201
|
The Epigenetic Consequences of Paternal Exposure to Environmental Contaminants and Reproductive Toxicants. Curr Environ Health Rep 2016; 3:202-13. [DOI: 10.1007/s40572-016-0101-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
202
|
Schagdarsurengin U, Western P, Steger K, Meinhardt A. Developmental origins of male subfertility: role of infection, inflammation, and environmental factors. Semin Immunopathol 2016; 38:765-781. [PMID: 27315198 DOI: 10.1007/s00281-016-0576-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
Male gamete development begins with the specification of primordial cells in the epiblast of the early embryo and is not complete until spermatozoa mature in the epididymis of adult males. This protracted developmental process involves extensive alteration of the paternal germline epigenome. Initially, epigenetic reprogramming in fetal germ cells results in removal of most DNA methylation, including parent-specific epigenetic information. The germ cells then establish sex-specific epigenetic information through de novo methylation and undergo spermatogenesis. Chromatin in haploid germ cells is repackaged into protamines during spermiogenesis, providing further widespread epigenetic reorganization. Finally, after fertilization, epigenetic reprogramming in the preimplantation embryo is necessary for regaining totipotency. These events provide substantial windows during which epigenetic errors either may be corrected or may occur in the germline. There is now increasing evidence that environmental factors such as exposure to toxicants, the parents' and individual's diet, and even infectious and inflammatory events in the male reproductive tract may influence epigenetic reprogramming. This, together with other damage inflicted on the germline chromatin, may result in negative consequences for fertility and health. Large epidemiological birth cohort studies have yielded insight into possible causative environmental factors. Together with experimental animal studies, a clearer view of environmental impacts on fetal development and their intergenerational and even transgenerational effects on reproductive health has emerged and is reviewed in this article.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Patrick Western
- Centre for Genetic Diseases, Hudson Institute for Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig University of Giessen, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
203
|
Spadafora C. Soma to germline inheritance of extrachromosomal genetic information via a LINE-1 reverse transcriptase-based mechanism. Bioessays 2016; 38:726-33. [DOI: 10.1002/bies.201500197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
204
|
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43:59-81. [PMID: 27358824 PMCID: PMC4925870 DOI: 10.5653/cerm.2016.43.2.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.
Collapse
Affiliation(s)
- Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
| | - Neelam Pathak
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Nirmal Kumar Lohiya
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Department of Molecular Biology, National Institute for Research in Environmental Health (ICMR), Bhopal, India
| |
Collapse
|
205
|
Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development. Curr Environ Health Rep 2016; 2:356-66. [PMID: 26362467 PMCID: PMC4623071 DOI: 10.1007/s40572-015-0067-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Male germ cells require multiple epigenetic reprogramming events during their lifespan to achieve reproductive capacity. An emerging body of compelling data demonstrates that environmental exposures can be embodied within the developing male germ cell as epigenetic marks. In turn, these epigenetic marks can impart information at fertilization to affect the trajectory of offspring health and development. While it is recognized that in utero epigenetic reprogramming of male germ cells is a particularly susceptible window to environmental exposures, other such windows exist during germ cell development. The objective of this review is to discuss epigenetic reprogramming events during male germ cell development and to provide supporting evidence from animal and human studies that during specific periods of development, germ cells are susceptible to environmentally induced epigenetic errors. Moving forward, the nascent field of sperm epigenetics research is likely to advance our understanding of paternal environmental determinants of offspring health and development.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 149 Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Building I 14th Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Building I 14th Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East. Hancock, Detroit, MI, 48201, USA.
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 149 Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
206
|
Jodar M, Sendler E, Moskovtsev SI, Librach CL, Goodrich R, Swanson S, Hauser R, Diamond MP, Krawetz SA. Absence of sperm RNA elements correlates with idiopathic male infertility. Sci Transl Med 2016; 7:295re6. [PMID: 26157032 DOI: 10.1126/scitranslmed.aab1287] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Semen parameters are typically used to diagnose male infertility and specify clinical interventions. In idiopathic infertile couples, an unknown male factor could be the cause of infertility even when the semen parameters are normal. Next-generation sequencing of spermatozoal RNAs can provide an objective measure of the paternal contribution and may help guide the care of these couples. We assessed spermatozoal RNAs from 96 couples presenting with idiopathic infertility and identified the final reproductive outcome and sperm RNA elements (SREs) reflective of fecundity status. The absence of required SREs reduced the probability of achieving live birth by timed intercourse or intrauterine insemination from 73 to 27%. However, the absence of these same SREs does not appear to be critical when using assisted reproductive technologies such as in vitro fertilization with or without intracytoplasmic sperm injection. About 30% of the idiopathic infertile couples presented an incomplete set of required SREs, suggesting a male component as the cause of their infertility. Conversely, analysis of couples that failed to achieve a live birth despite presenting with a complete set of SREs suggested that a female factor may have been involved, and this was confirmed by their diagnosis. The data in this study suggest that SRE analysis has the potential to predict the individual success rate of different fertility treatments and reduce the time to achieve live birth.
Collapse
Affiliation(s)
- Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Edward Sendler
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada. Department of Obstetrics and Gynaecology, University of Toronto, Ontario M5G 1E2, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada. Department of Obstetrics and Gynaecology, University of Toronto, Ontario M5G 1E2, Canada. Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario M5G 1B1, Canada
| | - Robert Goodrich
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Sonja Swanson
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
| | - Russ Hauser
- Vincent Memorial Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
207
|
Differential Expression of Long Noncoding RNAs between Sperm Samples from Diabetic and Non-Diabetic Mice. PLoS One 2016; 11:e0154028. [PMID: 27119337 PMCID: PMC4847876 DOI: 10.1371/journal.pone.0154028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/07/2016] [Indexed: 11/28/2022] Open
Abstract
To investigate the potential core reproduction-related genes associated with the development of diabetes, the expression profiles of long noncoding RNA (lncRNA) and messenger RNA (mRNA) in the sperm of diabetic mice were studied. We used microarray analysis to detect the expression of lncRNAs and coding transcripts in six diabetic and six normal sperm samples, and differentially expressed lncRNAs and mRNAs were identified through Volcano Plot filtering. The function of differentially expressed mRNA was determined by pathway and gene ontology (GO) analysis, and the function of lncRNAs was studied by subgroup analysis and their physical or functional relationships with corresponding mRNAs. A total of 7721 lncRNAs and 6097 mRNAs were found to be differentially expressed between the diabetic and normal sperm groups. The diabetic sperm exhibited aberrant expression profiles for lncRNAs and mRNAs, and GO and pathway analyses showed that the functions of differentially expressed mRNAs were closely related with many processes involved in the development of diabetes. Furthermore, potential core genes that might play important roles in the pathogenesis of diabetes-related low fertility were revealed by lncRNA- and mRNA-interaction studies, as well as coding-noncoding gene co-expression analysis based on the microarray expression profiles.
