201
|
Callaby R, Hurst E, Handel I, Toye P, Bronsvoort BMDC, Mellanby RJ. Determinants of vitamin D status in Kenyan calves. Sci Rep 2020; 10:20590. [PMID: 33239727 PMCID: PMC7688966 DOI: 10.1038/s41598-020-77209-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Vitamin D plays a critical role in calcium homeostasis and in the maintenance and development of skeletal health. Vitamin D status has increasingly been linked to non-skeletal health outcomes such as all-cause mortality, infectious diseases and reproductive outcomes in both humans and veterinary species. We have previously demonstrated a relationship between vitamin D status, assessed by the measurement of serum concentrations of the major vitamin D metabolite 25 hydroxyvitamin D (25(OH)D), and a wide range of non-skeletal health outcomes in companion and wild animals. The aims of this study were to define the host and environmental factors associated with vitamin D status in a cohort of 527 calves from Western Kenya which were part of the Infectious Disease of East African Livestock (IDEAL) cohort. A secondary aim was to explore the relationship between serum 25(OH)D concentrations measured in 7-day old calves and subsequent health outcomes over the following 12 months. A genome wide association study demonstrated that both dietary and endogenously produced vitamin D metabolites were under polygenic control in African calves. In addition, we found that neonatal vitamin D status was not predictive of the subsequent development of an infectious disease event or mortality over the 12 month follow up period.
Collapse
Affiliation(s)
- Rebecca Callaby
- The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, The University of Edinburgh, Roslin, EH25 9RG, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, UK
| | - Emma Hurst
- The Vitamin D Animal Laboratory (VitDAL), The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, The University of Edinburgh, Roslin, EH25 9RG, Midlothian, UK
| | - Ian Handel
- The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, The University of Edinburgh, Roslin, EH25 9RG, Midlothian, UK
| | - Phil Toye
- International Livestock Research Institute and Centre for Tropical Livestock Genetics and Health, Nairobi, Kenya
| | - Barend M de C Bronsvoort
- The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, The University of Edinburgh, Roslin, EH25 9RG, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, UK
| | - Richard J Mellanby
- The Vitamin D Animal Laboratory (VitDAL), The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, The University of Edinburgh, Roslin, EH25 9RG, Midlothian, UK.
| |
Collapse
|
202
|
Yang A, Chen J, Zhao XM. nMAGMA: a network-enhanced method for inferring risk genes from GWAS summary statistics and its application to schizophrenia. Brief Bioinform 2020; 22:5998843. [PMID: 33230537 DOI: 10.1093/bib/bbaa298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION Annotating genetic variants from summary statistics of genome-wide association studies (GWAS) is crucial for predicting risk genes of various disorders. The multimarker analysis of genomic annotation (MAGMA) is one of the most popular tools for this purpose, where MAGMA aggregates signals of single nucleotide polymorphisms (SNPs) to their nearby genes. In biology, SNPs may also affect genes that are far away in the genome, thus missed by MAGMA. Although different upgrades of MAGMA have been proposed to extend gene-wise variant annotations with more information (e.g. Hi-C or eQTL), the regulatory relationships among genes and the tissue specificity of signals have not been taken into account. RESULTS We propose a new approach, namely network-enhanced MAGMA (nMAGMA), for gene-wise annotation of variants from GWAS summary statistics. Compared with MAGMA and H-MAGMA, nMAGMA significantly extends the lists of genes that can be annotated to SNPs by integrating local signals, long-range regulation signals (i.e. interactions between distal DNA elements), and tissue-specific gene networks. When applied to schizophrenia (SCZ), nMAGMA is able to detect more risk genes (217% more than MAGMA and 57% more than H-MAGMA) that are involved in SCZ compared with MAGMA and H-MAGMA, and more of nMAGMA results can be validated with known SCZ risk genes. Some disease-related functions (e.g. the ATPase pathway in Cortex) are also uncovered in nMAGMA but not in MAGMA or H-MAGMA. Moreover, nMAGMA provides tissue-specific risk signals, which are useful for understanding disorders with multitissue origins.
Collapse
Affiliation(s)
- Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | | |
Collapse
|
203
|
Bilgen N, Bişkin Türkmen M, Çınar Kul B, Isparta S, Şen Y, Akkurt MY, Çıldır ÖŞ, Bars Z. Prevalence of PKD1 gene mutation in cats in Turkey and pathogenesis of feline polycystic kidney disease. J Vet Diagn Invest 2020; 32:549-555. [PMID: 32687010 DOI: 10.1177/1040638720935433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common hereditary diseases in cats, with high prevalence in Persian and Persian-related cats. PKD is caused mainly by an inherited autosomal dominant (AD) mutation, and animals may be asymptomatic for years. We screened 16 cats from various breeds exhibiting a renal abnormality by ultrasound examination and genotyped them for the c.10063C>A transversion on exon 29 of the polycystin-1 (PKD1) gene, by PCR-restriction fragment length polymorphism (PCR-RFLP). Among these cats, a Siamese nuclear family of 4 cats with ancestral hereditary renal failure were screened by whole-genome sequencing (WGS) to determine novel variations in genes associated with both AD and autosomal recessive PKD in humans. During the study period, one cat died as a result of renal failure and was forwarded for autopsy. Additionally, we screened 294 cats asymptomatic for renal disease (Angora, Van, Persian, Siamese, Scottish Fold, Exotic Shorthair, British Shorthair, and mixed breeds) to determine the prevalence of the mutation in cats in Turkey. Ten of the symptomatic and 2 of the asymptomatic cats carried the heterozygous C → A transversion, indicating a prevalence of 62.5% and 0.68%, respectively. In the WGS analysis of 4 cats in the Siamese nuclear family, novel variations were determined in the fibrocystin gene (PKHD1), which was not compatible with dominant inheritance of PKD.
Collapse
Affiliation(s)
- Nüket Bilgen
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| | - Merve Bişkin Türkmen
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| | - Bengi Çınar Kul
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| | - Sevim Isparta
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| | - Yusuf Şen
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| | - Mustafa Y Akkurt
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| | - Özge Ş Çıldır
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| | - Zeynep Bars
- Genetics (Bilgen, Çınar Kul, Isparta, Akkurt, Çıldır, Bars) and Surgery (Şen) Departments, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Pathology Department, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey (Bişkin Türkmen)
| |
Collapse
|
204
|
Lee KH, Goh J, Kim YJ, Kim K. Identification of synthetic chemosensitivity genes paired with BRAF for BRAF/MAPK inhibitors. Sci Rep 2020; 10:20001. [PMID: 33203961 PMCID: PMC7672081 DOI: 10.1038/s41598-020-76909-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
Molecular-targeted approaches are important for personalised cancer treatment, which requires knowledge regarding drug target specificity. Here, we used the synthetic lethality concept to identify candidate gene pairs with synergistic effects on drug responses. A synergistic chemo-sensitivity response was identified if a drug had a significantly lower half-maximal inhibitory concentration (IC50) in cell lines with a pair of mutated genes compared with those in other cell lines (wild-type or one mutated gene). Among significantly damaging mutations in the Genomics of Drug Sensitivity in Cancer database, we found 580 candidate synergistic chemo-sensitivity interaction sets for 456 genes and 54 commercial drugs. Clustering analyses according to drug/gene and drug/tissue interactions showed that BRAF/MAPK inhibitors clustered together; 11 partner genes for BRAF were identified. The combined effects of these partners on IC50 values were significant for both drug-specific and drug-combined comparisons. Survival analysis using The Cancer Genome Atlas data showed that patients who had mutated gene pairs in synergistic interaction sets had longer overall survival compared with that in patients with other mutation profiles. Overall, this analysis demonstrated that synergistic drug-responsive gene pairs could be successfully used as predictive markers of drug sensitivity and patient survival, offering new targets for personalised medicine.
Collapse
Affiliation(s)
- Kye Hwa Lee
- Department of Biomedical Informatics, Asan Medical Center, Seoul, 05505, South Korea.
| | - Jinmin Goh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yi-Jun Kim
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, 07985, South Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03080, South Korea.
| |
Collapse
|
205
|
Methamphetamine Increases the Proportion of SIV-Infected Microglia/Macrophages, Alters Metabolic Pathways, and Elevates Cell Death Pathways: A Single-Cell Analysis. Viruses 2020; 12:v12111297. [PMID: 33198269 PMCID: PMC7697917 DOI: 10.3390/v12111297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Both substance use disorder and HIV infection continue to affect many individuals. Both have untoward effects on the brain, and the two conditions often co-exist. In the brain, macrophages and microglia are infectable by HIV, and these cells are also targets for the effects of drugs of abuse, such as the psychostimulant methamphetamine. To determine the interaction of HIV and methamphetamine, we isolated microglia and brain macrophages from SIV-infected rhesus monkeys that were treated with or without methamphetamine. Cells were subjected to single-cell RNA sequencing and results were analyzed by statistical and bioinformatic analysis. In the animals treated with methamphetamine, a significantly increased proportion of the microglia and/or macrophages were infected by SIV. In addition, gene encoding functions in cell death pathways were increased, and the brain-derived neurotropic factor pathway was inhibited. The gene expression patterns in infected cells did not cluster separately from uninfected cells, but clusters comprised of microglia and/or macrophages from methamphetamine-treated animals differed in neuroinflammatory and metabolic pathways from those comprised of cells from untreated animals. Methamphetamine increases CNS infection by SIV and has adverse effects on both infected and uninfected microglia and brain macrophages, highlighting the dual and interacting harms of HIV infection and drug abuse on the brain.
