201
|
Castillo-Chora VDJ, Sánchez-González LA, Mastretta-Yanes A, Prieto-Torres DA, Navarro-Sigüenza AG. Insights into the importance of areas of climatic stability in the evolution and maintenance of avian diversity in the Mesoamerican dry forests. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
We analysed the phylogeographic structure of five resident bird lineages distributed in the seasonally dry tropical forests (SDTF) of Mesoamerica to test whether they show patterns of synchronous and geographically coincident genetic divergence during the Quaternary. We generated phylogenetic trees, estimated divergence times and analysed the genetic structure of populations (based on sequences of mitochondrial genes), as well as estimating historical distributions (range extension and areas of long-term climate stability) during the Late Pleistocene. We tested and selected the phylogeographic divergence scenarios that best explain the current divergence patterns of taxa using the Approximate Bayesian Computation (ABC) approach. For most species, phylogenetic trees and haplotype networks showed a clear genetic structure associated with geographical distribution. Overall, the divergence times ranged from 0.29–2.0 Mya, suggesting that diversification of populations occurred at different times during the Pleistocene. The palaeodistribution models predicted at least two areas of climatic stability within the current SDTF that probably allowed glacial-interglacial persistence of isolated bird populations along the Mexican Pacific, thus promoting their genetic divergence. The results provide information relevant to the identification of diversification hotspots for the Mesoamerican SDTF avifauna.
Collapse
Affiliation(s)
- Vicente De J Castillo-Chora
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P., Mexico City, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México
| | - Luis A Sánchez-González
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P., Mexico City, México
| | - Alicia Mastretta-Yanes
- CONACYT—CONABIO, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Liga Periférico-Insurgentes Sur No. 4903, Parques del Pedregal, Tlalpan, Mexico City, México
| | - David A Prieto-Torres
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P., Mexico City, México
| | - Adolfo G Navarro-Sigüenza
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P., Mexico City, México
| |
Collapse
|
202
|
Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
203
|
Levicoy D, Flores K, Rosenfeld S, Cárdenas L. Phylogeography and genetic diversity of the microbivalve Kidderia subquadrata, reveals new data from West Antarctic Peninsula. Sci Rep 2021; 11:5705. [PMID: 33707560 PMCID: PMC7952419 DOI: 10.1038/s41598-021-85042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
It is well established that Antarctic biodiversity has been strongly influenced by rapid climatic fluctuations during the Quaternary. Marine invertebrates from Antarctica constitute an interesting lens through which to study the impacts of the last glacial periods as glaciation impacted the distribution and intraspecific genetic variation of these animals. However, the impact on the spatial genetic distribution and historical demography of local processes in areas adjacent to the West Antarctic Peninsula (WAP) is less clear. Here we present new genetic information on the bivalve Kidderia subquadrata, a small mollusk that inhabits intertidal rocky island ecosystems throughout the WAP. Using a phylogeographical approach, we examined the spatial patterns of genetic diversity in this brooder species to test the hypothesis of strong genetic structure in incubating organisms and the hypothesis of glacial refugia in organisms with limited dispersion. We found evidence of strong genetic structure among populations of the WAP and a recent expansion in the South Shetland Islands. Our findings are concordant with the predictions that incubating organisms, abundant in Antarctica, present a strong genetic structure among their populations and also support the hypothesis of glacial refugia in organisms with limited dispersion. The effect of the coastal current pattern in the WAP is suggested as a driver to the local spatial dynamics of the genetic diversity distribution. Although genetic information about this microbivalve is still scarce, the knowledge reported here has increased our understanding of the evolutionary patterns of this organism that is endemic to the Southern Ocean.
Collapse
Affiliation(s)
- Daniela Levicoy
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Kamilla Flores
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Sebastián Rosenfeld
- Laboratorio de Ecosistemas Marinos Antárticos Y Subantárticos, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile.,Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Las Palmeras # 3425, Ñuñoa, Santiago, Chile
| | - Leyla Cárdenas
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile.
| |
Collapse
|
204
|
Triest L, Van der Stocken T, De Ryck D, Kochzius M, Lorent S, Ngeve M, Ratsimbazafy HA, Sierens T, van der Ven R, Koedam N. Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns. Sci Rep 2021; 11:4987. [PMID: 33654151 PMCID: PMC7925526 DOI: 10.1038/s41598-021-84304-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Estimates of population structure and gene flow allow exploring the historical and contemporary processes that determine a species’ biogeographic pattern. In mangroves, large-scale genetic studies to estimate gene flow have been conducted predominantly in the Indo-Pacific and Atlantic region. Here we examine the genetic diversity and connectivity of Rhizophora mucronata across a > 3,000 km coastal stretch in the Western Indian Ocean (WIO) including WIO islands. Based on 359 trees from 13 populations and using 17 polymorphic microsatellite loci we detected genetic breaks between populations of the (1) East African coastline, (2) Mozambique Channel Area (3) granitic Seychelles, and (4) Aldabra and northern Madagascar. Genetic structure, diversity levels, and patterns of inferred connectivity, aligned with the directionality of major ocean currents, driven by bifurcation of the South Equatorial Current, northward into the East African Coastal Current and southward into the Mozambique Channel Area. A secondary genetic break between nearby populations in the Delagoa Bight coincided with high inbreeding levels and fixed loci. Results illustrate how oceanographic processes can connect and separate mangrove populations regardless of geographic distance.
Collapse
Affiliation(s)
- Ludwig Triest
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium.
| | - Tom Van der Stocken
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Dennis De Ryck
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Marc Kochzius
- Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Sophie Lorent
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Magdalene Ngeve
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium.,Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Hajaniaina Andrianavalonarivo Ratsimbazafy
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium.,Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium.,Laboratory of Systems Ecology and Resource Management, Département de Biologie Des Organismes, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium
| | - Tim Sierens
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Rosa van der Ven
- Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium.,Marine Animal Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Nico Koedam
- Ecology and Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| |
Collapse
|
205
|
Stiller J, da Fonseca RR, Alfaro ME, Faircloth BC, Wilson NG, Rouse GW. Using ultraconserved elements to track the influence of sea-level change on leafy seadragon populations. Mol Ecol 2021; 30:1364-1380. [PMID: 33217068 DOI: 10.1111/mec.15744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
During the Last Glacial Maximum (LGM), global sea levels were 120-130 m lower than today, resulting in the emergence of most continental shelves and extirpation of subtidal organisms from these areas. During the interglacial periods, rapid inundation of shelf regions created a dynamic environment for coastal organisms, such as the charismatic leafy seadragon (Phycodurus eques, Syngnathidae), a brooder with low dispersal ability inhabiting kelp beds in temperate Australia. Reconstructions of the palaeoshoreline revealed that the increase of shallow areas since the LGM was not uniform across the species' range and we investigated the effects of these asymmetries on genetic diversity and structuring. Using targeted capture of 857 variable ultraconserved elements (UCEs, 2,845 single nucleotide polymorphisms) in 68 individuals, we found that the regionally different shelf topographies were paralleled by contrasting population genetic patterns. In the west, populations may not have persisted through sea-level lows because shallow seabed was very limited. Shallow genetic structure, weak expansion signals and a westward cline in genetic diversity indicate a postglacial recolonization of the western part of the range from a more eastern location following sea-level rise. In the east, shallow seabed persisted during the LGM and increased considerably after the flooding of large bays, which resulted in strong demographic expansions, deeper genetic structure and higher genetic diversity. This study suggests that postglacial flooding with rising sea levels produced locally variable signatures in colonizing populations.
Collapse
Affiliation(s)
- Josefin Stiller
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
- Centre for Biodiversity Genomics, Section for Ecology and Evolution, University of Copenhagen, Kobenhavn, Denmark
| | | | | | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Nerida G Wilson
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
- Collections & Research, Western Australian Museum, Welshpool and School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
206
|
Razgour O, Kasso M, Santos H, Juste J. Up in the air: Threats to Afromontane biodiversity from climate change and habitat loss revealed by genetic monitoring of the Ethiopian Highlands bat. Evol Appl 2021; 14:794-806. [PMID: 33767753 PMCID: PMC7980307 DOI: 10.1111/eva.13161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
While climate change is recognized as a major future threat to biodiversity, most species are currently threatened by extensive human-induced habitat loss, fragmentation and degradation. Tropical high-altitude alpine and montane forest ecosystems and their biodiversity are particularly sensitive to temperature increases under climate change, but they are also subject to accelerated pressures from land conversion and degradation due to a growing human population. We studied the combined effects of anthropogenic land-use change, past and future climate changes and mountain range isolation on the endemic Ethiopian Highlands long-eared bat, Plecotus balensis, an understudied bat that is restricted to the remnant natural high-altitude Afroalpine and Afromontane habitats. We integrated ecological niche modelling, landscape genetics and model-based inference to assess the genetic, geographic and demographic impacts of past and recent environmental changes. We show that mountain range isolation and historic climates shaped population structure and patterns of genetic variation, but recent anthropogenic land-use change and habitat degradation are associated with a severe population decline and loss of genetic diversity. Models predict that the suitable niche of this bat has been progressively shrinking since the last glaciation period. This study highlights threats to Afroalpine and Afromontane biodiversity, squeezed to higher altitudes under climate change while losing genetic diversity and suffering population declines due to anthropogenic land-use change. We conclude that the conservation of tropical montane biodiversity requires a holistic approach, using genetic, ecological and geographic information to understand the effects of environmental changes across temporal scales and simultaneously addressing the impacts of multiple threats.
Collapse
Affiliation(s)
- Orly Razgour
- BiosciencesUniversity of ExeterExeterUK
- School of Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | | | - Helena Santos
- Research Network in Biodiversity and Evolutionary BiologyResearch Centre in Biodiversity and Genetic Resources (InBIO‐CIBIO)VairãoPortugal
- Faculty of SciencesUniversity of PortoPortoPortugal
| | - Javier Juste
- Estación Biológica de Doñana (CSIC)SevillaSpain
- CIBER de Epidemiología y Salud Pública. CIBERESPMadridSpain
| |
Collapse
|
207
|
Barr K, Beichman AC, Kalhori P, Rajbhandary J, Bay RA, Ruegg K, Smith TB. Persistent panmixia despite extreme habitat loss and population decline in the threatened tricolored blackbird ( Agelaius tricolor). Evol Appl 2021; 14:674-684. [PMID: 33767743 PMCID: PMC7980274 DOI: 10.1111/eva.13147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 01/25/2023] Open
Abstract
Habitat loss and alteration has driven many species into decline, often to the point of requiring protection and intervention to avert extinction. Genomic data provide the opportunity to inform conservation and recovery efforts with details about vital evolutionary processes with a resolution far beyond that of traditional genetic approaches. The tricolored blackbird (Agelaius tricolor) has suffered severe losses during the previous century largely due to anthropogenic impacts on their habitat. Using a dataset composed of a whole genome paired with reduced representation libraries (RAD-Seq) from samples collected across the species' range, we find evidence for panmixia using multiple methods, including PCA (no geographic clustering), admixture analyses (ADMIXTURE and TESS conclude K = 1), and comparisons of genetic differentiation (average FST = 0.029). Demographic modeling approaches recovered an ancient decline that had a strong impact on genetic diversity but did not detect any effect from the known recent decline. We also did not detect any evidence for selection, and hence adaptive variation, at any site, either geographic or genomic. These results indicate that species continues to have high vagility across its range despite population decline and habitat loss and should be managed as a single unit.