Collapse
|
208
|
Tavalaee M, Nasr-Esfahani MH. Expression profile ofPLCζ,PAWP,andTR-KITin association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation. Andrology 2016; 4:850-6. [DOI: 10.1111/andr.12179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/16/2023]
Affiliation(s)
- M. Tavalaee
- Department of Reproductive Biotechnology; Reproductive Biomedicine Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - M. H. Nasr-Esfahani
- Department of Reproductive Biotechnology; Reproductive Biomedicine Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
- Isfahan Fertility and Infertility Center; Isfahan Iran
| |
Collapse
|
209
|
Castillo J, Estanyol JM, Ballescá JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl 2016; 17:601-9. [PMID: 25926607 PMCID: PMC4492051 DOI: 10.4103/1008-682x.153302] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The classical idea about the function of the mammalian sperm chromatin is that it serves to transmit a highly protected and transcriptionally inactive paternal genome, largely condensed by protamines, to the next generation. In addition, recent sperm chromatin genome-wide dissection studies indicate the presence of a differential distribution of the genes and repetitive sequences in the protamine-condensed and histone-condensed sperm chromatin domains, which could be potentially involved in regulatory roles after fertilization. Interestingly, recent proteomic studies have shown that sperm chromatin contains many additional proteins, in addition to the abundant histones and protamines, with specific modifications and chromatin affinity features which are also delivered to the oocyte. Both gene and protein signatures seem to be altered in infertile patients and, as such, are consistent with the potential involvement of the sperm chromatin landscape in early embryo development. This present work reviews the available information on the composition of the human sperm chromatin and its epigenetic potential, with a particular focus on recent results derived from high-throughput genomic and proteomic studies. As a complement, we provide experimental evidence for the detection of phosphorylations and acetylations in human protamine 1 using a mass spectrometry approach. The available data indicate that the sperm chromatin is much more complex than what it was previously thought, raising the possibility that it could also serve to transmit crucial paternal epigenetic information to the embryo.
Collapse
Affiliation(s)
| | | | | | - Rafael Oliva
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143; Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Centre, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
210
|
Affiliation(s)
- Melvin M. Bonilla
- Department of Biology and Program in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMAUSA
| | - Jeanne A. Zeh
- Department of Biology and Program in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
| | - David W. Zeh
- Department of Biology and Program in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
| |
Collapse
|
211
|
Abstract
The prevalence of overweight and obesity in reproductive-aged men is increasing worldwide, with >70% of men >18 years classified as overweight or obese in some western nations. Male obesity is associated with male subfertility, impairing sex hormones, reducing sperm counts, increasing oxidative sperm DNA damage and changing the epigenetic status of sperm. These changes to sperm function as a result of obesity, are further associated with impaired embryo development, reduced live birth rates and increased miscarriage rates in humans. Animal models have suggested that these adverse reproductive effects can be transmitted to the offspring; suggesting that men's health at conception may affect the health of their children. In addition to higher adiposity, male obesity is associated with comorbidities, including metabolic syndrome, hypercholesterolemia, hyperleptinemia and a pro-inflammatory state, all which have independently been linked with male subfertility. Taken together, these findings suggest that the effects of male obesity on fertility are likely multifactorial, with associated comorbidities also influencing sperm, pregnancy and subsequent child health.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, The Robinson Institute, The University of Adelaide, South Australia 5005, Australia; Freemasons Foundation Center for Mens Health, The University of Adelaide, South Australia 5005, Australia,
| | | |
Collapse
|
212
|
Sharma A. Transgenerational epigenetic inheritance: resolving uncertainty and evolving biology. Biomol Concepts 2016; 6:87-103. [PMID: 25898397 DOI: 10.1515/bmc-2015-0005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Transgenerational epigenetic inheritance in animals has increasingly been reported in recent years. Controversies, however, surround this unconventional mode of heredity, especially in mammals, for several reasons. First, its existence itself has been questioned due to perceived insufficiency of available evidence. Second, it potentially implies transfer of hereditary information from soma to germline, against the established principle in biology. Third, it inherently requires survival of epigenetic memory across reprogramming, posing another fundamental challenge in biology. Fourth, evolutionary significance of epigenetic inheritance has also been under debate. This article pointwise addresses all these concerns on the basis of recent empirical, theoretical and conceptual advances. 1) Described here in detail are the key experimental findings demonstrating the occurrence of germline epigenetic inheritance in mammals. 2) Newly emerging evidence supporting soma to germline communication in transgenerational inheritance in mammals, and a role of exosome and extracellular microRNA in this transmission, is thoroughly discussed. 3) The plausibility of epigenetic information propagation across reprogramming is highlighted. 4) Analyses supporting evolutionary significance of epigenetic inheritance are briefly mentioned. Finally, an integrative model of 'evolutionary transgenerational systems biology' is proposed to provide a framework to guide future advancements in epigenetic inheritance.
