201
|
Promoter-Associated RNAs Regulate HSPC152 Gene Expression in Malignant Melanoma. Noncoding RNA 2016; 2:ncrna2030007. [PMID: 29657265 PMCID: PMC5831909 DOI: 10.3390/ncrna2030007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 01/02/2023] Open
Abstract
The threshold of 200 nucleotides (nt) conventionally divides non-coding RNAs (ncRNA) into long ncRNA (lincRNA, that have more than 200 nt in length) and the remaining ones which are grouped as "small" RNAs (microRNAs, small nucleolar RNAs and piwiRNAs). Promoter-associated RNAs (paRNAs) are generally 200-500 nt long and are transcribed from sequences positioned in the promoter regions of genes. Growing evidence suggests that paRNAs play a crucial role in controlling gene transcription. Here, we used deep sequencing to identify paRNA sequences that show altered expression in a melanoma cell line compared to normal melanocytes. Thousands of reads were mapped to transcription start site (TSS) regions. We limited our search to paRNAs adjacent to genes with an expression that differed between melanoma and normal melanocytes and a length of 200-500 nt that did not overlap the gene mRNA by more than 300 nt, ultimately leaving us with 11 such transcripts. Using quantitative real-time PCR (qRT-PCR), we found a significant correlation between the expression of the mRNA and its corresponding paRNA for two studied genes: TYR and HSPC152. Ectopic overexpression of the paRNA of HSPC152 (designated paHSPC) enhanced the expression of the HSPC152 mRNA, and an siRNA targeting the paHSPC152 decreased the expression of the HSPC152 mRNA. Overexpression of paHSPC also affected the epigenetic structure of its putative promoter region along with effects on several biologic features of melanoma cells. The ectopic expression of the paRNA to TYR did not have any effect. Overall, our work indicates that paRNAs may serve as an additional layer in the regulation of gene expression in melanoma, thus meriting further investigation.
Collapse
|
202
|
Tu MM, Mahmoud AB, Makrigiannis AP. Licensed and Unlicensed NK Cells: Differential Roles in Cancer and Viral Control. Front Immunol 2016; 7:166. [PMID: 27199990 PMCID: PMC4852173 DOI: 10.3389/fimmu.2016.00166] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells are known for their well characterized ability to control viral infections and eliminate tumor cells. Through their repertoire of activating and inhibitory receptors, NK cells are able to survey different potential target cells for various surface markers, such as MHC-I – which signals to the NK cell that the target is healthy – as well as stress ligands or viral proteins, which alert the NK cell to the aberrant state of the target and initiate a response. According to the “licensing” hypothesis, interactions between self-specific MHC-I receptors – Ly49 in mice and KIR in humans – and self-MHC-I molecules during NK cell development is crucial for NK cell functionality. However, there also exists a large proportion of NK cells in mice and humans, which lack self-specific MHC-I receptors and are consequentially “unlicensed.” While the licensed NK cell subset plays a major role in the control of MHC-I-deficient tumors, this review will go on to highlight the important role of the unlicensed NK cell subset in the control of MHC-I-expressing tumors, as well as in viral control. Unlike the licensed NK cells, unlicensed NK cells seem to benefit from the lack of self-specific inhibitory receptors, which could otherwise be exploited by some aberrant cells for immunoevasion by upregulating the expression of ligands or mimic ligands for these receptors.
Collapse
Affiliation(s)
- Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; College of Applied Medical Sciences, Taibah University, Madinah Munawwarah, Saudi Arabia
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
203
|
Matsushita H, Sato Y, Karasaki T, Nakagawa T, Kume H, Ogawa S, Homma Y, Kakimi K. Neoantigen Load, Antigen Presentation Machinery, and Immune Signatures Determine Prognosis in Clear Cell Renal Cell Carcinoma. Cancer Immunol Res 2016; 4:463-71. [PMID: 26980598 DOI: 10.1158/2326-6066.cir-15-0225] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/05/2016] [Indexed: 11/16/2022]
Abstract
Tumors commonly harbor multiple genetic alterations, some of which initiate tumorigenesis. Among these, some tumor-specific somatic mutations resulting in mutated protein have the potential to induce antitumor immune responses. To examine the relevance of the latter to immune responses in the tumor and to patient outcomes, we used datasets of whole-exome and RNA sequencing from 97 clear cell renal cell carcinoma (ccRCC) patients to identify neoepitopes predicted to be presented by each patient's autologous HLA molecules. We found that the number of nonsilent or missense mutations did not correlate with patient prognosis. However, combining the number of HLA-restricted neoepitopes with the cell surface expression of HLA or β2-microglobulin(β2M) revealed that an A-neo(hi)/HLA-A(hi) or ABC-neo(hi)/β2M(hi) phenotype correlated with better clinical outcomes. Higher expression of immune-related genes from CD8 T cells and their effector molecules [CD8A, perforin (PRF1) and granzyme A (GZMA)], however, did not correlate with prognosis. This may have been due to the observed correlation of these genes with the expression of other genes that were associated with immunosuppression in the tumor microenvironment (CTLA-4, PD-1, LAG-3, PD-L1, PD-L2, IDO1, and IL10). This suggested that abundant neoepitopes associated with greater antitumor effector immune responses were counterbalanced by a strongly immunosuppressive microenvironment. Therefore, immunosuppressive molecules should be considered high-priority targets for modulating immune responses in patients with ccRCC. Blockade of these molecular pathways could be combined with immunotherapies targeting neoantigens to achieve synergistic antitumor activity. Cancer Immunol Res; 4(5); 463-71. ©2016 AACR.
Collapse
Affiliation(s)
- Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Yusuke Sato
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan. Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Tohru Nakagawa
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukio Homma
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
204
|
Ward JP, Gubin MM, Schreiber RD. The Role of Neoantigens in Naturally Occurring and Therapeutically Induced Immune Responses to Cancer. Adv Immunol 2016; 130:25-74. [PMID: 26922999 DOI: 10.1016/bs.ai.2016.01.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Definitive experimental evidence from mouse cancer models and strong correlative clinical data gave rise to the Cancer Immunoediting concept that explains the dual host-protective and tumor-promoting actions of immunity on developing cancers. Tumor-specific neoantigens can serve as targets of spontaneously arising adaptive immunity to cancer and thereby determine the ultimate fate of developing tumors. Tumor-specific neoantigens can also function as optimal targets of cancer immunotherapy against established tumors. These antigens are derived from nonsynonymous mutations that occur during cellular transformation and, because they are foreign to the host genome, are not subject to central tolerance. In this review, we summarize the experimental evidence indicating that cancer neoantigens are the source of both spontaneously occurring and therapeutically induced immune responses against cancer. We also review the advances in genomics, bioinformatics, and cancer immunotherapy that have facilitated identification of neoantigens and have moved personalized cancer immunotherapies into clinical trials, with the promise of providing more specific, safer, more effective, and perhaps even more generalizable treatments to cancer patients than current immunotherapies.