Collapse
Affiliation(s)
- Kelly Barr
- Center for Tropical ResearchInstitute of the Environment and SustainabilityUniversity of California, Los AngelesLos AngelesCAUSA
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Annabel C. Beichman
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Pooneh Kalhori
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Jasmine Rajbhandary
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Rachael A. Bay
- Department of Evolution and EcologyUniversity of California, DavisDavisCAUSA
| | - Kristen Ruegg
- Department of BiologyColorado State UniversityFort CollinsCOUSA
| | - Thomas B. Smith
- Center for Tropical ResearchInstitute of the Environment and SustainabilityUniversity of California, Los AngelesLos AngelesCAUSA
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
208
|
Ye JW, Li DZ. Distinct late Pleistocene subtropical-tropical divergence revealed by fifteen low-copy nuclear genes in a dominant species in South-East China. Sci Rep 2021; 11:4147. [PMID: 33603069 PMCID: PMC7892551 DOI: 10.1038/s41598-021-83473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
In East Asia, genetic divergence is usually considered to be correlated to different floristic regions, however, subtropical-tropical divergence is largely ignored, compared to widely explored temperate-subtropical divergence. Lindera aggregata (Lauraceae), a dominant species in South-East China was selected to address this issue. Fifteen low-copy nuclear genes (LCGs) and four chloroplast DNA (cpDNA) fragments were used to detect its evolutionary history. In LCGs, STRUCTURE and dated Bayesian phylogeny analyses detect distinct subtropical-tropical divergence since late Pleistocene. Approximate Bayesian calculation (ABC) further supports the distinct subtropical-tropical divergence, and close related Taiwan and South China populations are diverged at the last interglacial. Isolation by distance, isolation by environment and isolation by resistance analyses suggest the current climatic difference rather than geographical distance contributes to the genetic differentiation. Principle component analysis shows populations of tropical cluster occur in warmer area with higher precipitation. Ancestral area reconstruction based on Bayesian phylogeny indicates that ancestral L. aggregata populations are distributed in tropical region. In cpDNA, although unique haplotypes are found in tropical region, distinct subtropical-tropical divergence is absent. In conclusion, distinct late Pleistocene subtropical-tropical divergence of L. aggregata is triggered by climate. It is likely that L. aggregata is originated in Southwest-South China and experienced hierarchical dispersal from south to north. The South China Sea land bridge has dual role in connecting or isolating Taiwan and mainland populations since the last glaciation.
Collapse
Affiliation(s)
- Jun-Wei Ye
- grid.458460.b0000 0004 1764 155XGermplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.464444.20000 0000 8877 107XNatural History Research Centre of Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai, 200041 China
| | - De-Zhu Li
- grid.458460.b0000 0004 1764 155XGermplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
209
|
Nguyen TM, Vu DD, Dang HP, Bui XTT, Nguyen HPL, Nguyen DM. Population genetic structure and demographic history of the dipterocarp species Anisoptera costata Korth revealed by microsatellite analysis. PLANTA 2021; 253:66. [PMID: 33582857 DOI: 10.1007/s00425-021-03584-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Moderate levels of genetic diversity and differentiation of Anisoptera costata were determined. A population divergence occurred during Younger Dryas. The anthropogenic disturbance had significantly affected the genetic diversity of the species in low tropical forests. Anisoptera costata Korth, an endangered species, is mainly distributed in the lowland tropical forests of the Southeast region in Vietnam, which has not been explored for genetic diversity and demographic history. In this study, eight polymorphic microsatellite markers were used to analyze 232 wild trees of A. costata at nine different populations, representing the natural distribution range of the species in Vietnam. Genetic diversity within the populations was determined with mean values of 0.284 and 0.327 observed and expected heterozygosity, respectively, while genetic differentiation among populations was found with Weir and Cockerham index of 0.12 and Hedrick index of 1.38. These results indicated that habitat fragmentation by the anthropogenic disturbance may be the major factor for the low heterozygosity values and affected the number of alleles in all the targeted populations of A. costata in lowland tropical forests. Populations in the Central Southeast area had a higher level of genetic diversity than the populations in the Coastal and Western Southeast areas. The analysis of molecular variance showed that high genetic variation existed within populations (86.15%) compared to the variation among populations. A reduction in the population size of A. costata was determined by BOTTLENECK. Different clustering methods (Bayesian analysis, the neighbor-joining tree, and principal coordinate analysis) suggested optimal genetic clusters related to gene flow among different areas. Approximate Bayesian computation suggested that population divergence occurred during Younger Dryas. We also discussed the measures for species conservation based on these results.
Collapse
Affiliation(s)
- Tam Minh Nguyen
- Department of Experimental Taxonomy and Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam.
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam.
| | - Duy Dinh Vu
- Vietnam-Russia Tropical Centre, Nguyen Van Huyen, Cau Giay, Hanoi, 100000, Vietnam
| | - Hien Phan Dang
- Department of Experimental Taxonomy and Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Xuan Thi Tuyet Bui
- Department of Plant Ecology, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Hong Phan Lan Nguyen
- Faculty of Biotechnology, Hanoi Open University, Nguyen Trai, Thanh Xuan, Hanoi, 100000, Vietnam
| | - Duc Minh Nguyen
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| |
Collapse
|
210
|
Bridgehead effect and multiple introductions shape the global invasion history of a termite. Commun Biol 2021; 4:196. [PMID: 33580197 PMCID: PMC7881189 DOI: 10.1038/s42003-021-01725-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Native to eastern Asia, the Formosan subterranean termite Coptotermes formosanus (Shiraki) is recognized as one of the 100 worst invasive pests in the world, with established populations in Japan, Hawaii and the southeastern United States. Despite its importance, the native source(s) of C. formosanus introductions and their invasive pathway out of Asia remain elusive. Using ~22,000 SNPs, we retraced the invasion history of this species through approximate Bayesian computation and assessed the consequences of the invasion on its genetic patterns and demography. We show a complex invasion history, where an initial introduction to Hawaii resulted from two distinct introduction events from eastern Asia and the Hong Kong region. The admixed Hawaiian population subsequently served as the source, through a bridgehead, for one introduction to the southeastern US. A separate introduction event from southcentral China subsequently occurred in Florida showing admixture with the first introduction. Overall, these findings further reinforce the pivotal role of bridgeheads in shaping species distributions in the Anthropocene and illustrate that the global distribution of C. formosanus has been shaped by multiple introductions out of China, which may have prevented and possibly reversed the loss of genetic diversity within its invasive range.
Collapse
|
211
|
Chen XD, Yang J, Guo YF, Zhao YM, Zhou T, Zhang X, Ju MM, Li ZH, Zhao GF. Spatial Genetic Structure and Demographic History of the Dominant Forest Oak Quercus fabri Hance in Subtropical China. FRONTIERS IN PLANT SCIENCE 2021; 11:583284. [PMID: 33613578 PMCID: PMC7889815 DOI: 10.3389/fpls.2020.583284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Oak trees (Quercus L.) are important models for estimating abiotic impacts on the population structure and demography of long life span tree species. In this study, we generated genetic data for 17 nuclear microsatellite loci in 29 natural populations of Quercus fabri to estimate the population genetic structure. We also integrated approximate Bayesian computation (ABC) and ecological niche analysis to infer the population differentiation processes and demographic history of this oak species. The genetic analyses indicated two genetic clusters across the 29 populations collected, where most approximately corresponded to the intraspecific differentiation among populations from western and eastern China, whereas admixed populations were mainly found in central mountains of China. The best model obtained from hierarchical ABC simulations suggested that the initial intraspecific divergence of Q. fabri potentially occurred during the late Pliocene (ca. 3.99 Ma) to form the two genetic clusters, and the admixed population group might have been generated by genetic admixture of the two differentiated groups at ca. 53.76 ka. Ecological analyses demonstrated clear differentiation among the Q. fabri population structures, and association estimations also indicated significant correlations between geography and climate with the genetic variation in this oak species. Our results suggest abiotic influences, including past climatic changes and ecological factors, might have affected the genetic differentiation and demographic history of Q. fabri in subtropical China.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Yu-Fan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Yue-Mei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Miao-Miao Ju
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
212
|
Worldwide Genetic Structure Elucidates the Eurasian Origin and Invasion Pathways of Dothistroma septosporum, Causal Agent of Dothistroma Needle Blight. J Fungi (Basel) 2021; 7:jof7020111. [PMID: 33546260 PMCID: PMC7913368 DOI: 10.3390/jof7020111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Dothistroma septosporum, the primary causal agent of Dothistroma needle blight, is one of the most significant foliar pathogens of pine worldwide. Its wide host and environmental ranges have led to its global success as a pathogen and severe economic damage to pine forests in many regions. This comprehensive global population study elucidated the historical migration pathways of the pathogen to reveal the Eurasian origin of the fungus. When over 3800 isolates were examined, three major population clusters were revealed: North America, Western Europe, and Eastern Europe, with distinct subclusters in the highly diverse Eastern European cluster. Modeling of historical scenarios using approximate Bayesian computation revealed the North American cluster was derived from an ancestral population in Eurasia. The Northeastern European subcluster was shown to be ancestral to all other European clusters and subclusters. The Turkish subcluster diverged first, followed by the Central European subcluster, then the Western European cluster, which has subsequently spread to much of the Southern Hemisphere. All clusters and subclusters contained both mating-types of the fungus, indicating the potential for sexual reproduction, although asexual reproduction remained the primary mode of reproduction. The study strongly suggests the native range of D. septosporum to be in Eastern Europe (i.e., the Baltic and Western Russia) and Western Asia.
Collapse
|
213
|
Avila-Cervantes J, Arias C, Venegas-Anaya M, Vargas M, Larsson HCE, McMillan WO. Effect of the Central American Isthmus on gene flow and divergence of the American crocodile (Crocodylus acutus). Evolution 2021; 75:245-259. [PMID: 33314048 DOI: 10.1111/evo.14139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The final formation of the Central American Isthmus (CAI) about 3.5 million years ago altered global ocean circulation, connected North and South America terrestrial biotas, and established the Caribbean Sea. The nature of this event creates a natural scenario to test vicariance, divergence, and speciation by allopatry. Studies have shown the effect of the CAI on marine and terrestrial species, but none have examined a large-bodied amphibious taxon. We used RAD sequencing on populations of the American crocodile (Crocodylus acutus) to study the genomic variation of C. acutus on both sides of the CAI, infer its demographic history, and measure the effect of the opening of the Panama Canal. Our results showed three genomic clusters: (1) Caribbean and the Panama Canal, (2) Pacific coast, and (3) Coiba island. The estimated divergence times between the Caribbean and Pacific populations are about 20,000 years ago, which is younger than the formation of the CAI, coinciding with the Last Glacial Maximum. We hypothesize the glacial/interglacial cycles facilitated gene flow between the Caribbean and Pacific crocodile populations after the formation of the CAI, masking any genomic divergence the CAI may have caused. There is no evidence of gene flow associated with the opening of the Panama Canal.