Collapse
|
213
|
Schuster A, Skinner MK, Yan W. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw001. [PMID: 27390623 PMCID: PMC4933025 DOI: 10.1093/eep/dvw001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 05/18/2023]
Abstract
Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557-0330, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- *Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel:
+509-335-1524
; Fax:
+509-335-2176
; E-mail:
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557-0330, USA
- These authors contributed equally to the study
| |
Collapse
|
214
|
Non-coding RNA in Spermatogenesis and Epididymal Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:95-120. [PMID: 26659489 DOI: 10.1007/978-94-017-7417-8_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular germ and somatic cells express many classes of small ncRNAs, including Dicer-independent PIWI-interacting RNAs, Dicer-dependent miRNAs, and endogenous small interfering RNA. Several studies have identified ncRNAs that are highly, exclusively, or preferentially expressed in the testis and epididymis in specific germ and somatic cell types. Temporal and spatial expression of proteins is a key requirement of successful spermatogenesis and large-scale gene transcription occurs in two key stages, just prior to transcriptional quiescence in meiosis and then during spermiogenesis just prior to nuclear silencing in elongating spermatids. More than 60 % of these transcripts are then stockpiled for subsequent translation. In this capacity ncRNAs may act to interpret and transduce cellular signals to either maintain the undifferentiated stem cell population and/or drive cell differentiation during spermatogenesis and epididymal maturation. The assignation of specific roles to the majority of ncRNA species implicated as having a role in spermatogenesis and epididymal function will underpin fundamental understanding of normal and disease states in humans such as infertility and the development of germ cell tumours.
Collapse
|
215
|
Abstract
To prevent the intergenerational transfer of obesity and end the current epidemic, interventions are needed across the early life stages, from preconception to prenatal to infancy through the age of 2 years. The foundation for obesity is laid in early life by actions and interactions passed from parent to child that have long-lasting biologic and behavioral consequences. The purpose of this paper is to examine the best evidence about (a) factors in parents and offspring that promote obesity during the early life stages, (b) the social determinants and dimensions of obesity in early life, (c) promising and effective interventions for preventing obesity in early life, and (d) opportunities for future research into strategies to disrupt the intergenerational cycle of obesity that begins early in life. The pathway for halting the intergenerational obesity epidemic requires the discovery and development of evidence-based interventions that can act across multiple dimensions of influence on early life.
Collapse
Affiliation(s)
- Debra Haire-Joshu
- Public Health and Medicine, Brown School, Washington University in St. Louis, St. Louis, Missouri 63130;
| | - Rachel Tabak
- Prevention Research Center, Brown School, Washington University in St. Louis, St. Louis, Missouri 63130;
| |
Collapse
|
216
|
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2015; 351:397-400. [PMID: 26721680 DOI: 10.1126/science.aad7977] [Citation(s) in RCA: 950] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Abstract
Increasing evidence indicates that metabolic disorders in offspring can result from the father's diet, but the mechanism remains unclear. In a paternal mouse model given a high-fat diet (HFD), we showed that a subset of sperm transfer RNA-derived small RNAs (tsRNAs), mainly from 5' transfer RNA halves and ranging in size from 30 to 34 nucleotides, exhibited changes in expression profiles and RNA modifications. Injection of sperm tsRNA fractions from HFD males into normal zygotes generated metabolic disorders in the F1 offspring and altered gene expression of metabolic pathways in early embryos and islets of F1 offspring, which was unrelated to DNA methylation at CpG-enriched regions. Hence, sperm tsRNAs represent a paternal epigenetic factor that may mediate intergenerational inheritance of diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89512 USA
| | - Menghong Yan
- Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhonghong Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junchao Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongying Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Beijing Royal Integrative Medicine Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xudong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
217
|
The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 2015; 363:295-312. [PMID: 26661835 DOI: 10.1007/s00441-015-2320-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Spermatogenesis is a complex process in which >2300 genes are temporally and spatially regulated to form a terminally differentiated sperm cell that must maintain the ability to contribute to a totipotent embryo which can successfully differentiate into a healthy individual. This process is dependent on fidelity of the genome, epigenome, transcriptome, and proteome of the spermatogonia, supporting cells, and the resulting sperm cell. Infertility and/or disease risk may increase in the offspring if abnormalities are present. This review highlights the recent advances in our understanding of these processes in light of the "omics revolution". We briefly review each of these areas, as well as highlight areas of future study and needs to advance further.
Collapse
|
218
|
Lombó M, Fernández-Díez C, González-Rojo S, Navarro C, Robles V, Herráez MP. Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:667-678. [PMID: 26322593 DOI: 10.1016/j.envpol.2015.08.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor used in manufacturing of plastic devices, resulting in an ubiquitous presence in the environment linked to human infertility, obesity or cardiovascular diseases. Both transcriptome and epigenome modifications lie behind these disorders that might be inherited transgenerationally when affecting germline. To assess potential effects of paternal exposure on offspring development, adult zebrafish males were exposed to BPA during spermatogenesis and mated with non-treated females. Results showed an increase in the rate of heart failures of progeny up to the F2, as well as downregulation of 5 genes involved in cardiac development in F1 embryos. Moreover, BPA causes a decrease in F0 and F1 sperm remnant mRNAs related to early development. Results reveal a paternal inheritance of changes in the insulin signaling pathway due to downregulation of insulin receptor β mRNAs, suggesting a link between BPA male exposure and disruption of cardiogenesis in forthcoming generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Claudia Navarro
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Vanesa Robles
- Spanish Institute of Oceanography (IEO), Promontorio de San Martín s/n, 39004, Santander, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain.
