK T cytokines, interleukin (IL)-4 and interferon (IFN)-γ, and promoted the proliferation of CD23(+) B cells, a subset of B cells enriched in germinal centres. These data suggest that αGalCer is an effective immune stimulus in the late neonatal stage, and thus may be useful in translational studies to test as a potential adjuvant to achieve a more efficient response to immunization.
Collapse
Affiliation(s)
- Q Chen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
232
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
233
|
Laue T, Wrann CD, Hoffmann-Castendiek B, Pietsch D, Hübner L, Kielstein H. Altered NK cell function in obese healthy humans. BMC OBESITY 2015. [PMID: 26217516 PMCID: PMC4511543 DOI: 10.1186/s40608-014-0033-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Obesity is associated with an elevated risk for several types of cancer and thus a major health hazard. However, the mechanism between overweight and cancer susceptibility is still elusive. Leptin, mainly produced by adipocytes links food intake and energy expenditure. In addition, recent studies have shown an immunomodulatory impact of leptin on NK cells. The purpose of the present study was to investigate whether leptin stimulation of NK cells from obese humans leads to altered functions as compared to NK cells from lean subjects. On the basis of body mass index 20 healthy individuals were classified in two groups: normal weight (<25 kg/m2) and obese (>30 kg/m2). Peripheral blood mononuclear cells (PBMC) were isolated from blood samples. We used flow cytometry to assess differences in phenotype and activity markers (CD107a, CD178 and TRAIL) of PBMCs between both groups. Furthermore, we determined after short-term in vitro leptin stimulation the phosphorylation of JAK2, downstream target of the intracellular signaling cascade of the leptin receptor, by Western Blotting and numbers of NK-cell-tumor-cell-conjugates as well as Granzyme+ and IFN-γ+ NK cells by flow cytometry. Finally, the proliferative capacity of control and long-term (7 days) leptin-stimulated NK cells was examined. Results As opposed to similar NK cell counts, the number of CD3+CD56+ cells was significantly lower in obese compared to lean subjects. Human NK cells express the leptin receptor (Ob-R). For further determination of Ob-R, intracellular target proteins of PBMCs were investigated by Western Blotting. Phosphorylation of JAK2 was lower in obese as compared to normal weight subjects. Furthermore, significantly lower levels of TNF-related apoptosis-inducing ligand (TRAIL) as an NK cell functional marker in obese subjects were found. In vitro leptin stimulation resulted in a higher production of interferon-γ in NK cells of normal weight subjects. Interestingly, long-term leptin stimulation had no significant influence on numbers of proliferating NK cells. Conclusions NK cells from obese healthy humans show functional deficits and altered responses after in vitro leptin challenge.
Collapse
Affiliation(s)
- Tobias Laue
- Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany ; Centre for Pediatrics and Adolescent Medicine, Hannover Medical School, Hannover, Germany
| | - Christiane D Wrann
- Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | | | - Daniel Pietsch
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lena Hübner
- Department of General-, Visceral-, Vascular and Thoracic Surgery, Charité, University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
234
|
Gebremeskel S, Clattenburg DR, Slauenwhite D, Lobert L, Johnston B. Natural killer T cell activation overcomes immunosuppression to enhance clearance of postsurgical breast cancer metastasis in mice. Oncoimmunology 2015; 4:e995562. [PMID: 25949924 DOI: 10.1080/2162402x.2014.995562] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Metastatic lesions are responsible for over 90% of breast cancer associated deaths. Therefore, strategies that target metastasis are of particular interest. This study examined the efficacy of natural killer T (NKT) cell activation as a post-surgical immunotherapy in a mouse model of metastatic breast cancer. Following surgical resection of orthotopic 4T1 mammary carcinoma tumors, BALB/c mice were treated with NKT cell activating glycolipid antigens (α-GalCer, α-C-GalCer or OCH) or α-GalCer-loaded dendritic cells (DCs). Low doses of glycolipids transiently reduced metastasis but did not increase survival. A high dose of α-GalCer enhanced overall survival, but was associated with increased toxicity and mortality at early time points. Treatment with α-GalCer-loaded DCs limited tumor metastasis, prolonged survival, and provided curative outcomes in ∼45% of mice. However, survival was not increased further by additional DC treatments or co-transfer of expanded NKT cells. NKT cell activation via glycolipid-loaded DCs decreased the frequency and immunosuppressive activity of myeloid derived suppressor cells (MDSCs) in tumor-resected mice. In vitro, NKT cells were resistant to the immunosuppressive effects of MDSCs and were able to reverse the inhibitory effects of MDSCs on T cell proliferation. NKT cell activation enhanced antitumor immunity in tumor-resected mice, increasing 4T1-specific cytotoxic responses and IFNγ production from natural killer (NK) cells and CD8+ T cells. Consistent with increased tumor immunity, mice surviving to day 150 were resistant to a second tumor challenge. This work provides a clear rationale for manipulating NKT cells to target metastatic disease.