Collapse
Affiliation(s)
- Jose Avila-Cervantes
- McGill University, Redpath Museum 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
| | - Carlos Arias
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Bldg. 401, Panama, Rep. of Panama
| | - Miryam Venegas-Anaya
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Bldg. 401, Panama, Rep. of Panama
| | - Marta Vargas
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Bldg. 401, Panama, Rep. of Panama
| | - Hans C E Larsson
- McGill University, Redpath Museum 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Bldg. 401, Panama, Rep. of Panama
| |
Collapse
|
214
|
Nsibo DL, Barnes I, Omondi DO, Dida MM, Berger DK. Population genetic structure and migration patterns of the maize pathogenic fungus, Cercospora zeina in East and Southern Africa. Fungal Genet Biol 2021; 149:103527. [PMID: 33524555 DOI: 10.1016/j.fgb.2021.103527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022]
Abstract
Cercospora zeina is a causal pathogen of gray leaf spot (GLS) disease of maize in Africa. This fungal pathogen exhibits a high genetic diversity in South Africa. However, little is known about the pathogen's population structure in the rest of Africa. In this study, we aimed to assess the diversity and gene flow of the pathogen between major maize producing countries in East and Southern Africa (Kenya, Uganda, Zambia, Zimbabwe, and South Africa). A total of 964 single-spore isolates were made from GLS lesions and confirmed as C.zeina using PCR diagnostics. The other causal agent of GLS, Cercospora zeae-maydis, was absent. Genotyping all the C.zeina isolates with 11 microsatellite markers and a mating-type gene diagnostic revealed (i) high genetic diversity with some population structure between the five African countries, (ii) cryptic sexual recombination, (iii) that South Africa and Kenya were the greatest donors of migrants, and (iv) that Zambia had a distinct population. We noted evidence of human-mediated long-distance dispersal, since four haplotypes from one South African site were also present at five sites in Kenya and Uganda. There was no evidence for a single-entry point of the pathogen into Africa. South Africa was the most probable origin of the populations in Kenya, Uganda, and Zimbabwe. Continuous annual maize production in the tropics (Kenya and Uganda) did not result in greater genetic diversity than a single maize season (Southern Africa). Our results will underpin future management of GLS in Africa through effective monitoring of virulent C.zeina strains.
Collapse
Affiliation(s)
- David L Nsibo
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, FABI, University of Pretoria, South Africa
| | | | | | - Dave K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa.
| |
Collapse
|
215
|
Carlier J, Robert S, Roussel V, Chilin-Charles Y, Lubin-Adjanoh N, Gilabert A, Abadie C. Central American and Caribbean population history of the Pseudocercospora fijiensis fungus responsible for the latest worldwide pandemics on banana. Fungal Genet Biol 2021; 148:103528. [PMID: 33515682 DOI: 10.1016/j.fgb.2021.103528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Among the emerging fungal diseases threatening food security, the Pseudocercospora fijiensis fungus causing black leaf streak disease of banana is one of the most marked examples of a recent worldwide pandemic on a major crop. We assessed how this pathogen spread throughout the latest invaded region, i.e. Central America and the Caribbean. We retraced its population history combining detailed monitoring information on disease outbreaks and population genetic analyses based on large-scale sampling of P. fijiensis isolates from 121 locations throughout the region. The results first suggested that sexual reproduction was not lost during the P. fijiensis expansion, even in the insular Caribbean context, and a high level of genotypic diversity was maintained in all the populations studied. The population genetic structure of P. fijiensis and historical data showed that two disease waves swept northward and southward in all banana-producing countries in the study area from an initial entry point in Honduras, probably mainly through gradual stepwise spore dispersal. Serial founder events accompanying the northern and southern waves led to the establishment of two different genetic groups. A different population structure was detected on the latest invaded islands (Martinique, Dominica and Guadeloupe), revealing multiple introductions and admixture events that may have been partly due to human activities. The results of this study highlight the need to step up surveillance to limit the spread of other known emerging diseases of banana spread mainly by humans, but also to curb gene flow between established pathogen populations which could increase their evolutionary potential.
Collapse
Affiliation(s)
- Jean Carlier
- CIRAD, UMR PHIM, F-34398 Montpellier, France; PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - Stéphanie Robert
- CIRAD, UMR PHIM, F-34398 Montpellier, France; PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Véronique Roussel
- CIRAD, UMR PHIM, F-34398 Montpellier, France; PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Yolande Chilin-Charles
- CIRAD, UMR PHIM, F-97130 Capesterre-Belle-Eau, Guadeloupe, France; PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Nadia Lubin-Adjanoh
- CIRAD, UMR PHIM, F-97130 Capesterre-Belle-Eau, Guadeloupe, France; PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Aude Gilabert
- CIRAD, UMR PHIM, F-34398 Montpellier, France; PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Catherine Abadie
- CIRAD, UMR PHIM, F-97130 Capesterre-Belle-Eau, Guadeloupe, France; PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
216
|
Zhao YJ, Yin GS, Pan YZ, Tian B, Gong X. Climatic Refugia and Geographical Isolation Contribute to the Speciation and Genetic Divergence in Himalayan-Hengduan Tree Peonies ( Paeonia delavayi and Paeonia ludlowii). Front Genet 2021; 11:595334. [PMID: 33584794 PMCID: PMC7874331 DOI: 10.3389/fgene.2020.595334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Himalaya and Hengduan Mountains (HHM) is a biodiversity hotspot, and very rich in endemic species. Previous phylogeographical studies proposed different hypotheses (vicariance and climate-driven speciation) in explaining diversification and the observed pattern of extant biodiversity, but it is likely that taxa are forming in this area in species-specific ways. Here, we reexplored the phylogenetic relationship and tested the corresponding hypotheses within Paeonia subsect. Delavayanae composed of one widespread species (Paeonia delavayi) and the other geographically confined species (Paeonia ludlowii). We gathered genetic variation data at three chloroplast DNA fragments and one nuclear gene from 335 individuals of 34 populations sampled from HHM. We performed a combination of population genetic summary statistics, isolation-with-migration divergence models, isolation by environment, and demographic history analyses. We found evidence for the current taxonomic treatment that P. ludlowii and P. delavayi are two different species with significant genetic differentiation. The significant isolation by environment was revealed within all sampled populations but genetic distances only explained by geographical distances within P. delavayi populations. The results of population divergence models and demographic history analyses indicated a progenitor–derivative relationship and the Late Quaternary divergence without gene flow between them. The coalescence of all sampled cpDNA haplotypes could date to the Late Miocene, and P. delavayi populations probably underwent a severe bottleneck in population size during the last glacial period. Genetic variation in Paeonia subsect. Delavayanae is associated with geographical and environmental distances. These findings point to the importance of geological and climatic changes as causes of the speciation event and lineage diversification within Paeonia subsect. Delavayanae.
Collapse
Affiliation(s)
- Yu-Juan Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China.,Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Gen-Shen Yin
- College of Agriculture and Life Sciences, Kunming University, Chinese Academy of Sciences (CAS), Kunming, China
| | - Yue-Zhi Pan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Bo Tian
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China.,Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| |
Collapse
|
217
|
Bonaccorso E, Rodríguez-Saltos CA, Freile JF, Peñafiel N, Rosado-Llerena L, Oleas NH. Recent diversification in the high Andes: unveiling the evolutionary history of the Ecuadorian hillstar, Oreotrochilus chimborazo(Apodiformes: Trochilidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractStudying the genetic signatures of evolutionary diversification in young lineages is among the most promising approaches for unveiling the processes behind speciation. Here, we focus on Oreotrochilus chimborazo, a high Andean species of hummingbird that might have experienced rapid diversification in the recent past. To understand the evolution of this species, we generated a dataset of ten microsatellite markers and complementary data on morphometrics, plumage variation and ecological niches. We applied a series of population and coalescent-based analyses to understand the population structure and differentiation within the species, in addition to the signatures of current and historical gene flow, the location of potential contact zones and the relationships among lineages. We found that O. chimborazo comprises three genetic groups: one corresponding to subspecies O. c. chimborazo, from Chimborazo volcano and surroundings, and two corresponding to the northern and southern ranges of subspecies O. c. jamesonii, found from the extreme south of Colombia to southern Ecuador. We inferred modest levels of both contemporary and historical gene flow and proposed the location of a contact zone between lineages. Also, our coalescent-based analyses supported a rapid split among these three lineages during the mid-to-late Holocene. We discuss our results in the light of past and present potential distributions of the species, in addition to evolutionary trends seen in other Andean hummingbirds.
Collapse
Affiliation(s)
- Elisa Bonaccorso
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biología Evolutiva, and Instituto Biósfera, Diego de Robles y Pampite, Quito, Ecuador
- Instituto Biósfera, Universidad San Francisco de Quito, Diego de Robles y Pampite, Quito, Ecuador
- Universidad Tecnológica Indoamérica, Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Machala y Sabanilla, Quito, Ecuador
| | | | - Juan F Freile
- Comité Ecuatoriano de Registros Ornitológicos, Pasaje El Moro E4-216 y Norberto Salazar, Tumbaco, Ecuador
| | - Nicolás Peñafiel
- Universidad Tecnológica Indoamérica, Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Machala y Sabanilla, Quito, Ecuador
- Biology Department, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada AIB
| | - Laura Rosado-Llerena
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biología Evolutiva, and Instituto Biósfera, Diego de Robles y Pampite, Quito, Ecuador
| | - Nora H Oleas
- Universidad Tecnológica Indoamérica, Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Machala y Sabanilla, Quito, Ecuador
| |
Collapse
|
218
|
Boscari E, Marino IAM, Caruso C, Gessner J, Lari M, Mugue N, Barmintseva A, Suciu R, Onara D, Zane L, Congiu L. Defining criteria for the reintroduction of locally extinct populations based on contemporary and ancient genetic diversity: The case of the Adriatic Beluga sturgeon (
Huso huso
). DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Elisa Boscari
- Department of Biology (DiBio) University of Padua Padua Italy
| | | | - Chiara Caruso
- Department of Biology (DiBio) University of Padua Padua Italy
| | - Jörn Gessner
- Leibniz‐Institute for Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Martina Lari
- Department of Biology University of Florence Florence Italy
| | - Nikolai Mugue
- Russian Federal Research Institute of Fisheries and Oceanography Moscow Russia
- Institute of Developmental Biology RAS Moscow Russia
| | - Anna Barmintseva
- Russian Federal Research Institute of Fisheries and Oceanography Moscow Russia
| | - Radu Suciu
- Danube Delta National Institute for Research and Development Tulcea Romania
| | - Dalia Onara
- Danube Delta National Institute for Research and Development Tulcea Romania
| | - Lorenzo Zane
- Department of Biology (DiBio) University of Padua Padua Italy
- CoNISMa (Interuniversity Consortium of Marine Sciences) Rome Italy
| | - Leonardo Congiu
- Department of Biology (DiBio) University of Padua Padua Italy
- CoNISMa (Interuniversity Consortium of Marine Sciences) Rome Italy
| |
Collapse
|
219
|
Double-digest RAD-sequencing: do pre- and post-sequencing protocol parameters impact biological results? Mol Genet Genomics 2021; 296:457-471. [PMID: 33469716 DOI: 10.1007/s00438-020-01756-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing technologies have opened a new era of research in population genetics. Following these new sequencing opportunities, the use of restriction enzyme-based genotyping techniques, such as restriction site-associated DNA sequencing (RAD-seq) or double-digest RAD-sequencing (ddRAD-seq), has dramatically increased in the last decade. From DNA sampling to SNP calling, the laboratory and bioinformatic parameters of enzyme-based techniques have been investigated in the literature. However, the impact of those parameters on downstream analyses and biological results remains less documented. In this study, we investigated the effects of sevral pre- and post-sequencing settings on ddRAD-seq results for two biological systems: a complex of butterfly species (Coenonympha sp.) and several populations of common beech (Fagus sylvatica). Our results suggest that pre-sequencing parameters (i.e., DNA quantity, number of PCR cycles during library preparation) have a significant impact on the number of recovered reads and SNPs, on the number of unique alleles and on individual heterozygosity. In the same way, we found that post-sequencing settings (i.e., clustering and minimum coverage thresholds) influenced loci reconstruction (e.g., number of loci, mean coverage) and SNP calling (e.g., number of SNPs; heterozygosity) but had only a marginal impact on downstream analyses (e.g., measure of genetic differentiation, estimation of individual admixture, and demographic inferences). In addition, replication analyses confirmed the reproducibility of the ddRAD-seq procedure. Overall, this study assesses the degree of sensitivity of ddRAD-seq data to pre- and post-sequencing protocols, and illustrates its robustness when studying population genetics.