| |
Collapse
|
219
|
Camargo LSA, Paludo F, Pereira MM, Wohlres-Viana S, Gioso MM, Carvalho BC, Quintao CCR, Viana JHM. Absence of Sperm Factors as in the Parthenogenesis Does Not Interfere on Bovine Embryo Sensitiveness to Heat Shock at Pre-Implantation Stage. Reprod Domest Anim 2015; 51:3-9. [DOI: 10.1111/rda.12637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Affiliation(s)
- LSA Camargo
- Brazilian Agricultural Research Corporation - Embrapa; Juiz de Fora MG Brazil
- UNIFENAS; Alfenas MG Brazil
| | | | - MM Pereira
- Federal University of Juiz de Fora; Juiz de Fora MG Brazil
| | | | | | - BC Carvalho
- Brazilian Agricultural Research Corporation - Embrapa; Juiz de Fora MG Brazil
- UNIFENAS; Alfenas MG Brazil
| | - CCR Quintao
- Brazilian Agricultural Research Corporation - Embrapa; Juiz de Fora MG Brazil
| | - JHM Viana
- Brazilian Agricultural Research Corporation - Embrapa; Juiz de Fora MG Brazil
- UNIFENAS; Alfenas MG Brazil
| |
Collapse
|
220
|
Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2015; 85:47-64. [PMID: 26506124 DOI: 10.1016/j.theriogenology.2015.09.047] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 02/04/2023]
Abstract
Cryopreservation is the most efficient method for long-term preservation of mammalian sperm. However, freeze-thawing procedures may strongly impair the sperm function and survival and thus decrease the reproductive performance. In addition, the sperm resilience to withstand cryopreservation, also known as freezability, presents a high individual variability. The present work summarizes the principles of cryoinjury and the relevance of permeating and nonpermeating cryoprotective agents. Descriptions about sperm cryodamage are mainly focused on boar sperm, but reference to other mammalian species is also made when relevant. Main cryoinjuries not only regard to sperm motility and membrane integrity, but also to the degradation effect exerted by freeze-thawing on other important components for sperm fertilizing ability, such as mRNAs. After delving into the main differences between good and poor freezability boar ejaculates, those protein markers predicting the sperm ability to sustain cryopreservation are also mentioned. Moreover, factors that may influence sperm freezability, such as season, diet, breed, or ejaculate fractions are discussed, together with the effects of different additives, like seminal plasma and antioxidants. After briefly referring to the effects of long-term sperm preservation in frozen state and the reproductive performance of frozen-thawed boar sperm, this work speculates with new research horizons on the preservation of boar sperm, such as vitrification and freeze-drying.
Collapse
Affiliation(s)
- Marc Yeste
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
221
|
Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet 2015; 16:641-52. [PMID: 26416311 DOI: 10.1038/nrg3964] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Behavioural traits in mammals are influenced by environmental factors, which can interact with the genome and modulate its activity by complex molecular interplay. Environmental experiences can modify social, emotional and cognitive behaviours during an individual's lifetime, and result in acquired behavioural traits that can be transmitted to subsequent generations. This Review discusses the concept of, and experimental support for, non-genetic transgenerational inheritance of acquired traits involving the germ line in mammals. Possible mechanisms of induction and maintenance during development and adulthood are considered along with an interpretation of recent findings showing the involvement of epigenetic modifications and non-coding RNAs in male germ cells.
Collapse
|
222
|
Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Tyagi S, Holt JE, McLaughlin EA. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol Reprod 2015; 93:91. [PMID: 26333995 DOI: 10.1095/biolreprod.115.132209] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/24/2015] [Indexed: 11/01/2022] Open
Abstract
In recent years considerable effort has been devoted to understanding the epigenetic control of sperm development, leading to an increased appreciation of the importance of RNA interference pathways, and in particular miRNAs, as key regulators of spermatogenesis and epididymal maturation. It has also been shown that sperm are endowed with an impressive array of miRNA that have been implicated in various aspects of fertilization and embryo development. However, to date there have been no reports on whether the sperm miRNA signature is static or whether it is influenced by their prolonged maturation within the male reproductive tract. To investigate this phenomenon, we employed next-generation sequencing to systematically profile the miRNA signature of maturing mouse spermatozoa. In so doing we have provided the first evidence for the posttesticular modification of the sperm miRNA profile under normal physiological conditions. Such modifications include the apparent loss and acquisition of an impressive cohort of some 113 and 115 miRNAs, respectively, between the proximal and distal epididymal segments. Interestingly, the majority of these changes occur late in maturation and include the uptake of novel miRNA species in addition to a significant increase in many miRNAs natively expressed in immature sperm. Because sperm are not capable of de novo transcription, these findings identify the epididymis as an important site in establishing the sperm epigenome with the potential to influence the peri-conceptual environment of the female reproductive tract, contribute to the inheritance of acquired characteristics, and/or alter the developmental trajectory of the resulting offspring.
Collapse
Affiliation(s)
- Brett Nixon
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Simone J Stanger
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bettina P Mihalas
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jackson N Reilly
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sonika Tyagi
- Australian Genome Research Facility Ltd, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Janet E Holt
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A McLaughlin
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
223
|
Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem 2015; 482:32-9. [DOI: 10.1016/j.ab.2015.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
|
224
|
Cui L, Fang L, Shi B, Qiu S, Ye Y. Spermatozoa micro ribonucleic acid–34c level is correlated with intracytoplasmic sperm injection outcomes. Fertil Steril 2015; 104:312-7.e1. [DOI: 10.1016/j.fertnstert.2015.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
|
225
|
|
226
|
Devi AN, Anil Kumar TR, Pillai SM, Jayakrishnan K, Kumar PG. Expression profiles of NPHP1 in the germ cells in the semen of men with male factor infertility. Andrology 2015. [DOI: 10.1111/andr.12062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- A. N. Devi
- Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - T. R. Anil Kumar
- Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - S. M. Pillai
- Samad IVF Hospital; Thiruvananthapuram Kerala India
| | | | - P. G. Kumar
- Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| |
Collapse
|
227
|
Wahlqvist ML, Krawetz SA, Rizzo NS, Dominguez-Bello MG, Szymanski LM, Barkin S, Yatkine A, Waterland RA, Mennella JA, Desai M, Ross MG, Krebs NF, Young BE, Wardle J, Wrann CD, Kral JG. Early-life influences on obesity: from preconception to adolescence. Ann N Y Acad Sci 2015; 1347:1-28. [PMID: 26037603 PMCID: PMC4522218 DOI: 10.1111/nyas.12778] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Abstract
The double burden of under- and overnutrition profoundly affects human health globally. According to the World Health Organization, obesity and diabetes rates have almost doubled worldwide since 1980, and, in 2011, more than 40 million children under 5 years of age were overweight. Ecologic factors, parental genetics and fitness, and the intrauterine environment significantly influence the likelihood of offspring developing the dysmetabolic diathesis of obesity. This report examines the effects of these factors, including preconception, intrauterine and postnatal energy balance affecting programming of transgenerational transmission, and development of chronic diseases later in life-in particular, diabesity and its comorbidities.