Collapse
Key Words
- dendritic cells
- metastatic breast cancer
- myeloid derived suppressor cells
- natural killer T cells
- tumor immunotherapy
- α-GalCer, α-galacotosylceramide; ALT, alanine aminotransferase; DC, dendritic cell; FBS, fetal bovine serum; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFNγ, interferon-γ; IL, interleukin; i.p., intraperitoneal; i.v., intravenous; MDSC, myeloid derived suppressor cell; NK cell, natural killer cell; NKT cell, natural killer T cell; RPMI-1640, Roswell Park Memorial Institute medium-1640; TCR, T cell receptor; Th, T helper.
Collapse
Affiliation(s)
- Simon Gebremeskel
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| | - Daniel R Clattenburg
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| | - Drew Slauenwhite
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada
| | - Lynnea Lobert
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Department of Pediatrics; Dalhousie University ; Halifax, Nova Scotia, Canada ; Department of Pathology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| |
Collapse
|
235
|
Abstract
The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.
Collapse
|
236
|
Bailey JC, Iyer AK, Renukaradhya GJ, Lin Y, Nguyen H, Brutkiewicz RR. Inhibition of CD1d-mediated antigen presentation by the transforming growth factor-β/Smad signalling pathway. Immunology 2015; 143:679-91. [PMID: 24990409 DOI: 10.1111/imm.12353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/10/2014] [Accepted: 06/30/2014] [Indexed: 12/14/2022] Open
Abstract
CD1d-mediated lipid antigen presentation activates a subset of innate immune lymphocytes called invariant natural killer T (NKT) cells that, by virtue of their potent cytokine production, bridge the innate and adaptive immune systems. Transforming growth factor (TGF-β) is a known immune modulator that can activate the mitogen-activated protein kinase p38; we have previously shown that p38 is a negative regulator of CD1d-mediated antigen presentation. Several studies implicate a role for TGF-β in the activation of p38. Therefore, we hypothesized that TGF-β would impair antigen presentation by CD1d. Indeed, a dose-dependent decrease in CD1d-mediated antigen presentation and impairment of lipid antigen processing was observed in response to TGF-β treatment. However, it was found that this inhibition was not through p38 activation. Instead, Smads 2, 3 and 4, downstream elements of the TGF-β canonical signalling pathway, contributed to the observed effects. In marked contrast to that observed with CD1d, TGF-β was found to enhance MHC class II-mediated antigen presentation. Overall, these results suggest that the canonical TGF-β/Smad pathway negatively regulates an important arm of the host's innate immune responses - CD1d-mediated lipid antigen presentation to NKT cells.
Collapse
Affiliation(s)
- Jennifer C Bailey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
237
|
TANIGUCHI M, HARADA M, DASHTSOODOL N, KOJO S. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:292-304. [PMID: 26194854 PMCID: PMC4631895 DOI: 10.2183/pjab.91.292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/20/2015] [Indexed: 06/08/2023]
Abstract
Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type.Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model.