Collapse
|
206
|
Zhang Y, Long Y, Kwoh CK. Deep learning based DNA:RNA triplex forming potential prediction. BMC Bioinformatics 2020; 21:522. [PMID: 33183242 PMCID: PMC7663897 DOI: 10.1186/s12859-020-03864-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can exert functions via forming triplex with DNA. The current methods in predicting the triplex formation mainly rely on mathematic statistic according to the base paring rules. However, these methods have two main limitations: (1) they identify a large number of triplex-forming lncRNAs, but the limited number of experimentally verified triplex-forming lncRNA indicates that maybe not all of them can form triplex in practice, and (2) their predictions only consider the theoretical relationship while lacking the features from the experimentally verified data. RESULTS In this work, we develop an integrated program named TriplexFPP (Triplex Forming Potential Prediction), which is the first machine learning model in DNA:RNA triplex prediction. TriplexFPP predicts the most likely triplex-forming lncRNAs and DNA sites based on the experimentally verified data, where the high-level features are learned by the convolutional neural networks. In the fivefold cross validation, the average values of Area Under the ROC curves and PRC curves for removed redundancy triplex-forming lncRNA dataset with threshold 0.8 are 0.9649 and 0.9996, and these two values for triplex DNA sites prediction are 0.8705 and 0.9671, respectively. Besides, we also briefly summarize the cis and trans targeting of triplexes lncRNAs. CONCLUSIONS The TriplexFPP is able to predict the most likely triplex-forming lncRNAs from all the lncRNAs with computationally defined triplex forming capacities and the potential of a DNA site to become a triplex. It may provide insights to the exploration of lncRNA functions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yahui Long
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410000, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
207
|
Genetic diversity of cytochrome b in Iberian ibex from Andalusia. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
208
|
Rivera B, Nadaf J, Fahiminiya S, Apellaniz-Ruiz M, Saskin A, Chong AS, Sharma S, Wagener R, Revil T, Condello V, Harra Z, Hamel N, Sabbaghian N, Muchantef K, Thomas C, de Kock L, Hébert-Blouin MN, Bassenden AV, Rabenstein H, Mete O, Paschke R, Pusztaszeri MP, Paulus W, Berghuis A, Ragoussis J, Nikiforov YE, Siebert R, Albrecht S, Turcotte R, Hasselblatt M, Fabian MR, Foulkes WD. DGCR8 microprocessor defect characterizes familial multinodular goiter with schwannomatosis. J Clin Invest 2020; 130:1479-1490. [PMID: 31805011 DOI: 10.1172/jci130206] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUNDDICER1 is the only miRNA biogenesis component associated with an inherited tumor syndrome, featuring multinodular goiter (MNG) and rare pediatric-onset lesions. Other susceptibility genes for familial forms of MNG likely exist.METHODSWhole-exome sequencing of a kindred with early-onset MNG and schwannomatosis was followed by investigation of germline pathogenic variants that fully segregated with the disease. Genome-wide analyses were performed on 13 tissue samples from familial and nonfamilial DGCR8-E518K-positive tumors, including MNG, schwannomas, papillary thyroid cancers (PTCs), and Wilms tumors. miRNA profiles of 4 tissue types were compared, and sequencing of miRNA, pre-miRNA, and mRNA was performed in a subset of 9 schwannomas, 4 of which harbor DGCR8-E518K.RESULTSWe identified c.1552G>A;p.E518K in DGCR8, a microprocessor component located in 22q, in the kindred. The variant identified is a somatic hotspot in Wilms tumors and has been identified in 2 PTCs. Copy number loss of chromosome 22q, leading to loss of heterozygosity at the DGCR8 locus, was found in all 13 samples harboring c.1552G>A;p.E518K. miRNA profiling of PTCs, MNG, schwannomas, and Wilms tumors revealed a common profile among E518K hemizygous tumors. In vitro cleavage demonstrated improper processing of pre-miRNA by DGCR8-E518K. MicroRNA and RNA profiling show that this variant disrupts precursor microRNA production, impacting populations of canonical microRNAs and mirtrons.CONCLUSIONWe identified DGCR8 as the cause of an unreported autosomal dominant mendelian tumor susceptibility syndrome: familial multinodular goiter with schwannomatosis.FUNDINGCanadian Institutes of Health Research, Compute Canada, Alex's Lemonade Stand Foundation, the Mia Neri Foundation for Childhood Cancer, Cassa di Sovvenzioni e Risparmio fra il Personale della Banca d'Italia, and the KinderKrebsInitiative Buchholz/Holm-Seppensen.
Collapse
Affiliation(s)
- Barbara Rivera
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Javad Nadaf
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Somayyeh Fahiminiya
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Maria Apellaniz-Ruiz
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Avi Saskin
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Division of Medical Genetics, Department of Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| | - Anne-Sophie Chong
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sahil Sharma
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Rabea Wagener
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Génome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Vincenzo Condello
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zineb Harra
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Nancy Hamel
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nelly Sabbaghian
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Karl Muchantef
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec, Canada.,Pediatric Radiology, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Leanne de Kock
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Ralf Paschke
- Department of Medicine.,Department of Oncology.,Department of Pathology.,Biochemistry and Molecular Biology Institute, and.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc P Pusztaszeri
- Department of Pathology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Albert Berghuis
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Génome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Robert Turcotte
- Division of Orthopedic Surgery (Experimental Surgery), McGill University, Montreal, Quebec, Canada.,Department of Surgical Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Marc R Fabian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - William D Foulkes
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Division of Medical Genetics, Department of Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
209
|
Karathanou K, Lazaratos M, Bertalan É, Siemers M, Buzar K, Schertler GFX, Del Val C, Bondar AN. A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2. J Struct Biol 2020; 212:107617. [PMID: 32919067 PMCID: PMC7481144 DOI: 10.1016/j.jsb.2020.107617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Corona virus spike protein S is a large homo-trimeric protein anchored in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology that relies upon graph and centrality analyses, augmented by bioinformatics, to identify and characterize large H-bond clusters in protein structures. We apply this methodology to protein S ectodomain and find that, in the closed conformation, the three protomers of protein S bring the same contribution to an extensive central network of H-bonds, and contribute symmetrically to a relatively large H-bond cluster at the receptor binding domain, and to a cluster near a protease cleavage site. Markedly different H-bonding at these three clusters in open and pre-fusion conformations suggest dynamic H-bond clusters could facilitate structural plasticity and selection of a protein S protomer for binding to the host receptor, and proteolytic cleavage. From analyses of spike protein sequences we identify patches of histidine and carboxylate groups that could be involved in transient proton binding.
Collapse
Affiliation(s)
- Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Éva Bertalan
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Krzysztof Buzar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Gebhard F X Schertler
- Paul Scherrer Institut, Department of Biology and Chemistry, Laboratory of Biomolecular Research, CH-5303 Villigen-PSI, Switzerland; ETH Zürich, Department of Biology, 8093 Zürich, Switzerland
| | - Coral Del Val
- University of Granada, Department of Computer Science and Artificial Intelligence, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
210
|
The Y Chromosome: A Complex Locus for Genetic Analyses of Complex Human Traits. Genes (Basel) 2020; 11:genes11111273. [PMID: 33137877 PMCID: PMC7693691 DOI: 10.3390/genes11111273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
The Human Y chromosome (ChrY) has been demonstrated to be a powerful tool for phylogenetics, population genetics, genetic genealogy and forensics. However, the importance of ChrY genetic variation in relation to human complex traits is less clear. In this review, we summarise existing evidence about the inherent complexities of ChrY variation and their use in association studies of human complex traits. We present and discuss the specific particularities of ChrY genetic variation, including Y chromosomal haplogroups, that need to be considered in the design and interpretation of genetic epidemiological studies involving ChrY.
Collapse
|
211
|
Liu X, Xu W, Leng F, Hao C, Kolora SRR, Li W. Prioritizing long range interactions in noncoding regions using GWAS and deletions perturbed TADs. Comput Struct Biotechnol J 2020; 18:2945-2952. [PMID: 33209206 PMCID: PMC7642798 DOI: 10.1016/j.csbj.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
Genome-wide association studies (GWAS) have contributed significantly to predisposing the disease etiology by associating single nucleotide polymorphisms (SNPs) with complex diseases. However, most GWAS-SNPs are in the noncoding regions that may affect distal genes via long range enhancer-promoter interactions. Thus, the common practice on GWAS discoveries cannot fully reveal the molecular mechanisms underpinning complex diseases. It is known that perturbations of topological associated domains (TADs) lead to long range interactions which underlie disease etiology. To identify the probable long range interactions in noncoding regions via GWAS and TADs perturbed by deletions, we integrated datasets from GWAS-SNPs, enhancers, TADs, and deletions. After ranking and clustering, we prioritized 201,132 high confident pairs of GWAS-SNPs and target genes. In this study, we performed a systematic inference on noncoding regions via GWAS-SNPs and deletion-perturbed TADs to boost GWAS discovery power. The high confident pairs of GWAS-SNPs and target genes (SE-Gs) provide the promising candidates to understand the molecular mechanisms underlying complex diseases with emphasis on the three-dimensional genome.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fei Leng
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Sree Rohit Raj Kolora
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
212
|
Han N, Anwar D, Hama N, Kobayashi T, Suzuki H, Takahashi H, Wada H, Otsuka R, Baghdadi M, Seino KI. Bromodomain-containing protein 4 regulates interleukin-34 expression in mouse ovarian cancer cells. Inflamm Regen 2020; 40:25. [PMID: 33072227 PMCID: PMC7556959 DOI: 10.1186/s41232-020-00129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/30/2020] [Indexed: 01/26/2023] Open
Abstract
Background Interleukin (IL)-34 acts as an alternative ligand for the colony-stimulating factor-1 receptor and controls the biology of myeloid cells, including survival, proliferation, and differentiation. IL-34 has been reported to be expressed in cancer cells and to promote tumor progression and metastasis of certain cancers via the promotion of angiogenesis and immunosuppressive macrophage differentiation. We have shown in our previous reports that targeting IL-34 in chemo-resistant tumors in vitro resulted in a remarkable inhibition of tumor growth. Also, we reported poor prognosis in patients with IL-34-expressing tumor. Therefore, blocking of IL-34 is considered as a promising therapeutic strategy to suppress tumor progression. However, the molecular mechanisms that control IL-34 production are still largely unknown. Methods IL-34 producing ovarian cancer cell line HM-1 was treated by bromodomain and extra terminal inhibitor JQ1. The mRNA and protein expression of IL-34 was evaluated after JQ1 treatment. Chromatin immunoprecipitation was performed to confirm the involvement of bromodomain-containing protein 4 (Brd4) in the regulation of the Il34 gene. Anti-tumor effect of JQ1 was evaluated in mouse tumor model. Results We identified Brd4 as one of the critical molecules that regulate Il34 expression in cancer cells. Consistent with this, we found that JQ1 is capable of efficiently suppressing the recruitment of Brd4 to the promotor region of Il34 gene. Additionally, JQ1 treatment of mice bearing IL-34-producing tumor inhibited the tumor growth along with decreasing Il34 expression in the tumor. Conclusion The results unveiled for the first time the responsible molecule Brd4 that regulates Il34 expression in cancer cells and suggested its possibility as a treatment target.