Collapse
|
220
|
Li Y, Huang K, Tang S, Feng L, Yang J, Li Z, Li B. Genetic Structure and Evolutionary History of Rhinopithecus roxellana in Qinling Mountains, Central China. Front Genet 2021; 11:611914. [PMID: 33552131 PMCID: PMC7855588 DOI: 10.3389/fgene.2020.611914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The Qinling mountainous region is one of the world's biodiversity hotspots and provides refuges for many endangered endemic animals. The golden snub-nosed monkeys (Rhinopithecus roxellana) are considered as a flagship species in this area. Here, we depicted the genetic structure and evolutionary history via microsatellite markers and combination with the ecological niche models (ENMs) to elucidate the intraspecific divergent and the impacts of the population demography on our focal species. Our results revealed three distinct subpopulations of R. roxellana and also uncovered asymmetric historical and symmetric contemporary gene flow that existed. Our evolutionary dynamics analyses based on diyabc suggested that the intraspecific divergence accompanied with effective population sizes changes. The ENM result implied that the distribution range of this species experienced expansion during the last glacial maximum (LGM). Our results highlighted that geological factors could contribute to the high genetic differentiation within the R. roxellana in the Qinling Mountains. We also provided a new insight into conservation management plans with endangered species in this region.
Collapse
Affiliation(s)
- Yuli Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shiyi Tang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
221
|
Fraïsse C, Popovic I, Mazoyer C, Spataro B, Delmotte S, Romiguier J, Loire É, Simon A, Galtier N, Duret L, Bierne N, Vekemans X, Roux C. DILS: Demographic inferences with linked selection by using ABC. Mol Ecol Resour 2021; 21:2629-2644. [PMID: 33448666 DOI: 10.1111/1755-0998.13323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
We present DILS, a deployable statistical analysis platform for conducting demographic inferences with linked selection from population genomic data using an Approximate Bayesian Computation framework. DILS takes as input single-population or two-population data sets (multilocus fasta sequences) and performs three types of analyses in a hierarchical manner, identifying: (a) the best demographic model to study the importance of gene flow and population size change on the genetic patterns of polymorphism and divergence, (b) the best genomic model to determine whether the effective size Ne and migration rate N, m are heterogeneously distributed along the genome (implying linked selection) and (c) loci in genomic regions most associated with barriers to gene flow. Also available via a Web interface, an objective of DILS is to facilitate collaborative research in speciation genomics. Here, we show the performance and limitations of DILS by using simulations and finally apply the method to published data on a divergence continuum composed by 28 pairs of Mytilus mussel populations/species.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Institute of Science and Technology Austria, Klosterneuœburg, Austria.,Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Iva Popovic
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | | | - Bruno Spataro
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard, Lyon, France
| | - Stéphane Delmotte
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard, Lyon, France
| | | | - Étienne Loire
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR, ASTRE, Montpellier, France
| | - Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nicolas Galtier
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Laurent Duret
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard, Lyon, France
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Camille Roux
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| |
Collapse
|
222
|
Kurata S, Sakaguchi S, Hirota SK, Kurashima O, Suyama Y, Nishida S, Ito M. Refugia within refugium of Geranium yesoense (Geraniaceae) in Japan were driven by recolonization into the southern interglacial refugium. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Recent studies have found that geographical fragmentation and recurrent colonization result in complex genetic structures in refugial areas. This phenomenon, known as ‘refugia within refugium’, has been identified from many geographical locations. In Japan, the high-elevation mountains of central Honshu provided an interglacial refugium for alpine plants. Here we focused on the Geranium yesoense complex, which exhibits increased morphological variation in the refugial area, to determine whether this variation was shaped by recurrent colonization, range fragmentation or phenotypic changes independent of population history. We analysed single nucleotide polymorphism data and chloroplast genome sequences. Diversification in the G. yesoense species complex occurred in the mid-Pleistocene. The varieties are distinct entities and suggest the presence of a genetic cluster with highly disjunct distributions, occurring both in northern Japan and in southern refugial areas in central Honshu. Demographic analysis suggests that a single ancestral variety (var. nipponicum) evolved in the alpine region of central Honshu, and that subsequent migration from one of the two diverged northern varieties (var. pseudopratense) led to secondary contact with var. nipponicum during the last glacial period. Recolonization into refugial populations in central Honshu and hybridization between diverged populations have resulted in complex genetic structures among refugial populations.
Collapse
Affiliation(s)
- Seikan Kurata
- Laboratory of Plant Evolution and Biodiversity, Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Aza-yomogida, Naruko Onsen, Osaki City, Miyagi, Japan
| | - Osamu Kurashima
- National Museum of Nature and Science, Ueno-koen, Taito-ku, Tokyo, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Aza-yomogida, Naruko Onsen, Osaki City, Miyagi, Japan
| | - Sachiko Nishida
- Nagoya University Museum, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Motomi Ito
- Laboratory of Plant Evolution and Biodiversity, Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
223
|
LeBlanc N, Cubeta MA, Crouch JA. Population Genomics Trace Clonal Diversification and Intercontinental Migration of an Emerging Fungal Pathogen of Boxwood. PHYTOPATHOLOGY 2021; 111:184-193. [PMID: 33048629 DOI: 10.1094/phyto-06-20-0219-fi] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Boxwood blight was first documented in Europe, prior to its recent colonization of North America, where it continues to have significant negative impacts on the ornamental industry. Due to near genetic uniformity in the two sister species of fungal plant pathogens that cause boxwood blight, understanding historical disease emergence and predicting future outbreaks is limited. The goal of this research was to apply population genomics to understand the role of pathogen diversification and migration in disease emergence. Specifically, we tested whether the primary pathogen species Calonectria pseudonaviculata has remained genetically isolated from its European-limited sister species C. henricotiae, while diversifying into clonal lineages that have migrated among continents. Whole-genome sequencing identified 1,608 single-nucleotide polymorphisms (SNPs) in 67 C. pseudonaviculata isolates from four continents and 1,017 SNPs in 13 C. henricotiae isolates from Europe. Interspecific genetic differentiation and an absence of shared polymorphisms indicated lack of gene flow between the sister species. Tests for intraspecific genetic structure in C. pseudonaviculata identified four genetic clusters, three of which corresponded to monophyletic phylogenetic clades. Comparison of evolutionary divergence scenarios among the four genetic clusters using approximate Bayesian computation indicated that the two C. pseudonaviculata genetic clusters currently found in the United States were derived from different sources, one from the first genetic cluster found in Europe and the second from an unidentified population. Evidence for multiple introductions of this pathogen into the United States and intercontinental migration indicates that future introductions are likely to occur and should be considered in plant disease quarantine regulation.
Collapse
Affiliation(s)
- Nicholas LeBlanc
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN
- Department of Entomology and Plant Pathology, North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC
| | - Marc A Cubeta
- Department of Entomology and Plant Pathology, North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD
| |
Collapse
|
224
|
Polezhaeva MA, Tikhonova NA, Marchuk EA, Modorov MV, Ranyuk MN, Polezhaev AN, Badmayeva NK, Semerikov VL. Genetic structure of a widespread alpine shrub Rhododendron aureum (Ericaceae) across East Asia. JOURNAL OF PLANT RESEARCH 2021; 134:91-104. [PMID: 33398441 DOI: 10.1007/s10265-020-01241-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The vast territory of East Asia, including southwestern Beringia, is considered to have been almost ice free during the Pleistocene. Cold-resistant flora may have persisted in this region expanding or contracting its range during the climate cooling. Only a few plant genera have been studied with a sampling area across their entire geographic range in East Asia; therefore, the understanding of the biogeographic history of alpine flora in this region remains limited. In the present study, genetic variation and population structure in 21 populations of the alpine shrub Rhododendron aureum across its range in East Asia were assessed using 18 microsatellite loci. Phylogenetic analyses revealed three main genetic groups: Siberia, Northeast, and North Pacific. According to the geographical pattern of genetic diversity, the North Pacific group includes populations from Kamchatka, south of Russian Far East, and territories close to central Japan. This group is the most diverse and likely diverged earlier than the Siberia and Northeast groups. Ecological niche modeling predicts range expansion of this species during the period of cooling and, together with demographic history, suggests that the divergence between the three main genetic groups predated the Last Glacial Maximum. Similar to other cold-resistant species such as Larix sibirica and Juniperus communis, the pattern of genetic diversity of R. aureum supports the survival of the species at high latitudes during the Pleistocene with limited contribution of the southern populations to expansion of the species range to the Northeast region and Siberia.
Collapse
Affiliation(s)
- Maria A Polezhaeva
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
| | - Natalya A Tikhonova
- V. N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Elena A Marchuk
- Botanical Garden-Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Makar V Modorov
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Maryana N Ranyuk
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexey N Polezhaev
- Institute of the Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| | - Natalya K Badmayeva
- Institute of General and Experimental Biology, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - Vladimir L Semerikov
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
225
|
Mercati F, De Lorenzis G, Mauceri A, Zerbo M, Brancadoro L, D'Onofrio C, Morcia C, Barbagallo MG, Bignami C, Gardiman M, de Palma L, Ruffa P, Novello V, Crespan M, Sunseri F. Integrated Bayesian Approaches Shed Light on the Dissemination Routes of the Eurasian Grapevine Germplasm. FRONTIERS IN PLANT SCIENCE 2021; 12:692661. [PMID: 34434204 PMCID: PMC8381769 DOI: 10.3389/fpls.2021.692661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 05/12/2023]
Abstract
The domestication and spreading of grapevine as well as the gene flow history had been described in many studies. We used a high-quality 7k SNP dataset of 1,038 Eurasian grape varieties with unique profiles to assess the population genetic diversity, structure, and relatedness, and to infer the most likely migration events. Comparisons of putative scenarios of gene flow throughout Europe from Caucasus helped to fit the more reliable migration routes around the Mediterranean Basin. Approximate Bayesian computation (ABC) approach made possible to provide a response to several questions so far remaining unsolved. Firstly, the assessment of genetic diversity and population structure within a well-covered dataset of ancient Italian varieties suggested the different histories between the Northern and Southern Italian grapevines. Moreover, Italian genotypes were shown to be distinguishable from all the other Eurasian populations for the first time. The entire Eurasian panel confirmed the east-to-west gene flow, highlighting the Greek role as a "bridge" between the Western and Eastern Eurasia. Portuguese germplasm showed a greater proximity to French varieties than the Spanish ones, thus being the main route for gene flow from Iberian Peninsula to Central Europe. Our findings reconciled genetic and archaeological data for one of the most cultivated and fascinating crops in the world.
