201
|
Plummer AM, Matos YL, Lin HC, Ryman SG, Birg A, Quinn DK, Parada AN, Vakhtin AA. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front Neurosci 2023; 17:1232480. [PMID: 37841680 PMCID: PMC10568482 DOI: 10.3389/fnins.2023.1232480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.
Collapse
Affiliation(s)
- Allison M. Plummer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yvette L. Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Alisha N. Parada
- Division of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| |
Collapse
|
202
|
Cohen AK, Jaudon TW, Schurman EM, Kava L, Vogel JM, Haas-Godsil J, Lewis D, Crausman S, Leslie K, Bligh SC, Lizars G, Davids JD, Sran S, Peluso MJ, McCorkell L. Impact of extended-course oral nirmatrelvir/ritonavir (Paxlovid) in established Long COVID: Case series and research considerations. RESEARCH SQUARE 2023:rs.3.rs-3359429. [PMID: 37790297 PMCID: PMC10543503 DOI: 10.21203/rs.3.rs-3359429/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Prior case series suggest that a 5-day course of oral Paxlovid (nirmatrelvir/ritonavir) benefits some people with Long COVID, within and/or outside of the context of an acute reinfection. To the best of our knowledge, there have been no prior case series of people with Long COVID who have attempted longer courses of nirmatrelvir/ritonavir. Methods We documented a case series of 13 individuals with Long COVID who initiated extended courses (>5 days; range: 7.5-30 days) of oral nirmatrelvir/ritonavir outside (n=11) of and within (n=2) the context of an acute SARS-CoV-2 infection. Participants reported on symptoms and health experiences before, during, and after their use of nirmatrelvir/ritonavir. Results Among those who took a long course of nirmatrelvir/ritonavir outside of the context of an acute infection, some experienced a meaningful reduction in symptoms, although not all benefits persisted; others experienced no effect on symptoms. One participant reported intense stomach pain that precluded her from continuing her course. Among the two participants who took a long course of nirmatrelvir/ritonavir within the context of an acute reinfection, both eventually returned to their pre-re-infection baseline. Discussion Long courses of nirmatrelvir/ritonavir may have meaningful benefits for some people with Long COVID but not others. We encourage researchers to study who, how, and why nirmatrelvir/ritonavir benefits some and what course length is most effective, with the goal of informing clinical recommendations for using nirmatrelvir/ritonavir and/or other antivirals as a potential treatment for Long COVID.
Collapse
Affiliation(s)
- Alison K Cohen
- University of California San Francisco & Patient-Led Research Collaborative
| | - Toni Wall Jaudon
- Patient-Led Research Collaborative & University of Arkansas for Medical Sciences
| | | | | | - Julia Moore Vogel
- Scripps Research Translational Institute and Patient-Led Research Collaborative
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
204
|
Herman JD, Atyeo C, Zur Y, Cook CE, Patel NJ, Vanni KM, Kowalski EN, Qian G, Srivatsan S, Shadick NA, Rao DA, Kellman B, Mann CJ, Lauffenburger D, Wallace ZS, Sparks JA, Alter G. Humoral immunity to an endemic coronavirus is associated with postacute sequelae of COVID-19 in individuals with rheumatic diseases. Sci Transl Med 2023; 15:eadf6598. [PMID: 37672567 PMCID: PMC10764151 DOI: 10.1126/scitranslmed.adf6598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
Beyond the acute illness caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) infection, about one-fifth of infections result in long-term persistence of symptoms despite the apparent clearance of infection. Insights into the mechanisms that underlie postacute sequelae of COVID-19 (PASC) will be critical for the prevention and clinical management of long-term complications of COVID-19. Several hypotheses have been proposed that may account for the development of PASC, including persistence of virus and dysregulation of immune responses. Among the immunological changes noted in PASC, alterations in humoral immunity have been observed in some patient subsets. To begin to determine whether SARS-CoV-2- or other pathogen-specific humoral immune responses evolve uniquely in PASC, we performed comprehensive antibody profiling against SARS-CoV-2, a panel of endemic pathogens, and a panel of routine vaccine antigens using systems serology in two cohorts of patients with preexisting systemic autoimmune rheumatic disease (SARD) who either developed or did not develop PASC. A distinct qualitative shift observed in Fcγ receptor (FcγR) binding was observed in individuals with PASC. Specifically, individuals with PASC harbored weaker FcγR-binding anti-SARS-CoV-2 antibodies and stronger FcγR-binding antibody responses against the endemic coronavirus OC43. Individuals with PASC developed an OC43 S2-specific antibody response with stronger FcγR binding, linked to cross-reactivity across SARS-CoV-2 and common coronaviruses. These findings identify previous coronavirus imprinting as a potential marker for the development of PASC in individuals with SARDs.
Collapse
Affiliation(s)
- Jonathan D Herman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Yonatan Zur
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Claire E Cook
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Naomi J Patel
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kathleen M Vanni
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Emily N Kowalski
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Grace Qian
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shruthi Srivatsan
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nancy A Shadick
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Benjamin Kellman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Colin J Mann
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary S Wallace
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
205
|
Legler F, Meyer-Arndt L, Mödl L, Kedor C, Freitag H, Stein E, Hoppmann U, Rust R, Wittke K, Siebert N, Behrens J, Thiel A, Konietschke F, Paul F, Scheibenbogen C, Bellmann-Strobl J. Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: results from a prospective observational cohort. EClinicalMedicine 2023; 63:102146. [PMID: 37662515 PMCID: PMC10469383 DOI: 10.1016/j.eclinm.2023.102146] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Background Post-COVID-19 syndrome (PCS) is characterised by a wide range of symptoms, primarily fatigue and exertion intolerance. While disease courses in the early months post-infection have been well-described, the long-term health consequences for patients with PCS with disabling fatigue remain unclear. Methods In this prospective observational cohort study, we evaluated symptom severity and various biomarkers, including hand grip strength (HGS), cardiovascular function, and laboratory parameters, in 106 patients with PCS with moderate to severe fatigue and exertion intolerance at three time points after infection (3-8, 9-16, and 17-20 months). The study was conducted at the Charité's Fatigue Centre and the Charité's outpatient clinic for neuroimmunology at Berlin, Germany from July 16, 2020, to February 18, 2022. A subset of patients (PCS-ME/CFS) met the diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome according to the Canadian Consensus Criteria (CCC). The aim was to determine differences in the disease course between the two patient groups (i.e., PCS vs PCS-ME/CFS) and identify correlating biomarkers. Findings Patients with PCS-ME/CFS reported persistently high severity of most symptoms up to 20 months after infection, while patients with PCS showed overall health improvement. Although fatigue and post-exertional malaise (PEM), hallmarks of post-infectious fatigue syndromes, were still evident in both groups, they remained more pronounced in PCS-ME/CFS. Inflammatory biomarkers decreased in both groups, but not antinuclear antibodies. Lower HGS at onset correlated with symptom persistence, particularly in patients with PCS-ME/CFS. Interpretation Our findings suggest that PCS can persist beyond 20 months post-infection and encompass the full scope of post-infectious ME/CFS as defined by the CCC. Sub-classifying patients with PCS based on the CCC can assist in the management and monitoring of patients with PCS-ME/CFS due to their persistently higher symptom severity. Funding C. S. was supported by a grant from the Weidenhammer-Zoebele Foundation. F. K. was supported by the Volkswagen Foundation.
Collapse
Affiliation(s)
- Franziska Legler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Max Delbrück for Molecular Medicine, Experimental and Clinical Research Centre, 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
| | - Lil Meyer-Arndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Max Delbrück for Molecular Medicine, Experimental and Clinical Research Centre, 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Department for Neurology with Experimental Neurology, 10117 Berlin, Germany
| | - Lukas Mödl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, 10117 Berlin, Germany
| | - Claudia Kedor
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, 13353 Berlin, Germany
| | - Helma Freitag
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, 13353 Berlin, Germany
| | - Elisa Stein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, 13353 Berlin, Germany
| | - Uta Hoppmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Max Delbrück for Molecular Medicine, Experimental and Clinical Research Centre, 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Department for Neurology with Experimental Neurology, 10117 Berlin, Germany
| | - Rebekka Rust
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Max Delbrück for Molecular Medicine, Experimental and Clinical Research Centre, 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
| | - Kirsten Wittke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, 13353 Berlin, Germany
| | - Nadja Siebert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
| | - Janina Behrens
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
| | - Andreas Thiel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Regenerative Immunology and Aging, BIH Centre for Regenerative Therapies, 13353 Berlin, Germany
- Si-M / “Der Simulierte Mensch” a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Frank Konietschke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, 10117 Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Max Delbrück for Molecular Medicine, Experimental and Clinical Research Centre, 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
| | - Carmen Scheibenbogen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, 13353 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Max Delbrück for Molecular Medicine, Experimental and Clinical Research Centre, 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, NeuroCure Research Centre, 10117 Berlin, Germany
| |
Collapse
|
206
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
207
|
Boufidou F, Medić S, Lampropoulou V, Siafakas N, Tsakris A, Anastassopoulou C. SARS-CoV-2 Reinfections and Long COVID in the Post-Omicron Phase of the Pandemic. Int J Mol Sci 2023; 24:12962. [PMID: 37629143 PMCID: PMC10454552 DOI: 10.3390/ijms241612962] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We are reviewing the current state of knowledge on the virological and immunological correlates of long COVID, focusing on recent evidence for the possible association between the increasing number of SARS-CoV-2 reinfections and the parallel pandemic of long COVID. The severity of reinfections largely depends on the severity of the initial episode; in turn, this is determined both by a combination of genetic factors, particularly related to the innate immune response, and by the pathogenicity of the specific variant, especially its ability to infect and induce syncytia formation at the lower respiratory tract. The cumulative risk of long COVID as well as of various cardiac, pulmonary, or neurological complications increases proportionally to the number of SARS-CoV-2 infections, primarily in the elderly. Therefore, the number of long COVID cases is expected to remain high in the future. Reinfections apparently increase the likelihood of long COVID, but less so if they are mild or asymptomatic as in children and adolescents. Strategies to prevent SARS-CoV-2 reinfections are urgently needed, primarily among older adults who have a higher burden of comorbidities. Follow-up studies using an established case definition and precise diagnostic criteria of long COVID in people with or without reinfection may further elucidate the contribution of SARS-CoV-2 reinfections to the long COVID burden. Although accumulating evidence supports vaccination, both before and after the SARS-CoV-2 infection, as a preventive strategy to reduce the risk of long COVID, more robust comparative observational studies, including randomized trials, are needed to provide conclusive evidence of the effectiveness of vaccination in preventing or mitigating long COVID in all age groups. Thankfully, answers not only on the prevention, but also on treatment options and rates of recovery from long COVID are gradually starting to emerge.
Collapse
Affiliation(s)
- Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Snežana Medić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Vicky Lampropoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (A.T.)
| | - Nikolaos Siafakas
- Department of Clinical Microbiology, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (A.T.)