Collapse
Affiliation(s)
- Jeffrey P Ward
- Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew M Gubin
- Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
205
|
Abstract
Advances in immunotherapy have resulted in remarkable clinical responses in some patients. However, one of the biggest challenges in cancer therapeutics is the development of resistant disease and disease progression on or after therapy. Given that many patients have now received various types of immunotherapy, we asked three scientists to give their views on the current evidence for whether acquired resistance to immunotherapy exists in patients and the future challenges posed by immunotherapy.
Collapse
Affiliation(s)
- Nicholas P. Restifo
- Center for Cancer Research, National Cancer Institute and Center for Regenerative Medicine, National Institutes of Health, Bldg 10/CRC, Room 3-5762, 9000 Rockville Pike, Bethesda, Maryland 20892, USA.
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4006, Australia; and the School of Medicine, University of Queensland, Herston, Brisbane, Queensland 4006, Australia.
| | - Alexander Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, New York 10065, USA.
| |
Collapse
|
206
|
Kelderman S, Kvistborg P. Tumor antigens in human cancer control. Biochim Biophys Acta Rev Cancer 2016; 1865:83-89. [DOI: 10.1016/j.bbcan.2015.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023]
|
207
|
Disruption of Anti-tumor T Cell Responses by Cancer-Associated Fibroblasts. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-42223-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
208
|
Peres LDP, da Luz FAC, Pultz BDA, Brígido PC, de Araújo RA, Goulart LR, Silva MJB. Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnol Adv 2015; 33:1868-77. [PMID: 26523780 DOI: 10.1016/j.biotechadv.2015.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
Abstract
This review discusses peptide-based vaccines in breast cancer, immune responses and clinical outcomes, which include studies on animal models and phase I, phase I/II, phase II and phase III clinical trials. Peptide-based vaccines are powerful neoadjuvant immunotherapies that can directly target proteins expressed in tumor cells, mainly tumor-associated antigens (TAAs). The most common breast cancer TAA epitopes are derived from MUC1, HER2/neu and CEA proteins. Peptides derived from TAAs could be successfully used to elicit CD8 and CD4 T cell-specific responses. Thus, choosing peptides that adapt to natural variations of human leukocyte antigen (HLA) genes is critical. The most attractive advantage is that the target response is more specific and less toxic than for other therapies and vaccines. Prominent studies on NeuVax - E75 (epitope for HER2/neu and GM-CSF) in breast cancer and DPX-0907 (HLA-A2-TAAs) expressed in breast cancer, ovarian and prostate cancer have shown the efficacy of peptide-based vaccines as neoadjuvant immunotherapy against cancer. Future peptide vaccine strategies, although a challenge to be applied in a broad range of breast cancers, point to the development of degenerate multi-epitope immunogens against multiple targets.
Collapse
Affiliation(s)
- Lívia de Paula Peres
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil.
| | - Felipe Andrés Cordero da Luz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Brunna dos Anjos Pultz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Paula Cristina Brígido
- Laboratório de Tripanossomatídeos, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia - Universidade Federal de Uberlândia - UFU, (INGEB), Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
209
|
Nepomuceno AI, Shao H, Jing K, Ma Y, Petitte JN, Idowu MO, Muddiman DC, Fang X, Hawkridge AM. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans. Anal Bioanal Chem 2015; 407:6851-63. [PMID: 26159569 DOI: 10.1007/s00216-015-8862-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously. Matched plasma, ovary, and oviduct tissue biospecimens derived from healthy, early-stage OVC, and late-stage OVC birds were quantitatively characterized by label-free proteomics. Over 2600 proteins were identified in this study, 348 of which were differentially expressed by more than twofold (p ≤ 0.05) in early- and late-stage ovarian tumor tissue specimens relative to healthy ovarian tissues. Several of the 348 proteins are known to be differentially regulated in human cancers including B2M, CLDN3, EPCAM, PIGR, S100A6, S100A9, S100A11, and TPD52. Of particular interest was ovostatin 2 (OVOS2), a novel 165-kDa protease inhibitor found to be strongly upregulated in chicken ovarian tumors (p = 0.0005) and matched plasma (p = 0.003). Indeed, RT-quantitative PCR and Western blot analysis demonstrated that OVOS2 mRNA and protein were also upregulated in multiple human OVC cell lines compared to normal ovarian epithelia (NOE) cells and immunohistochemical staining confirmed overexpression of OVOS2 in primary human ovarian cancers relative to non-cancerous tissues. Collectively, these data provide the first evidence for involvement of OVOS2 in the pathogenesis of both chicken and human ovarian cancer.
Collapse
Affiliation(s)
- Angelito I Nepomuceno
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Box 8204, Raleigh, NC, 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Zehavi L, Schayek H, Jacob-Hirsch J, Sidi Y, Leibowitz-Amit R, Avni D. MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma. Mol Cancer 2015; 14:68. [PMID: 25889255 PMCID: PMC4392476 DOI: 10.1186/s12943-015-0338-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/10/2015] [Indexed: 11/21/2022] Open
Abstract
Background The incidence of cutaneous malignant melanoma continues to rise, and once the disease metastasizes it is almost inevitably fatal. We recently reported that a large miRNAs cluster on human chromosome 14q32, implicated in many types of cancers, is significantly down-regulated in melanoma. miR-377, one of the miRNAs located within this cluster, was studied here. Methods qRT-pCR was used to quantify miR-377 levels in melanoma cell lines and samples. Melanoma cell lines ectopically expressing miR-377 were generated by stable transfection, mRNA expression was assessed using mRNA arrays and protein expression was assessed by Western blot analysis. Potential targets of miR-377 were identified through luciferase reporter assays. Cellular proliferation, migration and soft-agar colony formation were monitored in control and miR-377-expressing cells using cell biology techniques. Results miR-377 is expressed in normal melanocytes but not in melanoma cell lines or samples. Its ectopic stable expression in melanoma cell lines decreased their proliferative and migratory capacity and their colony-forming capability. mRNA arrays of melanoma cells over-expressing miR-377 pointed to several down-regulated mRNAs that have putative binding sites for miR-377 in their 3′UTR, of which both E2F3 and MAP3K7 were found to be direct targets of miR-377. E2F3, a potent transcriptional inducer of cell-cycle progression, was found to be elevated in melanoma cell lines, but decreased following ectopic expression of miR-377. Ectopic miR-377 also led to a decrease in the activity of a reporter plasmid containing three E2F DNA-binding sites linked to a luciferase cDNA sequence, demonstrating that miR-377 down-regulates E2F3-induced transcription. MAP3K7 (known as TAK1), a serine/threonine kinase along the MAPK signaling pathway, was over-expressed in melanoma but decreased following ectopic expression of miR-377. MAP3K7 is involved in the activation of NF-κB. MiR-377 over-expression led to decreased activity of a reporter plasmid containing two NF-κB DNA-binding sites and to decreased output along the NF-kB signaling pathway. Conclusion Our results suggest that miR-377 is an important negative regulator of E2F and MAP3K7/NF-kB signaling pathway in melanoma cells; it is tempting to speculate that its silencing in melanoma promotes the tumorigenic and metastatic potential of the cells through activation of these pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0338-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liron Zehavi
- Center for Cancer Research Sheba Medical Center, Tel Hashomer, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Hagit Schayek
- Center for Cancer Research Sheba Medical Center, Tel Hashomer, Israel.