Collapse
Affiliation(s)
- Francesco Mercati
- Istituto Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Palermo, Italy
- *Correspondence: Francesco Mercati
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milan, Milan, Italy
| | - Antonio Mauceri
- Dipartimento Agraria, Università Mediterranea degli Studi di Reggio Calabria, Reggio Calabria, Italy
| | - Marcello Zerbo
- Istituto Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milan, Milan, Italy
| | - Claudio D'Onofrio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università degli Studi di Pisa, Pisa, Italy
| | - Caterina Morcia
- CREA - Centro di Ricerca per la Genomica e la Bioinformatica, Fiorenzuola d'Arda, Italy
| | | | - Cristina Bignami
- Dipartimento di Scienze della Vita, Centro Biogest-Siteia, Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy
| | - Massimo Gardiman
- CREA - Centro di Ricerca per la Viticoltura ed Enologia, Conegliano, Italy
| | - Laura de Palma
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria, Università degli Studi di Foggia, Foggia, Italy
| | - Paola Ruffa
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Italy
| | - Vittorino Novello
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Italy
| | - Manna Crespan
- CREA - Centro di Ricerca per la Viticoltura ed Enologia, Conegliano, Italy
- Manna Crespan
| | - Francesco Sunseri
- Dipartimento Agraria, Università Mediterranea degli Studi di Reggio Calabria, Reggio Calabria, Italy
- Francesco Sunseri
| |
Collapse
|
226
|
Wei X, Huang M, Yue Q, Ma S, Li B, Mu Z, Peng C, Gao W, Liu W, Zheng J, Weng X, Sun X, Zuo Q, Bo S, Yuan X, Zhang W, Yang G, Ding Y, Wang X, Wang T, Hua P, Wang Z. Long-term urbanization impacts the eastern golden frog ( Pelophylax plancyi) in Shanghai City: Demographic history, genetic structure, and implications for amphibian conservation in intensively urbanizing environments. Evol Appl 2021; 14:117-135. [PMID: 33519960 PMCID: PMC7819575 DOI: 10.1111/eva.13156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Understanding the mechanisms of how urbanization influences the evolution of native species is vital for urban wildlife ecology and conservation in the Anthropocene. With thousands of years of agriculture-dominated historical urbanization followed by 40 years of intensive and rapid urbanization, Shanghai provides an ideal environment to study how the two-stage urbanization process influences the evolution of indigenous wildlife, especially of anuran species. Therefore, in this study, we used mitochondrial Cyt-b gene, microsatellite (SSR), and single nucleotide polymorphism (SNP) data to evaluate the demographic history and genetic structure of the eastern golden frog (Pelophylax plancyi), by sampling 407 individuals from 15 local populations across Shanghai, China. All local populations experienced bottlenecks during historical urbanization, while the local populations in urban areas maintained comparable contemporary effective population sizes (N e) and genetic diversity with suburban and rural populations. Nevertheless, the rapid modern urbanization has already imposed significant negative effects to the integrity of populations. The 15 local populations were differentiated into eight genetic clusters, showing a spatial distribution pattern consistent with the current urbanization gradient and island-mainland geography. Although moderate gene flow still occurred from the rural peripheral cluster to urban and suburban clusters, population fragmentation was more serious in the urban and suburban populations, where higher urbanization levels within 2-km radius areas showed significant negative relationships to the N e and genetic diversity of local populations. Therefore, to protect urban wildlife with limited dispersal ability, improving conditions in fragmented habitat remnants might be most essential for local populations living in more urbanized areas. Meanwhile, we highlight the need to preserve large unfragmented rural habitats and to construct corridor networks to connect discrete urban habitat remnants for the long-term wildlife conservation in intensively urbanizing environments.
Collapse
Affiliation(s)
- Xu Wei
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Meiling Huang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qu Yue
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shuo Ma
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Ben Li
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zhiqiang Mu
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Chuan Peng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenxuan Gao
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenli Liu
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Jiaxin Zheng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaodong Weng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaohui Sun
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qingqiu Zuo
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative BureauShanghai Forestry BureauShanghaiChina
| | - Xiao Yuan
- Shanghai Landscaping & City Appearance Administrative BureauShanghai Forestry BureauShanghaiChina
| | - Wei Zhang
- Natural History Research Centre of Shanghai Natural History MuseumShanghai Science and Technology MuseumShanghaiChina
| | - Gang Yang
- Natural History Research Centre of Shanghai Natural History MuseumShanghai Science and Technology MuseumShanghaiChina
| | - Youzhong Ding
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaoming Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Shanghai Science and Technology MuseumShanghaiChina
| | - Tianhou Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐ChongmingShanghaiChina
| | - Panyu Hua
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Zhenghuan Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Joint Translational Science and Technology Research InstituteEast China Normal UniversityShanghaiChina
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research StationMinistry of Education & Shanghai Science and Technology CommitteeShanghaiChina
| |
Collapse
|
227
|
Melo WA, Vieira LD, Novaes E, Bacon CD, Collevatti RG. Selective Sweeps Lead to Evolutionary Success in an Amazonian Hyperdominant Palm. Front Genet 2020; 11:596662. [PMID: 33424928 PMCID: PMC7786001 DOI: 10.3389/fgene.2020.596662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Despite the global importance of tropical ecosystems, few studies have identified how natural selection has shaped their megadiversity. Here, we test for the role of adaptation in the evolutionary success of the widespread, highly abundant Neotropical palm Mauritia flexuosa. We used a genome scan framework, sampling 16,262 single-nucleotide polymorphisms (SNPs) with target sequence capture in 264 individuals from 22 populations in rainforest and savanna ecosystems. We identified outlier loci as well as signal of adaptation using Bayesian correlations of allele frequency with environmental variables and detected both selective sweeps and genetic hitchhiking events. Functional annotation of SNPs with selection footprints identified loci affecting genes related to adaptation to environmental stress, plant development, and primary metabolic processes. The strong differences in climatic and soil variables between ecosystems matched the high differentiation and low admixture in population Bayesian clustering. Further, we found only small differences in allele frequency distribution in loci putatively under selection among widespread populations from different ecosystems, with fixation of a single allele in most populations. Taken together, our results indicate that adaptive selective sweeps related to environmental stress shaped the spatial pattern of genetic diversity in M. flexuosa, leading to high similarity in allele frequency among populations from different ecosystems.
Collapse
Affiliation(s)
- Warita A Melo
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lucas D Vieira
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
228
|
McCulloch GA, Foster BJ, Dutoit L, Harrop TWR, Guhlin J, Dearden PK, Waters JM. Genomics Reveals Widespread Ecological Speciation in Flightless Insects. Syst Biol 2020; 70:863-876. [DOI: 10.1093/sysbio/syaa094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Abstract
Recent genomic analyses have highlighted parallel divergence in response to ecological gradients, but the extent to which altitude can underpin such repeated speciation remains unclear. Wing reduction and flight loss have apparently evolved repeatedly in montane insect assemblages and have been suggested as important drivers of hexapod diversification. We test this hypothesis using genomic analyses of a widespread wing-polymorphic stonefly species complex in New Zealand. We identified over 50,000 polymorphic genetic markers generated across almost 200 Zelandoperla fenestrata stonefly specimens using a newly generated plecopteran reference genome, to reveal widespread parallel speciation between sympatric full-winged and wing-reduced ecotypes. Rather than the existence of a single, widespread, flightless taxon (Zelandoperla pennulata), evolutionary genomic data reveal that wing-reduced upland lineages have speciated repeatedly and independently from full-winged Z. fenestrata. This repeated evolution of reproductive isolation between local ecotype pairs that lack mitochondrial DNA differentiation suggests that ecological speciation has evolved recently. A cluster of outlier single-nucleotide polymorphisms detected in independently wing-reduced lineages, tightly linked in an approximately 85 kb genomic region that includes the developmental “supergene” doublesex, suggests that this “island of divergence” may play a key role in rapid ecological speciation. [Ecological speciation; genome assembly; genomic island of differentiation; genotyping-by-sequencing; incipient species; plecoptera; wing reduction.]
Collapse
Affiliation(s)
- Graham A McCulloch
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Brodie J Foster
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Joseph Guhlin
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jonathan M Waters
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
229
|
Gao Y, Harris AJ, Li H, Gao X. Hybrid Speciation and Introgression Both Underlie the Genetic Structures and Evolutionary Relationships of Three Morphologically Distinct Species of Lilium (Liliaceae) Forming a Hybrid Zone Along an Elevational Gradient. FRONTIERS IN PLANT SCIENCE 2020; 11:576407. [PMID: 33365039 PMCID: PMC7750405 DOI: 10.3389/fpls.2020.576407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 05/28/2023]
Abstract
We studied hybrid interactions of Lilium meleagrinum, Lilium gongshanense, and Lilium saluenense using an integrative approach combining population genetics, fieldwork, and phenological research. These three species occur along an elevational gradient, with L. meleagrinum occurring at lower elevations, L. saluenense at higher elevations, and L. gongshanense between them. The species show strong morphological differentiation despite there being no clear environmental barriers to gene flow among them. Lilium gongshanense is likely to have a hybrid origin based on our prior work, but its progenitors remain uncertain. We sought to determine whether gene flow occurs among these three parapatric species, and, if so, whether L. gongshanense is a hybrid of L. meleagrinum and/or L. saluenense. We analyzed data from multiple chloroplast genes and spacers, nuclear internal transcribed spacer (ITS), and 18 nuclear Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR) microsatellites for accessions of the three species representing dense population-level sampling. We also inferred phenology by examining species in the field and using herbarium specimens. We found that there are only two types of chloroplast genomes shared among the three species and that L. gongshanense forms two distinct groups with closest links to other species of Lilium based on ITS. Taken together, L. gongshanense is unlikely to be a hybrid species resulting from a cross between L. meleagrinum and L. saluenense, but gene flow is occurring among the three species. The gene flow is likely to be rare according to evidence from all molecular datasets, and this is corroborated by detection of only one putative hybrid individual in the field and asynchronous phenology. We suspect that the rarity of hybridization events among the species facilitates their continued genetic separation.
Collapse
Affiliation(s)
- Yundong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huaicheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Xinfen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
230
|
Global incursion pathways of Thaumastocoris peregrinus, an invasive Australian pest of eucalypts. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
231
|
Padró J, Lambertucci SA, Perrig PL, Pauli JN. Andean and California condors possess dissimilar genetic composition but exhibit similar demographic histories. Ecol Evol 2020; 10:13011-13021. [PMID: 33304512 PMCID: PMC7713948 DOI: 10.1002/ece3.6887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/09/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
While genetic diversity of threatened species is a major concern of conservation biologists, historic patterns of genetic variation are often unknown. A powerful approach to assess patterns and processes of genetic erosion is via ancient DNA techniques. Herein, we analyzed mtDNA from historical samples (1800s to present) of Andean Condors (Vultur gryphus) to investigate whether contemporary low genetic variability is the result of recent human expansion and persecution, and compared this genetic history to that of California condors (Gymnogyps californianus).We then explored historic demographies for both species via coalescent simulations. We found that Andean condors have lost at least 17% of their genetic variation in the early 20th century. Unlike California condors, however, low mtDNA diversity in the Andean condor was mostly ancient, before European arrival. However, we found that both condor species shared similar demographies in that population bottlenecks were recent and co-occurred with the introduction of livestock to the Americas and the global collapse of marine mammals. Given the combined information on genetic and demographic processes, we suggest that the protection of key habitats should be targeted for conserving extant genetic diversity and facilitate the natural recolonization of lost territories, while nuclear genomic data should be used to inform translocation plans.