Collapse
Affiliation(s)
- Masaru TANIGUCHI
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Michishige HARADA
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Nyambayar DASHTSOODOL
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi KOJO
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
238
|
Abstract
Whole genome amplification (WGA) is a widely used molecular technique that is becoming increasingly necessary in genetic research on a range of sample types including individual cells, fossilized remains and entire ecosystems. Multiple methods of WGA have been developed, each with specific strengths and weaknesses, but with a common defect in that each method distorts the initial template DNA during the course of amplification. The type, extent, and circumstance of the bias vary with the WGA method and particulars of the template DNA. In this review, we endeavor to discuss the types of bias introduced, the susceptibility of common WGA techniques to these bias types, and the interdependence between bias and characteristics of the template DNA. Finally, we attempt to illustrate some of the criteria specific to the analytical platform and research application that should be considered to enable combination of the appropriate WGA method, template DNA, sequencing platform, and intended use for optimal results.
Collapse
Affiliation(s)
| | - John H Leamon
- CyVek Inc., 2 Barnes Industrial Road South, Wallingford, CT, 06492, USA.
| |
Collapse
|
239
|
Kronenberg M, Lantz O. Mucosal-Resident T Lymphocytes with Invariant Antigen Receptors. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
240
|
Sakurai T, Inamine A, Iinuma T, Funakoshi U, Yonekura S, Sakurai D, Hanazawa T, Nakayama T, Ishii Y, Okamoto Y. Activation of invariant natural killer T cells in regional lymph nodes as new antigen-specific immunotherapy via induction of interleukin-21 and interferon-γ. Clin Exp Immunol 2014; 178:65-74. [PMID: 24943738 DOI: 10.1111/cei.12399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 01/12/2023] Open
Abstract
Invariant natural killer T (iNKT) cells play important immunoregulatory functions in allergen-induced airway hyperresponsiveness and inflammation. To clarify the role of iNKT cells in allergic rhinitis (AR), we generated bone marrow-derived dendritic cells (BMDCs), which were pulsed by ovalbumin (OVA) and α-galactosylceramide (OVA/α-GalCer-BMDCs) and administered into the oral submucosa of OVA-sensitized mice before nasal challenge. Nasal symptoms, level of OVA-specific immunoglobulin (IgE), and T helper type 2 (Th2) cytokine production in cervical lymph nodes (CLNs) were significantly ameliorated in wild-type (WT) mice treated with OVA/α-GalCer-BMDCs, but not in WT mice treated with OVA-BMDCs. These anti-allergic effects were not observed in Jα18(-/-) recipients that lack iNKT cells, even after similar treatment with OVA/α-GalCer-BMDCs in an adoptive transfer study with CD4(+) T cells and B cells from OVA-sensitized WT mice. In WT recipients of OVA/α-GalCer-BMDCs, the number of interleukin (IL)-21-producing iNKT cells increased significantly and the Th1/Th2 balance shifted towards the Th1 dominant state. Treatment with anti-IL-21 and anti-interferon (IFN)-γ antibodies abrogated these anti-allergic effects in mice treated with α-GalCer/OVA-BMDCs. These results suggest that activation of iNKT cells in regional lymph nodes induces anti-allergic effects through production of IL-21 or IFN-γ, and that these effects are enhanced by simultaneous stimulation with antigen. Thus, iNKT cells might be a useful target in development of new treatment strategies for AR.