| | | | - Yechezkel Sidi
- Center for Cancer Research Sheba Medical Center, Tel Hashomer, Israel. .,Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, 52621, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Raya Leibowitz-Amit
- Center for Cancer Research Sheba Medical Center, Tel Hashomer, Israel. .,Institute of Oncology, Sheba Medical Center, Tel Hashomer, 52621, Israel.
| | - Dror Avni
- Center for Cancer Research Sheba Medical Center, Tel Hashomer, Israel. .,Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, 52621, Israel.
| |
Collapse
|
211
|
Siddle HV, Kaufman J. Immunology of naturally transmissible tumours. Immunology 2015; 144:11-20. [PMID: 25187312 PMCID: PMC4264906 DOI: 10.1111/imm.12377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022] Open
Abstract
Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution.
Collapse
Affiliation(s)
- Hannah V Siddle
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
212
|
Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer 2014; 138:271-80. [PMID: 25471439 DOI: 10.1002/ijc.29375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Intratumor heterogeneity among cancer cells is promoted by reversible or irreversible genetic alterations and by different microenvironmental factors. There is considerable experimental evidence of the presence of a variety of malignant cell clones with a wide diversity of major histocompatibility class I (MHC-I) expression during early stages of tumor development. This variety of MHC-I phenotypes may define the evolution of a particular tumor. Loss of MHC-I molecules frequently results in immune escape of MHC-negative or -deficient tumor cells from the host T cell-mediated immune response. We review here the results obtained by our group and other researchers in animal models and humans, showing how MHC-I intratumor heterogeneity may affect local oncogenicity and metastatic progression. In particular, we summarize the data obtained in an experimental mouse cancer model of a methylcholanthrene-induced fibrosarcoma (GR9), in which isolated clones with different MHC-I expression patterns demonstrated distinct local tumor growth rates and metastatic capacities. The observed "explosion of diversity" of MHC-I phenotypes in primary tumor clones and the molecular mechanism ("hard"/irreversible or "soft"/reversible) responsible for a given MHC-I alteration might determine not only the metastatic capacity of the cells but also their response to immunotherapy. We also illustrate the generation of further MHC heterogeneity during metastatic colonization and discuss different strategies to favor tumor rejection by counteracting MHC-I loss. Finally, we highlight the role of MHC-I genes in tumor dormancy and cell cycle control.
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Irene Romero
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| |
Collapse
|
213
|
Textor A, Listopad JJ, Wührmann LL, Perez C, Kruschinski A, Chmielewski M, Abken H, Blankenstein T, Charo J. Efficacy of CAR T-cell therapy in large tumors relies upon stromal targeting by IFNγ. Cancer Res 2014; 74:6796-805. [PMID: 25297631 DOI: 10.1158/0008-5472.can-14-0079] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive T-cell therapy using chimeric antigen receptor-modified T cells (CAR-T therapy) has shown dramatic efficacy in patients with circulating lymphoma. However, eradication of solid tumors with CAR-T therapy has not been reported yet to be efficacious. In solid tumors, stroma destruction, due to MHC-restricted cross-presentation of tumor antigens to T cells, may be essential. However, CAR-Ts recognize antigens in an MHC-independent manner on cancer cells but not stroma cells. In this report, we show how CAR-Ts can be engineered to eradicate large established tumors with provision of a suitable CD28 costimulatory signal. In an HER2-dependent tumor model, tumor rejection by HER2-specific CAR-Ts was associated with sustained influx and proliferation of the adoptively transferred T cells. Interestingly, tumor rejection did not involve natural killer cells but was associated instead with a marked increase in the level of M1 macrophages and a requirement for IFNγ receptor expression on tumor stroma cells. Our results argue that CAR-T therapy is capable of eradicating solid tumors through a combination of antigen-independent stroma destruction and antigen-specific tumor cell targeting.
Collapse
Affiliation(s)
- Ana Textor
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | - Cynthia Perez
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Markus Chmielewski
- Department I of Internal Medicine, Tumor Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Hinrich Abken
- Department I of Internal Medicine, Tumor Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Institute of Immunology, Charite Campus Buch, Berlin, Germany
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
214
|
Humar M, Azemar M, Maurer M, Groner B. Adaptive Resistance to Immunotherapy Directed Against p53 Can be Overcome by Global Expression of Tumor-Antigens in Dendritic Cells. Front Oncol 2014; 4:270. [PMID: 25340039 PMCID: PMC4186483 DOI: 10.3389/fonc.2014.00270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/17/2014] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy of cancer utilizes dendritic cells (DCs) for antigen presentation and the induction of tumor-specific immune responses. However, the therapeutic induction of anti-tumor immunity is limited by tumor escape mechanisms. In this study, immortalized dendritic D2SC/1 cells were transduced with a mutated version of the p53 tumor suppressor gene, p53M234I, or p53C132F/E168G, which are overexpressed in MethA fibrosarcoma tumor cells. In addition, D2SC/1 cells were fused with MethA tumor cells to generate a vaccine that potentially expresses a large repertoire of tumor-antigens. Cellular vaccines were transplanted onto Balb/c mice and MethA tumor growth and anti-tumor immune responses were examined in vaccinated animals. D2SC/1–p53M234I and D2SC/1–p53C132F/E168G cells induced strong therapeutic and protective MethA tumor immunity upon transplantation in Balb/c mice. However, in a fraction of immunized mice MethA tumor growth resumed after an extended latency period. Analysis of these tumors indicated loss of p53 expression. Mice, pre-treated with fusion hybrids generated from D2SC/1 and MethA tumor cells, suppressed MethA tumor growth and averted adaptive immune escape. Polyclonal B-cell responses directed against various MethA tumor proteins could be detected in the sera of D2SC/1–MethA inoculated mice. Athymic nude mice and Balb/c mice depleted of CD4+ or CD8+ T-cells were not protected against MethA tumor cell growth after immunization with D2SC/1–MethA hybrids. Our results highlight a potential drawback of cancer immunotherapy by demonstrating that the induction of a specific anti-tumor response favors the acquisition of tumor phenotypes promoting immune evasion. In contrast, the application of DC/tumor cell fusion hybrids prevents adaptive immune escape by a T-cell dependent mechanism and provides a simple strategy for personalized anti-cancer treatment without the need of selectively priming the host immune system.