Collapse
Affiliation(s)
- Julian Padró
- Grupo de Investigaciones en Biología de la ConservaciónINIBIOMA, Universidad Nacional del Comahue ‐ CONICETBarilocheArgentina
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Sergio A. Lambertucci
- Grupo de Investigaciones en Biología de la ConservaciónINIBIOMA, Universidad Nacional del Comahue ‐ CONICETBarilocheArgentina
| | - Paula L. Perrig
- Grupo de Investigaciones en Biología de la ConservaciónINIBIOMA, Universidad Nacional del Comahue ‐ CONICETBarilocheArgentina
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
232
|
Jia Y, Milne RI, Zhu J, Gao L, Zhu G, Zhao G, Liu J, Li Z. Evolutionary legacy of a forest plantation tree species ( Pinus armandii): Implications for widespread afforestation. Evol Appl 2020; 13:2646-2662. [PMID: 33294014 PMCID: PMC7691453 DOI: 10.1111/eva.13064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022] Open
Abstract
Many natural systems are subject to profound and persistent anthropogenic influence. Human-induced gene movement through afforestation and the selective transportation of genotypes might enhance the potential for intraspecific hybridization, which could lead to outbreeding depression. However, the evolutionary legacy of afforestation on the spatial genetic structure of forest tree species has barely been investigated. To do this properly, the effects of anthropogenic and natural processes must be examined simultaneously. A multidisciplinary approach, integrating phylogeography, population genetics, species distribution modeling, and niche divergence would permit evaluation of potential anthropogenic impacts, such as mass planting near-native material. Here, these approaches were applied to Pinus armandii, a Chinese endemic coniferous tree species, that has been mass planted across its native range. Population genetic analyses showed that natural populations of P. armandii comprised three lineages that diverged around the late Miocene, during a period of massive uplifts of the Hengduan Mountains, and intensification of Asian Summer Monsoon. Only limited gene flow was detected between lineages, indicating that each largely maintained is genetic integrity. Moreover, most or all planted populations were found to have been sourced within the same region, minimizing disruption of large-scale spatial genetic structure within P. armandii. This might be because each of the three lineages had a distinct climatic niche, according to ecological niche modeling and niche divergence tests. The current study provides empirical genetic and ecological evidence for the site-species matching principle in forestry and will be useful to manage restoration efforts by identifying suitable areas and climates for introducing and planting new forests. Our results also highlight the urgent need to evaluate the genetic impacts of large-scale afforestation in other native tree species.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi’anChina
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Richard I. Milne
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Juan Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi’anChina
| | - Lian‐Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Guang‐Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Gui‐Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi’anChina
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Zhong‐Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi’anChina
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
233
|
Walters AD, Cannizzaro AG, Trujillo DA, Berg DJ. Addressing the Linnean shortfall in a cryptic species complex. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Biodiversity is being lost at an alarming rate, but the rate of this loss is likely to be underestimated as a result of a deficit in taxonomic knowledge (i.e. the Linnean shortfall). This knowledge gap is more extensive for morphologically indistinct taxa. The advancement of molecular techniques and delimitation methods has facilitated the identification of such cryptic species, but a majority of these taxa remain undescribed. To investigate the effects of taxonomic uncertainty on understanding of biodiversity, we applied the general lineage concept of species to an amphipod species complex, the Gammaruslacustris lineage that occupies springs of the northern Chihuahuan Desert, which is emerging in contemporary times. We investigated species boundaries using a validation-based approach and examined genetic structure of the lineage using a suite of microsatellite markers to identify independently evolving metapopulations. Our results show that each spring contains a genetically distinct population that is geographically isolated from other springs, suggesting evolutionary independence and status as separate species. Additionally, we observed subtle interspecific morphological variation among the putative species. We used multiple lines of evidence to formally describe four new species (Gammarus langi sp. nov., G. percalacustris sp. nov., G. colei sp. nov. and G. malpaisensis sp. nov.) endemic to the northern Chihuahuan Desert. Cryptic speciation is likely to be high in other aquatic taxa within these ecosystems, and across arid landscapes throughout North America and elsewhere, suggesting that the magnitude of the Linnean shortfall is currently underestimated in desert springs worldwide.
Collapse
Affiliation(s)
| | | | | | - David J Berg
- Department of Biology, Miami University, Hamilton, OH USA
| |
Collapse
|
234
|
Hou H, Ye H, Wang Z, Wu J, Gao Y, Han W, Na D, Sun G, Wang Y. Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC PLANT BIOLOGY 2020; 20:526. [PMID: 33203402 PMCID: PMC7672979 DOI: 10.1186/s12870-020-02723-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ulmus lamellosa (one of the ancient species of Ulmus) is an endemic and endangered plant that has undergone climatic oscillations and geographical changes. The elucidation of its demographic history and genetic differentiation is critical for understanding the evolutionary process and ecological adaption to forests in Northern China. RESULTS Polymorphic haplotypes were detected in most populations of U. lamellosa via DNA sequencing. All haplotypes were divided into three phylogeographic clades fundamentally corresponding to their geographical distribution, namely THM (Taihang Mountains), YM (Yinshan Mountains), and YSM (Yanshan Mountains) groups. The YSM group, which is regarded as ancestral, possessed higher genetic diversity and significant genetic variability in contrast to the YSM and YM groups. Meanwhile, the divergence time of intraspecies haplotypes occurred during the Miocene-Pliocene, which was associated with major Tertiary geological and/or climatic events. Different degrees of gene exchanges were identified between the three groups. During glaciation, the YSM and THM regions might have served as refugia for U. lamellosa. Based on ITS data, range expansion was not expected through evolutionary processes, except for the THM group. A series of mountain uplifts (e.g., Yanshan Mountains and Taihang Mountains) following the Miocene-Pliocene, and subsequently quaternary climatic oscillations in Northern China, further promoted divergence between U. lamellosa populations. CONCLUSIONS Geographical topology and climate change in Northern China played a critical role in establishing the current phylogeographic structural patterns of U. lamellosa. These results provide important data and clues that facilitate the demographic study of tree species in Northern China.
Collapse
Affiliation(s)
- Huimin Hou
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Hang Ye
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Zhi Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Jiahui Wu
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Yue Gao
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Wei Han
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Dongchen Na
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Genlou Sun
- Saint Mary’s University, Halifax, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| |
Collapse
|
235
|
White DM, Huang JP, Jara-Muñoz OA, MadriñáN S, Ree RH, Mason-Gamer RJ. The Origins of Coca: Museum Genomics Reveals Multiple Independent Domestications from Progenitor Erythroxylum gracilipes. Syst Biol 2020; 70:1-13. [PMID: 32979264 PMCID: PMC7744036 DOI: 10.1093/sysbio/syaa074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/21/2022] Open
Abstract
Coca is the natural source of cocaine as well as a sacred and medicinal plant farmed by South American Amerindians and mestizos. The coca crop comprises four closely related varieties classified into two species (Amazonian and Huánuco varieties within Erythroxylum coca Lam., and Colombian and Trujillo varieties within Erythroxylum novogranatense (D. Morris) Hieron.) but our understanding of the domestication and evolutionary history of these taxa is nominal. In this study, we use genomic data from natural history collections to estimate the geographic origins and genetic diversity of this economically and culturally important crop in the context of its wild relatives. Our phylogeographic analyses clearly demonstrate the four varieties of coca comprise two or three exclusive groups nested within the diverse lineages of the widespread, wild species Erythroxylum gracilipes; establishing a new and robust hypothesis of domestication wherein coca originated two or three times from this wild progenitor. The Colombian and Trujillo coca varieties are descended from a single, ancient domestication event in northwestern South America. Huánuco coca was domesticated more recently, possibly in southeastern Peru. Amazonian coca either shares a common domesticated ancestor with Huánuco coca, or it was the product of a third and most recent independent domestication event in the western Amazon basin. This chronology of coca domestication reveals different Holocene peoples in South America were able to independently transform the same natural resource to serve their needs; in this case, a workaday stimulant. [Erythroxylum; Erythroxylaceae; Holocene; Museomics; Neotropics; phylogeography; plant domestication; target-sequence capture.]
Collapse
Affiliation(s)
- Dawson M White
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.,Grainger Bioinformatics Center, The Field Museum, Chicago, IL 60605, USA
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | - Santiago MadriñáN
- Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá D.C., Colombia.,Jardín Botánico de Cartagena "Guillermo Piñeres", Turbaco, Bolívar, Colombia
| | - Richard H Ree
- Grainger Bioinformatics Center, The Field Museum, Chicago, IL 60605, USA
| | - Roberta J Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
236
|
Jaramillo-Correa JP, Bagnoli F, Grivet D, Fady B, Aravanopoulos FA, Vendramin GG, González-Martínez SC. Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Mol Ecol 2020; 29:4797-4811. [PMID: 33063352 DOI: 10.1111/mec.15684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Severe bottlenecks significantly diminish the amount of genetic diversity and the speed at which it accumulates (i.e., evolutionary rate). They further compromise the efficiency of natural selection to eliminate deleterious variants, which may reach fixation in the surviving populations. Consequently, expanding and adapting to new environments may pose a significant challenge when strong bottlenecks result in genetic pauperization. Herein, we surveyed the patterns of nucleotide diversity, molecular adaptation and genetic load across 177 gene-loci in a circum-Mediterranean conifer (Pinus pinea L.) that represents one of the most extreme cases of genetic pauperization in widespread outbreeding taxa. We found very little genetic variation in both hypervariable nuclear microsatellites (SSRs) and gene-loci, which translated into genetic diversity estimates one order of magnitude lower than those previously reported for pines. Such values were consistent with a strong population decline that began some ~1 Ma. Comparisons with the related and parapatric maritime pine (Pinus pinaster Ait.) revealed reduced rates of adaptive evolution (α and ωa ) and a significant accumulation of genetic load. It is unlikely that these are the result from differences in mutation rate or linkage disequilibrium between the two species; instead they are the presumable outcome of contrasting demographic histories affecting both the speed at which these taxa accumulate genetic diversity, and the global efficacy of selection. Future studies, and programs for conservation and management, should thus start testing for the effects of genetic load on fitness, and integrating such effects into predictive models.
Collapse
Affiliation(s)
- Juan P Jaramillo-Correa
- Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francesca Bagnoli
- Division of Florence, Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino, Italy
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain
| | - Bruno Fady
- INRAE, Unité de Recherche Écologie des Forêts Méditerranéennes (URFM), Avignon, France
| | - Filippos A Aravanopoulos
- Laboratory of Forest Genetics and Tree Breeding, Department of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanni G Vendramin
- Division of Florence, Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino, Italy
| | | |
Collapse
|
237
|
Distribution of genetic diversity reveals colonization patterns and philopatry of the loggerhead sea turtles across geographic scales. Sci Rep 2020; 10:18001. [PMID: 33093463 PMCID: PMC7583243 DOI: 10.1038/s41598-020-74141-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding the processes that underlie the current distribution of genetic diversity in endangered species is a goal of modern conservation biology. Specifically, the role of colonization and dispersal events throughout a species' evolutionary history often remains elusive. The loggerhead sea turtle (Caretta caretta) faces multiple conservation challenges due to its migratory nature and philopatric behaviour. Here, using 4207 mtDNA sequences, we analysed the colonisation patterns and distribution of genetic diversity within a major ocean basin (the Atlantic), a regional rookery (Cabo Verde Archipelago) and a local island (Island of Boa Vista, Cabo Verde). Data analysis using hypothesis-driven population genetic models suggests the colonization of the Atlantic has occurred in two distinct waves, each corresponding to a major mtDNA lineage. We propose the oldest lineage entered the basin via the isthmus of Panama and sequentially established aggregations in Brazil, Cabo Verde and in the area of USA and Mexico. The second lineage entered the Atlantic via the Cape of Good Hope, establishing colonies in the Mediterranean Sea, and from then on, re-colonized the already existing rookeries of the Atlantic. At the Cabo Verde level, we reveal an asymmetric gene flow maintaining links across island-specific nesting groups, despite significant genetic structure. This structure stems from female philopatric behaviours, which could further be detected by weak but significant differentiation amongst beaches separated by only a few kilometres on the island of Boa Vista. Exploring biogeographic processes at diverse geographic scales improves our understanding of the complex evolutionary history of highly migratory philopatric species. Unveiling the past facilitates the design of conservation programmes targeting the right management scale to maintain a species' evolutionary potential.