Collapse
Affiliation(s)
- Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Delnur Anwar
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, School of Medicine, Yokohama City University, 3-9 of Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, School of Medicine, Yokohama City University, 3-9 of Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| |
Collapse
|
213
|
Angenent-Mari NM, Garruss AS, Soenksen LR, Church G, Collins JJ. A deep learning approach to programmable RNA switches. Nat Commun 2020; 11:5057. [PMID: 33028812 PMCID: PMC7541447 DOI: 10.1038/s41467-020-18677-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Engineered RNA elements are programmable tools capable of detecting small molecules, proteins, and nucleic acids. Predicting the behavior of these synthetic biology components remains a challenge, a situation that could be addressed through enhanced pattern recognition from deep learning. Here, we investigate Deep Neural Networks (DNN) to predict toehold switch function as a canonical riboswitch model in synthetic biology. To facilitate DNN training, we synthesize and characterize in vivo a dataset of 91,534 toehold switches spanning 23 viral genomes and 906 human transcription factors. DNNs trained on nucleotide sequences outperform (R2 = 0.43-0.70) previous state-of-the-art thermodynamic and kinetic models (R2 = 0.04-0.15) and allow for human-understandable attention-visualizations (VIS4Map) to identify success and failure modes. This work shows that deep learning approaches can be used for functionality predictions and insight generation in RNA synthetic biology.
Collapse
Affiliation(s)
- Nicolaas M Angenent-Mari
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Alexander S Garruss
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Luis R Soenksen
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, 02139, USA
| | - George Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - James J Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Mechanical Engineering, MIT, Cambridge, MA, 02139, USA.
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
214
|
Pereira-Santana A, Gamboa-Tuz SD, Zhao T, Schranz ME, Vinuesa P, Bayona A, Rodríguez-Zapata LC, Castano E. Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin. PLoS Comput Biol 2020; 16:e1008318. [PMID: 33075080 PMCID: PMC7608942 DOI: 10.1371/journal.pcbi.1008318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/03/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.
Collapse
Affiliation(s)
- Alejandro Pereira-Santana
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Tao Zhao
- Bioinformatics and Evolutionary Genomics, VIB-UGent Center for Plant Systems Biology, Gent, Belgium
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Andrea Bayona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
215
|
Ramanan VK, Wang X, Przybelski SA, Raghavan S, Heckman MG, Batzler A, Kosel ML, Hohman TJ, Knopman DS, Graff-Radford J, Lowe VJ, Mielke MM, Jack CR, Petersen RC, Ross OA, Vemuri P. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun 2020; 2:fcaa159. [PMID: 33426524 PMCID: PMC7780444 DOI: 10.1093/braincomms/fcaa159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Tau deposition is a key biological feature of Alzheimer's disease that is closely related to cognitive impairment. However, it remains poorly understood why certain individuals may be more susceptible to tau deposition while others are more resistant. The recent availability of in vivo assessment of tau burden through positron emission tomography provides an opportunity to test the hypothesis that common genetic variants may influence tau deposition. We performed a genome-wide association study of tau-positron emission tomography on a sample of 754 individuals over age 50 (mean age 72.4 years, 54.6% men, 87.6% cognitively unimpaired) from the population-based Mayo Clinic Study of Aging. Linear regression was performed to test nucleotide polymorphism associations with AV-1451 (18F-flortaucipir) tau-positron emission tomography burden in an Alzheimer's-signature composite region of interest, using an additive genetic model and covarying for age, sex and genetic principal components. Genome-wide significant associations with higher tau were identified for rs76752255 (P = 9.91 × 10-9, β = 0.20) in the tau phosphorylation regulatory gene PPP2R2B (protein phosphatase 2 regulatory subunit B) and for rs117402302 (P = 4.00 × 10-8, β = 0.19) near IGF2BP3 (insulin-like growth factor 2 mRNA-binding protein 3). The PPP2R2B association remained genome-wide significant after additionally covarying for global amyloid burden and cerebrovascular disease risk, while the IGF2BP3 association was partially attenuated after accounting for amyloid load. In addition to these discoveries, three single nucleotide polymorphisms within MAPT (microtubule-associated protein tau) displayed nominal associations with tau-positron emission tomography burden, and the association of the APOE (apolipoprotein E) ɛ4 allele with tau-positron emission tomography was marginally nonsignificant (P = 0.06, β = 0.07). No associations with tau-positron emission tomography burden were identified for other single nucleotide polymorphisms associated with Alzheimer's disease clinical diagnosis in prior large case-control studies. Our findings nominate PPP2R2B and IGF2BP3 as novel potential influences on tau pathology which warrant further functional characterization. Our data are also supportive of previous literature on the associations of MAPT genetic variation with tau, and more broadly supports the inference that tau accumulation may have a genetic architecture distinct from known Alzheimer's susceptibility genes, which may have implications for improved risk stratification and therapeutic targeting.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Xuewei Wang
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | | | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic-Florida, Jacksonville, FL 32224, USA
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Matthew L Kosel
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic-Florida, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic-Florida, Jacksonville, FL 32224, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| |
Collapse
|
216
|
Kiltschewskij DJ, Cairns MJ. Transcriptome-Wide Analysis of Interplay between mRNA Stability, Translation and Small RNAs in Response to Neuronal Membrane Depolarization. Int J Mol Sci 2020; 21:ijms21197086. [PMID: 32992958 PMCID: PMC7582590 DOI: 10.3390/ijms21197086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Experience-dependent changes to neural circuitry are shaped by spatially-restricted activity-dependent mRNA translation. Although the complexity of mRNA translation in neuronal cells is widely appreciated, translational profiles associated with neuronal excitation remain largely uncharacterized, and the associated regulatory mechanisms are poorly understood. Here, we employed ribosome profiling, mRNA sequencing and small RNA sequencing to profile transcriptome-wide changes in mRNA translation after whole cell depolarization of differentiated neuroblast cultures, and investigate the contribution of sequence-specific regulatory mechanisms. Immediately after depolarization, a functional partition between transcriptional and translational responses was uncovered, in which many mRNAs were subjected to significant changes in abundance or ribosomal occupancy, but not both. After an extended (2 h) post-stimulus rest phase, however, these changes became synchronized, suggesting that there are different layers of post-transcriptional regulation which are temporally separated but become coordinated over time. Globally, changes in mRNA abundance and translation were found to be associated with a number of intrinsic mRNA features, including mRNA length, GC% and secondary structures; however, the effect of these factors differed between both post-depolarization time-points. Furthermore, small RNA sequencing revealed that miRNAs and tRNA-derived small RNA fragments were subjected to peak changes in expression immediately after stimulation, during which these molecules were predominantly associated with fluctuations in mRNA abundance, consistent with known regulatory mechanisms. These data suggest that excitation-associated neuronal translation is subjected to extensive temporal coordination, with substantial contributions from a number of sequence-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Dylan J. Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
- Schizophrenia Research Institute, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-02-4921-8670
| |
Collapse
|
217
|
Shinoda K, Maman Y, Canela A, Schatz DG, Livak F, Nussenzweig A. Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Rep 2020; 29:4471-4481.e6. [PMID: 31875554 DOI: 10.1016/j.celrep.2019.11.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022] Open
Abstract
During V(D)J recombination, RAG proteins introduce DNA double-strand breaks (DSBs) at recombination signal sequences (RSSs) that contain either 12- or 23-nt spacer regions. Coordinated 12/23 cleavage predicts that DSBs at variable (V) gene segments should equal the level of breakage at joining (J) segments. Contrary to this, here we report abundant RAG-dependent DSBs at multiple Vκ gene segments independent of V-J rearrangement. We find that a large fraction of Vκ gene segments are flanked not only by a bone-fide 12 spacer but also an overlapping, 23-spacer flipped RSS. These compatible pairs of RSSs mediate recombination and deletion inside the Vκ cluster even in the complete absence of Jκ gene segments and support a V(D)J recombination center (RC) independent of the conventional Jκ-centered RC. We propose an improved model of Vκ-Jκ repertoire formation by incorporating these surprisingly frequent, evolutionarily conserved intra-Vκ cluster recombination events.
Collapse
Affiliation(s)
- Kenta Shinoda
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Hakubi Center for Advanced Research and Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
218
|
Targeting protein tyrosine kinase 6 in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188432. [PMID: 32956764 DOI: 10.1016/j.bbcan.2020.188432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) is the most well studied member of the PTK6 family of intracellular tyrosine kinases. While it is expressed at highest levels in differentiated cells in the regenerating epithelial linings of the gastrointestinal tract and skin, induction and activation of PTK6 is detected in several cancers, including breast and prostate cancer where high PTK6 expression correlates with worse outcome. PTK6 expression is regulated by hypoxia and cell stress, and its kinase activity is induced by several growth factor receptors implicated in cancer including members of the ERBB family, IGFR1 and MET. Activation of PTK6 at the plasma membrane has been associated with the epithelial mesenchymal transition and tumor metastasis. Several lines of evidence indicate that PTK6 has context dependent functions that depend on cell type, intracellular localization and kinase activation. Systemic disruption of PTK6 has been shown to reduce tumorigenesis in mouse models of breast and prostate cancer, and more recently small molecule inhibitors of PTK6 have exhibited efficacy in inhibiting tumor growth in animal models. Here we review data that suggest targeting PTK6 may have beneficial therapeutic outcomes in some cancers.