Collapse
Affiliation(s)
- Matjaz Humar
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg , Freiburg , Germany
| | - Marc Azemar
- Internistische Onkologie, Tumor Biology Center , Freiburg , Germany
| | - Martina Maurer
- Basilea Pharmaceutica International Ltd. , Basel , Switzerland
| | - Bernd Groner
- Institute for Biomedical Research, Georg Speyer Haus , Frankfurt am Main , Germany
| |
Collapse
|
215
|
Kelderman S, Schumacher TNM, Haanen JBAG. Acquired and intrinsic resistance in cancer immunotherapy. Mol Oncol 2014; 8:1132-9. [PMID: 25106088 PMCID: PMC5528612 DOI: 10.1016/j.molonc.2014.07.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/13/2014] [Indexed: 01/08/2023] Open
Abstract
A number of immunotherapies, in particular immune checkpoint targeting antibodies and adoptive T-cell therapies, are starting to transform the treatment of advanced cancers. The likelihood to respond to these immunotherapies differs strongly across tumor types, with response rates for checkpoint targeting being the highest in advanced melanoma, renal cell cancer and non-small cell lung cancer. However, also non-responsiveness is observed, indicating the presence of intrinsic resistance or naturally acquired resistance. In addition, a subgroup of patients that do initially respond to immunotherapy will later recur, thereby also pointing towards a role of therapy-induced acquired resistance. Here, we review our current understanding of both intrinsic and acquired resistance mechanisms in cancer immunotherapy, and discuss potential strategies to overcome them.
Collapse
Affiliation(s)
- Sander Kelderman
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ton N M Schumacher
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - John B A G Haanen
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
216
|
Webber MJ, Khan OF, Sydlik SA, Tang BC, Langer R. A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 2014; 43:641-56. [PMID: 25201605 DOI: 10.1007/s10439-014-1104-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022]
Abstract
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Matthew J Webber
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 76-661, Cambridge, MA, 02139, USA
| | | | | | | | | |
Collapse
|
217
|
Immunological challenges for peptide-based immunotherapy in glioblastoma. Cancer Treat Rev 2014; 40:248-58. [DOI: 10.1016/j.ctrv.2013.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 02/04/2023]
|
218
|
Cell transfer therapy for cancer: past, present, and future. J Immunol Res 2014; 2014:525913. [PMID: 24741604 PMCID: PMC3987872 DOI: 10.1155/2014/525913] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022] Open
Abstract
Cell transfer therapy for cancer has made a rapid progress recently and the immunotherapy has been recognized as the fourth anticancer modality after operation, chemotherapy, and radiotherapy. Lymphocytes used for cell transfer therapy include dendritic cells, natural killer (NK) cells, and T lymphocytes such as tumor-infiltrating lymphocytes (TILs) and cytotoxic T lymphocytes (CTLs). In vitro activated or engineered immune cells can traffic to cancer tissues to elicit persistent antitumor immune response which is very important especially after immunosuppressive treatments such as chemotherapy. In this review, we overviewed recent advances in the exploration of dendritic cells, NK cells, and T cells for the treatment of human cancer cells.
Collapse
|
219
|
Hastings KT. GILT: Shaping the MHC Class II-Restricted Peptidome and CD4(+) T Cell-Mediated Immunity. Front Immunol 2013; 4:429. [PMID: 24409178 PMCID: PMC3885806 DOI: 10.3389/fimmu.2013.00429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022] Open
Abstract
The MHC class II-restricted antigen processing pathway generates peptide:MHC complexes in the endocytic pathway for the activation of CD4(+) T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) reduces protein disulfide bonds in the endocytic compartment, thereby exposing buried epitopes for MHC class II binding and presentation. T cell hybridoma responses and elution of MHC class II bound peptides have identified GILT-dependent epitopes, GILT-independent epitopes, and epitopes that are more efficiently presented in the absence of GILT termed GILT-prevented epitopes. GILT-mediated alteration in the MHC class II-restricted peptidome modulates T cell development in the thymus and peripheral tolerance and influences the pathogenesis of autoimmunity. Recent studies suggest an emerging role for GILT in the response to pathogens and cancer survival.
Collapse
Affiliation(s)
- Karen Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine , Phoenix, AZ , USA
| |
Collapse
|
220
|
Affiliation(s)
- Yutaka Kawakami
- Division of Cellular Signaling; Institute for Advanced Medical Research, Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| |
Collapse
|
221
|
Chen X, Liu Z, Huang Y, Li R, Zhang H, Dong S, Ge C, Zhang Z, Wang Y, Wang Y, Xue Y, Li Z, Song X. Superior anti-tumor protection and therapeutic efficacy of vaccination with dendritic cell/tumor cell fusion hybrids for murine Lewis lung carcinoma. Autoimmunity 2013; 47:46-56. [PMID: 24191684 DOI: 10.3109/08916934.2013.850080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research into their potential use in immunotherapy in the treatment of cancer. In this study, we examined the efficacy of dendritic cell-tumor cell fusion hybrid vaccines in eliciting an immune response against Lewis lung carcinoma (LLC) cells, as compared to other types of tumor vaccines. In addition, we also tested whether the efficacy of the vaccines was affected by the route of administration. Four different tumor vaccines were compared: (1) HC (hybrid cell), consisting of DC/LLC hybrids; (2) DC+LLC (DCs pulsed with apoptotic LLCs); (3) DC without antigen loading/pulsing; (4) LLC (apoptotic/irradiated tumor cells). We also compared four different routes of administration for each vaccine: (1) Preimmunization; (2) Vaccination therapy; (3) Adoptive immunotherapy; (4) Vaccination therapy combined with adoptive immunotherapy. Anti-tumor immunity was assessed in vivo and the CTL (cytotoxic T lymphocyte) response as well as the expression of key cytokines, IFN-γ and IL-10 were further evaluated using in vitro assays. RESULTS Our data demonstrate that vaccination with HC hybrids provides more effective anti-tumor protective immunity and significantly greater therapeutic immunity than vaccination with DC+LLC, DC or LLC. Most remarkably, vaccination therapy with HC hybrids was more successful than combination (vaccination + adoptive) therapy for the induction of anti-tumor responses. Splenocytes harvested from mice immunized with HC hybrids demonstrated the greatest cytotoxic T lymphocyte (CTL) activity and their production of IFN-γ was high, while their production of IL-10 was very low. CONCLUSIONS Our results suggest that vaccination therapy with DC-tumor cell fusion hybrids provides more effective protection against lung cancer.
Collapse
|
222
|
Abstract
Over-expression of the proto-oncogene c-MYC is frequently observed in a variety of tumors and is a hallmark of Burkitt´s lymphoma. The fact that many tumors are oncogene-addicted to c-MYC, renders c-MYC a powerful target for anti-tumor therapy. Using a xenogenic vaccination strategy by immunizing C57BL/6 mice with human c-MYC protein or non-homologous peptides, we show that the human c-MYC protein, despite its high homology between mouse and man, contains several immunogenic epitopes presented in the context of murine H2b haplotype. We identified an MHC class II-restricted CD4+ T-cell epitope and therein an MHC class I-restricted CD8+ T-cell epitope (SSPQGSPEPL) that, after prime/boost immunization, protected up to 25% of mice against a lethal lymphoma challenge. Lymphoma-rejecting animals contained MHC multimer-binding CD8+ cell within the peripheral blood and displayed in vivo cytolytic activity with specificity for SSPQGSPEPL. Taken together these data suggest that oncogenic c-MYC can be targeted with specific T-cells.