Collapse
Affiliation(s)
- T Sakurai
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
van Schaik B, Klarenbeek P, Doorenspleet M, van Kampen A, Moody DB, de Vries N, Van Rhijn I. Discovery of invariant T cells by next-generation sequencing of the human TCR α-chain repertoire. THE JOURNAL OF IMMUNOLOGY 2014; 193:5338-44. [PMID: 25339678 DOI: 10.4049/jimmunol.1401380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During infection and autoimmune disease, activation and expansion of T cells take place. Consequently, the TCR repertoire contains information about ongoing and past diseases. Analysis and interpretation of the human TCR repertoire are hampered by its size and stochastic variation and by the diversity of Ags and Ag-presenting molecules encoded by the MHC, but are highly desirable and would greatly impact fundamental and clinical immunology. A subset of the TCR repertoire is formed by invariant T cells. Invariant T cells express interdonor-conserved TCRs and recognize a limited set of Ags, presented by nonpolymorphic Ag-presenting molecules. Discovery of the three known invariant T cell populations has been a tedious and slow process, identifying them one by one. Because conservation of the TCR α-chain of invariant T cells is much higher than the β-chain, and because the TCR α-chain V gene segment TRAV1-2 is used by two of the three known invariant TCRs, we employed next-generation sequencing of TCR α-chains that contain the TRAV1-2 gene segment to identify 16 invariant TCRs shared among many blood donors. Frequency analysis of individual clones indicates these T cells are expanded in many donors, implying an important role in human immunity. This approach extends the number of known interdonor-conserved TCRs and suggests that many more exist and that these TCR patterns can be used to systematically evaluate human Ag exposure.
Collapse
Affiliation(s)
- Barbera van Schaik
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Paul Klarenbeek
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands; Laboratory for Genome Analysis, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Marieke Doorenspleet
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands; Laboratory for Genome Analysis, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Antoine van Kampen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Niek de Vries
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands; Laboratory for Genome Analysis, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| |
Collapse
|
242
|
Pilones KA, Aryankalayil J, Babb JS, Demaria S. Invariant natural killer T cells regulate anti-tumor immunity by controlling the population of dendritic cells in tumor and draining lymph nodes. J Immunother Cancer 2014; 2:37. [PMID: 25349699 PMCID: PMC4206765 DOI: 10.1186/s40425-014-0037-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/11/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells are CD1d-restricted T cells, which respond rapidly to antigen recognition and promote development of anti-tumor immunity in many tumor models. Surprisingly, we previously found that mice deficient in iNKT cells developed spontaneous CD8(+) T cells responses partially effective at inhibiting metastases in mice bearing the 4T1 mammary carcinoma, and showed a markedly improved response to treatment with local radiotherapy and anti-CTLA-4 antibody compared to wild type (WT) mice. METHODS To understand the mechanisms of the immunosuppressive function of iNKT cells, dendritic cells (DCs) were analyzed by immunohistochemistry and flow cytometry in WT and iNKT-deficient (iNKT(-/-)) mice. The effects of antibody-mediated blockade of CD1d on DC number and phenotype, priming of anti-tumor T cells, and tumor response to treatment with local radiotherapy and anti-CTLA-4 antibody were evaluated. To determine if the improved response to treatment in the absence of iNKT cells was independent from the immunotherapy employed, 4T1-tumor bearing WT and iNKT(-/-) mice were treated with local radiotherapy in combination with antibody-mediated CD137 co-stimulation. RESULTS DCs in 4T1 tumors and tumor-draining lymph nodes but not distant lymph nodes were significantly reduced in WT mice compared to iNKT(-/-) mice (p < 0.05), suggesting the selective elimination of DCs cross-presenting tumor-associated antigens by iNKT cells. Consistently, priming of T cells to a tumor-specific CD8 T cell epitope in mice treated with radiotherapy and anti-CTLA-4 or anti-CD137 was markedly enhanced in iNKT(-/-) compared to WT mice. CD1d blockade restored the number of DC in WT mice, improved T cell priming in draining lymph nodes and significantly enhanced response to treatment. CONCLUSIONS Here we describe a novel mechanism of tumor immune escape mediated by iNKT cells that limit priming of anti-tumor T cells by controlling DC in tumors and draining lymph nodes. These results have important implications for the design of immunotherapies targeting iNKT cells.