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (A.T.)
| |
Collapse
|
208
|
Yin K, Peluso MJ, Luo X, Thomas R, Shin MG, Neidleman J, Andrew A, Young K, Ma T, Hoh R, Anglin K, Huang B, Argueta U, Lopez M, Valdivieso D, Asare K, Deveau TM, Munter SE, Ibrahim R, Ständker L, Lu S, Goldberg SA, Lee SA, Lynch KL, Kelly JD, Martin JN, Münch J, Deeks SG, Henrich TJ, Roan NR. Long COVID manifests with T cell dysregulation, inflammation, and an uncoordinated adaptive immune response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527892. [PMID: 36798286 PMCID: PMC9934605 DOI: 10.1101/2023.02.09.527892] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Long COVID (LC), a type of post-acute sequelae of SARS-CoV-2 infection (PASC), occurs after at least 10% of SARS-CoV-2 infections, yet its etiology remains poorly understood. Here, we used multiple "omics" assays (CyTOF, RNAseq/scRNAseq, Olink) and serology to deeply characterize both global and SARS-CoV-2-specific immunity from blood of individuals with clear LC and non-LC clinical trajectories, 8 months following infection and prior to receipt of any SARS-CoV-2 vaccine. Our analysis focused on deep phenotyping of T cells, which play important roles in immunity against SARS-CoV-2 yet may also contribute to COVID-19 pathogenesis. Our findings demonstrate that individuals with LC exhibit systemic inflammation and immune dysregulation. This is evidenced by global differences in T cell subset distribution in ways that imply ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. Individuals with LC harbored increased frequencies of CD4+ T cells poised to migrate to inflamed tissues, and exhausted SARS-CoV-2-specific CD8+ T cells. They also harbored significantly higher levels of SARS-CoV-2 antibodies, and in contrast to non-LC individuals, exhibited a mis-coordination between their SARS-CoV-2-specific T and B cell responses. RNAseq/scRNAseq and Olink analyses similarly revealed immune dysregulatory mechanisms, along with non-immune associated perturbations, in individuals with LC. Collectively, our data suggest that proper crosstalk between the humoral and cellular arms of adaptive immunity has broken down in LC, and that this, perhaps in the context of persistent virus, leads to the immune dysregulation, inflammation, and clinical symptoms associated with this debilitating condition.
Collapse
Affiliation(s)
- Kailin Yin
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Xiaoyu Luo
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, USA
| | - Min-Gyoung Shin
- Gladstone Institutes, University of California, San Francisco, USA
| | - Jason Neidleman
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Alicer Andrew
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Kyrlia Young
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Tongcui Ma
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Khamal Anglin
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Beatrice Huang
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Urania Argueta
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Monica Lopez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Daisy Valdivieso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Kofi Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Sadie E Munter
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Rania Ibrahim
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Meyerhofstrasse 1, Ulm, Germany
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Sulggi A Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, USA
| | - Kara L Lynch
- Division of Laboratory Medicine, University of California, San Francisco, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jan Münch
- Core Facility Functional Peptidomics, Ulm University Medical Center, Meyerhofstrasse 1, Ulm, Germany
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| |
Collapse
|
209
|
Tabacof L, Nicolau E, Rivera A, Putrino D. Post-COVID Conditions and Burden of Disease. Phys Med Rehabil Clin N Am 2023; 34:499-511. [PMID: 37419527 DOI: 10.1016/j.pmr.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Post-COVID condition (PCC), also known as long COVID, is a multi-systemic illness estimated to affect 10% to 20% of those infected, regardless of age, baseline health status, or initial symptom severity. PCC has affected millions of lives, with long-lasting debilitating effects, but unfortunately it remains an underrecognized and therefore poorly documented condition. Defining and disseminating the burden of PCC is essential for developing effective public health strategies to address this issue in the long term.
Collapse
Affiliation(s)
- Laura Tabacof
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, 5 East 98th Street SB-18, 10029, New York, NY, USA.
| | - Eric Nicolau
- West Virginia School of Osteopathic Medicine, 5718 Merrywing Circle, Austin, TX 78730, USA
| | - Andrew Rivera
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70130, USA
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, 5 East 98th Street SB-18, 10029, New York, NY, USA
| |
Collapse
|
210
|
Nicolai L, Kaiser R, Stark K. Thromboinflammation in long COVID-the elusive key to postinfection sequelae? J Thromb Haemost 2023; 21:2020-2031. [PMID: 37178769 PMCID: PMC10174338 DOI: 10.1016/j.jtha.2023.04.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Long COVID is a public health emergency affecting millions of people worldwide, characterized by heterogeneous symptoms across multiple organ systems. Here, we discuss the current evidence linking thromboinflammation to postacute sequelae of COVID-19. Studies have found persistence of vascular damage with increased circulating markers of endothelial dysfunction, coagulation abnormalities with heightened thrombin generation capacity, and abnormalities in platelet counts in postacute sequelae of COVID-19. Neutrophil phenotype resembles acute COVID-19 with an increase in activation and Neutrophil Extracellular Trap formation. These insights are potentially linked by elevated platelet-neutrophil aggregate formation. This hypercoagulable state in turn can lead to microvascular thrombosis, evidenced by microclots and elevated D-dimer in the circulation as well as perfusion abnormalities in the lungs and brains of patients with long COVID. Also, COVID-19 survivors experience an increased rate of arterial and venous thrombotic events. We discuss 3 important, potentially intertwined hypotheses that might contribute to thromboinflammation in long COVID: lasting structural changes, most prominently endothelial damage, caused during initial infection; a persistent viral reservoir; and immunopathology driven by a misguided immune system. Finally, we outline the necessity for large, well-characterized clinical cohorts and mechanistic studies to clarify the contribution of thromboinflammation to long COVID.
Collapse
Affiliation(s)
- Leo Nicolai
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany.
| | - Rainer Kaiser
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany
| | - Konstantin Stark
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany
| |
Collapse
|
211
|
Cao X, Nguyen V, Tsai J, Gao C, Tian Y, Zhang Y, Carver W, Kiaris H, Cui T, Tan W. The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice. Mol Metab 2023; 74:101756. [PMID: 37348737 PMCID: PMC10281040 DOI: 10.1016/j.molmet.2023.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND As the pandemic evolves, post-acute sequelae of CoV-2 (PASC) including cardiovascular manifestations have emerged as a new health threat. This study aims to study whether the Spike protein plus obesity can exacerbate PASC-related cardiomyopathy. METHODS A Spike protein-pseudotyped (Spp) virus with the proper surface tropism of SARS-CoV-2 was developed for viral entry assay in vitro and administration into high fat diet (HFD)-fed mice. The systemic viral loads and cardiac transcriptomes were analyzed at 2 and 24 h, 3, 6, and 24 weeks post introducing (wpi) Spp using RNA-seq or real time RT-PCR. Echocardiography was used to monitor cardiac functions. RESULTS Low-density lipoprotein cholesterol enhanced viral uptake in endothelial cells, macrophages, and cardiomyocyte-like H9C2 cells. Selective cardiac and adipose viral depositions were observed in HFD mice but not in normal-chow-fed mice. The cardiac transcriptional signatures in HFD mice at 3, 6, and 24 wpi showed systemic suppression of mitochondria respiratory chain genes including ATP synthases and nicotinamide adenine dinucleotide:ubiquinone oxidoreductase gene members, upregulation of stress pathway-related crucial factors such as nuclear factor-erythroid 2-related factor 1 and signal transducer and activator of transcription 5A, and increases in expression of glucose metabolism-associated genes. As compared with the age-matched HFD control mice, cardiac ejection fraction and fractional shortening were significantly decreased, while left ventricular end-systolic diameter and volume were significantly elevated, and cardiac fibrosis was increased in HFD mice at 24 wpi. CONCLUSION Our data demonstrated that the Spike protein could induce long-term transcriptional suppression of mitochondria metabolic genes and cause cardiac fibrosis and myocardial contractile impairment in obese mice, providing mechanistic insights to PASC-related cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoling Cao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Joseph Tsai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA, 92093, USA
| | - Chao Gao
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Yan Tian
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuping Zhang
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of General Surgery, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wayne Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA
| | - Hippokratis Kiaris
- Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA; Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
212
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to 2 Years Following COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293177. [PMID: 37577714 PMCID: PMC10418298 DOI: 10.1101/2023.07.27.23293177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role. We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection. We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms. We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Dylan Ryder
- Division of Experimental Medicine, University of California San Francisco
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Yingbing Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California San Francisco
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco
| | - Kofi A. Asare
- Division of Experimental Medicine, University of California San Francisco
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Wally Koch
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Gyula Szabo
- Department of Pathology, University of California San Francisco
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Uttam Shrestha
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Nitasha Kumar
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | - Ma Somsouk
- Division of Gastroenterology, University of California San Francisco
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco
| |
Collapse
|
213
|
Lechuga GC, Morel CM, De-Simone SG. Hematological alterations associated with long COVID-19. Front Physiol 2023; 14:1203472. [PMID: 37565145 PMCID: PMC10411895 DOI: 10.3389/fphys.2023.1203472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Long COVID-19 is a condition characterized by persistent symptoms lasting beyond the acute phase of COVID-19. Long COVID-19 produces diverse symptomatology and can impact organs and systems, including the hematological system. Several studies have reported, in COVID-19 patients, hematological abnormalities. Most of these alterations are associated with a higher risk of severe disease and poor outcomes. This literature review identified studies reporting hematological parameters in individuals with Long COVID-19. Findings suggest that Long COVID-19 is associated with a range of sustained hematological alterations, including alterations in red blood cells, anemia, lymphopenia, and elevated levels of inflammatory markers such as ferritin, D-dimer, and IL-6. These alterations may contribute to a better understanding of the pathophysiology of Long COVID-19 and its associated symptoms. However, further research is needed to elucidate the underlying mechanisms and potential treatments for these hematological changes in individuals with Long COVID-19.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Cellular Ultrastructure, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
214
|
Barra M, Tomaiuolo G, Villella VR, Esposito S, Liboà A, D'Angelo P, Marasso SL, Cocuzza M, Bertana V, Camilli E, Preziosi V. Organic Electrochemical Transistor Immuno-Sensors for Spike Protein Early Detection. BIOSENSORS 2023; 13:739. [PMID: 37504137 PMCID: PMC10377135 DOI: 10.3390/bios13070739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The global COVID-19 pandemic has had severe consequences from the social and economic perspectives, compelling the scientific community to focus on the development of effective diagnostics that can combine a fast response and accurate sensitivity/specificity performance. Presently available commercial antigen-detecting rapid diagnostic tests (Ag-RDTs) are very fast, but still face significant criticisms, mainly related to their inability to amplify the protein signal. This translates to a limited sensitive outcome and, hence, a reduced ability to hamper the spread of SARS-CoV-2 infection. To answer the urgent need for novel platforms for the early, specific and highly sensitive detection of the virus, this paper deals with the use of organic electrochemical transistors (OECTs) as very efficient ion-electron converters and amplifiers for the detection of spike proteins and their femtomolar concentration. The electrical response of the investigated OECTs was carefully analyzed, and the changes in the parameters associated with the transconductance (i.e., the slope of the transfer curves) in the gate voltage range between 0 and 0.3 V were found to be more clearly correlated with the spike protein concentration. Moreover, the functionalization of OECT-based biosensors with anti-spike and anti-nucleocapside proteins, the major proteins involved in the disease, demonstrated the specificity of these devices, whose potentialities should also be considered in light of the recent upsurge of the so-called "long COVID" syndrome.