Collapse
Affiliation(s)
| | - Stephen A Krawetz
- C.S. Mott Center for Human Growth and Development and Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Nico S Rizzo
- Center of Community Resilience, School of Public Health, Loma Linda University, Loma Linda, California
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Shari Barkin
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Yatkine
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert A Waterland
- Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine and USDA/ARS Children's Nutrition Research Center, Houston, Texas
| | | | - Mina Desai
- University of California Los Angeles Medical Center, Los Angeles, California
| | - Michael G Ross
- University of California Los Angeles Medical Center, Los Angeles, California
| | - Nancy F Krebs
- University of Colorado School of Medicine, Aurora, Colorado
| | | | - Jane Wardle
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Christiane D Wrann
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - John G Kral
- SUNY Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
228
|
Park YS, Lee SH, Lim CK, Cho JW, Yang KM, Seo JT. Effect of testicular spermatozoa on embryo quality and pregnancy in patients with non-obstructive azoospermia. Syst Biol Reprod Med 2015; 61:300-6. [DOI: 10.3109/19396368.2015.1056885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
229
|
Johnson GD, Mackie P, Jodar M, Moskovtsev S, Krawetz SA. Chromatin and extracellular vesicle associated sperm RNAs. Nucleic Acids Res 2015; 43:6847-59. [PMID: 26071953 PMCID: PMC4538811 DOI: 10.1093/nar/gkv591] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/23/2015] [Indexed: 12/16/2022] Open
Abstract
A diverse pool of RNAs remain encapsulated within the transcriptionally silent spermatozoon despite the dramatic reduction in cellular and nuclear volume following cytoplasm/nucleoplasm expulsion. The impact of this pronounced restructuring on the distribution of transcripts inside the sperm essentially remains unknown. To define their compartmentalization, total RNA >100 nt was extracted from sonicated (SS) mouse spermatozoa and detergent demembranated sucrose gradient fractionated (Cs/Tx) sperm heads. Sperm RNAs predominately localized toward the periphery. The corresponding distribution of transcripts and thus localization and complexity were then inferred by RNA-seq. Interestingly, the number of annotated RNAs in the CsTx sperm heads exhibiting reduced peripheral enrichment was restricted. However this included Cabyr, the calcium-binding tyrosine phosphorylation-regulated protein encoded transcript. It is present in murine zygotes prior to the maternal to the zygotic transition yet absent in oocytes, consistent with the delivery of internally positioned sperm-borne RNAs to the embryo. In comparison, transcripts enriched in sonicated sperm contributed to the mitochondria and exosomes along with several nuclear transcripts including the metastasis associated lung adenocarcinoma transcript 1 (Malat1) and several small nucleolar RNAs. Their preferential peripheral localization suggests that chromatin remodeling during spermiogenesis is not limited to nucleoproteins as part of the nucleoprotein exchange.
Collapse
Affiliation(s)
- Graham D Johnson
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paula Mackie
- CReATe Fertility Centre, Toronto, ON, M5G 1N8, Canada
| | - Meritxell Jodar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA Department of Obstetrics and Gynaecology, University of Toronto, ON, M5G 1E2, Canada
| | - Sergey Moskovtsev
- CReATe Fertility Centre, Toronto, ON, M5G 1N8, Canada Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA Department of Obstetrics and Gynaecology, University of Toronto, ON, M5G 1E2, Canada
| |
Collapse
|
230
|
Pantano L, Jodar M, Bak M, Ballescà JL, Tommerup N, Oliva R, Vavouri T. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes. RNA (NEW YORK, N.Y.) 2015; 21:1085-1095. [PMID: 25904136 PMCID: PMC4436662 DOI: 10.1261/rna.046482.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/19/2015] [Indexed: 05/29/2023]
Abstract
At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.
Collapse
Affiliation(s)
- Lorena Pantano
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain
| | - Meritxell Jodar
- Genetics Unit, Department of Physiological Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clinic, 08036 Barcelona, Spain
| | - Mads Bak
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, DK-2200 Copenhagen, Denmark Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Josep Lluís Ballescà
- Andrology Unit, Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Hospital Clínic, 08036 Barcelona, Spain
| | - Niels Tommerup
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, DK-2200 Copenhagen, Denmark Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rafael Oliva
- Genetics Unit, Department of Physiological Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clinic, 08036 Barcelona, Spain
| | - Tanya Vavouri
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital GermansTrias i Pujol, Badalona, Barcelona 08916, Spain
| |
Collapse
|
231
|
Fagerlind M, Stålhammar H, Olsson B, Klinga-Levan K. Expression of miRNAs in Bull Spermatozoa Correlates with Fertility Rates. Reprod Domest Anim 2015; 50:587-94. [PMID: 25998690 DOI: 10.1111/rda.12531] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/19/2015] [Indexed: 01/05/2023]
Abstract
Bull spermatozoa are rich in active miRNAs, and it has been shown that specific spermborne miRNAs can be linked to fertility. Thus, expression profiling of spermatozoa could be helpful for understanding male fertility and the ability of spermatozoa to initiate and sustain zygotic, embryonic and foetal development. Herein we hypothesized that bulls with moderate to high fertility can be identified by differences in amounts of certain miRNAs between their ejaculates. RNA samples from spermatozoa of eight brother pairs (one bull with high and one with moderate NRR in each pair) of the Holstein breed were prepared. miRNA was isolated, and the expression of 178 miRNAs was determined by RT-qPCR. Important findings were that highly expressed miRNAs, not linked to NRR status, were identified in the bull sperm samples, which indicate that these miRNAs have an important role in early embryogenesis. A large fraction of the targets genes were phosphoproteins and genes involved in the regulation of transcription. Seven miRNAs (mir-502-5p, mir-1249, mir-320a, mir-34c-3p, mir-19b-3p, mir-27a-5p and mir-148b-3p) were differentially expressed between bulls with moderate and high NRR with a strong tendency towards a higher expression of miRNAs in bulls with moderate fertility. Thus, bulls with a moderate NRR negatively regulate the expression of protein-coding genes, which leads to problems during the pregnancy.