Collapse
|
223
|
Abstract
Research shows that cancers are recognized by the immune system but that the immune recognition of tumors does not uniformly result in tumor rejection or regression. Quantitating the success or failure of the immune system in tumor elimination is difficult because we do not really know the total numbers of encounters of the immune system with the tumors. Regardless of that important issue, recognition of the tumor by the immune system implicitly contains the idea of the tumor antigen, which is what is actually recognized. We review the molecular identity of all forms of tumor antigens (antigens with specific mutations, cancer-testis antigens, differentiation antigens, over-expressed antigens) and discuss the use of these multiple forms of antigens in experimental immunotherapy of mouse and human melanoma. These efforts have been uniformly unsuccessful; however, the approaches that have not worked or have somewhat worked have been the source of many new insights into melanoma immunology. From a critical review of the various approaches to vaccine therapy we conclude that individual cancer-specific mutations are truly the only sources of cancer-specific antigens, and therefore, the most attractive targets for immunotherapy.
Collapse
Affiliation(s)
- Tatiana Blanchard
- Department of Immunology, and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
| | | | | |
Collapse
|
224
|
Abstract
T cells have the capacity to eradicate diseased cells, but tumours present considerable challenges that render T cells ineffectual. Cancer cells often make themselves almost 'invisible' to the immune system, and they sculpt a microenvironment that suppresses T cell activity, survival and migration. Genetic engineering of T cells can be used therapeutically to overcome these challenges. T cells can be taken from the blood of cancer patients and then modified with genes encoding receptors that recognize cancer-specific antigens. Additional genes can be used to enable resistance to immunosuppression, to extend survival and to facilitate the penetration of engineered T cells into tumours. Using genetic modification, highly active, self-propagating 'slayers' of cancer cells can be generated.
Collapse
Affiliation(s)
- Michael H Kershaw
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia. michael.kershaw@ petermac.org
| | | | | |
Collapse
|
225
|
del Campo AB, Kyte JA, Carretero J, Zinchencko S, Méndez R, González-Aseguinolaza G, Ruiz-Cabello F, Aamdal S, Gaudernack G, Garrido F, Aptsiauri N. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 2013; 134:102-13. [PMID: 23784959 DOI: 10.1002/ijc.28338] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 11/08/2022]
Abstract
Cancer cells escape T-cell-mediated destruction by losing human leukocyte antigen (HLA) class I expression via various mechanisms, including loss of beta2-microglobulin (β2m). Our study illustrates the immune escape of HLA class I-negative tumor cells and chronological sequence of appearance of tumor β2m gene mutation in successive lesions obtained from a patient with metastatic melanoma. We observed a gradual decrease in HLA expression in consecutive lesions with few HLA-negative nodules in the primary tumor and the emergence of a totally negative lesion at later stages of the disease. We detected loss of β2m in β2m-negative nests of the primary tumor caused by a combination of two alterations: (i) a mutation (G to T substitution) in codon 67 in exon 2 of β2m gene, producing a stop codon and (ii) loss of the second gene copy by loss of heterozygosity (LOH) in chromosome 15. The same β2m mutation was found in a homogeneously β2m-negative metastasis 10 months later and in a cell line established from a biopsy of a postvaccination lymph node. Microsatellite analysis revealed the presence of LOH in chromosomes 6 and 15 in tumor samples, showing an accumulation of chromosomal loss at specific short tandem repeats in successive metastases during disease progression. HLA loss correlated with decreased tumor CD8+ T-cell infiltration. Early incidence of β2m defects can cause an immune selection and expansion of highly aggressive melanoma clones with irreversible genetic defects causing total loss of HLA class I expression and should be taken into consideration as a therapeutic target in the development of cancer immunotherapy protocols.
Collapse
Affiliation(s)
- Ana B del Campo
- Department of Clinical Analysis and Immunology, University Hospital Virgen de las Nieves, Granada, Spain; Department of Biochemistry, Molecular Biology III and Immunology, University of Granada Medical School, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Tüting T. T cell immunotherapy for melanoma from bedside to bench to barn and back: how conceptual advances in experimental mouse models can be translated into clinical benefit for patients. Pigment Cell Melanoma Res 2013; 26:441-56. [PMID: 23617831 DOI: 10.1111/pcmr.12111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
A solid scientific basis now supports the concept that cytotoxic T lymphocytes can specifically recognize and destroy melanoma cells. Over the last decades, clinicians and basic scientists have joined forces to advance our concepts of melanoma immunobiology. This has catalyzed the rational development of therapeutic approaches to enforce melanoma-specific T cell responses. Preclinical studies in experimental mouse models paved the way for their successful translation into clinical benefit for patients with metastatic melanoma. A more thorough understanding of how melanomas develop resistance to T cell immunotherapy is necessary to extend this success. This requires a continued interdisciplinary effort of melanoma biologists and immunologists that closely connects clinical observations with in vitro investigations and appropriate in vivo mouse models: From bedside to bench to barn and back.
Collapse
Affiliation(s)
- Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
227
|
Hölzel M, Bovier A, Tüting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 2013; 13:365-76. [PMID: 23535846 DOI: 10.1038/nrc3498] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunotherapies, signal transduction inhibitors and chemotherapies can successfully achieve remissions in advanced stage cancer patients, but durable responses are rare. Using malignant melanoma as a paradigm, we propose that therapy-induced injury to tumour tissue and the resultant inflammation can activate protective and regenerative responses that represent a shared resistance mechanism to different treatments. Inflammation-driven phenotypic plasticity alters the antigenic landscape of tumour cells, rewires oncogenic signalling networks, protects against cell death and reprogrammes immune cell functions. We propose that the successful combination of cancer treatments to tackle resistance requires an interdisciplinary understanding of these resistance mechanisms, supported by mathematical models.
Collapse
Affiliation(s)
- Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany
| | | | | |
Collapse
|
228
|
Vago L, Toffalori C, Ciceri F, Fleischhauer K. Genomic loss of mismatched human leukocyte antigen and leukemia immune escape from haploidentical graft-versus-leukemia. Semin Oncol 2013. [PMID: 23206847 DOI: 10.1053/j.seminoncol.2012.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent developments in cell processing and immunosuppressive strategies has allowed the safe infusion of high numbers of donor T cells in the context of clinical haploidentical hematopoietic stem cell transplantation (HSCT). Haploidentical T cells display an intrinsic ability to recognize and eliminate residual patient leukemic cells, largely due to alloreactivity against the patient-specific human leukocyte antigen (HLA) molecules encoded on the mismatched haplotype. However, recent evidence has shown that leukemia, like many other tumors displaying pronounced genomic instability, is frequently able to evade this potent graft-versus-leukemia effect by undergoing de novo genomic mutations, which result in the permanent loss of only those HLA molecules targeted by haploidentical donor T-cell alloreactivity. This review summarizes the recent clinical and experimental evidence regarding this phenomenon, and its therapeutic and clinical consequences.