Collapse
Affiliation(s)
- Karsten A Pilones
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
| | - Joseph Aryankalayil
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
| | - James S Babb
- Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
| | - Sandra Demaria
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA ; Department of Radiation Oncology, New York University School of Medicine, New York, NY 10016 USA ; New York University School of Medicine, Alexandria Center for Life Sciences, 450 East 29th St, Room 324B, New York, NY 10016 USA
| |
Collapse
|
243
|
Anderson RJ, Tang CW, Daniels NJ, Compton BJ, Hayman CM, Johnston KA, Knight DA, Gasser O, Poyntz HC, Ferguson PM, Larsen DS, Ronchese F, Painter GF, Hermans IF. A self-adjuvanting vaccine induces cytotoxic T lymphocytes that suppress allergy. Nat Chem Biol 2014; 10:943-9. [DOI: 10.1038/nchembio.1640] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023]
|
244
|
Ridgway WM, Gershwin ME. Prometheus unbound: NKT cells inhibit hepatic regeneration. Hepatology 2014; 60:1133-5. [PMID: 24824434 PMCID: PMC4174721 DOI: 10.1002/hep.27214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/07/2014] [Indexed: 12/29/2022]
Abstract
Although natural killer T (NKT) cells were discovered over 20 years ago, our understanding of their immunobiology continues to evolve and surprise. NKT cells are T lymphocytes: they arise in the bone marrow, are selected in the thymus, and express a T cell receptor. Unlike classic T cells, however, they are not strictly “adaptive” immune cells: in particular, as a population they express a very narrow range of T cell receptors. The vast majority of mouse NKT cells, for example, express the Vα14-J281 chain and only a finite number of Vβ chains (1). In addition, they express NK cell surface markers, such as NK 1.1. Moreover, unlike classical T cells, they are not restricted by MHC Class I or Class II, but by an MHC-like molecule, CD1d (2). Furthermore, NKT cells do not recognize peptides in the context of CD1d, but rather specialized lipids (3). Functionally NKT cells also reflect major differences from conventional T cells: they are able to produce both classic Th1 (IFN-γ) and Th2 (IL-4) cytokines without prior peripheral stimulation, but when stimulated by their glycolipid antigens downregulate TCR, expand, and divert to a Th1 phenotype (4). Like classical T cells, they are selected in the thymus by a self-molecule: however, it is not a protein, but a trihexosylceramide, iGb3, bound to CD1d (5). Mice deficient in iGb3 demonstrated a severe deficiency of NKT cells, illustrating its critical role in NKT cells selection and survival (5). These features of NKT cells place them into the expanding category of “innate-like” lymphocytes (6). “Innate” immunity has classically been defined by “stereotypical” responses mediated by invariant receptors to defined ligands: for example, the signaling and functional responses of TLR4 when bound to its ligand, LPS. Since the overall TCR repertoire of NKT cells is so limited, the population as a whole responds “innately” to just a few lipid antigens, rather than retaining a population-capability to respond to the full universe of T cell antigens. Finally, and of great interest to the field of hepatic immunity, NKT cells do not circulate freely, but tend to home to and reside for life in specific tissues such as the liver, where they compose ~30% of the intrahepatic lymphoid pool (7).