Collapse
Affiliation(s)
- Mario Barra
- CNR-SPIN, c/o Department of Physics ''Ettore Pancini'', P.le Tecchio, 80, 80125 Napoli, Italy
| | - Giovanna Tomaiuolo
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| | - Valeria Rachela Villella
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| | - Speranza Esposito
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| | - Aris Liboà
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Graduate School in Science and Technologies of Materials and Department of Physics, University of Parma, Parco Area delle Scienze, 7/A, 43121 Parma, Italy
| | | | - Simone Luigi Marasso
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Matteo Cocuzza
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Valentina Bertana
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Elena Camilli
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Valentina Preziosi
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| |
Collapse
|
215
|
Woodruff MC, Bonham KS, Anam FA, Walker TA, Faliti CE, Ishii Y, Kaminski CY, Ruunstrom MC, Cooper KR, Truong AD, Dixit AN, Han JE, Ramonell RP, Haddad NS, Rudolph ME, Yalavarthi S, Betin V, Natoli T, Navaz S, Jenks SA, Zuo Y, Knight JS, Khosroshahi A, Lee FEH, Sanz I. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun 2023; 14:4201. [PMID: 37452024 PMCID: PMC10349085 DOI: 10.1038/s41467-023-40012-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important. Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types. Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Tiffany A Walker
- Department of Medicine, Division of General Internal Medicine, Emory University, Atlanta, GA, USA
| | - Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Yusho Ishii
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Martin C Ruunstrom
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Kelly Rose Cooper
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Alexander D Truong
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Adviteeya N Dixit
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Jenny E Han
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Richard P Ramonell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | - Sherwin Navaz
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Yu Zuo
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|
216
|
Sousa GF, Carpes RM, Silva CAO, Pereira MEP, Silva ACVF, Coelho VAGS, Costa EP, Mury FB, Gestinari RS, Souza-Menezes J, Leal-da-Silva M, Nepomuceno-Silva JL, Tanuri A, Ferreira-Júnior OC, Monteiro-de-Barros C. Immunoglobulin A as a Key Immunological Molecular Signature of Post-COVID-19 Conditions. Viruses 2023; 15:1545. [PMID: 37515231 PMCID: PMC10385093 DOI: 10.3390/v15071545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
COVID-19 has infected humans worldwide, causing millions of deaths or prolonged symptoms in survivors. The transient or persistent symptoms after SARS-CoV-2 infection have been defined as post-COVID-19 conditions (PCC). We conducted a study of 151 Brazilian PCC patients to analyze symptoms and immunoglobulin profiles, taking into account sex, vaccination, hospitalization, and age. Fatigue and myalgia were the most common symptoms, and lack of vaccination, hospitalization, and neuropsychiatric and metabolic comorbidities were relevant to the development of PCC. Analysis of serological immunoglobulins showed that IgA was higher in PCC patients, especially in the adult and elderly groups. Also, non-hospitalized and hospitalized PCC patients produced high and similar levels of IgA. Our results indicated that the detection of IgA antibodies against SARS-CoV-2 during the course of the disease could be associated with the development of PCC and may be an immunological signature to predict prolonged symptoms in COVID-19 patients.
Collapse
Affiliation(s)
- Graziele F. Sousa
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Raphael M. Carpes
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Carina A. O. Silva
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Marcela E. P. Pereira
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Amanda C. V. F. Silva
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Viktoria A. G. S. Coelho
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Evenilton P. Costa
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Flávia B. Mury
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Raquel S. Gestinari
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Jackson Souza-Menezes
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Manuela Leal-da-Silva
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - José L. Nepomuceno-Silva
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Orlando C. Ferreira-Júnior
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Cintia Monteiro-de-Barros
- Laboratório de Campanha para Testagem e Pesquisa do COVID-19 (LCC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, RJ, Brazil
- Cintia Monteiro de Barros, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-045, RJ, Brazil
| |
Collapse
|
217
|
Achleitner M, Steenblock C, Dänhardt J, Jarzebska N, Kardashi R, Kanczkowski W, Straube R, Rodionov RN, Bornstein N, Tselmin S, Kaiser F, Bucher R, Barbir M, Wong ML, Voit-Bak K, Licinio J, Bornstein SR. Clinical improvement of Long-COVID is associated with reduction in autoantibodies, lipids, and inflammation following therapeutic apheresis. Mol Psychiatry 2023; 28:2872-2877. [PMID: 37131073 PMCID: PMC10152027 DOI: 10.1038/s41380-023-02084-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
In the aftermath of the COVID-19 pandemic, we are witnessing an unprecedented wave of post-infectious complications. Most prominently, millions of patients with Long-Covid complain about chronic fatigue and severe post-exertional malaise. Therapeutic apheresis has been suggested as an efficient treatment option for alleviating and mitigating symptoms in this desperate group of patients. However, little is known about the mechanisms and biomarkers correlating with treatment outcomes. Here, we have analyzed in different cohorts of Long-Covid patients specific biomarkers before and after therapeutic apheresis. In patients that reported a significant improvement following two cycles of therapeutic apheresis, there was a significant reduction in neurotransmitter autoantibodies, lipids, and inflammatory markers. Furthermore, we observed a 70% reduction in fibrinogen, and following apheresis, erythrocyte rouleaux formation and fibrin fibers largely disappeared as demonstrated by dark field microscopy. This is the first study demonstrating a pattern of specific biomarkers with clinical symptoms in this patient group. It may therefore form the basis for a more objective monitoring and a clinical score for the treatment of Long-Covid and other postinfectious syndromes.
Collapse
Affiliation(s)
- Martin Achleitner
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Juliane Dänhardt
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Natalia Jarzebska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Romina Kardashi
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Richard Straube
- Zentrum für Apherese- und Hämofiltration am INUS Tageklinikum, Cham, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nitzan Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Ronald Bucher
- Biologicum Baden-Baden INUSpherese Zentrum, Baden-Baden, Germany
| | - Mahmoud Barbir
- Department of Cardiology, Harefield Hospital, Harefield, United Kingdom
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Karin Voit-Bak
- Zentrum für Apherese- und Hämofiltration am INUS Tageklinikum, Cham, Germany
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
218
|
Giraldo GSP, Ali ST, Kang AK, Patel TR, Budhiraja S, Gaelen JI, Lank GK, Clark JR, Mukherjee S, Singer T, Venkatesh A, Orban ZS, Lim PH, Jimenez M, Miller J, Taylor C, Szymanski AL, Scarpelli J, Graham EL, Balabanov RD, Barcelo BE, Cahan JG, Ruckman K, Shepard AG, Slutzky MW, LaFaver K, Kumthekar PU, Shetty NK, Carroll KS, Ho SU, Lukas RV, Batra A, Liotta EM, Koralnik IJ. Neurologic Manifestations of Long COVID Differ Based on Acute COVID-19 Severity. Ann Neurol 2023; 94:146-159. [PMID: 36966460 PMCID: PMC10724021 DOI: 10.1002/ana.26649] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
OBJECTIVE To characterize neurologic manifestations in post-hospitalization Neuro-PASC (PNP) and non-hospitalized Neuro-PASC (NNP) patients. METHODS Prospective study of the first 100 consecutive PNP and 500 NNP patients evaluated at a Neuro-COVID-19 clinic between 5/2020 and 8/2021. RESULTS PNP were older than NNP patients (mean 53.9 vs 44.9 y; p < 0.0001) with a higher prevalence of pre-existing comorbidities. An average 6.8 months from onset, the main neurologic symptoms were "brain fog" (81.2%), headache (70.3%), and dizziness (49.5%) with only anosmia, dysgeusia and myalgias being more frequent in the NNP compared to the PNP group (59 vs 39%, 57.6 vs 39% and 50.4 vs 33%, all p < 0.003). Moreover, 85.8% of patients experienced fatigue. PNP more frequently had an abnormal neurologic exam than NNP patients (62.2 vs 37%, p < 0.0001). Both groups had impaired quality of life in cognitive, fatigue, sleep, anxiety, and depression domains. PNP patients performed worse on processing speed, attention, and working memory tasks than NNP patients (T-score 41.5 vs 55, 42.5 vs 47 and 45.5 vs 49, all p < 0.001) and a US normative population. NNP patients had lower results in attention task only. Subjective impression of cognitive ability correlated with cognitive test results in NNP but not in PNP patients. INTERPRETATION PNP and NNP patients both experience persistent neurologic symptoms affecting their quality of life. However, they harbor significant differences in demographics, comorbidities, neurologic symptoms and findings, as well as pattern of cognitive dysfunction. Such differences suggest distinct etiologies of Neuro-PASC in these populations warranting targeted interventions. ANN NEUROL 2023;94:146-159.
Collapse
Affiliation(s)
- Gina S. Perez Giraldo
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sareen T. Ali
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anthony K. Kang
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tulsi R. Patel
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shreya Budhiraja
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jordan I. Gaelen
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Grace K. Lank
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jeffrey R. Clark
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shreya Mukherjee
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tracey Singer
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Aditi Venkatesh
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Zachary S. Orban
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Patrick H. Lim
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Millenia Jimenez
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Janet Miller
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Carolyn Taylor
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - April L Szymanski
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jessica Scarpelli
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Edith L. Graham
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Roumen D. Balabanov
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bianca E. Barcelo
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Joshua G. Cahan
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kaitlyn Ruckman
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alan G. Shepard
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marc W. Slutzky
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kathrin LaFaver
- Saratoga Hospital Medical Group, Neurology, Saratoga Springs, NY
| | - Priya U. Kumthekar
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Neil K. Shetty
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katherine S. Carroll
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sam U. Ho
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rimas V. Lukas
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ayush Batra
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Eric M. Liotta
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Igor J. Koralnik
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
219
|
Mueller MR, Ganesh R, Hurt RT, Beckman TJ. Post-COVID Conditions. Mayo Clin Proc 2023; 98:1071-1078. [PMID: 37419575 DOI: 10.1016/j.mayocp.2023.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 07/09/2023]
Abstract
Postinfectious syndromes have been described since the Spanish influenza pandemic of 1918. A similar syndrome-post-COVID condition (PCC)-is common; it occurs months after COVID-19 infection and involves fatigue, postexertional malaise, dyspnea, memory loss, diffuse pain, and orthostasis. The medical, psychosocial, and economic impact of PCC is immense. In the United States, PCC has caused widespread unemployment and billions in lost wages. Risk factors for development of PCC are female sex and severity of acute COVID-19 infection. Proposed pathophysiologic mechanisms include central nervous system inflammation, viral reservoirs, persistent spike protein, cell receptor dysregulation, and autoimmunity. Because presenting symptoms are often vague, the approach to evaluation should be comprehensive with consideration of other diseases that could masquerade as PCC. Treatments of PCC are little researched, are largely expert based, and are likely to evolve as more evidence emerges. Current therapies, which are symptom targeted, include medications and nonpharmacologic therapies such as optimizing fluid intake, compression garments, progressive activity, meditation, biofeedback, cognitive rehabilitation, and addressing concomitant mood disorders. Many patients will enjoy significant improvements in their quality of life with multimodal treatments and longitudinal care.