Collapse
Affiliation(s)
- Luca Vago
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy.
| | | | | | | |
Collapse
|
229
|
Listopad JJ, Kammertoens T, Anders K, Silkenstedt B, Willimsky G, Schmidt K, Kuehl AA, Loddenkemper C, Blankenstein T. Fas expression by tumor stroma is required for cancer eradication. Proc Natl Acad Sci U S A 2013; 110:2276-81. [PMID: 23341634 PMCID: PMC3568383 DOI: 10.1073/pnas.1218295110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The contribution of molecules such as perforin, IFN-γ (IFNγ), and particularly Fas ligand (FasL) by transferred CD8(+) effector T (T(E)) cells to rejection of large, established tumors is incompletely understood. Efficient attack against large tumors carrying a surrogate tumor antigen (mimicking a "passenger" mutation) by T(E) cells requires action of IFNγ on tumor stroma cells to avoid selection of antigen-loss variants. Because "cancer-driving" antigens (CDAs) are rarely counterselected, IFNγ may be expected to be dispensable in elimination of cancers by targeting a CDA. Here, initial regression of large, established tumors required neither IFNγ, FasL, nor perforin by transferred CD8(+) T(E) cells targeting Simian Virus (SV) 40 large T as CDA. However, cytotoxic T(E) cells lacking IFNγ or FasL could not prevent relapse despite retention of the rejection antigen by the cancer cells. Complete tumor rejection required IFNγ-regulated Fas by the tumor stroma. Therefore, T(E) cells lacking IFNγ or FasL cannot prevent progression of antigenic cancer because the tumor stroma escapes destruction if its Fas expression is down-regulated.
Collapse
Affiliation(s)
- Joanna J. Listopad
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| | - Thomas Kammertoens
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| | - Kathleen Anders
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
| | | | - Gerald Willimsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| | | | - Anja A. Kuehl
- Department of Internal Medicine, Rheumatology and Clinical Immunology, and
| | | | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| |
Collapse
|
230
|
Anders K, Blankenstein T. Molecular pathways: comparing the effects of drugs and T cells to effectively target oncogenes. Clin Cancer Res 2012. [PMID: 23197254 DOI: 10.1158/1078-0432.ccr-12-3017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutant cancer-driving oncogenes are the best therapeutic targets, both with drugs like small-molecule inhibitors (SMI) and adoptive T-cell therapy (ATT), the most effective form of immunotherapy. Cancer cell survival often depends on oncogenes, which implies that they are homogeneously expressed by all cancer cells and are difficult to select against. Mutant oncogene-directed therapy is relatively selective, as it targets preferentially the oncogene-expressing cancer cells. Both SMI and ATT can be highly effective in relevant preclinical models as well as selected clinical situations, and both share the risk of therapy resistance, facilitated by the frequent genetic instability of cancer cells. Recently, both therapies were compared in the same experimental model targeting the same oncogene. It showed that the oncogene-inactivating drug selected resistant clones, leading eventually to tumor relapse, whereas ATT eradicated large established tumors completely. The mode of tumor destruction likely explained the different outcome with only ATT destroying the tumor vasculature. Elucidating the cellular and molecular mechanisms responsible for tumor regression and relapse will define optimal conditions for the clinic. We argue that the ideal conditions of ATT in the experimental cancer model can be translated to individuals with cancer.
Collapse
Affiliation(s)
- Kathleen Anders
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, Berlin, Germany
| | | |
Collapse
|
231
|
Mechanisms of action underlying the immunotherapeutic activity of Allovectin in advanced melanoma. Cancer Gene Ther 2012; 19:811-7. [PMID: 23037806 PMCID: PMC3499708 DOI: 10.1038/cgt.2012.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allovectin (velimogene aliplasmid) is a cancer immunotherapeutic currently completing a pivotal phase 3 study for metastatic melanoma. Consisting of a bicistronic plasmid encoding both major histocompatibility complex (MHC) class I heavy and light chains (HLA-B7 and β2-microglobulin, respectively) formulated with a cationic lipid-based system, it is designed for direct intratumoral administration. Following injection into a single lesion, the product is intended to induce anti-tumor immune responses against both treated and distal lesions. Both the plasmid and lipid components of Allovectin contribute to the biological activity of the drug product, and its therapeutic activity is hypothesized to derive from multiple mechanisms of actions (MOAs). These include the induction of both cytotoxic T-cell and innate immune responses directed against allogeneic as well as tumor-derived targets, consequences of both an increased MHC class I expression on tumor cells and the induction of a localized immune/inflammatory response. In this paper, we review Allovectin's proposed MOAs, placing their contributions in the context of anti-tumor immunity and highlighting both preclinical and clinical supporting data.
Collapse
|
232
|
Bernal M, Ruiz-Cabello F, Concha A, Paschen A, Garrido F. Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother 2012; 61:1359-71. [PMID: 22833104 PMCID: PMC11029609 DOI: 10.1007/s00262-012-1321-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/08/2012] [Indexed: 12/16/2022]
Abstract
Classical MHC molecules present processed peptides from endogenous protein antigens on the cell surface, which allows CD8(+) cytotoxic T lymphocytes (CTLs) to recognize and respond to the abnormal antigen repertoire of hazardous cells, including tumor cells. The light chain, β2-microglobulin (β2m), is an essential constant component of all trimeric MHC class I molecules. There is convincing evidence that β2m deficiency generates immune escape phenotypes in different tumor entities, with an exceptionally high frequency in colorectal carcinoma (CRC) and melanoma. Damage of a single β2m gene by LOH on chromosome 15 may be sufficient to generate a tumor cell precommitted to escape. In addition, this genetic lesion is followed in some tumors by a mutation of the second gene (point mutation or insertion/deletion), which produces a tumor cell unable to express any HLA class I molecule. The pattern of mutations found in microsatellite unstable colorectal carcinoma (MSI-H CRC) and melanoma showed a striking similarity, namely the predominance of frameshift mutations in repetitive CT elements. This review emphasizes common but also distinct molecular mechanisms of β2m loss in both tumor types. It also summarizes recent studies that point to an acquired β2m deficiency in response to cancer immunotherapy, a barrier to successful vaccination or adoptive cellular therapy.
Collapse
Affiliation(s)
- Monica Bernal
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| | - Angel Concha
- Servicio de Anatomía Patológica, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Annette Paschen
- Department of Dermatologie, University Hospital, Essen, Germany
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| |
Collapse
|
233
|
Lessons from cancer immunoediting in cutaneous melanoma. Clin Dev Immunol 2012; 2012:192719. [PMID: 22924051 PMCID: PMC3424677 DOI: 10.1155/2012/192719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/28/2012] [Indexed: 02/07/2023]
Abstract
We will revisit the dual role of the immune system in controlling and enabling tumor progression, known as cancer immunoediting. We will go through the different phases of this phenomenon, exposing the most relevant evidences obtained from experimental models and human clinical data, with special focus on Cutaneous Melanoma, an immunogenic tumor per excellence. We will describe the different immunotherapeutic strategies employed and consider current models accounting for tumor heterogeneity. And finally, we will propose a rational discussion of the progress made and the future challenges in the therapeutics of Cutaneous Melanoma, taking into consideration that tumor evolution is the resulting from a continuous feedback between tumor cells and their environment, and that different combinatorial therapeutic approaches can be implemented according to the tumor stage.