Collapse
Affiliation(s)
- William M. Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616
| |
Collapse
|
245
|
Lynch L. Adipose invariant natural killer T cells. Immunology 2014; 142:337-46. [PMID: 24673647 DOI: 10.1111/imm.12269] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 01/11/2023] Open
Abstract
Adipose tissue is a dynamic organ that makes up a substantial proportion of the body; in severe obesity it can account for 50% of body mass. Details of the unique immune system resident in human and murine adipose tissue are only recently emerging, and so it has remained a largely unexplored and unappreciated immune site until now. Adipose tissue harbours a unique collection of immune cells, which often display unusual functions compared with their counterparts elsewhere in the body. These resident immune cells are key to maintaining tissue and immune homeostasis, yet in obesity their chronic aberrant stimulation can contribute to the inflammation and pathogenesis associated with obesity. Anti-inflammatory adipose-resident lymphocytes are often depleted in obesity, whereas pro-inflammatory immune cells accumulate, leading to an overall inflammatory state, which is a key step in the development of obesity-induced metabolic disease. A good example is invariant natural killer T (iNKT) cells, which make up a large proportion of lymphocytes in human and murine adipose tissue. Here, they are unusually poised to produce anti-inflammatory or regulatory cytokines, however in obesity, iNKT cells are greatly reduced. As iNKT cells are potent transactivaors of other immune cells, and can act as a bridge between innate and adaptive immunity, their loss in obesity represents the loss of a major regulatory population. Restoring iNKT cells, or activating them in obese mice leads to improved glucose handling, insulin sensitivity, and even weight loss, and hence represents an exciting therapeutic avenue to be explored for restoring homeostasis in obese adipose tissue.
Collapse
Affiliation(s)
- Lydia Lynch
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
246
|
Cho YN, Kee SJ, Kim TJ, Jin HM, Kim MJ, Jung HJ, Park KJ, Lee SJ, Lee SS, Kwon YS, Kee HJ, Kim N, Park YW. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2014; 193:3891-901. [PMID: 25225673 DOI: 10.4049/jimmunol.1302701] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells contribute to protection against certain microorganism infections and play an important role in mucosal immunity. However, the role of MAIT cells remains enigmatic in autoimmune diseases. In this study, we examined the level and function of MAIT cells in patients with rheumatic diseases. MAIT cell, cytokine, and programmed death-1 (PD-1) levels were measured by flow cytometry. Circulating MAIT cell levels were significantly reduced in systemic lupus erythematosus (SLE) and rheumatoid arthritis patients. In particular, this MAIT cell deficiency was more prominent in CD8(+) and double-negative T cell subsets, and significantly correlated with disease activity, such as SLE disease activity index and 28-joint disease activity score. Interestingly, MAIT cell frequency was significantly correlated with NKT cell frequency in SLE patients. IFN-γ production in MAIT cells was impaired in SLE patients, which was due to an intrinsic defect in the Ca(2+)/calcineurin/NFAT1 signaling pathway. In SLE patients, MAIT cells were poorly activated by α-galactosylceramide-stimulated NKT cells, thereby showing the dysfunction between MAIT cells and NKT cells. Notably, an elevated expression of PD-1 in MAIT cells and NKT cells was associated with SLE. In rheumatoid arthritis patients, MAIT cell levels were significantly higher in synovial fluid than in peripheral blood. Our study primarily demonstrates that MAIT cells are numerically and functionally deficient in SLE. In addition, we report a novel finding that this MAIT cell deficiency is associated with NKT cell deficiency and elevated PD-1 expression. These abnormalities possibly contribute to dysregulated mucosal immunity in SLE.
Collapse
Affiliation(s)
- Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Hye Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Moon-Ju Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Hyun-Ju Jung
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Sung-Ji Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Shin-Seok Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Yong-Soo Kwon
- Department of Pulmonary and Critical Care Medicine, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea; and
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea;
| |
Collapse
|
247
|
Shih HY, Sciumè G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, Bonelli M, Bosselut R, Kanno Y, Muljo SA, O'Shea JJ. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol Rev 2014; 261:23-49. [PMID: 25123275 PMCID: PMC4321863 DOI: 10.1111/imr.12208] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the specification of CD4(+) helper T cells to discrete effector 'lineages' represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T-cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words for reindeer, immunologists recognize the range of fates available for a CD4(+) T cell is numerous and may be underestimated. Added to the crowded scene for helper T-cell subsets is the continuously growing family of innate lymphoid cells (ILCs), endowed with common effector responses and the previously defined 'master regulators' for CD4(+) helper T-cell subsets are also shared by ILC subsets. Within the context of this extraordinary complexity are concomitant advances in the understanding of transcriptomes and epigenomes. So what do terms like 'lineage commitment' and helper T-cell 'specification' mean in the early 21st century? How do we put all of this together in a coherent conceptual framework? It would be arrogant to assume that we have a sophisticated enough understanding to seriously answer these questions. Instead, we review the current status of the flexibility of helper T-cell responses in relation to their genetic regulatory networks and epigenetic landscapes. Recent data have provided major surprises as to what master regulators can or cannot do, how they interact with other transcription factors and impact global genome-wide changes, and how all these factors come together to influence helper cell function.