Collapse
Affiliation(s)
| | | | - Ryan T Hurt
- Department of Medicine, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
220
|
Angeli F, Verdecchia P, Reboldi G. Long COVID [post-acute sequelae of coronavirus disease 2019]: experimental drugs for cardiopulmonary complications. Expert Opin Investig Drugs 2023; 32:567-570. [PMID: 37358898 DOI: 10.1080/13543784.2023.2230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
- Fondazione Umbra Cuore E Ipertensione-ONLUS, Perugia, Italy
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica E Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| |
Collapse
|
221
|
Qi P, Huang M, Zhu H. Exploring potential biomarkers and therapeutic targets of long COVID-associated inflammatory cardiomyopathy. Front Med (Lausanne) 2023; 10:1191354. [PMID: 37457560 PMCID: PMC10346863 DOI: 10.3389/fmed.2023.1191354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Background The negative impact of long COVID on social life and human health is increasingly prominent, and the elevated risk of cardiovascular disease in patients recovering from COVID-19 has also been fully confirmed. However, the pathogenesis of long COVID-related inflammatory cardiomyopathy is still unclear. Here, we explore potential biomarkers and therapeutic targets of long COVID-associated inflammatory cardiomyopathy. Methods Datasets that met the study requirements were identified in Gene Expression Omnibus (GEO), and differentially expressed genes (DEGs) were obtained by the algorithm. Then, functional enrichment analysis was performed to explore the basic molecular mechanisms and biological processes associated with DEGs. A protein-protein interaction (PPI) network was constructed and analyzed to identify hub genes among the common DEGs. Finally, a third dataset was introduced for validation. Results Ultimately, 3,098 upregulated DEGs and 1965 downregulated DEGs were extracted from the inflammatory cardiomyopathy dataset. A total of 89 upregulated DEGs and 217 downregulated DEGs were extracted from the dataset of convalescent COVID patients. Enrichment analysis and construction of the PPI network confirmed VEGFA, FOXO1, CXCR4, and SMAD4 as upregulated hub genes and KRAS and TXN as downregulated hub genes. The separate dataset of patients with COVID-19 infection used for verification led to speculation that long COVID-associated inflammatory cardiomyopathy is mainly attributable to the immune-mediated response and inflammation rather than to direct infection of cells by the virus. Conclusion Screening of potential biomarkers and therapeutic targets sheds new light on the pathogenesis of long COVID-associated inflammatory cardiomyopathy as well as potential therapeutic approaches. Further clinical studies are needed to explore these possibilities in light of the increasingly severe negative impacts of long COVID.
Collapse
Affiliation(s)
- Peng Qi
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haiyan Zhu
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
222
|
Del Carpio-Orantes L. Etiopathogenic theories about long COVID. World J Virol 2023; 12:204-208. [PMID: 37396704 PMCID: PMC10311581 DOI: 10.5501/wjv.v12.i3.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023] Open
Abstract
The main etiopathogenic theories of long coronavirus disease (COVID) are listed and a conjunction of them is carried out with the objective of deciphering the pathophysiology of the entity, finally the main lines of treatment existing in real life are discussed (Paxlovid, use of antibiotics in dysbiosis, triple anticoagulant therapy, temelimab).
Collapse
Affiliation(s)
- Luis Del Carpio-Orantes
- Department of Internal Medicine, Virology, Research, Study Group for the Diagnosis and Treatment of COVID-19 in Veracruz, Veracruz 91900, Veracruz, Mexico
| |
Collapse
|
223
|
Horwitz LI, Thaweethai T, Brosnahan SB, Cicek MS, Fitzgerald ML, Goldman JD, Hess R, Hodder SL, Jacoby VL, Jordan MR, Krishnan JA, Laiyemo AO, Metz TD, Nichols L, Patzer RE, Sekar A, Singer NG, Stiles LE, Taylor BS, Ahmed S, Algren HA, Anglin K, Aponte-Soto L, Ashktorab H, Bassett IV, Bedi B, Bhadelia N, Bime C, Bind MAC, Black LJ, Blomkalns AL, Brim H, Castro M, Chan J, Charney AW, Chen BK, Chen LQ, Chen P, Chestek D, Chibnik LB, Chow DC, Chu HY, Clifton RG, Collins S, Costantine MM, Cribbs SK, Deeks SG, Dickinson JD, Donohue SE, Durstenfeld MS, Emery IF, Erlandson KM, Facelli JC, Farah-Abraham R, Finn AV, Fischer MS, Flaherman VJ, Fleurimont J, Fonseca V, Gallagher EJ, Gander JC, Gennaro ML, Gibson KS, Go M, Goodman SN, Granger JP, Greenway FL, Hafner JW, Han JE, Harkins MS, Hauser KSP, Heath JR, Hernandez CR, Ho O, Hoffman MK, Hoover SE, Horowitz CR, Hsu H, Hsue PY, Hughes BL, Jagannathan P, James JA, John J, Jolley S, Judd SE, Juskowich JJ, Kanjilal DG, Karlson EW, Katz SD, Kelly JD, Kelly SW, Kim AY, Kirwan JP, Knox KS, Kumar A, Lamendola-Essel MF, Lanca M, Lee-lannotti JK, Lefebvre RC, Levy BD, et alHorwitz LI, Thaweethai T, Brosnahan SB, Cicek MS, Fitzgerald ML, Goldman JD, Hess R, Hodder SL, Jacoby VL, Jordan MR, Krishnan JA, Laiyemo AO, Metz TD, Nichols L, Patzer RE, Sekar A, Singer NG, Stiles LE, Taylor BS, Ahmed S, Algren HA, Anglin K, Aponte-Soto L, Ashktorab H, Bassett IV, Bedi B, Bhadelia N, Bime C, Bind MAC, Black LJ, Blomkalns AL, Brim H, Castro M, Chan J, Charney AW, Chen BK, Chen LQ, Chen P, Chestek D, Chibnik LB, Chow DC, Chu HY, Clifton RG, Collins S, Costantine MM, Cribbs SK, Deeks SG, Dickinson JD, Donohue SE, Durstenfeld MS, Emery IF, Erlandson KM, Facelli JC, Farah-Abraham R, Finn AV, Fischer MS, Flaherman VJ, Fleurimont J, Fonseca V, Gallagher EJ, Gander JC, Gennaro ML, Gibson KS, Go M, Goodman SN, Granger JP, Greenway FL, Hafner JW, Han JE, Harkins MS, Hauser KSP, Heath JR, Hernandez CR, Ho O, Hoffman MK, Hoover SE, Horowitz CR, Hsu H, Hsue PY, Hughes BL, Jagannathan P, James JA, John J, Jolley S, Judd SE, Juskowich JJ, Kanjilal DG, Karlson EW, Katz SD, Kelly JD, Kelly SW, Kim AY, Kirwan JP, Knox KS, Kumar A, Lamendola-Essel MF, Lanca M, Lee-lannotti JK, Lefebvre RC, Levy BD, Lin JY, Logarbo BP, Logue JK, Longo MT, Luciano CA, Lutrick K, Malakooti SK, Mallett G, Maranga G, Marathe JG, Marconi VC, Marshall GD, Martin CF, Martin JN, May HT, McComsey GA, McDonald D, Mendez-Figueroa H, Miele L, Mittleman MA, Mohandas S, Mouchati C, Mullington JM, Nadkarni GN, Nahin ER, Neuman RB, Newman LT, Nguyen A, Nikolich JZ, Ofotokun I, Ogbogu PU, Palatnik A, Palomares KTS, Parimon T, Parry S, Parthasarathy S, Patterson TF, Pearman A, Peluso MJ, Pemu P, Pettker CM, Plunkett BA, Pogreba-Brown K, Poppas A, Porterfield JZ, Quigley JG, Quinn DK, Raissy H, Rebello CJ, Reddy UM, Reece R, Reeder HT, Rischard FP, Rosas JM, Rosen CJ, Rouphael NG, Rouse DJ, Ruff AM, Saint Jean C, Sandoval GJ, Santana JL, Schlater SM, Sciurba FC, Selvaggi C, Seshadri S, Sesso HD, Shah DP, Shemesh E, Sherif ZA, Shinnick DJ, Simhan HN, Singh U, Sowles A, Subbian V, Sun J, Suthar MS, Teunis LJ, Thorp JM, Ticotsky A, Tita ATN, Tragus R, Tuttle KR, Urdaneta AE, Utz PJ, VanWagoner TM, Vasey A, Vernon SD, Vidal C, Walker T, Ward HD, Warren DE, Weeks RM, Weiner SJ, Weyer JC, Wheeler JL, Whiteheart SW, Wiley Z, Williams NJ, Wisnivesky JP, Wood JC, Yee LM, Young NM, Zisis SN, Foulkes AS. Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design. PLoS One 2023; 18:e0286297. [PMID: 37352211 PMCID: PMC10289397 DOI: 10.1371/journal.pone.0286297] [Show More Authors] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
IMPORTANCE SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. METHODS RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. DISCUSSION RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options. REGISTRATION NCT05172024.