Collapse
|
238
|
|
239
|
Klein JD, der Merwe AEBV, Dicken ML, Emami-Khoyi A, Mmonwa KL, Teske PR. A globally threatened shark, Carcharias taurus, shows no population decline in South Africa. Sci Rep 2020; 10:17959. [PMID: 33087802 PMCID: PMC7578018 DOI: 10.1038/s41598-020-75044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Knowledge about the demographic histories of natural populations helps to evaluate their conservation status, and potential impacts of natural and anthropogenic pressures. In particular, estimates of effective population size obtained through molecular data can provide useful information to guide management decisions for vulnerable populations. The spotted ragged-tooth shark, Carcharias taurus (also known as the sandtiger or grey nurse shark), is widely distributed in warm-temperate and subtropical waters, but has suffered severe population declines across much of its range as a result of overexploitation. Here, we used multilocus genotype data to investigate the demographic history of the South African C. taurus population. Using approximate Bayesian computation and likelihood-based importance sampling, we found that the population underwent a historical range expansion that may have been linked to climatic changes during the late Pleistocene. There was no evidence for a recent anthropogenic decline. Together with census data suggesting a stable population, these results support the idea that fishing pressure and other threats have so far not been detrimental to the local C. taurus population. The results reported here indicate that South Africa could possibly harbour the last remaining, relatively pristine population of this widespread but vulnerable top predator.
Collapse
Affiliation(s)
- Juliana D Klein
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Aletta E Bester-van der Merwe
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew L Dicken
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, 4320, South Africa
- Department of Development Studies, School of Economics, Development and Tourism, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Arsalan Emami-Khoyi
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Kolobe L Mmonwa
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, 4320, South Africa
| | - Peter R Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa.
| |
Collapse
|
240
|
Chapuis M, Raynal L, Plantamp C, Meynard CN, Blondin L, Marin J, Estoup A. A young age of subspecific divergence in the desert locust inferred by ABC random forest. Mol Ecol 2020; 29:4542-4558. [DOI: 10.1111/mec.15663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Marie‐Pierre Chapuis
- CBGP CIRAD Montpellier France
- CBGP CIRAD INRAE IRD Montpellier SupAgro University of Montpellier Montpellier France
| | - Louis Raynal
- IMAG CNRS University of Montpellier Montpellier France
| | | | - Christine N. Meynard
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| | | | | | - Arnaud Estoup
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| |
Collapse
|
241
|
Nuñez JJ, Suárez-Villota EY, Quercia CA, Olivares AP, Sites JW. Phylogeographic analysis and species distribution modelling of the wood frog Batrachyla leptopus (Batrachylidae) reveal interglacial diversification in south western Patagonia. PeerJ 2020; 8:e9980. [PMID: 33083116 PMCID: PMC7546244 DOI: 10.7717/peerj.9980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Background The evolutionary history of southern South American organisms has been strongly influenced by Pleistocene climate oscillations. Amphibians are good models to evaluate hypotheses about the influence of these climate cycles on population structure and diversification of the biota, because they are sensitive to environmental changes and have restricted dispersal capabilities. We test hypotheses regarding putative forest refugia and expansion events associated with past climatic changes in the wood frog Batrachyla leptopus distributed along ∼1,000 km of length including glaciated and non-glaciated areas in southwestern Patagonia. Methods Using three mitochondrial regions (D-loop, cyt b, and coI) and two nuclear loci (pomc and crybA1), we conducted multilocus phylogeographic analyses and species distribution modelling to gain insights of the evolutionary history of this species. Intraspecific genealogy was explored with maximum likelihood, Bayesian, and phylogenetic network approaches. Diversification time was assessed using molecular clock models in a Bayesian framework, and demographic scenarios were evaluated using approximate Bayesian computation (ABC) and extended Bayesian skyline plot (EBSP). Species distribution models (SDM) were reconstructed using climatic and geographic data. Results Population structure and genealogical analyses support the existence of four lineages distributed north to south, with moderate to high phylogenetic support (Bootstrap > 70%; BPP > 0.92). The diversification time of B. leptopus’ populations began at ∼0.107 mya. The divergence between A and B lineages would have occurred by the late Pleistocene, approximately 0.068 mya, and divergence between C and D lineages was approximately 0.065 mya. The ABC simulations indicate that lineages coalesced at two different time periods, suggesting the presence of at least two glacial refugia and a postglacial colonization route that may have generated two southern lineages (p = 0.93, type I error: <0.094, type II error: 0.134). EBSP, mismatch distribution and neutrality indexes suggest sudden population expansion at ∼0.02 mya for all lineages. SDM infers fragmented distributions of B. leptopus associated with Pleistocene glaciations. Although the present populations of B. leptopus are found in zones affected by the last glacial maximum (∼0.023 mya), our analyses recover an older history of interglacial diversification (0.107–0.019 mya). In addition, we hypothesize two glacial refugia and three interglacial colonization routes, one of which gave rise to two expanding lineages in the south.
Collapse
Affiliation(s)
- José J Nuñez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de Los Ríos, Chile
| | - Elkin Y Suárez-Villota
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Concepción, Región del Bio-Bío, Chile
| | - Camila A Quercia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de Los Ríos, Chile
| | - Angel P Olivares
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de Los Ríos, Chile
| | - Jack W Sites
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, UT, United States of America.,Current affiliation: Department of Biology, Austin Peay St University, Clarksville, TN, United States of America
| |
Collapse
|
242
|
Goczał J, Oleksa A, Rossa R, Chybicki I, Meyza K, Plewa R, Landvik M, Gobbi M, Hoch G, Tamutis V, Balalaikins M, Telnov D, Dascălu MM, Tofilski A. Climatic oscillations in Quaternary have shaped the co-evolutionary patterns between the Norway spruce and its host-associated herbivore. Sci Rep 2020; 10:16524. [PMID: 33020511 PMCID: PMC7536422 DOI: 10.1038/s41598-020-73272-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
During the Last Glacial Maximum in the Northern Hemisphere, expanding ice sheets forced a large number of plants, including trees, to retreat from their primary distribution areas. Many host-associated herbivores migrated along with their host plants. Long-lasting geographic isolation between glacial refugia could have been led to the allopatric speciation in separated populations. Here, we have studied whether the migration history of the Norway spruce Picea abies in Quaternary has affected its host-associated herbivorous beetle—Monochamus sartor. By using microsatellite markers accompanied by the geometric morphometrics analysis of wing venation, we have revealed the clear geographic structure of M. sartor in Eurasia, encompassing two main clusters: southern (Alpine–Carpathian) and eastern (including northeastern Europe and Asia), which reflects the northern and southern ecotypes of its host. The two beetles’ lineages probably diverged during the Pleniglacial (57,000—15,000 BC) when their host tree species was undergoing significant range fragmentation and experienced secondary contact during post-glacial recolonization of spruce in the Holocene. A secondary contact of divergent lineages of M. sartor has resulted in the formation of the hybrid zone in northeastern Europe. Our findings suggest that the climatic oscillations during the Pleistocene have driven an insect-plant co-evolutionary process, and have contributed to the formation of the unique biodiversity of Europe.
Collapse
Affiliation(s)
- Jakub Goczał
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425, Kraków, Poland.
| | - Andrzej Oleksa
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland.
| | - Robert Rossa
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425, Kraków, Poland
| | - Igor Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Katarzyna Meyza
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Radosław Plewa
- Department of Forest Protection, Forest Research Institute, Sękocin Stary, Sękocin Stary, Braci Leśnej 3, 05-090, Raszyn, Poland
| | | | - Mauro Gobbi
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, Corso del Lavoro e della Scienza 3, 38122, Trento, Italy
| | - Gernot Hoch
- BFW - Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria
| | - Vytautas Tamutis
- Kaunas Botanical Garden, Vytautas Magnus University, Ž.E. Žilibero Str. 6, 46324, Kaunas, Lithuania
| | - Maksims Balalaikins
- Institute of Life Sciences and Technology, Daugavpils University, Vienibas 13, Daugavpils, 5400, Latvia
| | - Dmitry Telnov
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.,Institute of Biology, University of Latvia, Miera iela 3, Salaspils, Latvia
| | - Maria-Magdalena Dascălu
- Research Group in Invertebrate Diversity and Phylogenetics, Faculty of Biology, Alexandru Ioan Cuza University, Bd. Carol I, nr. 11, 700506, Iasi, Romania
| | - Adam Tofilski
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Adama Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
243
|
Hagenblad J, Morales J. An Evolutionary Approach to the History of Barley ( Hordeum vulgare) Cultivation in the Canary Islands. THE AFRICAN ARCHAEOLOGICAL REVIEW 2020; 37:579-595. [PMID: 33268912 PMCID: PMC7677147 DOI: 10.1007/s10437-020-09415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
The Canary Islands are an archipelago that lies about 100 km west of North Africa. Barley (Hordeum vulgare) has been continuously cultivated since the colonization of the islands. To investigate the agricultural history of the islands, the DNA from multiple individuals of six extant landraces of barley was sequenced, and the resulting data were analyzed with ABC modeling. Estimates of separation times of barley populations on the different islands and the mainland were congruent with archaeological dating of the earliest settlements on the islands. The results of the genetic analyses were consistent with the continuous cultivation of barley on Lanzarote island since it was first colonized, but suggested cultivation was carried out at a smaller scale than on Gran Canaria and Tenerife. Contrary to archaeological evidence and early written historical sources, the genetic analyses suggest that barley was cultivated on a larger scale on Tenerife than on Gran Canaria. The genetic analysis of contemporary barley added support to the dating of the colonization of the islands and pointed to the need for more archaeological data concerning barley cultivation on Tenerife.
Collapse
Affiliation(s)
- Jenny Hagenblad
- IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Jacob Morales
- Department of Historical Sciences, University of Las Palmas de Gran Canaria, Pérez del Toro 1, 35003 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
244
|
Shi M, Wang Y, Duan T, Qian X, Zeng T, Zhang D. In situ glacial survival maintains high genetic diversity of Mussaenda kwangtungensis on continental islands in subtropical China. Ecol Evol 2020; 10:11304-11321. [PMID: 33144966 PMCID: PMC7593160 DOI: 10.1002/ece3.6768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/06/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022] Open
Abstract
Generally, island populations are predicted to have less genetic variation than their mainland relatives. However, a growing number of studies have nevertheless reported exceptions, indicating that the relationships were impacted by several factors, for example, historical processes. In the present study, we chose a group of subtropical islands located in South China as the study system, which are quite younger and much closer to the mainland than most of the previous studied island systems, to test the hypothesis that in situ glacial survival contributes to high levels of genetic diversity in island populations. We conducted a comparison of genetic variation between 12 island and 11 nearby mainland populations of Mussaenda kwangtungensis using eleven nuclear microsatellite and three chloroplast markers, evaluated effects of the island area and distance to mainland on genetic diversity of island populations, and simulated the potential distribution over the past by ecological niche modeling, together with the genetic data to detect the role of islands during the glacial periods. The island populations displayed comparable levels of genetic diversity and differentiation with mainland populations, overall high levels of unique polymorphisms, and the greatest values of specific within-population genetic diversity. No significant correlation was detected between genetic diversity of island populations and distance to mainland, as well as area of islands, except that allelic richness was significantly positively correlated with the area of islands. Nuclear microsatellites revealed two main clusters, largely corresponding to islands and inland populations, which divergence dated to a time of island formation by ABC analysis. Ecological niche modeling predicted a highly climatic suitability on islands during the last glacial maximum (LGM). Our results suggest that the islands have acted as refugia during the LGM and highlight the role of in situ glacial survival in maintaining high levels of genetic diversity of M. kwangtungensis in continental islands of subtropical China.