Collapse
|
234
|
Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y, Avni D, Leibowitz-Amit R. Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 2012; 11:44. [PMID: 22747855 PMCID: PMC3444916 DOI: 10.1186/1476-4598-11-44] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/25/2012] [Indexed: 11/26/2022] Open
Abstract
Background Metastatic melanoma is a devastating disease with limited therapeutic options. MicroRNAs (miRNAs) are small non coding RNA molecules with important roles in post-transcriptional gene expression regulation, whose aberrant expression has been implicated in cancer. Results We show that the expression of miRNAs from a large cluster on human chromosome 14q32 is significantly down-regulated in melanoma cell lines, benign nevi and melanoma samples relative to normal melanocytes. This miRNA cluster resides within a parentally imprinted chromosomal region known to be important in development and differentiation. In some melanoma cell lines, a chromosomal deletion or loss-of-heterozygosity was observed in the cis-acting regulatory region of this cluster. In several cell lines we were able to re-express two maternally-induced genes and several miRNAs from the cluster with a combination of de-methylating agents and histone de-acetylase inhibitors, suggesting that epigenetic modifications take part in their silencing. Stable over-expression of mir-376a and mir-376c, two miRNAs from this cluster that could be re-expressed following epigenetic manipulation, led to modest growth retardation and to a significant decrease in migration in-vitro. Bioinformatic analysis predicted that both miRNAs could potentially target the 3'UTR of IGF1R. Indeed, stable expression of mir-376a and mir-376c in melanoma cells led to a decrease in IGF1R mRNA and protein, and a luciferase reporter assay indicated that the 3'UTR of IGF1R is a target of both mir-376a and mir-376c. Conclusions Our work is the first to show that the large miRNA cluster on chromosome 14q32 is silenced in melanoma. Our results suggest that down-regulation of mir-376a and mir-376c may contribute to IGF1R over-expression and to aberrant negative regulation of this signaling pathway in melanoma, thus promoting tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Liron Zehavi
- Laboratory of Molecular Cell Biology, Cancer Research Center and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12:269-81. [PMID: 22437939 PMCID: PMC6292222 DOI: 10.1038/nri3191] [Citation(s) in RCA: 1259] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy based on the adoptive transfer of naturally occurring or gene-engineered T cells can mediate tumour regression in patients with metastatic cancer. Here, we discuss progress in the use of adoptively transferred T cells, focusing on how they can mediate tumour cell eradication. Recent advances include more accurate targeting of antigens expressed by tumours and the associated vasculature, and the successful use of gene engineering to re-target T cells before their transfer into the patient. We also describe how new research has helped to identify the particular T cell subsets that can most effectively promote tumour eradication.
Collapse
Affiliation(s)
- Nicholas P Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
236
|
Tietze JK, Sckisel GD, Hsiao HH, Murphy WJ. Antigen-specific versus antigen-nonspecific immunotherapeutic approaches for human melanoma: the need for integration for optimal efficacy? Int Rev Immunol 2012; 30:238-93. [PMID: 22053969 DOI: 10.3109/08830185.2011.598977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to its immunogenecity and evidence of immune responses resulting in tumor regression, metastatic melanoma has been the target for numerous immunotherapeutic approaches. Unfortunately, based on the clinical outcomes, even the successful induction of tumor-specific responses does not correlate with efficacy. Immunotherapies can be divided into antigen-specific approaches, which seek to induce T cells specific to one or several known tumor associated antigens (TAA), or with antigen-nonspecific approaches, which generally activate T cells to become nonspecifically lytic effectors. Here the authors critically review the different immunotherapeutic approaches in melanoma.
Collapse
Affiliation(s)
- Julia K Tietze
- Departments of Dermatology and Internal Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
237
|
Anders K, Buschow C, Herrmann A, Milojkovic A, Loddenkemper C, Kammertoens T, Daniel P, Yu H, Charo J, Blankenstein T. Oncogene-targeting T cells reject large tumors while oncogene inactivation selects escape variants in mouse models of cancer. Cancer Cell 2011; 20:755-67. [PMID: 22172721 PMCID: PMC3658305 DOI: 10.1016/j.ccr.2011.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/23/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022]
Abstract
The genetic instability of cancer cells frequently causes drug resistance. We established mouse cancer models, which allowed targeting of an oncogene by drug-mediated inactivation or monospecific CD8(+) effector T (T(E)) cells. Drug treatment of genetically unstable large tumors was effective but selected resistant clones in the long term. In contrast, T(E) cells completely rejected large tumors (≥500 mm(3)), if the target antigen was cancer-driving and expressed in sufficient amounts. Although drug-mediated oncogene inactivation selectively killed the cancer cells and left the tumor vasculature intact, which likely facilitated survival and growth of resistant clones, T(E) cell treatment led to blood vessel destruction and probably "bystander" elimination of escape variants, which did not require antigen cross-presentation by stromal cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD8-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/transplantation
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Fibrosarcoma/blood supply
- Fibrosarcoma/genetics
- Fibrosarcoma/metabolism
- Fibrosarcoma/therapy
- Genes, Reporter
- Genomic Instability
- Immunotherapy, Adoptive
- Interferon-gamma/metabolism
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Molecular Sequence Data
- Neoplasm Transplantation
- Oncogenes
- Point Mutation
- Skin Transplantation
- Stomach Neoplasms/therapy
- Trans-Activators/genetics
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Kathleen Anders
- Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Christian Buschow
- Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Andreas Herrmann
- Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010 USA
| | - Ana Milojkovic
- Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Berlin Buch, 13092, Berlin, Germany
| | | | - Thomas Kammertoens
- Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Peter Daniel
- Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Berlin Buch, 13092, Berlin, Germany
| | - Hua Yu
- Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010 USA
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
- Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
- Correspondence:
| |
Collapse
|
238
|
The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol 2011; 2011:430394. [PMID: 22110524 PMCID: PMC3216392 DOI: 10.1155/2011/430394] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/05/2023]
Abstract
Tumor cells commonly escape from elimination by innate and adaptive immune responses using multiple strategies among which is the active suppression of effector immune cells. Regulatory T lymphocytes (Treg) and tolerogenic dendritic cells play essential roles in the establishment and persistence of cancer-induced immunosuppression. Differentiating dendritic cells (DCs) exposed to tumor-derived factors may be arrested at an immature stage becoming inept at initiating immune responses and may induce effector T-cell anergy or deletion. These tolerogenic DCs, which accumulate in patients with different types of cancers, are also involved in the generation of Treg. In turn, Treg that expand during tumor progression contribute to the immune tolerance of cancer by impeding DCs' ability to orchestrate immune responses and by directly inhibiting antitumoral T lymphocytes. Herein we review these bidirectional communications between DCs and Treg as they relate to the promotion of cancer-induced tolerance.