Collapse
Affiliation(s)
- Leora I. Horwitz
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Tanayott Thaweethai
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Shari B. Brosnahan
- Division of Pulmonary Critical Care and Sleep Medicine, NYU Langone Health, New York, New York, United States of America
| | - Mine S. Cicek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Megan L. Fitzgerald
- Patient Led Research Collaboration on COVID-19, Washington, DC, United States of America
| | - Jason D. Goldman
- Division of Infectious Diseases, Providence Swedish Medical Center, Seattle, Washington, United States of America
| | - Rachel Hess
- Department of Population Health Sciences and Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - S. L. Hodder
- Department of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Vanessa L. Jacoby
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Michael R. Jordan
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Medford, Massachusetts, United States of America
| | - Jerry A. Krishnan
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Adeyinka O. Laiyemo
- Department of Medicine, Howard University, Washington, DC, United States of America
| | - Torri D. Metz
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Lauren Nichols
- Body Politic COVID-19 Support Group, Boston, Massachusetts, United States of America
| | - Rachel E. Patzer
- Department of Medicine and Surgery, Health Services Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anisha Sekar
- Patient Led Research Collaboration on COVID-19, Washington, DC, United States of America
| | - Nora G. Singer
- Department of Medicine and Rheumatology, The MetroHealth Medical Center, Cleveland, Ohio, United States of America
| | - Lauren E. Stiles
- Department of Neurology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, United States of America
| | - Barbara S. Taylor
- Department of Medicine, Division of Infectious Diseases and Infectious Diseases, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shifa Ahmed
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Heather A. Algren
- Swedish Center for Research and Innovation, Providence Swedish Medical Center, Seattle, Washington, United States of America
| | - Khamal Anglin
- Department of Epidemiology and Biostatistics, University of California at San Francisco Institute of Global Health Sciences, San Francisco, San Francisco, California, United States of America
| | - Lisa Aponte-Soto
- College of Science and Health, Department of Health Sciences, DePaul University, Chicago, Illinois, United States of America
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC, United States of America
| | - Ingrid V. Bassett
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brahmchetna Bedi
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Nahid Bhadelia
- Center for Emerging Infectious Diseases Policy and Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christian Bime
- Department of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Marie-Abele C. Bind
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lora J. Black
- Department of Clinical Research, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Andra L. Blomkalns
- Department of Emergency Medicine, Stanford University, Stanford, California, United States of America
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC, United States of America
| | - Mario Castro
- Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, Kansas City, United States of America
| | - James Chan
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alexander W. Charney
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Benjamin K. Chen
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Li Qing Chen
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Peter Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David Chestek
- Department of Emergency Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Lori B. Chibnik
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Dominic C. Chow
- Department of Medicine, University of Hawaii at Manoa John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Helen Y. Chu
- Department of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Rebecca G. Clifton
- Department of Biostatistics, George Washington University, Washington, DC, United States of America
| | - Shelby Collins
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Maged M. Costantine
- Department of Obstetrics and Gynecology, The Ohio State University Hospital, Columbus, Ohio, United States of America
| | - Sushma K. Cribbs
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - John D. Dickinson
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sarah E. Donohue
- Department of Research Services, University of Illinois College of Medicine, Peoria, Illinois, United States of America
| | - Matthew S. Durstenfeld
- Department of Medicine, Division of Cardiology at Zuckerberg San Francisco General, University of California San Francisco, San Francisco, California, United States of America
| | - Ivette F. Emery
- MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, United States of America
| | - Kristine M. Erlandson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Julio C. Facelli
- Department of Biomedical Informatics and Clinical and Translational Science Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rachael Farah-Abraham
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Aloke V. Finn
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland, United States of America
| | - Melinda S. Fischer
- Department of Medicine, Division of Infectious Diseases and Infectious Diseases, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Valerie J. Flaherman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Judes Fleurimont
- Mile Square Health Center, University of Illinois Chicago, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Vivian Fonseca
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Emily J. Gallagher
- Department of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer C. Gander
- Center for Research and Evaluation, Kaiser Permanente of Georgia, Atlanta, Georgia, United States of America
| | - Maria Laura Gennaro
- Public Health Research Institute and Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kelly S. Gibson
- Department of Obstetrics and Gynecology, MetroHealth System, Cleveland, Ohio, United States of America
| | - Minjoung Go
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Steven N. Goodman
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joey P. Granger
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Frank L. Greenway
- Clinical Trials, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - John W. Hafner
- Department of Emergency Medicine, OSF Saint Francis Medical Center, Peoria, Illinois, United States of America
| | - Jenny E. Han
- Department of Pulmonary and Critical Care, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michelle S. Harkins
- Department of Internal Medicine University of New Mexico, Health Science Center, Albuquerque, New Mexico, United States of America
| | - Kristine S. P. Hauser
- Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - James R. Heath
- Department of Bioengineering, Institute for Systems Biology, Seattle, Washington, United States of America
| | - Carla R. Hernandez
- Clinical Research Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - On Ho
- Seattle Children’s Therapeutics, Seattle, Washington, United States of America
| | - Matthew K. Hoffman
- Department of Obstetrics and Gynecology, Christiana Care Health Services, Newark, Delaware, United States of America
| | - Susan E. Hoover
- Department of Clinical Research, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Carol R. Horowitz
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Harvey Hsu
- Department of Internal Medicine, University of Arizona, Phoenix, Arizona, United States of America
| | - Priscilla Y. Hsue
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Brenna L. Hughes
- Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, United States of America
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Judith A. James
- Department of Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Janice John
- Department of Family Medicine, Cambridge Health Alliance, Cambridge, Massachusetts, United States of America
| | - Sarah Jolley
- Department of Pulmonary and Critical Care Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - S. E. Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joy J. Juskowich
- Department of Medicine, Division of Infectious Diseases, West Virginia School of Medicine, Morgantown, West Virginia, United States of America
| | - Diane G. Kanjilal
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Elizabeth W. Karlson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stuart D. Katz
- Department of Medicine, NYU Langone Health, New York, New York, United States of America
| | - J. Daniel Kelly
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Sara W. Kelly
- Department of Pediatrics & Department of Research Services, University of Illinois College of Medicine, Peoria, Illinois, United States of America
| | - Arthur Y. Kim
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - John P. Kirwan
- Department Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Kenneth S. Knox
- Department of Internal Medicine, University of Arizona, Phoenix, Arizona, United States of America
| | - Andre Kumar
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | | | - Margaret Lanca
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joyce K. Lee-lannotti
- Department of Internal Medicine and Neurology, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, United States of America
| | - R. Craig Lefebvre
- Communications Practice Area, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Bruce D. Levy
- Department of Internal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Janet Y. Lin
- Department of Emergency Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Brian P. Logarbo
- Tulane Center for Clinical Research, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jennifer K. Logue
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michele T. Longo
- Tulane Center for Clinical Neurosciences, Tulane School of Medicine, New Orleans, Louisiana, United States of America
| | - Carlos A. Luciano
- Department of Neurology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
| | - Karen Lutrick
- Department of Family & Community Medicine, University of Arizona, College of Medicine – Tucson, Tucson, Arizona, United States of America
| | - Shahdi K. Malakooti
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Gail Mallett
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| | - Gabrielle Maranga
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Jai G. Marathe
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Vincent C. Marconi
- Department of Medicine, Infectious Diseases and Department of Global Health, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gailen D. Marshall
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Christopher F. Martin
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Heidi T. May
- Department of Cardiology, Intermountain Medical Center, Salt Lake City, Utah, United States of America
| | - Grace A. McComsey
- Department of Medicine, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Dylan McDonald
- Department of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Hector Mendez-Figueroa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Murray A. Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sindhu Mohandas
- Department of Infectious Diseases, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America
| | - Christian Mouchati
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Janet M. Mullington
- Department of Neurology and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Girish N. Nadkarni
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Erica R. Nahin
- Department of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Robert B. Neuman
- Division of Cardiology, Kaiser Permanente of Georgia, Atlanta, Georgia, United States of America
| | - Lisa T. Newman
- Department of Social, Statistical and Environmental Sciences, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Amber Nguyen
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Janko Z. Nikolich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Igho Ofotokun
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Princess U. Ogbogu
- Division of Pediatric Allergy, Immunology, and Rheumatology, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, Ohio, United States of America
| | - Anna Palatnik
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kristy T. S. Palomares
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Saint Peter’s University Hospital, New Brunswick, New Jersey, United States of America
| | - Tanyalak Parimon
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Samuel Parry
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sairam Parthasarathy
- Department of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Thomas F. Patterson
- Department of Medicine, Department of Infectious Disease, University of Texas Health, San Antonio, Texas, United States of America
| | - Ann Pearman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Michael J. Peluso
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, California, United States of America
| | - Priscilla Pemu
- Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Christian M. Pettker
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Beth A. Plunkett
- Department of Obstetrics and Gynecology, NorthShore University Health System, Evanston, Illinois, United States of America
| | - Kristen Pogreba-Brown
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, United States of America
| | - Athena Poppas
- Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - J. Zachary Porterfield
- Department of Internal Medicine, Division of Infectious Diseases, University of Kentucky, Lexington, Kentucky, United States of America
| | - John G. Quigley
- Department of Medicine, Division of Hematology/Oncology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Hengameh Raissy
- Department of Pediatrics, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Candida J. Rebello
- Department of Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Uma M. Reddy
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, United States of America
| | - Rebecca Reece
- Department of Medicine, Division of Infectious Diseases, West Virginia School of Medicine, Morgantown, West Virginia, United States of America
| | - Harrison T. Reeder
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Franz P. Rischard
- Department of Pulmonary and Critical Care, University of Arizona, Tucson, Arizona, United States of America
| | - Johana M. Rosas
- Department of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Clifford J. Rosen
- MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, United States of America
| | - Nadine G. Rouphael
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Dwight J. Rouse
- Department of Obstetrics and Gynecology, Brown University, Providence, Rhode Island, United States of America
| | - Adam M. Ruff
- Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, Kansas City, United States of America
| | - Christina Saint Jean
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Grecio J. Sandoval
- Department of Biostatistics, George Washington University, Washington, DC, United States of America
| | - Jorge L. Santana
- Department of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Shannon M. Schlater
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Frank C. Sciurba
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Caitlin Selvaggi
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center San Antonio, San Antonio, Texas, United States of America
| | - Howard D. Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Dimpy P. Shah
- Department of Population Health Sciences, Mays Cancer Center, University of Texas Health, San Antonio, Texas, United States of America
| | - Eyal Shemesh
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Zaki A. Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Daniel J. Shinnick
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hyagriv N. Simhan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Upinder Singh
- Department of Internal Medicine, Stanford University, Stanford, California, United States of America
| | - Amber Sowles
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Vignesh Subbian
- Department of Biomedical Engineering, Department of Systems and Industrial Engineering, University of Arizona College of Engineering, Tucson, Arizona, United States of America
| | - Jun Sun
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Mehul S. Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Larissa J. Teunis
- Health Services Research Center, Emory University, Atlanta, Georgia, United States of America
| | - John M. Thorp
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amberly Ticotsky
- Department of Family Medicine, Cambridge Health Alliance, Cambridge, Massachusetts, United States of America
| | - Alan T. N. Tita
- Department of Obstetrics and Gynecology and Center for Women’s Reproductive Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robin Tragus
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Katherine R. Tuttle
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Alfredo E. Urdaneta
- Department of Emergency Medicine, Stanford University, Stanford, California, United States of America
| | - P. J. Utz
- Department of Internal Medicine, Stanford University, Stanford, California, United States of America
| | - Timothy M. VanWagoner
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Andrew Vasey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Suzanne D. Vernon
- Department of Research, Bateman Horne Center, Salt Lake City, Utah, United States of America
| | - Crystal Vidal
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Tiffany Walker
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Honorine D. Ward
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - David E. Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ryan M. Weeks
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Steven J. Weiner
- Department of Biostatistics, George Washington University, Washington, DC, United States of America
| | - Jordan C. Weyer
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jennifer L. Wheeler
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zanthia Wiley
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Natasha J. Williams
- Institute for Excellence in Health Equity, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Juan P. Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - John C. Wood
- Department of Pediatrics and Radiology, Children’s Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Lynn M. Yee
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Natalie M. Young
- Swedish Center for Research and Innovation, Providence Swedish Medical Center, Seattle, Washington, United States of America
| | - Sokratis N. Zisis
- Department of Medicine, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Andrea S. Foulkes
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
224
|
Karuna S, Gallardo-Cartagena JA, Theodore D, Hunidzarira P, Montenegro-Idrogo J, Hu J, Jones M, Kim V, De La Grecca R, Trahey M, Karg C, Takalani A, Polakowski L, Hutter J, Miner MD, Erdmann N, Goepfert P, Maboa R, Corey L, Gill K, Li SS. Post-COVID symptom profiles and duration in a global convalescent COVID-19 observational cohort: Correlations with demographics, medical history, acute COVID-19 severity and global region. J Glob Health 2023; 13:06020. [PMID: 37352144 PMCID: PMC10289480 DOI: 10.7189/jogh.13.06020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
Background Post-COVID conditions are characterised by persistent symptoms that negatively impact quality of life after SARS-CoV-2 diagnosis. While post-COVID risk factors and symptoms have been extensively described in localised regions, especially in the global north, post-COVID conditions remain poorly understood globally. The global, observational cohort study HVTN 405/HPTN 1901 characterises the convalescent course of SARS-CoV-2 infection among adults in North and South America and Africa. Methods We categorised the cohort by infection severity (asymptomatic, symptomatic, no oxygen requirement (NOR), non-invasive oxygen requirement (NIOR), invasive oxygen requirement (IOR)). We applied a regression model to assess correlations of demographics, co-morbidities, disease severity, and concomitant medications with COVID-19 symptom persistence and duration across global regions. Results We enrolled 759 participants from Botswana, Malawi, South Africa, Zambia, Zimbabwe, Peru, and the USA a median of 51 (interquartile range (IQR) = 35-66) days post-diagnosis, from May 2020 to March 2021. 53.8% were female, 69.8% were 18-55 years old (median (md) = 44 years old, IQR = 33-58). Comorbidities included obesity (42.8%), hypertension (24%), diabetes (14%), human immunodeficiency virus (HIV) infection (11.6%) and lung disease (7.5%). 76.2% were symptomatic (NOR = 47.4%; NIOR = 22.9%; IOR = 5.8%). Median COVID-19 duration among symptomatic participants was 20 days (IQR = 11-35); 43.4% reported symptoms after COVID-19 resolution, 33.6% reported symptoms ≥30 days, 9.9% reported symptoms ≥60 days. Symptom duration correlated with disease severity (P < 0.001, NIOR vs NOR; P = 0.003, IOR vs NOR), lung disease (P = 0.001), race (P < 0.05, non-Hispanic Black vs White), and global region (P < 0.001). Prolonged viral shedding correlated with persistent abdominal pain (odds ratio (OR) = 5.51, P < 0.05) and persistent diarrhoea (OR = 6.64, P < 0.01). Conclusions Post-COVID duration varied with infection severity, race, lung disease, and region. Better understanding post-COVID conditions, including regionally-diverse symptom profiles, may improve clinical assessment and management globally. Registration Clinicaltrials.gov (#NCT04403880).