Collapse
|
219
|
Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication. Nat Commun 2020; 11:4739. [PMID: 32958756 PMCID: PMC7505982 DOI: 10.1038/s41467-020-18550-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
More people globally depend on the water buffalo than any other domesticated species, and as the most closely related domesticated species to cattle they can provide important insights into the shared evolutionary basis of domestication. Here, we sequence the genomes of 79 water buffalo across seven breeds and compare patterns of between breed selective sweeps with those seen for 294 cattle genomes representing 13 global breeds. The genomic regions under selection between cattle breeds significantly overlap regions linked to stature in human genetic studies, with a disproportionate number of these loci also shown to be under selection between water buffalo breeds. Investigation of potential functional variants in the water buffalo genome identifies a rare example of convergent domestication down to the same mutation having independently occurred and been selected for across domesticated species. Cross-species comparisons of recent selective sweeps can consequently help identify and refine important loci linked to domestication. The comparative genomics of domesticated lineages can yield insights into the signatures of artificial selection. This study sequences 79 water buffalo genomes from 7 breeds and reveals examples of convergent domestication at the genetic level between water buffalo and cattle.
Collapse
|
220
|
Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer 2020; 1874:188433. [PMID: 32956763 DOI: 10.1016/j.bbcan.2020.188433] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells take advantage of signaling cascades to meet their requirements for sustained growth and survival. Cell signaling is tightly controlled by reversible protein phosphorylation mechanisms, which require the counterbalanced action of protein kinases and protein phosphatases. Imbalances on this system are associated with cancer development and progression. Protein phosphatase 1 (PP1) is one of the most relevant protein phosphatases in eukaryotic cells. Despite the widely recognized involvement of PP1 in key biological processes, both in health and disease, its relevance in cancer has been largely neglected. Here, we provide compelling evidence that support major roles for PP1 in tumorigenesis.
Collapse
|
221
|
Teng J, Huang S, Chen Z, Gao N, Ye S, Diao S, Ding X, Yuan X, Zhang H, Li J, Zhang Z. Optimizing genomic prediction model given causal genes in a dairy cattle population. J Dairy Sci 2020; 103:10299-10310. [PMID: 32952023 DOI: 10.3168/jds.2020-18233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/07/2020] [Indexed: 01/15/2023]
Abstract
As genotypic data are moving from SNP chip toward whole-genome sequence, the accuracy of genomic prediction (GP) exhibits a marginal gain, although all genetic variation, including causal genes, are contained in whole-genome sequence data. Meanwhile, genetic analyses on complex traits, such as genome-wide association studies, have identified an increasing number of genomic regions, including potential causal genes, which would be reliable prior knowledge for GP. Many studies have tried to improve the performance of GP by modifying the prediction model to incorporate prior knowledge. Although several plausible results have been obtained from model modification or strategy optimization, most of them were validated in a specific empirical population with a limited variety of genetic architecture for complex traits. An alternative approach is to use simulated genetic architecture with known causal genes (e.g., simulated causative SNP) to evaluate different GP models with given causal genes. Our objectives were to (1) evaluate the performance of GP under a variety of genetic architectures with a subset of known causal genes and (2) compare different GP models modified by highlighting causal genes and different strategies to weight causal genes. In this study, we simulated pseudo-phenotypes under a variety of genetic architectures based on the real genotypes and phenotypes of a dairy cattle population. Besides classical genomic best linear unbiased prediction, we evaluated 3 modified GP models that highlight causal genes as follows: (1) by treating them as fixed effects, (2) by treating them as a separate random component, and (3) by combining them into the genomic relationship matrix as random effects. Our results showed that highlighting the known causal genes, which explained a considerable proportion of genetic variance in the GP models, increased the predictive accuracy. Combining all given causal genes into the genomic relationship matrix was the optimal strategy under all the scenarios validated, and treating causal genes as a separate random component is also recommended, when more than 20% of genetic variance was explained by known causal genes. Moreover, assigning differential weights to each causal gene further improved the predictive accuracy.
Collapse
Affiliation(s)
- Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuwen Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
222
|
Maternal Transmission Ratio Distortion in Two Iberian Pig Varieties. Genes (Basel) 2020; 11:genes11091050. [PMID: 32899475 PMCID: PMC7563664 DOI: 10.3390/genes11091050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds.
Collapse
|
223
|
Wang Y, Yi N, Hu Y, Zhou X, Jiang H, Lin Q, Chen R, Liu H, Gu Y, Tong C, Lu M, Zhang J, Zhang B, Peng L, Li L. Molecular Signatures and Networks of Cardiomyocyte Differentiation in Humans and Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:696-711. [PMID: 32769060 PMCID: PMC7412763 DOI: 10.1016/j.omtn.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
Cardiomyocyte differentiation derived from embryonic stem cells (ESCs) is a complex process involving molecular regulation of multiple levels. In this study, we first identify and compare differentially expressed gene (DEG) signatures of ESC-derived cardiomyocyte differentiation (ESCDCD) in humans and mice. Then, the multiscale embedded gene co-expression network analysis (MEGENA) of the human ESCDCD dataset is performed to identify 212 significantly co-expressed gene modules, which capture well the regulatory information of cardiomyocyte differentiation. Three modules respectively involved in the regulation of stem cell pluripotency, Wnt, and calcium pathways are enriched in the DEG signatures of the differentiation phase transition in the two species. Three human-specific cardiomyocyte differentiation phase transition modules are identified. Moreover, the potential regulation mechanisms of transcription factors during cardiomyocyte differentiation are also illustrated. Finally, several novel key drivers of ESCDCD are identified with the evidence of their expression during mouse embryonic cardiomyocyte differentiation. Using an integrative network analysis, the core molecular signatures and gene subnetworks (modules) underlying cardiomyocyte lineage commitment are identified in both humans and mice. Our findings provide a global picture of gene-gene co-regulation and identify key regulators during ESCDCD.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hanyu Jiang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yanqiong Gu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Tong
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junfang Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| |
Collapse
|
224
|
Meisner A, Kundu P, Zhang YD, Lan LV, Kim S, Ghandwani D, Pal Choudhury P, Berndt SI, Freedman ND, Garcia-Closas M, Chatterjee N. Combined Utility of 25 Disease and Risk Factor Polygenic Risk Scores for Stratifying Risk of All-Cause Mortality. Am J Hum Genet 2020; 107:418-431. [PMID: 32758451 DOI: 10.1016/j.ajhg.2020.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
While genome-wide association studies have identified susceptibility variants for numerous traits, their combined utility for predicting broad measures of health, such as mortality, remains poorly understood. We used data from the UK Biobank to combine polygenic risk scores (PRS) for 13 diseases and 12 mortality risk factors into sex-specific composite PRS (cPRS). These cPRS were moderately associated with all-cause mortality in independent data within the UK Biobank: the estimated hazard ratios per standard deviation were 1.10 (95% confidence interval: 1.05, 1.16) and 1.15 (1.10, 1.19) for women and men, respectively. Differences in life expectancy between the top and bottom 5% of the cPRS were estimated to be 4.79 (1.76, 7.81) years and 6.75 (4.16, 9.35) years for women and men, respectively. These associations were substantially attenuated after adjusting for non-genetic mortality risk factors measured at study entry (i.e., middle age for most participants). The cPRS may be useful in counseling younger individuals at higher genetic risk of mortality on modification of non-genetic factors.
Collapse
Affiliation(s)
- Allison Meisner
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Yan Dora Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Statistics, University of Hong Kong, 999077, Hong Kong
| | - Lauren V Lan
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sungwon Kim
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Disha Ghandwani
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Indian Statistical Institute, Kolkata, West Bengal 700108, India
| | - Parichoy Pal Choudhury
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
225
|
A novel protein upstream stimulatory factor 2 identified in lamprey, Lethenteron reissneri. Dev Genes Evol 2020; 230:347-357. [PMID: 32852621 DOI: 10.1007/s00427-020-00666-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Upstream stimulatory factors are kinds of multi-functional transcription factors, which are expressed in eukaryotes widely, including Upstream stimulatory factor 1 (USFl) and upstream stimulatory factor 2 (USF2). USF protein has a typical basic helix-loop-helix leucine zipper (b-HLH-LZ) structure, which is involved in cell cycle, cell proliferations, glucose and lipid metabolism, and other biochemical processes. Although the USF family is an important regulator of cellular processes, little is known about the USF genes of lampreys, especially their evolutionary relationships, expression profiles, and biological functions. Here, an upstream stimulatory factor 2 (USF2) homolog from lamprey (Lethenteron reissneri) was identified and characterized (designated as L-USF2) because it is closer to USF2 subfamily than to USF1 subfamily. The cDNA fragment of L-USF2 has an open reading frame (ORF) of 765-bp length, encodes 254 amino acids, and contains an HLH domain at the c-terminal of amino acids. Meanwhile, motifs and genetic structure analysis reveal that USF2 gene exons are conserved. Moreover, the 3D structure analysis indicates that L-USF2 adopts the general USF2 folding and has a high structural similarity with H-USF2. The synteny results showed that the L-USF2 adjacent gene changed greatly compared with the jaw vertebrates. By real-time quantitative experiment and Western blot analysis, we found that L-USF2 gene played a significant role in the immune responses. This study not only provides us with a further understanding of the evolution and function of the USF gene family but also provides a basis for exploring its immune responses and immune defenses in lampreys.
Collapse
|
226
|
Li HP, Yuan SQ, Wang XG, Sheng XL, Li XR. Myopia with X-linked retinitis pigmentosa results from a novel gross deletion of RPGR gene. Int J Ophthalmol 2020; 13:1306-1311. [PMID: 32821686 DOI: 10.18240/ijo.2020.08.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
AIM To identify mutations with whole exome sequencing (WES) in a Chinese X-linked retinitis pigmentosa (XLRP) family. METHODS Patients received the comprehensive ophthalmic evaluation. Genomic DNA was extracted from peripheral blood and subjected to SureSelect Human All Exon 6+ UTR exon capture kit. The exons were sequenced as 100 base paired reads on Illumina HiSeq2500 system. Only mutations that resulted in a change in amino acid sequence were selected. A pattern of inheritance of the RP family was aligned to identified causal mutation. RESULTS We analysed the data of WES information from XLRP family. The analysis revealed a hemizygous large genomic deletion of RPGR c.29_113del was responsible for this XLRP. The gross deletion lead to a frame-shift mutation and generate stop codon at 7 animo acid behind Asp (D10Afs*7), which would serious truncate RPGR protein. The novel frame-shift mutation was found to segregate with retinitis pigmentosa (RP) phenotype in this family. Bilateral myopia was present on the male patients, but carrier female showed unilateral myopia without RP. CONCLUSION Our study identifies a novel frame-shift mutation of RPGR in a Chinese family, which would expand the spectrum of RPGR mutations. The geno-phenotypic analysis reveals a correlation between RP and myopia. Although exact mechanism of RP related myopia is still unknown, but the novel frame-shift mutation will give our hit on studying the molecular pathogenesis of RP and myopia.