Collapse
Affiliation(s)
- M Fagerlind
- Systems Biology Research Centre - Infection Biology, School of Bioscience, University of Skövde, Skövde, Sweden
| | | | - B Olsson
- Systems Biology Research Centre - Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden
| | - K Klinga-Levan
- Systems Biology Research Centre - Tumor Biology, School of Bioscience, University of Skövde, Skövde, Sweden
| |
Collapse
|
232
|
Miller D. Confrontation, Consolidation, and Recognition: The Oocyte's Perspective on the Incoming Sperm. Cold Spring Harb Perspect Med 2015; 5:a023408. [PMID: 25957313 PMCID: PMC4526728 DOI: 10.1101/cshperspect.a023408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
From the oocyte's perspective, the incoming sperm poses a significant challenge. Despite (usually) arising from a male of the same species, the sperm is a "foreign" body that may carry with it additional, undesirable factors such as transposable elements (mainly retroposons) into the egg. These factors can arise either during spermatogenesis or while the sperm is moving through the epididymis or the female genital tract. Furthermore, in addition to the paternal genome, the sperm also carries its own complex repertoire of RNAs into the egg that includes mRNAs, lncRNAs, and sncRNAs. Last, the paternal genome itself is efficiently packaged into a protamine (nucleo-toroid) and histone (nucleosome)-based chromatin scaffold within which much of the RNA is embedded. Taken together, the sperm delivers a far more complex package to the egg than was originally thought. Understanding this complexity, at both the compositional and structural level, depends largely on investigating sperm chromatin from both the genomic (DNA packaging) and epigenomic (RNA carriage and extant histone modifications) perspectives. Why this complexity has arisen and its likely purpose requires us to look more closely at what happens in the oocyte when the sperm gains entry and the processes that then take place preparing the paternal (and maternal) genomes for syngamy.
Collapse
Affiliation(s)
- David Miller
- Institute of Cardiovascular and Metabolic Medicine (LICAMM), LIGHT Laboratories, University of Leeds, Leeds, LS2 9JT West Yorkshire, United Kingdom
| |
Collapse
|
233
|
McPherson NO, Owens JA, Fullston T, Lane M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am J Physiol Endocrinol Metab 2015; 308:E805-21. [PMID: 25690453 DOI: 10.1152/ajpendo.00013.2015] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/11/2015] [Indexed: 01/11/2023]
Abstract
Obesity and type 2 diabetes are increasingly prevalent across all demographics. Paternal obesity in humans and rodents can program obesity and impair insulin sensitivity in female offspring. It remains to be determined whether these perturbed offspring phenotypes can be improved through targeted lifestyle interventions in the obese father. Using a mouse model, we demonstrate that diet or exercise interventions for 8 wk (2 rounds of spermatogenesis) in obese founder males restores insulin sensitivity and normalized adiposity in female offspring. Founder diet and/or exercise also normalizes abundance of X-linked sperm microRNAs that target genes regulating cell cycle and apoptosis, pathways central to oocyte and early embryogenesis. Additionally, obesity-associated comorbidities, including inflammation, glucose intolerance, stress, and hypercholesterolemia, were good predictors for sperm microRNA abundance and offspring phenotypes. Interventions aimed at improving paternal metabolic health during specific windows prior to conception can partially normalize aberrant epigenetic signals in sperm and improve the metabolic health of female offspring.
Collapse
Affiliation(s)
- Nicole O McPherson
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Freemasons Center for Men's Health, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Julie A Owens
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tod Fullston
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle Lane
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Freemasons Center for Men's Health, University of Adelaide, Adelaide, South Australia, Australia; and Monash IVF Group, Melbourne, Victoria, Australia
| |
Collapse
|
234
|
Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 2015; 7:53. [PMID: 26052354 PMCID: PMC4456695 DOI: 10.1186/s13148-015-0085-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms, which include DNA methylation, histone modifications, and expression of non-coding RNAs. The effects of developmental programming can be induced by the intrauterine environment, leading to intergenerational epigenetic effects from one generation to the next. Transgenerational epigenetic inheritance may be considered when developmental programming is transmitted across generations that were not exposed to the initial environment which triggered the change. So far, inter- and transgenerational programming has been mainly described for cardiovascular and metabolic disease risk. In this review, we discuss available evidence that epigenetic inheritance also occurs in respiratory diseases, using asthma and chronic obstructive pulmonary disease (COPD) as examples. While multiple epidemiological as well as animal studies demonstrate effects of 'toxic' intrauterine exposure on various asthma-related phenotypes in the offspring, only few studies link epigenetic marks to the observed phenotypes. As epigenetic marks may distinguish individuals most at risk of later disease at early age, it will enable early intervention strategies to reduce such risks. To achieve this goal further, well designed experimental and human studies are needed.
Collapse
Affiliation(s)
- Susanne Krauss-Etschmann
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
- />Priority Area Asthma & Allergy, Leibniz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 1-40, Borstel, Germany
| | - Karolin F Meyer
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Stefan Dehmel
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Machteld N Hylkema
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
235
|
Lane M, Zander-Fox DL, Robker RL, McPherson NO. Peri-conception parental obesity, reproductive health, and transgenerational impacts. Trends Endocrinol Metab 2015; 26:84-90. [PMID: 25523615 DOI: 10.1016/j.tem.2014.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022]
Abstract
Maternal over-nutrition during pregnancy is a risk factor for pregnancy complications and is increasingly associated with adverse childhood outcomes such as increased propensity for obesity and metabolic disease. However, there is emerging evidence that parental lifestyle factors prior to and at conception have a powerful impact on the health of the offspring for more than one generation. Maternal and paternal obesity prior to conception alters the molecular composition of both oocytes and sperm, which can partly escape epigenetic reprogramming at fertilization, altering the developmental trajectory of the resultant embryo, ultimately increasing the incidence of obesity and metabolic disorders in offspring. Understanding the molecular underpinning of these changes may help create interventions to reduce the risk of disease in future generations.