Collapse
Affiliation(s)
- Shelly Karuna
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jorge A Gallardo-Cartagena
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Deborah Theodore
- Columbia University Physicians & Surgeons, New York, New York, USA
| | - Portia Hunidzarira
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
| | - Juan Montenegro-Idrogo
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Jiani Hu
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Megan Jones
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vicky Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Meg Trahey
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Carissa Karg
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Azwi Takalani
- Hutchinson Centre for Research in South Africa, Johannesburg, Republic of South Africa
| | | | | | | | | | | | - Rebone Maboa
- Ndlovu Research Centre, Elandsdoorn, Limpopo, Republic of South Africa
| | | | - Katherine Gill
- Desmond Tutu HIV Foundation, University of Cape Town, Cape Town, Republic of South Africa
| | | | - HVTN 405/HPTN 1901 Study Team
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Columbia University Physicians & Surgeons, New York, New York, USA
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
- Hutchinson Centre for Research in South Africa, Johannesburg, Republic of South Africa
- National Institute of Allergy and Infectious Disease, Bethesda, Maryland, USA University of Alabama at Birmingham, Birmingham, Alabama, USA
- Ndlovu Research Centre, Elandsdoorn, Limpopo, Republic of South Africa
- Desmond Tutu HIV Foundation, University of Cape Town, Cape Town, Republic of South Africa
| |
Collapse
|
225
|
Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D, Magkos F, Dalamaga M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci 2023; 24:10458. [PMID: 37445634 PMCID: PMC10341908 DOI: 10.3390/ijms241310458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece;
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece;
| | | | - Georgios Papavasileiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Dimitra Petropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| |
Collapse
|
226
|
Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, Vahlne A, Nikolich J. Biological mechanisms underpinning the development of long COVID. iScience 2023; 26:106935. [PMID: 37265584 PMCID: PMC10193768 DOI: 10.1016/j.isci.2023.106935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-CoV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences. Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available. To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.
Collapse
Affiliation(s)
- Rubeshan Perumal
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
- Department of Pulmonology and Critical Care, Division of Internal Medicine, School of Clinical Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| | - Letitia Shunmugam
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Kogieleum Naidoo
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Dave Wilkins
- The Global Virus Network, Baltimore, MD 21201, USA
| | - Alfredo Garzino-Demo
- The Global Virus Network, Baltimore, MD 21201, USA
- Department of Molecular Medicine, University of Padova, Padova 1- 35129, Italy
| | - Christian Brechot
- The Global Virus Network, Baltimore, MD 21201, USA
- Infectious Disease and International Health, University of South Florida, Tampa, FL 33620, USA
| | - Anders Vahlne
- The Global Virus Network, Baltimore, MD 21201, USA
- Division of Clinical Microbiology, Karolinska Institute, Stockholm 17165, Sweden
| | - Janko Nikolich
- The Global Virus Network, Baltimore, MD 21201, USA
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
227
|
Ignatz RM, Zirkenbach VA, Kaya M, Stroikova V, Öttl R, Frey N, Kaya Z. No Evidence for Myocarditis or Other Organ Affection by Induction of an Immune Response against Critical SARS-CoV-2 Protein Epitopes in a Mouse Model Susceptible for Autoimmunity. Int J Mol Sci 2023; 24:9873. [PMID: 37373021 DOI: 10.3390/ijms24129873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
After Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) developed into a global pandemic, not only the infection itself but also several immune-mediated side effects led to additional consequences. Immune reactions such as epitope spreading and cross-reactivity may also play a role in the development of long-COVID, although the exact pathomechanisms have not yet been elucidated. Infection with SARS-CoV-2 can not only cause direct damage to the lungs but can also lead to secondary indirect organ damage (e.g., myocardial involvement), which is often associated with high mortality. To investigate whether an immune reaction against the viral peptides can lead to organ affection, a mouse strain known to be susceptible to the development of autoimmune diseases, such as experimental autoimmune myocarditis (EAM), was used. First, the mice were immunized with single or pooled peptide sequences of the virus's spike (SP), membrane (MP), nucleocapsid (NP), and envelope protein (EP), then the heart and other organs such as the liver, kidney, lung, intestine, and muscle were examined for signs of inflammation or other damage. Our results showed no significant inflammation or signs of pathology in any of these organs as a result of the immunization with these different viral protein sequences. In summary, immunization with different SARS-CoV-2 spike-, membrane-, nucleocapsid-, and envelope-protein peptides does not significantly affect the heart or other organ systems adversely, even when using a highly susceptible mouse strain for experimental autoimmune diseases. This suggests that inducing an immune reaction against these peptides of the SARS-CoV-2 virus alone is not sufficient to cause inflammation and/or dysfunction of the myocardium or other studied organs.
Collapse
Affiliation(s)
| | | | - Mansur Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Stroikova
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Renate Öttl
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ziya Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
228
|
Boles S, Ashok SR. Pre-assessment and management of long COVID patients requiring elective surgery: challenges and guidance. Perioper Med (Lond) 2023; 12:20. [PMID: 37277879 PMCID: PMC10241122 DOI: 10.1186/s13741-023-00305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Whilst most patients infected with COVID-19 make a full recovery, around 1 in 33 patients in the UK report ongoing symptoms post-infection, termed 'long COVID'. Studies have demonstrated that infection with early COVID-19 variants increases postoperative mortality and pulmonary complications for around 7 weeks after acute infection. Furthermore, this increased risk persists for those with ongoing symptoms beyond 7 weeks. Patients with long COVID may therefore also be at increased postoperative risk, and despite the significant prevalence of long COVID, there are minimal guidelines on how best to assess and manage these patients perioperatively. Long COVID shares several clinical and pathophysiological similarities with conditions such as myalgic encephalitis/chronic fatigue syndrome and postural tachycardia syndrome; however, there are no current guidelines for the preoperative management of these patients to help develop something similar for long COVID patients. Developing guidelines for long COVID patients is further complicated by its heterogenous presentation and pathology. These patients can have persistent abnormalities on pulmonary function tests and echocardiography 3 months after acute infection, correlating with a reduced functional capacity. Conversely, some long COVID patients can continue to experience symptoms of dyspnoea and fatigue despite normal pulmonary function tests and echocardiography, yet demonstrating significantly reduced aerobic capacity on cardiopulmonary exercise testing even a year after initial infection. How to comprehensively risk assess these patients is therefore challenging. Existing preoperative guidelines for elective patients with recent COVID-19 generally focus on the timing of surgery and recommendations for pre-assessment if surgery is required before this time interval has elapsed. How long to delay surgery in those with ongoing symptoms and how to manage them perioperatively are less clear. We suggest that multidisciplinary decision-making is required for these patients, using a systems-based approach to guide discussion with specialists and the need for further preoperative investigations. However, without a better understanding of the postoperative risks for long COVID patients, it is difficult to obtain a multidisciplinary consensus and obtain informed patient consent. Prospective studies of long COVID patients undergoing elective surgery are urgently required to help quantify their postoperative risk and develop comprehensive perioperative guidelines for this complex patient group.
Collapse
Affiliation(s)
- Sophie Boles
- Department of Anaesthesia and Intensive Care Medicine, Croydon University Hospital, Surrey, UK.
| | - Sundar Raj Ashok
- Department of Anaesthesia and Intensive Care Medicine, Croydon University Hospital, Surrey, UK
| |
Collapse
|
229
|
Paniskaki K, Konik MJ, Anft M, Heidecke H, Meister TL, Pfaender S, Krawczyk A, Zettler M, Jäger J, Gaeckler A, Dolff S, Westhoff TH, Rohn H, Stervbo U, Scheibenbogen C, Witzke O, Babel N. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front Microbiol 2023; 14:1196721. [PMID: 37333646 PMCID: PMC10272838 DOI: 10.3389/fmicb.2023.1196721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The role of adaptive SARS-CoV-2 specific immunity in post-acute sequelae of COVID-19 (PASC) is not well explored, although a growing population of convalescent COVID-19 patients with manifestation of PASC is observed. We analyzed the SARS-CoV-2-specific immune response, via pseudovirus neutralizing assay and multiparametric flow cytometry in 40 post-acute sequelae of COVID-19 patients with non-specific PASC manifestation and 15 COVID-19 convalescent healthy donors. Although frequencies of SARS-CoV-2-reactive CD4+ T cells were similar between the studied cohorts, a stronger SARS-CoV-2 reactive CD8+ T cell response, characterized by IFNγ production and predominant TEMRA phenotype but low functional TCR avidity was detected in PASC patients compared to controls. Of interest, high avidity SARS-CoV-2-reactive CD4+ and CD8+ T cells were comparable between the groups demonstrating sufficient cellular antiviral response in PASC. In line with the cellular immunity, neutralizing capacity in PASC patients was not inferior compared to controls. In conclusion, our data suggest that PASC may be driven by an inflammatory response triggered by an expanded population of low avidity SARS-CoV-2 reactive pro-inflammatory CD8+ T cells. These pro-inflammatory T cells with TEMRA phenotype are known to be activated by a low or even without TCR stimulation and lead to a tissue damage. Further studies including animal models are required for a better understanding of underlying immunopathogensis. Summary: A CD8+ driven persistent inflammatory response triggered by SARS-CoV-2 may be responsible for the observed sequelae in PASC patients.