Collapse
Affiliation(s)
- Hui-Ping Li
- Tianjin Medical University Eye Hospital, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin 300384, China.,Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Shi-Qin Yuan
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Xiao-Guang Wang
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Xun-Lun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin 300384, China
| |
Collapse
|
227
|
Saad A, Adam I, Elzaki SEG, Awooda HA, Hamdan HZ. Leptin receptor gene polymorphisms c.668A>G and c.1968G>C in Sudanese women with preeclampsia: a case-control study. BMC MEDICAL GENETICS 2020; 21:162. [PMID: 32807109 PMCID: PMC7433111 DOI: 10.1186/s12881-020-01104-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Leptin receptor gene (LEPR) variants may affect the leptin levels and act as a risk factor for preeclampsia. Two LEPR gene missense variants rs1137101 (c.668A>G) and rs1805094 (c.1968G>C) were investigated in Sudanese women with preeclampsia. METHODS A matched case-control study (122 women in each arm) was conducted in Saad Abualila Maternity Hospital in Khartoum, Sudan from May to December 2018. The cases were women with preeclampsia and the controls were healthy pregnant women. Genotyping for LEPR gene variants c.668A>G and c.1968G>C was performed using polymerase chain reaction-restriction fragment length polymorphism. Logistic regression models (adjusted for age, parity, body mass index and hemoglobin level) were conducted. RESULTS Genotype frequency of LEPR gene variants c.668A>G and c.1968G>C was in accordance with Hardy-Weinberg equilibrium (P > 0.05) in the controls. Allele G in LEPRc.668A>G variant was significantly more frequent in the cases compared with the controls [43.4% vs. 10.2%; OR = 6.44; 95%CI (3.98-10.40); P < 0.001]. In variant LEPRc.668A>G, genotype AG was the prevalent genotype in the cases compared with the controls, and it was significantly associated with preeclampsia risk [37.7% vs. 15.5%; AOR = 3.48; 95%CI (1.15-10.54); P = 0.027]. Likewise, the GG genotype was the second most common genotype in the cases compared with the controls, and was associated with preeclampsia risk [24.6% vs. 2.5%; AOR = 14.19; 95%CI (1.77-113.76); P = 0.012]. None of the LEPRc.1968G>C variant genotypes were associated with preeclampsia. The CC genotype was not detected in neither the cases nor the controls. The haplotype A-G 70.1% was the prevalent haplotype in this population, and it significantly protected against preeclampsia [OR = 0.14; 95%CI (0.09-0.23); P < 0.001]. However, the haplotype G-G 26.8% was significantly associated with preeclampsia risk [OR = 6.70; 95%CI (4.16-11.05); P < 0.001]. Both variants c.668A>G and c.1968G>C were in strong linkage disequilibrium (D' = 1, r2 = 0.012). CONCLUSIONS Our data indicate that the rs1137101 (c.668A>G) variant and G-G haplotype may independently associate with the development of preeclampsia.
Collapse
Affiliation(s)
- Amira Saad
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, PO BOX 12702, Khartoum, Sudan
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Salah Eldin G Elzaki
- Department of Epidemiology, Tropical Medicine Research Institute, Khartoum, Sudan
| | - Hiba A Awooda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, PO BOX 12702, Khartoum, Sudan
| | - Hamdan Z Hamdan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, PO BOX 12702, Khartoum, Sudan. .,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia.
| |
Collapse
|
228
|
Pośpiech E, Kukla-Bartoszek M, Karłowska-Pik J, Zieliński P, Woźniak A, Boroń M, Dąbrowski M, Zubańska M, Jarosz A, Grzybowski T, Płoski R, Spólnicka M, Branicki W. Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genomics 2020; 21:538. [PMID: 32758128 PMCID: PMC7430834 DOI: 10.1186/s12864-020-06926-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Greying of the hair is an obvious sign of human aging. In addition to age, sex- and ancestry-specific patterns of hair greying are also observed and the progression of greying may be affected by environmental factors. However, little is known about the genetic control of this process. This study aimed to assess the potential of genetic data to predict hair greying in a population of nearly 1000 individuals from Poland. RESULTS The study involved whole-exome sequencing followed by targeted analysis of 378 exome-wide and literature-based selected SNPs. For the selection of predictors, the minimum redundancy maximum relevance (mRMRe) method was used, and then two prediction models were developed. The models included age, sex and 13 unique SNPs. Two SNPs of the highest mRMRe score included whole-exome identified KIF1A rs59733750 and previously linked with hair loss FGF5 rs7680591. The model for greying vs. no greying prediction achieved accuracy of cross-validated AUC = 0.873. In the 3-grade classification cross-validated AUC equalled 0.864 for no greying, 0.791 for mild greying and 0.875 for severe greying. Although these values present fairly accurate prediction, most of the prediction information was brought by age alone. Genetic variants explained < 10% of hair greying variation and the impact of particular SNPs on prediction accuracy was found to be small. CONCLUSIONS The rate of changes in human progressive traits shows inter-individual variation, therefore they are perceived as biomarkers of the biological age of the organism. The knowledge on the mechanisms underlying phenotypic aging can be of special interest to the medicine, cosmetics industry and forensics. Our study improves the knowledge on the genetics underlying hair greying processes, presents prototype models for prediction and proves hair greying being genetically a very complex trait. Finally, we propose a four-step approach based on genetic and epigenetic data analysis allowing for i) sex determination; ii) genetic ancestry inference; iii) greying-associated SNPs assignment and iv) epigenetic age estimation, all needed for a final prediction of greying.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Magdalena Kukla-Bartoszek
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Karłowska-Pik
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna Woźniak
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Michał Boroń
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Magdalena Zubańska
- Faculty of Law and Administration, Department of Criminology and Forensic Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agata Jarosz
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Collegium Medicum of the Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | | | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Central Forensic Laboratory of the Police, Warsaw, Poland
| |
Collapse
|
229
|
Ebrahimizadeh W, Guérard KP, Rouzbeh S, Bramhecha YM, Scarlata E, Brimo F, Patel PG, Jamaspishvili T, Aprikian AG, Berman D, Bartlett JMS, Chevalier S, Lapointe J. Design and Development of a Fully Synthetic Multiplex Ligation-Dependent Probe Amplification-Based Probe Mix for Detection of Copy Number Alterations in Prostate Cancer Formalin-Fixed, Paraffin-Embedded Tissue Samples. J Mol Diagn 2020; 22:1246-1263. [PMID: 32763409 DOI: 10.1016/j.jmoldx.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
DNA copy number alterations (CNAs) are promising biomarkers to predict prostate cancer (PCa) outcome. However, fluorescence in situ hybridization (FISH) cannot assess complex CNA signatures because of low multiplexing capabilities. Multiplex ligation-dependent probe amplification (MLPA) can detect multiple CNAs in a single PCR assay, but PCa-specific probe mixes available commercially are lacking. Synthetic MLPA probes were designed to target 10 CNAs relevant to PCa: 5q15-21.1 (CHD1), 6q15 (MAP3K7), 8p21.2 (NKX3-1), 8q24.21 (MYC), 10q23.31 (PTEN), 12p13.1 (CDKN1B), 13q14.2 (RB1), 16p13.3 (PDPK1), 16q23.1 (GABARAPL2), and 17p13.1 (TP53), with 9 control probes. In cell lines, CNAs were detected when the cancer genome was as low as 30%. Compared with FISH in radical prostatectomy formalin-fixed, paraffin-embedded samples (n = 18: 15 cancers and 3 matched benign), the MLPA assay showed median sensitivity and specificity of 80% and 93%, respectively, across all CNAs assessed. In the validation set (n = 40: 20 tumors sampled in two areas), the respective sensitivity and specificity of MLPA compared advantageously with FISH and TaqMan droplet digital PCR (ddPCR) when assessing PTEN deletion (FISH: 85% and 100%; ddPCR: 100% and 83%) and PDPK1 gain (FISH: 100% and 92%; ddPCR: 93% and 100%). This new PCa probe mix accurately identifies CNAs by MLPA across multiple genes using low quality and quantities (50 ng) of DNA extracted from clinical formalin-fixed, paraffin-embedded samples.
Collapse
Affiliation(s)
- Walead Ebrahimizadeh
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Karl-Philippe Guérard
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Shaghayegh Rouzbeh
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Yogesh M Bramhecha
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eleonora Scarlata
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Palak G Patel
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | - Armen G Aprikian
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - David Berman
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | - John M S Bartlett
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Simone Chevalier
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacques Lapointe
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
230
|
Saberian N, Shafi A, Peyvandipour A, Draghici S. MAGPEL: an autoMated pipeline for inferring vAriant-driven Gene PanEls from the full-length biomedical literature. Sci Rep 2020; 10:12365. [PMID: 32703994 PMCID: PMC7378213 DOI: 10.1038/s41598-020-68649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/17/2020] [Indexed: 11/09/2022] Open
Abstract
In spite of the efforts in developing and maintaining accurate variant databases, a large number of disease-associated variants are still hidden in the biomedical literature. Curation of the biomedical literature in an effort to extract this information is a challenging task due to: (i) the complexity of natural language processing, (ii) inconsistent use of standard recommendations for variant description, and (iii) the lack of clarity and consistency in describing the variant-genotype-phenotype associations in the biomedical literature. In this article, we employ text mining and word cloud analysis techniques to address these challenges. The proposed framework extracts the variant-gene-disease associations from the full-length biomedical literature and designs an evidence-based variant-driven gene panel for a given condition. We validate the identified genes by showing their diagnostic abilities to predict the patients' clinical outcome on several independent validation cohorts. As representative examples, we present our results for acute myeloid leukemia (AML), breast cancer and prostate cancer. We compare these panels with other variant-driven gene panels obtained from Clinvar, Mastermind and others from literature, as well as with a panel identified with a classical differentially expressed genes (DEGs) approach. The results show that the panels obtained by the proposed framework yield better results than the other gene panels currently available in the literature.