Collapse
Affiliation(s)
- Michelle Lane
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia; Monash IVF Group, Richmond, Victoria, Australia; Freemasons Centre for Men's Health, University of Adelaide, Adelaide, South Australia.
| | - Deirdre L Zander-Fox
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia; Repromed, Dulwich, South Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia
| | - Nicole O McPherson
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia; Repromed, Dulwich, South Australia; Freemasons Centre for Men's Health, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
236
|
Abstract
SummaryTo ascertain whether aromatase (CYP19A1) expression is linked to sperm fertility of pigs, the present study determined the expression of the CYP19A1 gene in porcine sperm and its relationship with fertilization in vitro. First, to investigate its role in fertility, the presence of CYP19A1 of mRNA and protein expression in porcine sperm were confirmed by real-time (RT) or quantitative polymerase chain reaction (q-PCR) and by western blots. The expression levels were determined quantitatively using two sperm groups recovered by a Percoll gradient, which revealed that the sperm group with a low density had a higher penetration rate than that of the high-density group (P < 0.05). However, the expression level of CYP19A1 was not significantly different between the two groups. Secondly, to examine the effect of aromatase activity on fertilization, fresh semen was treated with a steroidal inhibitor, exemestane (50 μM for 0.5 h), followed by the dose- and time-dependent viability test. Our results clearly showed that an exemestane treatment effect (P < 0.05) was found for both the sperm-penetration rate and the oocyte cleavage rate. These results indicated that CYP19A1 could be involved in sperm fertility and its expression in sperm plays an important role in fertilization.
Collapse
|
237
|
Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, Xu C, Yan W. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open 2015; 4:212-23. [PMID: 25617420 PMCID: PMC4365490 DOI: 10.1242/bio.201410959] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian sperm are carriers of not only the paternal genome, but also the paternal epigenome in the forms of DNA methylation, retained histones and noncoding RNAs. Although paternal DNA methylation and histone retention sites have been correlated with protein-coding genes that are critical for preimplantation embryonic development, physiological evidence of an essential role of these epigenetic marks in fertilization and early development remains lacking. Two miRNA clusters consisting of five miRNAs (miR-34b/c and miR-449a/b/c) are present in sperm, but absent in oocytes, and miR-34c has been reported to be essential for the first cleavage division in vitro. Here, we show that both miR-34b/c- and miR-449-null male mice displayed normal fertility, and that intracytoplasmic injection of either miR-34b/c- or miR-449-null sperm led to normal fertilization, normal preimplantation development and normal birth rate. However, miR-34b/c and miR-449 double knockout (miR-dKO) males were infertile due to severe spermatogenic disruptions and oligo-astheno-teratozoospermia. Injection of miR-dKO sperm into wild-type oocytes led to a block at the two-pronucleus to zygote transition, whereas normal preimplantation development and healthy pups were obtained through injection of miR-dKO round spermatids. Our data demonstrate that miR-34b/c and miR-449a/b/c are essential for normal spermatogenesis and male fertility, but their presence in sperm is dispensable for fertilization and preimplantation development.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Jingwen Wu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Chen Xu
- Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
238
|
Nilsson EE, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res 2015; 165:12-7. [PMID: 24657180 PMCID: PMC4148471 DOI: 10.1016/j.trsl.2014.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Environmental insults, such as exposure to toxicants or nutritional abnormalities, can lead to epigenetic changes that are in turn related to increased susceptibility to disease. The focus of this review is on the transgenerational inheritance of such epigenetic abnormalities (epimutations), and how it is that these inherited epigenetic abnormalities can lead to increased disease susceptibility, even in the absence of continued environmental insult. Observations of environmental toxicant specificity and exposure-specific disease susceptibility are discussed. How epimutations are transmitted across generations and how epigenetic changes in the germline are translated into an increased disease susceptibility in the adult is reviewed with regard to disease etiology.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Wash
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Wash.
| |
Collapse
|
239
|
Abstract
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Collapse
|
240
|
Zhou JH, Zhou QZ, Lyu XM, Zhu T, Chen ZJ, Chen MK, Xia H, Wang CY, Qi T, Li X, Liu CD. The Expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and Its Specific Regulator miR-27b in the Spermatozoa of Patients with Asthenozoospermia1. Biol Reprod 2015; 92:28. [DOI: 10.1095/biolreprod.114.124487] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
241
|
Savadi-Shiraz E, Edalatkhah H, Talebi S, Heidari-Vala H, Zandemami M, Pahlavan S, Modarressi MH, Akhondi MM, Paradowska-Dogan A, Sadeghi MR. Quantification of sperm specific mRNA transcripts (PRM1, PRM2
, and TNP2
) in teratozoospermia and normozoospermia: New correlations between mRNA content and morphology of sperm. Mol Reprod Dev 2014; 82:26-35. [DOI: 10.1002/mrd.22440] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 10/30/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Elham Savadi-Shiraz
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
- Department of Urology; Pediatric Urology and Andrology; Section Molecular Andrology; Justus Liebig University; Giessen Germany
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Saeed Talebi
- Department of Medical Genetics; Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Hamed Heidari-Vala
- Nanobiotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Mahdi Zandemami
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Somayeh Pahlavan
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | | | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| | - Agnieszka Paradowska-Dogan
- Department of Urology; Pediatric Urology and Andrology; Section Molecular Andrology; Justus Liebig University; Giessen Germany
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center; Avicenna Research Institute; ACECR; Tehran Iran
| |
Collapse
|
242
|
Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril 2014; 102:1502-7. [PMID: 25458617 DOI: 10.1016/j.fertnstert.2014.10.021] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/25/2022]
Abstract
Semen analysis is the first step to identify male factor infertility. Standardized methods of semen analysis are available allowing accurate assessment of sperm quality and comparison among laboratories. Population-based reference ranges are available for standard semen and sperm parameters. Sperm numbers and morphology are associated with time to natural pregnancy, whereas sperm motility may be less predictive. Routine semen analysis does not measure the fertilizing potential of spermatozoa and the complex changes that occur in the female reproductive tract before fertilization. Whether assisted reproduction technology (ART) is required depends not only on male factors but female fecundity. Newer tests should predict the success of fertilization in vitro and the outcome of the progeny.