Collapse
Affiliation(s)
- Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Margarethe J. Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | | | - Toni L. Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Zettler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jasmin Jäger
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Anja Gaeckler
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Timm H. Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
- Berlin Institute of Health at Charité – University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT) Berlin, Berlin, Germany
| |
Collapse
|
230
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
231
|
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med 2023; 71:545-562. [PMID: 36879504 PMCID: PMC9996119 DOI: 10.1177/10815589231158041] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID. Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation. Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen. This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim Fram
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
232
|
Abstract
COVID-19 is characterized by dysregulated thrombosis and coagulation that can increase mortality in patients. Platelets are fast responders to pathogen presence, alerting the surrounding immune cells and contributing to thrombosis and intravascular coagulation. The SARS-CoV-2 genome has been found in platelets from patients with COVID-19, and its coverage varies according to the method of detection, suggesting direct interaction of the virus with these cells. Antibodies against Spike and Nucleocapsid have confirmed this platelet-viral interaction. This review discusses the immune, prothrombotic, and procoagulant characteristics of platelets observed in patients with COVID-19. We outline the direct and indirect interaction of platelets with SARS-CoV-2, the contribution of the virus to programmed cell death pathway activation in platelets and the consequent extracellular vesicle release. We discuss platelet activation and immunothrombosis in patients with COVID-19, the effect of Spike on platelets, and possible activation of platelets by classical platelet activation triggers as well as contribution of platelets to complement activation. As COVID-19-mediated thrombosis and coagulation are still not well understood in vivo, we discuss available murine models and mouse adaptable strains.
Collapse
Affiliation(s)
- Anthony Sciaudone
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Heather Corkrey
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Fiachra Humphries
- Innate Immunity (F.H.). University of Massachusetts Chan Medical School, Worcester, MA
| | - Milka Koupenova
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
233
|
Petersen E, Chudakova D, Erdyneeva D, Zorigt D, Shabalina E, Gudkov D, Karalkin P, Reshetov I, Mynbaev OA. COVID-19-The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement. Int J Mol Sci 2023; 24:ijms24108579. [PMID: 37239926 DOI: 10.3390/ijms24108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus remains a global public health concern due to the systemic nature of the infection and its long-term consequences, many of which remain to be elucidated. SARS-CoV-2 targets endothelial cells and blood vessels, altering the tissue microenvironment, its secretion, immune-cell subpopulations, the extracellular matrix, and the molecular composition and mechanical properties. The female reproductive system has high regenerative potential, but can accumulate damage, including due to SARS-CoV-2. COVID-19 is profibrotic and can change the tissue microenvironment toward an oncogenic niche. This makes COVID-19 and its consequences one of the potential regulators of a homeostasis shift toward oncopathology and fibrosis in the tissues of the female reproductive system. We are looking at SARS-CoV-2-induced changes at all levels in the female reproductive system.
Collapse
Affiliation(s)
- Elena Petersen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daria Chudakova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daiana Erdyneeva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dulamsuren Zorigt
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Denis Gudkov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Pavel Karalkin
- P.A. Herzen Moscow Research Institute of Oncology, 125284 Moscow, Russia
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Igor Reshetov
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ospan A Mynbaev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
234
|
Yang C, Zhao H, Espín E, Tebbutt SJ. Association of SARS-CoV-2 infection and persistence with long COVID. THE LANCET. RESPIRATORY MEDICINE 2023:S2213-2600(23)00142-X. [PMID: 37178694 PMCID: PMC10171832 DOI: 10.1016/s2213-2600(23)00142-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Chengliang Yang
- Prevention of Organ Failure Centre of Excellence, Vancouver, BC, Canada; Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Hedi Zhao
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Estefanía Espín
- Prevention of Organ Failure Centre of Excellence, Vancouver, BC, Canada; Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada
| | - Scott J Tebbutt
- Prevention of Organ Failure Centre of Excellence, Vancouver, BC, Canada; Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
235
|
Chen B, Julg B, Mohandas S, Bradfute SB. Viral persistence, reactivation, and mechanisms of long COVID. eLife 2023; 12:e86015. [PMID: 37140960 PMCID: PMC10159620 DOI: 10.7554/elife.86015;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 08/28/2024] Open
Abstract
The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse. In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.
Collapse
Affiliation(s)
- Benjamin Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Boris Julg
- Infectious Diseases Division, Massachusetts General Hospital, Ragon Institute of Mass General, MIT and HarvardBostonUnited States
| | - Sindhu Mohandas
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerqueUnited States
| |
Collapse
|
236
|
Chen B, Julg B, Mohandas S, Bradfute SB. Viral persistence, reactivation, and mechanisms of long COVID. eLife 2023; 12:e86015. [PMID: 37140960 PMCID: PMC10159620 DOI: 10.7554/elife.86015] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse. In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.
Collapse
Affiliation(s)
- Benjamin Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Boris Julg
- Infectious Diseases Division, Massachusetts General Hospital, Ragon Institute of Mass General, MIT and HarvardBostonUnited States
| | - Sindhu Mohandas
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerqueUnited States
| |
Collapse
|
237
|
Abstract
PURPOSE OF REVIEW It is now recognized that SARS-CoV-2 infection can have a long-term impact on health. This review summarizes the current state of knowledge regarding Long COVID in people living with HIV (PLWH). RECENT FINDINGS PLWH may be at elevated risk of experiencing Long COVID. Although the mechanisms contributing to Long COVID are incompletely understood, there are several demographic and clinical factors that might make PLWH vulnerable to developing Long COVID. SUMMARY PLWH should be aware that new or worsening symptoms following SARS-CoV-2 infection might represent Long COVID. HIV providers should be aware of this clinical entity and be mindful that their patients recovering from SARS-CoV-2 infection may be at higher risk.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA 94110
| | - Annukka A. R. Antar
- Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
238
|
El-Maradny YA, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: I. Prevalence of the extracellular vesicles. J Cell Biochem 2023; 124:656-673. [PMID: 37126363 DOI: 10.1002/jcb.30415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
239
|
Kenny G, Townsend L, Savinelli S, Mallon PWG. Long COVID: Clinical characteristics, proposed pathogenesis and potential therapeutic targets. Front Mol Biosci 2023; 10:1157651. [PMID: 37179568 PMCID: PMC10171433 DOI: 10.3389/fmolb.2023.1157651] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
The emergence of persistent ill-health in the aftermath of SARS-CoV-2 infection has presented significant challenges to patients, healthcare workers and researchers. Termed long COVID, or post-acute sequelae of COVID-19 (PASC), the symptoms of this condition are highly variable and span multiple body systems. The underlying pathophysiology remains poorly understood, with no therapeutic agents proven to be effective. This narrative review describes predominant clinical features and phenotypes of long COVID alongside the data supporting potential pathogenesis of these phenotypes including ongoing immune dysregulation, viral persistence, endotheliopathy, gastrointestinal microbiome disturbance, autoimmunity, and dysautonomia. Finally, we describe current potential therapies under investigation, as well as future potential therapeutic options based on the proposed pathogenesis research.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Liam Townsend
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Stefano Savinelli
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| |
Collapse
|
240
|
Perumal R, Shunmugam L, Naidoo K, Abdool Karim SS, Wilkins D, Garzino-Demo A, Brechot C, Parthasarathy S, Vahlne A, Nikolich JŽ. Long COVID: a review and proposed visualization of the complexity of long COVID. Front Immunol 2023; 14:1117464. [PMID: 37153597 PMCID: PMC10157068 DOI: 10.3389/fimmu.2023.1117464] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2) infection, or Long COVID, is a prevailing second pandemic with nearly 100 million affected individuals globally and counting. We propose a visual description of the complexity of Long COVID and its pathogenesis that can be used by researchers, clinicians, and public health officials to guide the global effort toward an improved understanding of Long COVID and the eventual mechanism-based provision of care to afflicted patients. The proposed visualization or framework for Long COVID should be an evidence-based, dynamic, modular, and systems-level approach to the condition. Furthermore, with further research such a framework could establish the strength of the relationships between pre-existing conditions (or risk factors), biological mechanisms, and resulting clinical phenotypes and outcomes of Long COVID. Notwithstanding the significant contribution that disparities in access to care and social determinants of health have on outcomes and disease course of long COVID, our model focuses primarily on biological mechanisms. Accordingly, the proposed visualization sets out to guide scientific, clinical, and public health efforts to better understand and abrogate the health burden imposed by long COVID.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
- Department of Pulmonology and Critical Care, Division of Internal Medicine, School Clinical Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
| | - Letitia Shunmugam
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Dave Wilkins
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Christian Brechot
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
| | - Anders Vahlne
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Janko Ž. Nikolich
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, United States
| |
Collapse
|
241
|
Nakayama EE, Shioda T. SARS-CoV-2 Related Antibody-Dependent Enhancement Phenomena In Vitro and In Vivo. Microorganisms 2023; 11:microorganisms11041015. [PMID: 37110438 PMCID: PMC10145615 DOI: 10.3390/microorganisms11041015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies produced in the body after infection or vaccination may enhance subsequent viral infections in vitro and in vivo. Although rare, symptoms of viral diseases are also enhanced by ADE following infection or vaccination in vivo. This is thought to be due to the production of antibodies with low neutralizing activity that bind to the virus and facilitate viral entry, or antigen-antibody complexes that cause airway inflammation, or a predominance of T-helper 2 cells among the immune system cells which leads to excessive eosinophilic tissue infiltration. Notably, ADE of infection and ADE of disease are different phenomena that overlap. In this article, we will describe the three types of ADE: (1) Fc receptor (FcR)-dependent ADE of infection in macrophages, (2) FcR-independent ADE of infection in other cells, and (3) FcR-dependent ADE of cytokine production in macrophages. We will describe their relationship to vaccination and natural infection, and discuss the possible involvement of ADE phenomena in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
242
|
Solomon IH, Singh A, Folkerth RD, Mukerji SS. What Can We Still Learn from Brain Autopsies in COVID-19? Semin Neurol 2023. [PMID: 37023787 DOI: 10.1055/s-0043-1767716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Neuropathological findings have been published from ∼900 patients who died with or from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, representing less than 0.01% of the close to 6.4 million deaths reported to the World Health Organization 2 years into the coronavirus disease 2019 (COVID-19) pandemic. In this review, we extend our prior work summarizing COVID-19 neuropathology by including information on published autopsies up to June 2022, and neuropathological studies in children, COVID-19 variants, secondary brain infections, ex vivo brain imaging, and autopsies performed in countries outside of the United States or Europe. We also summarize research studies that investigate mechanisms of neuropathogenesis in nonhuman primates and other models. While a pattern of cerebrovascular pathology and microglial-predominant inflammation remains the primary COVID-19-associated neuropathological finding, there is no singular understanding of the mechanisms that underlie neurological symptoms in acute COVID-19 or the post-acute COVID-19 condition. Thus, it is paramount that we incorporate microscopic and molecular findings from brain tissue into what we know about the clinical disease so that we attain best practice guidance and direct research priorities for the study of the neurological morbidity of COVID-19.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Arjun Singh
- Division of Neuroimmunology and Neuro-Infectious Diseases, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Healing Hospital, Chandigarh, India
| | - Rebecca D Folkerth
- Office of Chief Medical Examiner and Department of Forensic Medicine, New York University School of Medicine, New York, New York
| | - Shibani S Mukerji
- Harvard Medical School, Boston, Massachusetts
- Division of Neuroimmunology and Neuro-Infectious Diseases, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
243
|
Garrett RE, Palacio CH, Bar-Or D. Long COVID: Is there a kidney link? Front Med (Lausanne) 2023; 10:1138644. [PMID: 37077670 PMCID: PMC10106649 DOI: 10.3389/fmed.2023.1138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Metabolic causes such as altered bioenergetics and amino acid metabolism may play a major role in Long COVID. Renal-metabolic regulation is an integral part of these pathways but has not been systematically or routinely investigated in Long COVID. Here we discuss the biochemistry of renal tubular injury as it may contribute to Long COVID symptoms. We propose three potential mechanisms that could be involved in Long COVID namely creatine phosphate metabolism, un-reclaimed glomerular filtrate and COVID specific proximal tubule cells (PTC) injury-a tryptophan paradigm. This approach is intended to allow for improved diagnostics and therapy for the long-haul sufferers.