Collapse
Affiliation(s)
- Nafiseh Saberian
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Adib Shafi
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Azam Peyvandipour
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
231
|
Schweitzer KS, Jinawath N, Yonescu R, Ni K, Rush N, Charoensawan V, Bronova I, Berdyshev E, Leach SM, Gillenwater LA, Bowler RP, Pearse DB, Griffin CA, Petrache I. IGSF3 mutation identified in patient with severe COPD alters cell function and motility. JCI Insight 2020; 5:138101. [PMID: 32573489 PMCID: PMC7453886 DOI: 10.1172/jci.insight.138101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
Cigarette smoking (CS) and genetic susceptibility determine the risk for development, progression, and severity of chronic obstructive pulmonary diseases (COPD). We posited that an incidental balanced reciprocal chromosomal translocation was linked to a patient's risk of severe COPD. We determined that 46,XX,t(1;4)(p13.1;q34.3) caused a breakpoint in the immunoglobulin superfamily member 3 (IGSF3) gene, with markedly decreased expression. Examination of COPDGene cohort identified 14 IGSF3 SNPs, of which rs1414272 and rs12066192 were directly and rs6703791 inversely associated with COPD severity, including COPD exacerbations. We confirmed that IGSF3 is a tetraspanin-interacting protein that colocalized with CD9 and integrin B1 in tetraspanin-enriched domains. IGSF3-deficient patient-derived lymphoblastoids exhibited multiple alterations in gene expression, especially in the unfolded protein response and ceramide pathways. IGSF3-deficient lymphoblastoids had high ceramide and sphingosine-1 phosphate but low glycosphingolipids and ganglioside levels, and they were less apoptotic and more adherent, with marked changes in multiple TNFRSF molecules. Similarly, IGSF3 knockdown increased ceramide in lung structural cells, rendering them more adherent, with impaired wound repair and weakened barrier function. These findings suggest that, by maintaining sphingolipid and membrane receptor homeostasis, IGSF3 is required for cell mobility-mediated lung injury repair. IGSF3 deficiency may increase susceptibility to CS-induced lung injury in COPD.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, and
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom, Thailand
| | - Raluca Yonescu
- Department of Pathology, Division of Molecular Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Kevin Ni
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Natalia Rush
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Varodom Charoensawan
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sonia M Leach
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - Russel P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - David B Pearse
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Constance A Griffin
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, and
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
232
|
Zandi E, Ayatollahi Mehrgardi A, Esmailizadeh A. Mammary tissue transcriptomic analysis for construction of integrated regulatory networks involved in lactogenesis of Ovis aries. Genomics 2020; 112:4277-4287. [PMID: 32693106 DOI: 10.1016/j.ygeno.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The mammary gland experiences vast changes between the onset of lactation and pregnancy. This remodeling involves different functions such as lactation that is controlled by innumerable regulators and various gene networks which are still not completely understood. MicroRNAs (miRNAs) are one of the important non-coding gene regulators which control an extensive range of biological processes. Thus, exploring miRNAs functions is important for solving gene regulation complexity. The main purpose in the present study is to identify the various gene regulative integrated networks involved in lactation progress in mammary gland. We analyzed ovine mammary tissue data sets which included expression profiles of mRNA (genes) and miRNAs related to six ewes in different days of lactation and nutritional treatments. We combined two different types of information: the network that is module inference by mRNAs (RNA-seq data), miRNAs and transcription factors (TFs) expression matrix and prediction of targets via computational methods. To discover the miRNAs regulatory function, 134 modules were predicted by using gene expression data and 14 TFs and 20 miRNAs were allocated to these predicted modules. By applying this integrated computation-based method, 38 miRNA-modules and 35 TF-module interactions were identified from ovine mammary tissue data during lactogenesis. A lot of these modules were involved in lipid and protein metabolism, as well as steroids and vitamin biosynthesis, which would play key roles in mammary tissue and lactation development. These results present new information about the regulatory procedures at the miRNAs and TF levels throughout lactation.
Collapse
Affiliation(s)
- Elmira Zandi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran; Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran.
| |
Collapse
|
233
|
Tanaka K, Yamamoto-Fukuda M, Takizawa T, Shimakura H, Sakaguchi M. Association analysis of non-synonymous polymorphisms of interleukin-4 receptor-α and interleukin-13 genes in canine atopic dermatitis. J Vet Med Sci 2020; 82:1253-1259. [PMID: 32669513 PMCID: PMC7538314 DOI: 10.1292/jvms.20-0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin-4 (IL4) and interleukin-13 (IL13) are involved in the initial response of T helper 2 lymphocytes through the activation of the IL4 receptor alpha (IL4RA), which is a common receptor chain for these cytokines. In humans, several single-nucleotide polymorphisms (SNPs) identified
in the IL4R and in interleukin coding genes were associated with atopic disorders. However, the association between canine IL4R polymorphisms and atopic disorders has not been investigated yet. This study aimed to determine the associations between four
non-synonymous SNPs and canine atopic dermatitis (CAD) in shiba inu and miniature dachshund populations. Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis were used to genotype four polymorphisms of canine IL4R and
IL13 in 34 shiba inu and 19 miniature dachshund patients with CAD, as well as 29 shiba inu and 39 miniature dachshund patients without the condition. Results from miniature dachshunds revealed a potential association between the presence of minor A
allele rs24378020 and CAD (odds ratio, 0.10; 95% confidence interval, 0.01–0.85; Poriginal=0.0062). This CAD resistance allele led to an amino acid substitution (Arg688Cys) that could impair IL4 and IL13 signaling. In shiba inu patients, rs24378020 was fixed by
homozygosity of the major G allele. No association was found between the remaining three evaluated SNPs and CAD. Nevertheless, the study suggests that the IL4R Cys688 variant reduces the risk of CAD in miniature dachshunds.
Collapse
Affiliation(s)
- Kazuaki Tanaka
- School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Misaki Yamamoto-Fukuda
- School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Tatsuya Takizawa
- School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Hidekatsu Shimakura
- School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masahiro Sakaguchi
- School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
234
|
Lopes-Marques M, Serrano C, Cardoso AR, Salazar R, Seixas S, Amorim A, Azevedo L, Prata MJ. GBA3: a polymorphic pseudogene in humans that experienced repeated gene loss during mammalian evolution. Sci Rep 2020; 10:11565. [PMID: 32665690 PMCID: PMC7360587 DOI: 10.1038/s41598-020-68106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the cytosolic β-glucosidase GBA3 shows pseudogenization due to a truncated allele (rs358231) that is polymorphic in humans. Since this enzyme is involved in the transformation of many plant β-glycosides, this particular case of gene loss may have been influenced by dietary adaptations during evolution. In humans, apart from the inactivating allele, we found that GBA3 accumulated additional damaging mutations, implying an extensive GBA3 loss. The allelic distribution of loss-of-function alleles revealed significant differences between human populations which can be partially related with their staple diet. The analysis of mammalian orthologs disclosed that GBA3 underwent at least nine pseudogenization events. Most events of pseudogenization occurred in carnivorous lineages, suggesting a possible link to a β-glycoside poor diet. However, GBA3 was also lost in omnivorous and herbivorous species, hinting that the physiological role of GBA3 is not fully understood and other unknown causes may underlie GBA3 pseudogenization. Such possibility relies upon a putative role in sialic acid biology, where GBA3 participates in a cellular network involving NEU2 and CMAH. Overall, our data shows that the recurrent loss of GBA3 in mammals is likely to represent an evolutionary endpoint of the relaxation of selective constraints triggered by diet-related factors.
Collapse
Affiliation(s)
- Monica Lopes-Marques
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Catarina Serrano
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana R. Cardoso
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Renato Salazar
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Susana Seixas
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - António Amorim
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Luisa Azevedo
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Prata
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
235
|
Khan MAAK, Sany MRU, Islam MS, Islam ABMMK. Epigenetic Regulator miRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19. Front Genet 2020; 11:765. [PMID: 32765592 PMCID: PMC7381279 DOI: 10.3389/fgene.2020.00765] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
A detailed understanding of the molecular mechanism of SARS-CoV-2 pathogenesis is still elusive, and there is a need to address its deadly nature and to design effective therapeutics. Here, we present a study that elucidates the interplay between the SARS-CoV and SARS-CoV-2 viruses' and host's miRNAs, an epigenetic regulator, as a mode of pathogenesis; and we explored how the SARS-CoV and SARS-CoV-2 infections differ in terms of their miRNA-mediated interactions with the host and the implications this has in terms of disease complexity. We have utilized computational approaches to predict potential host and viral miRNAs and their possible roles in different important functional pathways. We have identified several putative host antiviral miRNAs that can target the SARS viruses and also predicted SARS viruses-encoded miRNAs targeting host genes. In silico predicted targets were also integrated with SARS-infected human cell microarray and RNA-seq gene expression data. A comparison between the host miRNA binding profiles on 67 different SARS-CoV-2 genomes from 24 different countries with respective country's normalized death count surprisingly uncovered some miRNA clusters, which are associated with increased death rates. We have found that induced cellular miRNAs can be both a boon and a bane to the host immunity, as they have possible roles in neutralizing the viral threat; conversely, they can also function as proviral factors. On the other hand, from over representation analysis, our study revealed that although both SARS-CoV and SARS-CoV-2 viral miRNAs could target broad immune-signaling pathways; only some of the SARS-CoV-2 miRNAs are found to uniquely target some immune-signaling pathways, such as autophagy, IFN-I signaling, etc., which might suggest their immune-escape mechanisms for prolonged latency inside some hosts without any symptoms of COVID-19. Furthermore, SARS-CoV-2 can modulate several important cellular pathways that might lead to the increased anomalies in patients with comorbidities like cardiovascular diseases, diabetes, breathing complications, etc. This might suggest that miRNAs can be a key epigenetic modulator behind the overcomplications amongst the COVID-19 patients. Our results support that miRNAs of host and SARS-CoV-2 can indeed play a role in the pathogenesis which can be further concluded with more experiments. These results will also be useful in designing RNA therapeutics to alleviate the complications from COVID-19.