Collapse
Affiliation(s)
- Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Subrahmanyam PB, Carey GB, Webb TJ. Bcl-xL regulates CD1d-mediated antigen presentation to NKT cells by altering CD1d trafficking through the endocytic pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2096-105. [PMID: 25070854 PMCID: PMC4169674 DOI: 10.4049/jimmunol.1400155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d.
Collapse
Affiliation(s)
- Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201
| | - Gregory B Carey
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201
| |
Collapse
|
249
|
Harnessing the antibacterial and immunological properties of mucosal-associated invariant T cells in the development of novel oral vaccines against enteric infections. Biochem Pharmacol 2014; 92:173-83. [PMID: 25173989 DOI: 10.1016/j.bcp.2014.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/02/2023]
Abstract
Enteric infections are a major cause of mortality and morbidity with significant social and economic implications worldwide and particularly in developing countries. An attractive approach to minimizing the impact of these diseases is via the development of oral vaccination strategies. However, oral vaccination is challenging due to the tolerogenic and hyporesponsive nature of antigen presenting cells resident in the gastrointestinal tract. The inclusion of adjuvants in oral vaccine formulations has the potential to overcome this challenge. To date no oral adjuvants have been licenced for human use and thus oral adjuvant discovery remains a key goal in improving the potential for oral vaccine development. Mucosal-associated invariant T (MAIT) cells are a recently discovered population of unconventional T cells characterized by an evolutionarily conserved αβ T cell receptor (TCR) that recognizes antigens presented by major histocompatibility complex (MHC) class I-related (MR1) molecule. MAIT cells are selected intra-thymically by MR1 expressing double positive thymocytes and enter the circulation with a naïve phenotype. In the circulation they develop a memory phenotype and are programmed to home to mucosal tissues and the liver. Once resident in these tissues, MAIT cells respond to bacterial and yeast infections through the production of chemokines and cytokines that aid in the induction of an adaptive immune response. Their abundance in the gastrointestinal tract and ability to promote adaptive immunity suggests that MAIT cell activators may represent attractive novel adjuvants for use in oral vaccination.
Collapse
|
250
|
CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells. Proc Natl Acad Sci U S A 2014; 111:12841-6. [PMID: 25143585 DOI: 10.1073/pnas.1323405111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells to date represent the best example of cells known to have a hybrid function, representing both innate and adaptive immunity. Shared phenotypic similarities with NK cells together with a rapid response to a cytokine stimulus and a productive TCR engagement are the features that underline the hybrid nature of iNKT cells. Using these criteria, we provide molecular and functional evidence demonstrating that CD1d-independent (CD1d(ind)) NKT cells, a population of CD1d-unrestricted NKT cells, are endowed with a hybrid function far superior to that of iNKT cells: (i) an extensive shared program with NK cells, (ii) a closer Euclidian distance with NK cells, and (iii) the ability to respond to innate stimuli (Poly:IC) with cytotoxic potential in the same manner as NK cells identify a hybrid feature in CD1d(ind)NKT cells that truly fulfills the dual function of an NK and a T cell. Our finding that CD1d(ind)NKT cells are programmed to act like NK cells in response to innate signals while being capable of adaptive responses is unprecedented, and thus might reemphasize CD1d-unrestricted NKT cells as a subset of lymphocytes that could affect biological processes of antimicrobial and tumor immunity in a unique way.
Collapse
|