Collapse
Affiliation(s)
- Christina Wang
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California; UCLA-Clinical and Translational Science Institute, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California.
| | - Ronald S Swerdloff
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California
| |
Collapse
|
243
|
Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:243-56. [PMID: 25327818 DOI: 10.1002/wrna.1270] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA-binding proteins (DRBPs) are known to regulate many processes of RNA metabolism due, among others, to the presence of double-stranded RNA (dsRNA)-binding motifs (dsRBMs). Among these DRBPs, Interleukin enhancer-binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by mutually exclusive and alternative splicings of the Ilf3 gene. They share common N-terminal and central sequences but display specific C-terminal regions. They present a large heterogeneity generated by several post-transcriptional and post-translational modifications involved in their subcellular localization and biological functions. While Ilf3 and NF90 were first identified as activators of gene expression, they are also implicated in cellular processes unrelated to RNA metabolism such as regulation of the cell cycle or of enzymatic activites. The implication of Ilf3 and NF90 in RNA biology will be discussed with a focus on eukaryote transcription and translation regulation, on viral replication and translation as well as on noncoding RNA field.
Collapse
Affiliation(s)
- Sandrine Castella
- Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, CNRS, UMR 7622, Paris, France
| | | | | | | | | |
Collapse
|
244
|
Holman L, Price TAR. Even more functions of sperm RNA: a response to Hosken and Hodgson. Trends Ecol Evol 2014; 29:648-9. [PMID: 25445876 DOI: 10.1016/j.tree.2014.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Luke Holman
- Division of Ecology, Evolution & Genetics, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Thomas A R Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
245
|
Abstract
Sperm RNA has been linked recently to trans-generational, non-Mendelian patterns of inheritance. Originally dismissed as “residual” to spermatogenesis, some sperm RNA may have postfertilization functions including the transmission of acquired characteristics. Sperm RNA may help explain how trans-generational effects are transmitted and it may also have implications for assisted reproductive technologies (ART) where sperm are subjected to considerable, ex vivo manual handling. The presence of sperm RNA was originally a controversial topic because nuclear gene expression is switched off in the mature mammalian spermatozoon. With the recent application of next generation sequencing (NGS), an unexpectedly rich and complex repertoire of RNAs has been revealed in the sperm of several species that makes its residual presence counterintuitive. What follows is a personal survey of the science behind our understanding of sperm RNA and its functional significance based on experimental observations from my laboratory as well as many others who have contributed to the field over the years and are continuing to contribute today. The narrative begins with a historical perspective and ends with some educated speculation on where research into sperm RNA is likely to lead us in the next 10 years or so.
Collapse
|
246
|
Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballesca JL, Oliva R. Genomic and proteomic dissection and characterization of the human sperm chromatin. Mol Hum Reprod 2014; 20:1041-53. [DOI: 10.1093/molehr/gau079] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
247
|
Verma A, Rajput S, De S, Kumar R, Chakravarty AK, Datta TK. Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility. Theriogenology 2014; 82:750-9.e1. [DOI: 10.1016/j.theriogenology.2014.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/31/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
|
248
|
Sharma A. Bioinformatic analysis revealing association of exosomal mRNAs and proteins in epigenetic inheritance. J Theor Biol 2014; 357:143-9. [DOI: 10.1016/j.jtbi.2014.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 12/19/2022]
|
249
|
Abstract
A significant challenge to the effective application of RNA-seq to the complete transcript analysis of low quantity and/or degraded samples is the amplification of minimal input RNA to enable sequencing library construction. Several strategies have been commercialized in order to facilitate this goal. However, each strategy has its own specific protocols and methodology, and each may introduce unique bias and in some cases show specific preference for a collection of sequences. Our wider investigation of human spermatozoal RNAs was able to reveal their complexity despite being generally characterized by low quantity and high fragmentation. In this study, the following four commercially available RNA-seq amplification and library protocols for the preparation of low quantity/highly fragmented samples, SMARTer™ Ultra Low RNA (SU) for Illumina® Sequencing, SeqPlex RNA Amplification (SP), Ovation® RNA-Seq System V2 (OR), and Ovation® RNA-Seq Formalin Fixed Paraffin Embedded System (FFPES) were assessed using human sperm RNAs. Further investigation analyzed the effects on the end results of two different library preparation methods, Encore NGS Multiplex System I (Enc) and Ovation Ultralow Library Systems (UL), that appeared best suited to this type of RNA, along with other potential confounding factors such as FFPE preservation. Our results indicate that for each library preparation protocol, the differences in the initial amount of input RNA and choice of RNA purification step do not generate marked differences in terms of RNA profiling. However, substantial disparity is introduced by individual amplification methods prior to library construction. These significant differences may be caused by the different priming methods or amplification strategies used in each of the four different protocols examined. The observation of intra-sample variation introduced by the choice of protocol highlights the role that external factors play in planning and subsequent reliable interpretation of results of any RNA-seq experiment.
Collapse
Affiliation(s)
- Shihong Mao
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Wayne State University , Detroit, MI , USA
| | | | | | | | | |
Collapse
|
250
|
Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014; 101:1552-62. [PMID: 24882619 DOI: 10.1016/j.fertnstert.2014.04.025] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/26/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
In mammals, male gametes are produced inside the testis by spermatogenesis, which has three phases: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and haploid differentiation of spermatids. The genome of male germ cells is actively transcribed to produce phase-specific gene expression patterns. Male germ cells have a complex transcriptome. In addition to protein-coding messenger RNAs, many noncoding RNAs, including microRNAs (miRNAs), are produced. The miRNAs are important regulators of gene expression. They function mainly post-transcriptionally to control the stability or translation of their target messenger RNAs. The miRNAs are expressed in a cell-specific manner during spermatogenesis to participate in the control of each step of male germ cell differentiation. Genetically modified mouse models have demonstrated the importance of miRNA pathways for normal spermatogenesis, and functional studies have been designed to dissect the roles of specific miRNAs in distinct cell types. Clinical studies have exploited the well-defined expression profiles of miRNAs, and human spermatozoal or seminal plasma miRNAs have been explored as potential biomarkers for male factor infertility. This review article discusses the current findings that support the central role of miRNAs in the regulation of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|