Collapse
Affiliation(s)
| | - Md Rabi Us Sany
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Md Shafiqul Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
236
|
Azarova IE, Klyosova EY, Churilin MI, Samgina TA, Konoplya AI, Polonikov AV. Genetic and biochemical investigation of the gamma-glutamylcyclotransferase role in predisposition to type 2 diabetes mellitus. ECOLOGICAL GENETICS 2020; 18:215-228. [DOI: 10.17816/ecogen16293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background. Imbalance in the system of redox homeostasis is an important link in the pathogenesis of type 2 diabetes (T2D). Gamma-glutamyl cyclotransferase is an antioxidant defense enzyme directly involved in the metabolism of glutathione, an endogenous antioxidant.
The aim of the study was to examine the association of single nucleotide polymorphisms (SNP) rs38420 (G A), rs4270 (T C), rs6462210 (C T) and rs28679 (G A) in GGCT gene with the risk of developing T2D.
Materials and Methods. The study included 1022 T2D patients and 1064 healthy volunteers. Genotyping of GGCT gene loci was performed using iPLEX technology on a MassARRAY Analyzer 4 genome time-of-flight mass spectrometer (Agena Bioscience).
Results. As a result, we identified for the first time the association of SNP rs4270 in the GGCT gene with the risk of T2D in the Russian population. We have also established genetic and environmental interactions associated with predisposition to the disease: protective effect of gamma-glutamyl cyclotransferase gene was observed only in non-smokers under condition of daily consumption of fresh vegetables and fruits, whereas in persons with insufficient consumption of plant foods, as well as in all smoking patients protective effect of GGCT was not observed. In patients with T2D, the level of hydrogen peroxide and glutathione monomer was sharply increased compared to the controls. SNP rs4270 was also found to be associated with elevated levels of reduced glutathione in the plasma of type 2 diabetics.
Conclusion. Thus, for the first time it was established that polymorphic locus rs4270 in the GGCT gene is associated with a predisposition to T2D, but its relationship with the disease is modulated by smoking and fresh plant foods consumption.
Collapse
|
237
|
Jallow MW, Cerami C, Clark TG, Prentice AM, Campino S. Differences in the frequency of genetic variants associated with iron imbalance among global populations. PLoS One 2020; 15:e0235141. [PMID: 32609760 PMCID: PMC7329092 DOI: 10.1371/journal.pone.0235141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Iron deficiency anaemia is a major health problem affecting approximately 1.2 billion people worldwide. Young children, women of reproductive age and pregnant women living in sub-Saharan Africa are the most vulnerable. It is estimated that iron deficiency accounts for half of anaemia cases. Apart from nutritional deficiency, infection, inflammation and genetic factors are the major drivers of anaemia. However, the role of genetic risk factors has not been thoroughly investigated. This is particularly relevant in African populations, as they carry high genetic diversity and have a high prevalence of anaemia. Multiple genetic variations in iron regulatory genes have been linked to impaired iron status. Here we conducted a literature review to identify genetic variants associated with iron imbalance among global populations. We compare their allele frequencies and risk scores and we investigated population-specific selection among populations of varying geographic origin using data from the Keneba Biobank representing individuals in rural Gambia and the 1000 Genomes Project. We identified a significant lack of data on the genetic determinants of iron status in sub-Saharan Africa. Most of the studies on genetic determinants of iron status have been conducted in Europeans. Also, we identified population differences in allele frequencies in candidate putative genetic risk factors. Given the disproportionately high genetic diversity in African populations coupled with their high prevalence of iron deficiency, there is need to investigate the genetic influences of low iron status in Sub-Saharan Africa. The resulting insights may inform the future implementation of iron intervention strategies.
Collapse
Affiliation(s)
- Momodou W. Jallow
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| | - Carla Cerami
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| |
Collapse
|
238
|
Al-Muhaizea MA, AlQuait L, AlRasheed A, AlHarbi S, Albader AA, AlMass R, Albakheet A, Alhumaidan A, AlRasheed MM, Colak D, Kaya N. Pyrostigmine therapy in a patient with VAMP1-related congenital myasthenic syndrome. Neuromuscul Disord 2020; 30:611-615. [DOI: 10.1016/j.nmd.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
|
239
|
Subhi O, Schulten HJ, Bagatian N, Al-Dayini R, Karim S, Bakhashab S, Alotibi R, Al-Ahmadi A, Ata M, Elaimi A, Al-Muhayawi S, Mansouri M, Al-Ghamdi K, Hamour OA, Jamal A, Al-Maghrabi J, Al-Qahtani MH. Genetic relationship between Hashimoto`s thyroiditis and papillary thyroid carcinoma with coexisting Hashimoto`s thyroiditis. PLoS One 2020; 15:e0234566. [PMID: 32603365 PMCID: PMC7326236 DOI: 10.1371/journal.pone.0234566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is present in the background of around 30% of papillary thyroid carcinomas (PTCs). The genetic predisposition effect of this autoimmune condition is not thoroughly understood. We analyzed the microarray expression profiles of 13 HT, eight PTCs with (w/) coexisting HT, six PTCs without (w/o) coexisting HT, six micro PTCs (mPTCs), and three normal thyroid (TN) samples. Based on a false discovery rate (FDR)-adjusted p-value ≤ 0.05 and a fold change (FC) > 2, four comparison groups were defined, which were HT vs. TN; PTC w/ HT vs. TN; PTC w/o HT vs. TN; and mPTC vs. TN. A Venn diagram displayed 15 different intersecting and non-intersecting differentially expressed gene (DEG) sets, of which a set of 71 DEGs, shared between the two comparison groups HT vs. TN ∩ PTC w/ HT vs. TN, harbored the relatively largest number of genes related to immune and inflammatory functions; oxidative stress and reactive oxygen species (ROS); DNA damage and DNA repair; cell cycle; and apoptosis. The majority of the 71 DEGs were upregulated and the most upregulated DEGs included a number of immunoglobulin kappa variable genes, and other immune-related genes, e.g., CD86 molecule (CD86), interleukin 2 receptor gamma (IL2RG), and interferon, alpha-inducible protein 6 (IFI6). Upregulated genes preferentially associated with other gene ontologies (GO) were, e.g., STAT1, MMP9, TOP2A, and BRCA2. Biofunctional analysis revealed pathways related to immunogenic functions. Further data analysis focused on the set of non-intersecting 358 DEGs derived from the comparison group of HT vs. TN, and on the set of 950 DEGs from the intersection of all four comparison groups. In conclusion, this study indicates that, besides immune/inflammation-related genes, also genes associated with oxidative stress, ROS, DNA damage, DNA repair, cell cycle, and apoptosis are comparably more deregulated in a data set shared between HT and PTC w/ HT. These findings are compatible with the conception of a genetic sequence where chronic inflammatory response is accompanied by deregulation of genes and biofunctions associated with oncogenic transformation. The generated data set may serve as a source for identifying candidate genes and biomarkers that are practical for clinical application.
Collapse
Affiliation(s)
- Ohoud Subhi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadia Bagatian
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roa'a Al-Dayini
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Alotibi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Al-Ahmadi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar Ata
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Center of Innovation in Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad Al-Muhayawi
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Mansouri
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Al-Ghamdi
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osman Abdel Hamour
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Awatif Jamal
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed Hussain Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
240
|
Lavelle TJ, Alver TN, Heintz KM, Wernhoff P, Nygaard V, Nakken S, Øy GF, Bøe SL, Urbanucci A, Hovig E. Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes. Cancers (Basel) 2020; 12:cancers12071719. [PMID: 32605315 PMCID: PMC7408466 DOI: 10.3390/cancers12071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.
Collapse
Affiliation(s)
- Timothy J. Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Patrik Wernhoff
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Vegard Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, 0424 Oslo, Norway;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Correspondence: (A.U.); (E.H.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Correspondence: (A.U.); (E.H.)
| |
Collapse
|
241
|
Bista I, McCarthy SA, Wood J, Ning Z, Detrich III HW, Desvignes T, Postlethwait J, Chow W, Howe K, Torrance J, Smith M, Oliver K, Miska EA, Durbin R. The genome sequence of the channel bull blenny, Cottoperca gobio (Günther, 1861). Wellcome Open Res 2020; 5:148. [PMID: 33195818 PMCID: PMC7649722 DOI: 10.12688/wellcomeopenres.16012.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
We present a genome assembly for Cottoperca gobio (channel bull blenny, (Günther, 1861)); Chordata; Actinopterygii (ray-finned fishes), a temperate water outgroup for Antarctic Notothenioids. The size of the genome assembly is 609 megabases, with the majority of the assembly scaffolded into 24 chromosomal pseudomolecules. Gene annotation on Ensembl of this assembly has identified 21,662 coding genes.
Collapse
Affiliation(s)
- Iliana Bista
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Shane A. McCarthy
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | | | - Zemin Ning
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - H. William Detrich III
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Massachusetts, MA 01908, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - William Chow
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Kerstin Howe
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | | | | - Karen Oliver
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Vertebrate Genomes Project Consortium
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Massachusetts, MA 01908, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eric A. Miska
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| |
Collapse
|
242
|
Schwensow N, Pederson S, Peacock D, Cooke B, Cassey P. Adaptive changes in the genomes of wild rabbits after 16 years of viral epidemics. Mol Ecol 2020; 29:3777-3794. [PMID: 32506669 DOI: 10.1111/mec.15498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent-wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV-driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome-wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre-RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV-infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus-driven selection in response to a suddenly emerging infectious disease.