Collapse
Affiliation(s)
- Raymond E. Garrett
- Swedish Medical Center, Trauma Research Dept., Englewood, CO, United States
| | - Carlos H. Palacio
- South Texas Health System, Trauma Research Dept., McAllen, TX, United States
| | - David Bar-Or
- Swedish Medical Center, Trauma Research Dept., Englewood, CO, United States
- South Texas Health System, Trauma Research Dept., McAllen, TX, United States
- *Correspondence: David Bar-Or,
| |
Collapse
|
244
|
Alaedini A, Wormser GP. Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 to Explain Long Coronavirus Disease 2019 Is Not Consistent With the Available Data. Clin Infect Dis 2023; 76:1342. [PMID: 36385329 DOI: 10.1093/cid/ciac895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Armin Alaedini
- Department of Medicine, Columbia University, New York, New York, USA
- Institute of Human Nutrition, Columbia University, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
245
|
Dias MB, Avelino-Silva TJ, Aliberti MJR. Authors reply: The long and winding road of COVID-19 in survivors of hospitalization. J Intern Med 2023; 293:525-526. [PMID: 36647670 DOI: 10.1111/joim.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Murilo Bacchini Dias
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thiago J Avelino-Silva
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Global Brain Health Institute, University of California, San Francisco, California, USA.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Márlon Juliano Romero Aliberti
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Research Institute, Hospital Sirio-Libanes, Sao Paulo, Brazil
| |
Collapse
|
246
|
Buck AM, Deitchman AN, Takahashi S, Lu S, Goldberg SA, Hoh R, Williams MC, Kerbleski M, Deveau TM, Munter SE, Lombardo J, Wrin T, Petropoulos CJ, Durstenfeld MS, Hsue PY, Kelly JD, Greenhouse B, Martin JN, Deeks SG, Peluso MJ, Henrich TJ. The Breadth of the Neutralizing Antibody Response to Original SARS-CoV-2 Infection is Linked to the Presence of Long COVID Symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287923. [PMID: 37034660 PMCID: PMC10081395 DOI: 10.1101/2023.03.30.23287923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Background The associations between longitudinal dynamics and the breadth of SARS-CoV-2 neutralizing antibody response with various Long COVID (LC) phenotypes prior to vaccination are not known. The capacity of antibodies to cross neutralize a variety of viral variants may be associated with ongoing pathology and persistent symptoms. Methods We measured longitudinal neutralizing and cross-neutralizing antibody responses to pre- and post-SARS-CoV-2 Omicron variants in participants infected during the early waves of the COVID-19 pandemic, prior to wide-spread rollout of SARS-CoV-2 vaccines. Cross sectional regression models adjusted for various clinical covariates and longitudinal mixed effects models were used to determine the impact of the breadth and rate of decay of neutralizing responses on the development of Long COVID symptoms in general, as well as LC phenotypes. Results We identified several novel relationships between SARS-CoV-2 antibody neutralization and the presence of LC symptoms. Specifically, we show that, although neutralizing antibody responses to the original, infecting strain of SARS-CoV-2 were not associated with LC in cross-sectional analyses, cross-neutralization ID50 levels to the Omicron BA.5 variant approximately 4 months following acute infection was independently and significantly associated with greater odds of LC and with persistent gastrointestinal and neurological symptoms. Longitudinal modeling demonstrated significant associations in the overall levels and rates of decay of neutralization capacity with LC phenotypes. A higher proportion of participants had antibodies capable of neutralizing Omicron BA.5 compared with BA.1 or XBB.1.5 variants. Conclusions Our findings suggest that relationships between various immune responses and LC are likely complex but may involve the breadth of antibody neutralization responses.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States
| | - Saki Takahashi
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Meghann C. Williams
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Marian Kerbleski
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - James Lombardo
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, United States
| | | | - Matthew S. Durstenfeld
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Bryan Greenhouse
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Steven G. Deeks
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Michael J. Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
247
|
Fedorchenko Y, Zimba O. Long COVID in autoimmune rheumatic diseases. Rheumatol Int 2023; 43:1197-1207. [PMID: 36995436 PMCID: PMC10061411 DOI: 10.1007/s00296-023-05319-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Consequences of Corona Virus Disease-19 (COVID-19) in patients with rheumatic diseases (RDs) are clinically diverse. SARS-CoV-2 infection has been associated with various autoimmune and rheumatic manifestations over the past three years. Emerging evidence points to the possibility of Long COVID predisposition in rheumatic patients due to the changes in immune regulatory response. The aim of this article was to overview data on the pathobiology of Long COVID in patients with RDs. Related risk factors, clinical characteristics, and prognosis of Long COVID in RDs were analyzed. Relevant articles were retrieved from Medline/PubMed, Scopus, and Directory of Open Access Journals (DOAJ). Diverse mechanisms of viral persistence, chronic low-grade inflammation, lasting production of autoantibodies, endotheliopathy, vascular complications, and permanent tissue damage have been described in association with Long COVID. Patients with RDs who survive COVID-19 often experience severe complications due to the immune disbalance resulting in multiple organ damage. Regular monitoring and treatment are warranted in view of the accumulating evidence.
Collapse
Affiliation(s)
- Yuliya Fedorchenko
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76018, Ukraine.
| | - Olena Zimba
- Department of Clinical Rheumatology and Immunology, University Hospital in Krakow, Krakow, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
248
|
Fontes-Dantas FL, Fernandes GG, Gutman EG, De Lima EV, Antonio LS, Hammerle MB, Mota-Araujo HP, Colodeti LC, Araújo SM, Froz GM, da Silva TN, Duarte LA, Salvio AL, Pires KL, Leon LA, Vasconcelos CCF, Romão L, Savio LEB, Silva JL, da Costa R, Clarke JR, Da Poian AT, Alves-Leon SV, Passos GF, Figueiredo CP. SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep 2023; 42:112189. [PMID: 36857178 PMCID: PMC9935273 DOI: 10.1016/j.celrep.2023.112189] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Cognitive dysfunction is often reported in patients with post-coronavirus disease 2019 (COVID-19) syndrome, but its underlying mechanisms are not completely understood. Evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein or its fragments are released from cells during infection, reaching different tissues, including the CNS, irrespective of the presence of the viral RNA. Here, we demonstrate that brain infusion of Spike protein in mice has a late impact on cognitive function, recapitulating post-COVID-19 syndrome. We also show that neuroinflammation and hippocampal microgliosis mediate Spike-induced memory dysfunction via complement-dependent engulfment of synapses. Genetic or pharmacological blockage of Toll-like receptor 4 (TLR4) signaling protects animals against synapse elimination and memory dysfunction induced by Spike brain infusion. Accordingly, in a cohort of 86 patients who recovered from mild COVID-19, the genotype GG TLR4-2604G>A (rs10759931) is associated with poor cognitive outcome. These results identify TLR4 as a key target to investigate the long-term cognitive dysfunction after COVID-19 infection in humans and rodents.
Collapse
Affiliation(s)
- Fabricia L. Fontes-Dantas
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Gabriel G. Fernandes
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elisa G. Gutman
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil,Clinical Medicine Post-graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V. De Lima
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia S. Antonio
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana B. Hammerle
- Clinical Medicine Post-graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hannah P. Mota-Araujo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lilian C. Colodeti
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana M.B. Araújo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabrielle M. Froz
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita N. da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Larissa A. Duarte
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil,Clinical Medicine Post-graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andreza L. Salvio
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Karina L. Pires
- Neurology Department, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Luciane A.A. Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, IOC/FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz Eduardo B. Savio
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson da Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia R. Clarke
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea T. Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| | - Soniza V. Alves-Leon
- Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil,Division of Neurology, Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| | - Giselle F. Passos
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| | - Claudia P. Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,Corresponding author
| |
Collapse
|
249
|
Durstenfeld MS, Peluso MJ, Kaveti P, Hill C, Li D, Sander E, Swaminathan S, Arechiga VM, Lu S, Goldberg SA, Hoh R, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Kelly JD, Glidden DV, Henrich TJ, Martin JN, Lee YJ, Aras MA, Long CS, Grandis DJ, Deeks SG, Hsue PY. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype Long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.05.17.22275235. [PMID: 35677073 PMCID: PMC9176659 DOI: 10.1101/2022.05.17.22275235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing. METHODS We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150 ). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history. RESULTS Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO 2 <85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO 2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO 2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present. CONCLUSIONS We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID. Key Points Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.
Collapse
|
250
|
Van der Feltz-Cornelis CM, Moriarty AS, Strain WD. Neurological Dysfunction in Long COVID Should Not Be Labelled as Functional Neurological Disorder. Viruses 2023; 15:783. [PMID: 36992491 PMCID: PMC10059786 DOI: 10.3390/v15030783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
There have been suggestions that Long COVID might be purely functional (meaning psychological) in origin. Labelling patients with neurological dysfunction in Long COVID as having functional neurological disorder (FND) in the absence of proper testing may be symptomatic of that line of thought. This practice is problematic for Long COVID patients, as motor and balance symptoms have been reported to occur in Long COVID frequently. FND is characterized by the presentation of symptoms that seem neurological but lack compatibility of the symptom with a neurological substrate. Although diagnostic classification according to the ICD-11 and DSM-5-TR is dependent predominantly on the exclusion of any other medical condition that could account for the symptoms, current neurological practice of FND classification allows for such comorbidity. As a consequence, Long COVID patients with motor and balance symptoms mislabeled as FND have no longer access to Long COVID care, whereas treatment for FND is seldom provided and is ineffective. Research into underlying mechanisms and diagnostic methods should explore how to determine whether motor and balance symptoms currently diagnosed as FND should be considered one part of Long COVID symptoms, in other words, one component of symptomatology, and in which cases they correctly represent FND. Research into rehabilitation models, treatment and integrated care are needed, which should take into account biological underpinnings as well as possible psychological mechanisms and the patient perspective.
Collapse
Affiliation(s)
| | - Andrew S. Moriarty
- Department of Health Sciences, Hull York Medical School, (HYMS), University of York, York YO10 5DD, UK
| | - William David Strain
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter EX2 5AX, UK
| |
Collapse
|