Collapse
Affiliation(s)
- Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesGuangzhouChina
| | - Yuyuan Wang
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xin Qian
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tong Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
245
|
Soghigian J, Gloria‐Soria A, Robert V, Le Goff G, Failloux A, Powell JR. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol Ecol 2020; 29:3593-3606. [PMID: 33463828 PMCID: PMC7589284 DOI: 10.1111/mec.15590] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/14/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023]
Abstract
Aedes aegypti is among the best-studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re-evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7-28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4-15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.
Collapse
Affiliation(s)
- John Soghigian
- Yale UniversityNew HavenCTUSA
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Andrea Gloria‐Soria
- Yale UniversityNew HavenCTUSA
- Center for Vector Biology & Zoonotic DiseasesDepartment of Environmental SciencesThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | | | | | | | | |
Collapse
|
246
|
Van Bocxlaer B, Clewing C, Duputié A, Roux C, Albrecht C. Population collapse in viviparid gastropods of the Lake Victoria ecoregion started before the Last Glacial Maximum. Mol Ecol 2020; 30:364-378. [PMID: 33463839 DOI: 10.1111/mec.15599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Ecosystems of Lake Victoria and riparian communities have been strongly disrupted by the introduction of the invasive Nile perch and its fishing industry. Beyond this invasion and other recent anthropogenic stressors, the Lake Victoria ecoregion also underwent phases of pronounced aridity over the Late Pleistocene, lastly during the Last Glacial Maximum (LGM). The consequences of recent and historic environmental change have been canvassed for the adaptive radiation of haplochromine cichlids occupying the ecoregion, but their effect on freshwater invertebrate diversity remains largely unknown. Here, we use 15 microsatellite loci and approximate Bayesian computation to test whether viviparid gastropods experienced a population bottleneck during the LGM, as did cichlids. Clustering analyses support three viviparid gene pools in the Lake Victoria ecoregion, gathering specimens from 1) Lake Albert and the White Nile, 2) the Victoria Nile and Lake Kyoga and 3) Lake Victoria and tributaries. The last group contains the highest genetic diversity, but all groups have a considerable number of private alleles and are inferred to predate the LGM. Examinations of demographic history reveal a 190- to 500-fold population decline that started ~ 125-150 ka ago, thus substantially before the LGM bottleneck documented in haplochromine cichlids. Population collapses in viviparids are an order of magnitude more severe than declines in cichlids and have not been halted by the re-establishment of freshwater ecosystems since the LGM. Recent anthropogenic ecosystem deterioration is causing homogenization of previously diversified microhabitats, which may contribute to (local) extinction and enhanced gene flow among species within gene pools.
Collapse
Affiliation(s)
- Bert Van Bocxlaer
- CNRS and University of Lille, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Catharina Clewing
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Anne Duputié
- CNRS and University of Lille, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Camille Roux
- CNRS and University of Lille, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Christian Albrecht
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
247
|
Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Front Genet 2020; 11:564515. [PMID: 33101385 PMCID: PMC7545011 DOI: 10.3389/fgene.2020.564515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular evolution offers an insightful theory to interpret the genomic consequences of thermal adaptation to previous events of climate change beyond range shifts. However, disentangling often mixed footprints of selective and demographic processes from those due to lineage sorting, recombination rate variation, and genomic constrains is not trivial. Therefore, here we condense current and historical population genomic tools to study thermal adaptation and outline key developments (genomic prediction, machine learning) that might assist their utilization for improving forecasts of populations' responses to thermal variation. We start by summarizing how recent thermal-driven selective and demographic responses can be inferred by coalescent methods and in turn how quantitative genetic theory offers suitable multi-trait predictions over a few generations via the breeder's equation. We later assume that enough generations have passed as to display genomic signatures of divergent selection to thermal variation and describe how these footprints can be reconstructed using genome-wide association and selection scans or, alternatively, may be used for forward prediction over multiple generations under an infinitesimal genomic prediction model. Finally, we move deeper in time to comprehend the genomic consequences of thermal shifts at an evolutionary time scale by relying on phylogeographic approaches that allow for reticulate evolution and ecological parapatric speciation, and end by envisioning the potential of modern machine learning techniques to better inform long-term predictions. We conclude that foreseeing future thermal adaptive responses requires bridging the multiple spatial scales of historical and predictive environmental change research under modern cohesive approaches such as genomic prediction and machine learning frameworks.
Collapse
Affiliation(s)
- Andrés J Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia.,Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
248
|
Chen J, Zeng YF, Zhang DY. Dispersal as a result of asymmetrical hybridization between two closely related oak species in China. Mol Phylogenet Evol 2020; 154:106964. [PMID: 32956798 DOI: 10.1016/j.ympev.2020.106964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Hybridization has played an important role in plant evolution. Less attention has been paid, however, to its role in dispersal. In this study, historical divergence and hybridization were investigated in two closely related Chinese oaks, Quercus mongolica and Q. liaotungensis, to estimate the role that hybridization played in their dispersal. We genotyped 27 Q. mongolica and Q. liaotungensis populations throughout the distributional range of the two oak species, using 14 single-copy nuclear genes and four noncoding chloroplast DNA regions. Bayesian cluster and population tree analyses indicated that there were three groups over all oak populations, namely, Q. mongolica, northwest-northern China (NW-NC) Q. liaotungensis, and northeastern China (NEC) Q. liaotungensis. Approximate Bayesian computation simulation supported an asymmetrical hybridization origin of NEC Q. liaotungensis, after a previous divergence between NW-NC Q. liaotungensis and Q. mongolica. IMa3 analyses suggested that Q. liaotungensis and Q. mongolica diverged in the NW-NC and NEC regions, respectively, and that NEC Q. liaotungensis arose from Q. mongolica, not from NW-NC Q. liaotungensis, and was greatly introgressed by NW-NC Q. liaotungensis. Oak populations in NW-NC and NEC regions held different chloroplast DNA haplotypes, and Q. liaotungensis in NEC shared most haplotypes with Q. mongolica populations, but none with NW-NC Q. liaotungensis populations, suggesting the maternal origin of NEC Q. liaotungensis from Q. mongolica. This study found clear signals of isolation divergence of Q. liaotungensis in NW-NC and Q. mongolica in NEC, and the results suggest that asymmetrical hybridization and introgression from Q. liaotungensis to Q. mongolica, mostly likely via pollen flow, facilitated Q. liaotungensis dispersal to NEC.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yan-Fei Zeng
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
249
|
Cao Y, Zhu S, Chen J, Comes HP, Wang IJ, Chen L, Sakaguchi S, Qiu Y. Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae). Evol Appl 2020; 13:2038-2055. [PMID: 32908603 PMCID: PMC7463308 DOI: 10.1111/eva.12960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
The warm-temperate and subtropical climate zones of East Asia are a hotspot of plant species richness and endemism, including a noticeable number of species-poor Tertiary relict tree genera. However, little is understood about when East Asian Tertiary relict plants diversified, how they responded demographically to past environmental change, and to what extent their current genomic composition (and adaptive capacity) might mitigate the effects of global warming. Here, we obtained genomic (RAD-SNP) data for 171 samples from two extant species of Euptelea in China (24 E. pleiosperma populations) and Japan (11 E. polyandra populations) to elucidate their divergence and demographic histories, genome-wide associations with current environmental variables, and genomic vulnerability to future climate change. Our results indicate that Late Miocene changes in climate and/or sea level promoted species divergence, whereas Late Pliocene uplifting in southwest China likely fostered lineage divergence within E. pleiosperma. Its subsequent range expansion into central/east (CE) China bears genomic signatures of climate-driven selection, yet extant CE populations are predicted to be most vulnerable to future climate change. For E. polyandra, geography was the only significant predictor of genomic variation. Our findings indicate a profound impact of Late Neogene geological and climate change on the evolutionary history of Euptelea, with much stronger signals of local adaptation left in China than in Japan. This study deepens our understanding of the complex evolutionary forces that influence the distribution of genetic variation of Tertiary relict trees, and provides insights into their susceptibility to global change and potential for adaptive responses. Our results lay the groundwork for future conservation and restoration programs for Euptelea.
Collapse
Affiliation(s)
- Ya‐Nan Cao
- Systematic & Evolutionary Botany and Biodiversity GroupMOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Shan‐Shan Zhu
- Systematic & Evolutionary Botany and Biodiversity GroupMOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity GroupMOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Hans P. Comes
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Ian J. Wang
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCAUSA
| | - Lu‐Yao Chen
- Systematic & Evolutionary Botany and Biodiversity GroupMOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Shota Sakaguchi
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Ying‐Xiong Qiu
- Systematic & Evolutionary Botany and Biodiversity GroupMOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
250
|
Page RB, Conarroe C, Quintanilla D, Palomo A, Solis J, Aguilar A, Bezold K, Sackman AM, Marsh DM. Genetic variation in Plethodon cinereus and Plethodon hubrichti from in and around a contact zone. Ecol Evol 2020; 10:9948-9967. [PMID: 33005356 PMCID: PMC7520177 DOI: 10.1002/ece3.6653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
Climate change poses several challenges to biological communities including changes in the frequency of encounters between closely related congeners as a result of range shifts. When climate change leads to increased hybridization, hybrid dysfunction or genetic swamping may increase extinction risk-particularly in range-restricted species with low vagility. The Peaks of Otter Salamander, Plethodon hubrichti, is a fully terrestrial woodland salamander that is restricted to ~18 km of ridgeline in the mountains of southwestern Virginia, and its range is surrounded by the abundant and widespread Eastern Red-backed Salamander, Plethodon cinereus. In order to determine whether these two species are hybridizing and how their range limits may be shifting, we assessed variation at eight microsatellite loci and a 1,008 bp region of Cytochrome B in both species at allopatric reference sites and within a contact zone. Our results show that hybridization between P. hubrichti and P. cinereus either does not occur or is very rare. However, we find that diversity and differentiation are substantially higher in the mountaintop endemic P. hubrichti than in the widespread P. cinereus, despite similar movement ability for the two species as assessed by a homing experiment. Furthermore, estimation of divergence times between reference and contact zone populations via approximate Bayesian computation is consistent with the idea that P. cinereus has expanded into the range of P. hubrichti. Given the apparent recent colonization of the contact zone by P. cinereus, future monitoring of P. cinereus range limits should be a priority for the management of P. hubrichti populations.
Collapse
Affiliation(s)
- Robert B. Page
- Department of Life SciencesTexas A&M University‐San AntonioSan AntonioTXUSA
| | - Claire Conarroe
- Department of BiologyWashington and Lee UniversityLexingtonVAUSA
| | - Diana Quintanilla
- Department of Life SciencesTexas A&M University‐San AntonioSan AntonioTXUSA
| | - Andriea Palomo
- Department of Life SciencesTexas A&M University‐San AntonioSan AntonioTXUSA
| | - Joshua Solis
- Department of Life SciencesTexas A&M University‐San AntonioSan AntonioTXUSA
| | - Ashley Aguilar
- Department of Life SciencesTexas A&M University‐San AntonioSan AntonioTXUSA
| | - Kelly Bezold
- Department of BiologyWashington and Lee UniversityLexingtonVAUSA
| | | | - David M. Marsh
- Department of BiologyWashington and Lee UniversityLexingtonVAUSA
| |
Collapse
|