Collapse
Affiliation(s)
- Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, Australia
| | - David Peacock
- Biosecurity SA, Adelaide, SA, Australia.,School of Animal and Veterinary Science, University of Adelaide, Roseworthy, SA, Australia
| | - Brian Cooke
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| |
Collapse
|
243
|
Fam BS, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC. ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2. Genet Mol Biol 2020; 43:e20200104. [PMID: 32520981 PMCID: PMC7278419 DOI: 10.1590/1678-4685-gmb-2020-0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
The recent emergence of SARS-CoV-2 is responsible for the current pandemic of COVID-19, which uses the human membrane protein ACE2 as a gateway to host-cell infection. We performed a comparative genomic analysis of 70 ACE2 placental mammal orthologues to identify variations and contribute to the understanding of evolutionary dynamics behind this successful adaptation to infect humans. Our results reveal that 4% of the ACE2 sites are under positive selection, all located in the catalytic domain, suggesting possibly taxon-specific adaptations related to the ACE2 function, such as cardiovascular physiology. Considering all variable sites, we selected 30 of them located at the critical ACE2 binding sites to the SARS-CoV-like viruses for analysis in more detail. Our results reveal a relatively high diversity of ACE2 between placental mammal species, while showing no polymorphism within human populations, at least considering the 30 inter-species variable sites. A perfect scenario for natural selection favored this opportunistic new coronavirus in its trajectory of infecting humans. We suggest that SARS-CoV-2 became a specialist coronavirus for human hosts. Differences in the rate of infection and mortality could be related to the innate immune responses, other unknown genetic factors, as well as non-biological factors.
Collapse
Affiliation(s)
- Bibiana S.O. Fam
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Pedro Vargas-Pinilla
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Ribeirão Preto, SP, Brazil
| | | | - Vinicius A. Sortica
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
244
|
Pfammatter S, Bonneil E, Lanoix J, Vincent K, Hardy MP, Courcelles M, Perreault C, Thibault P. Extending the Comprehensiveness of Immunopeptidome Analyses Using Isobaric Peptide Labeling. Anal Chem 2020; 92:9194-9204. [DOI: 10.1021/acs.analchem.0c01545] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
245
|
Pavlovic Djuranovic S, Erath J, Andrews RJ, Bayguinov PO, Chung JJ, Chalker DL, Fitzpatrick JAJ, Moss WN, Szczesny P, Djuranovic S. Plasmodium falciparum translational machinery condones polyadenosine repeats. eLife 2020; 9:e57799. [PMID: 32469313 PMCID: PMC7295572 DOI: 10.7554/elife.57799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.
Collapse
Affiliation(s)
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
| | - Joyce J Chung
- Department of Biology, Washington UniversitySt LouisUnited States
| | | | - James AJ Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington UniversitySt LouisUnited States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Pawel Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Department of BioinformaticsWarsawPoland
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
246
|
Duplication in ECR Near HMX1 and a SNP in GATA6 Genes Regulate Microtia in Awassi Sheep. Genes (Basel) 2020; 11:genes11060597. [PMID: 32481741 PMCID: PMC7349607 DOI: 10.3390/genes11060597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/14/2023] Open
Abstract
Microtia and anotia are hereditary traits characterized by an underdevelopment or complete absence of the outer ear. These congenital malformations observed in many species can exist as part of various syndromes or as an isolated trait as seen in the fat-tailed Awassi sheep breed. Our study aims to identify the genetic mutations causing microtia in Awassi sheep by DNA sequencing. DNA was extracted from blood samples randomly collected from 84 Awassi sheep (16 earless, 41 short ear and 27 normal ear) across different farms. GATA6 exons 1, 2, 4, 6 and 7, CLRN1 intron 3, DCC intron 2, ECR near HMX1 and the intergenic region between GATA6 and MIB1 genes were screened, amplified and sequenced. Allele and genotype frequencies were calculated by direct counting. Association was performed using chi-squared test for goodness-of-fit. Results showed mutations in only two genes significantly associated with microtia in Awassi: duplication in part of ECR near HMX1 (6:114293121-6:114293196) and a SNP at GATA6 exon 7 (23:34498242). Association results revealed that the ECR locus accounts for the microtia phenotype, while GATA6 exon 7 acts as a modifier gene. Genetic screening for these loci can be used to improve selection against microtia in Awassi sheep.
Collapse
|
247
|
Sun H, Guo Y, Lan X, Jia J, Cai X, Zhang G, Xie J, Liang Q, Li Y, Yu G. PhenoModifier: a genetic modifier database for elucidating the genetic basis of human phenotypic variation. Nucleic Acids Res 2020; 48:D977-D982. [PMID: 31642469 PMCID: PMC7145690 DOI: 10.1093/nar/gkz930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023] Open
Abstract
From clinical observations to large-scale sequencing studies, the phenotypic impact of genetic modifiers is evident. To better understand the full spectrum of the genetic contribution to human disease, concerted efforts are needed to construct a useful modifier resource for interpreting the information from sequencing data. Here, we present the PhenoModifier (https://www.biosino.org/PhenoModifier), a manually curated database that provides a comprehensive overview of human genetic modifiers. By manually curating over ten thousand published articles, 3078 records of modifier information were entered into the current version of PhenoModifier, related to 288 different disorders, 2126 genetic modifier variants and 843 distinct modifier genes. To help users probe further into the mechanism of their interested modifier genes, we extended the yeast genetic interaction data and yeast quantitative trait loci to the human and we also integrated GWAS data into the PhenoModifier to assist users in evaluating all possible phenotypes associated with a modifier allele. As the first comprehensive resource of human genetic modifiers, PhenoModifier provides a more complete spectrum of genetic factors contributing to human phenotypic variation. The portal has a broad scientific and clinical scope, spanning activities relevant to variant interpretation for research purposes as well as clinical decision making.
Collapse
Affiliation(s)
- Hong Sun
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yangfan Guo
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoping Lan
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jia Jia
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Xiaoshu Cai
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China.,Clinical Research Collaboration (K.-Y.H., J.-F.H.), Siemens Ltd., China Shanghai Branch, Shanghai 200120, China
| | - Guoqing Zhang
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200232, China
| | - Jingjing Xie
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Qian Liang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yixue Li
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200232, China
| | - Guangjun Yu
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
248
|
Haplotype-Based Genome-Wide Association Study and Identification of Candidate Genes Associated with Carcass Traits in Hanwoo Cattle. Genes (Basel) 2020; 11:genes11050551. [PMID: 32423003 PMCID: PMC7290854 DOI: 10.3390/genes11050551] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Hanwoo, is the most popular native beef cattle in South Korea. Due to its extensive popularity, research is ongoing to enhance its carcass quality and marbling traits. In this study we conducted a haplotype-based genome-wide association study (GWAS) by constructing haplotype blocks by three methods: number of single nucleotide polymorphisms (SNPs) in a haplotype block (nsnp), length of genomic region in kb (Len) and linkage disequilibrium (LD). Significant haplotype blocks and genes associated with them were identified for carcass traits such as BFT (back fat thickness), EMA (eye Muscle area), CWT (carcass weight) and MS (marbling score). Gene-set enrichment analysis and functional annotation of genes in the significantly-associated loci revealed candidate genes, including PLCB1 and PLCB4 present on BTA13, coding for phospholipases, which might be important candidates for increasing fat deposition due to their role in lipid metabolism and adipogenesis. CEL (carboxyl ester lipase), a bile-salt activated lipase, responsible for lipid catabolic process was also identified within the significantly-associated haplotype block on BTA11. The results were validated in a different Hanwoo population. The genes and pathways identified in this study may serve as good candidates for improving carcass traits in Hanwoo cattle.
Collapse
|
249
|
Yildirim O, Izgu EC, Damle M, Chalei V, Ji F, Sadreyev RI, Szostak JW, Kingston RE. S-phase Enriched Non-coding RNAs Regulate Gene Expression and Cell Cycle Progression. Cell Rep 2020; 31:107629. [PMID: 32402276 PMCID: PMC7954657 DOI: 10.1016/j.celrep.2020.107629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins that are needed for progression through S-phase are produced from transcripts that peak in the S-phase, linking temporal expression of those proteins to the time that they are required in cell cycle. Here, we explore the potential roles of long non-coding RNAs in cell cycle progression. We use a sensitive click-chemistry approach to isolate nascent RNAs in a human cell line, and we identify more than 900 long non-coding RNAs (lncRNAs) whose synthesis peaks during the S-phase. More than 200 of these are long intergenic non-coding RNAs (lincRNAs) with S-phase-specific expression. We characterize three of these lincRNAs by knockdown and find that all three lincRNAs are required for appropriate S-phase progression. We infer that non-coding RNAs are key regulatory effectors during the cell cycle, acting on distinct regulatory networks, and herein, we provide a large catalog of candidate cell-cycle regulatory RNAs.
Collapse
Affiliation(s)
- Ozlem Yildirim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Enver C Izgu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vladislava Chalei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
250
|
Omics-wide quantitative B-cell infiltration analyses identify GPR18 for human cancer prognosis with superiority over CD20. Commun Biol 2020; 3:234. [PMID: 32398659 PMCID: PMC7217858 DOI: 10.1038/s42003-020-0964-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating B lymphocyte (TIL-B), and TIL-B-related biomarkers have clinical prognostic values for human cancers. CD20 (encoded by MS4A1) is a widely used TIL-B biomarker. Using TCGA-quantitative multiomics datasets, we first cross-compare prognostic powers of intratumoral CD20 protein, mRNA and TIL-B levels in pan-cancers. Here, we show that MS4A1 and TIL-B are consistently prognostic in 5 cancers (head and neck, lung, cervical, kidney and low-grade glioma), while unexpectedly, CD20 protein levels lack quantitative correlations with MS4A1/TIL-B levels and demonstrate limited prognosticity. Subsequent bioinformatics discovery for TIL-B prognostic gene identifies a single gene, GPR18 with stand-alone prognosticity across 9 cancers (superior over CD20), with further validations in multiple non-TCGA cohorts. GPR18's immune signature denotes major B-cell-T-cell interactions, with its intratumoral expression strongly tied to a "T-cell active", likely cytolytic, status across human cancers, suggesting its functional link to cytolytic T-cell activity in cancer. GPR18 merits biological and clinical utility assessments over CD20.
Collapse
|