Collapse
|
239
|
Sondak VK, Han D, Deneve J, Kudchadkar R. Current and planned multicenter trials for patients with primary or metastatic melanoma. J Surg Oncol 2011; 104:430-7. [PMID: 21858839 DOI: 10.1002/jso.21867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multicenter clinical trials have established new standards of care in the surgical and medical management of malignant melanoma. They have led to the testing of new therapies and improved outcomes for patients with loco-regional and distant disease. Many pressing questions remain, however, and additional multicenter trials are currently underway to address them. The purpose of this review is to summarize relevant ongoing and planned multicenter trials that have and continue to define current melanoma management.
Collapse
Affiliation(s)
- Vernon K Sondak
- The Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA.
| | | | | | | |
Collapse
|
240
|
Hu YX, Cui Q, Liang B, Huang H. Relapsing Hematologic Malignancies after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2011; 17:1099-111. [DOI: 10.1016/j.bbmt.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 02/11/2011] [Indexed: 11/16/2022]
|
241
|
Hastings KT, Cresswell P. Disulfide reduction in the endocytic pathway: immunological functions of gamma-interferon-inducible lysosomal thiol reductase. Antioxid Redox Signal 2011; 15:657-68. [PMID: 21506690 PMCID: PMC3125571 DOI: 10.1089/ars.2010.3684] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) is constitutively expressed in most antigen presenting cells and is interferon γ inducible in other cell types via signal transducer and activator of transcription 1. Normally, N- and C-terminal propeptides are cleaved in the early endosome, and the mature protein resides in late endosomes and lysosomes. Correspondingly, GILT has maximal reductase activity at an acidic pH. Monocyte differentiation via Toll-like receptor 4 triggers secretion of a disulfide-linked dimer of the enzymatically active precursor, which may contribute to inflammation. GILT facilitates major histocompatibility complex (MHC) class II-restricted processing through reduction of protein disulfide bonds in the endocytic pathway and is hypothesized to expose buried epitopes for MHC class II binding. GILT can also facilitate the transfer of disulfide-containing antigens into the cytosol, enhancing their cross-presentation by MHC class I. A variety of antigens are strongly influenced by GILT-mediated reduction, including hen egg lysozyme, melanocyte differentiation antigens, and viral envelope glycoproteins. In addition, GILT is conserved among lower eukaryotes and likely has additional functions. For example, GILT expression increases the stability of superoxide dismutase 2 and decreases reactive oxygen species, which correlates with decreased cellular proliferation. It is also a critical host factor for infection with Listeria monocytogenes.
Collapse
Affiliation(s)
- Karen Taraszka Hastings
- Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, Arizona 85004,
| | | |
Collapse
|
242
|
Bernal M, Concha A, Sáenz-López P, Rodríguez AI, Cabrera T, Garrido F, Ruiz-Cabello F. Leukocyte infiltrate in gastrointestinal adenocarcinomas is strongly associated with tumor microsatellite instability but not with tumor immunogenicity. Cancer Immunol Immunother 2011; 60:869-82. [PMID: 21400022 PMCID: PMC11029771 DOI: 10.1007/s00262-011-0999-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
PURPOSE To analyze the correlation of genomic instability with leukocyte infiltrate in gastrointestinal carcinomas (GIACs) and with tumor immunogenicity, e.g., HLA class I cell surface expression defects and galectin-3 and PDL-1 expression. EXPERIMENTAL DESIGN Lymphocyte and macrophage infiltrations were immunohistochemically studied in HLA class I negative GIACs with sporadic high-level microsatellite instability (MSI-H) or microsatellite stability (MSS). RESULTS Tumors with MSI-H were associated with the following: dense infiltration (CD45, P < 0.001); cytotoxic CD8-positive lymphocytes (P < 0.001); and a complete absence of HLA class I cell surface expression, due to inactivating β2-microglobulin (β2-m) mutation in 50% of cases. In contrast, HLA class I negative tumors with MSS were significantly associated with fewer CD8-positive lymphocytes. There was no association between microsatellite instability and other molecular features of the tumor cells, including expression of galectin-3. Finally, macrophage infiltrate in the tumors was not correlated with microsatellite instability or HLA class I cell surface expression (CD64, P = 0.63; CD163, P = 0.51). CONCLUSIONS Microsatellite instability appears to be the most important factor determining the composition, density, and localization of leukocyte infiltrate, which is independent of other molecular features such expression of HLA class I cells, galectin-3, or programmed death ligand-1. Accordingly, the strong intratumoral CD8+ T infiltration of MSI-H tumors may be produced by elevated levels of specific inflammatory chemokines in the tumor microenvironment.
Collapse
Affiliation(s)
- Mónica Bernal
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Angel Concha
- Servicio de Anatomía Patológica, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Pablo Sáenz-López
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Ana Isabel Rodríguez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Teresa Cabrera
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| |
Collapse
|
243
|
Gilbert AE, Karagiannis P, Dodev T, Koers A, Lacy K, Josephs DH, Takhar P, Geh JLC, Healy C, Harries M, Acland KM, Rudman SM, Beavil RL, Blower PJ, Beavil AJ, Gould HJ, Spicer J, Nestle FO, Karagiannis SN. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One 2011; 6:e19330. [PMID: 21559411 PMCID: PMC3084832 DOI: 10.1371/journal.pone.0019330] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/26/2011] [Indexed: 11/24/2022] Open
Abstract
Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.
Collapse
Affiliation(s)
- Amy E. Gilbert
- Cutaneous Medicine and Immunotherapy Unit, Division of Genetics and
Molecular Medicine, NIHR Biomedical Research Centre at Guy’s and St.
Thomas’s Hospitals and King’s College London, King’s College
London School of Medicine, St. John’s Institute of Dermatology,
Guy’s Hospital, King’s College London, London, United
Kingdom
| | - Panagiotis Karagiannis
- Cutaneous Medicine and Immunotherapy Unit, Division of Genetics and
Molecular Medicine, NIHR Biomedical Research Centre at Guy’s and St.
Thomas’s Hospitals and King’s College London, King’s College
London School of Medicine, St. John’s Institute of Dermatology,
Guy’s Hospital, King’s College London, London, United
Kingdom
| | - Tihomir Dodev
- Randall Division of Cell and Molecular Biophysics and Division of Asthma,
Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of
Asthma, King's College London, London, United Kingdom
| | - Alexander Koers
- Division of Imaging Sciences, King’s College London School of
Medicine, Rayne Institute, St. Thomas's Hospital, King’s College
London, London, United Kingdom
| | - Katie Lacy
- Cutaneous Medicine and Immunotherapy Unit, Division of Genetics and
Molecular Medicine, NIHR Biomedical Research Centre at Guy’s and St.
Thomas’s Hospitals and King’s College London, King’s College
London School of Medicine, St. John’s Institute of Dermatology,
Guy’s Hospital, King’s College London, London, United
Kingdom
| | - Debra H. Josephs
- Cutaneous Medicine and Immunotherapy Unit, Division of Genetics and
Molecular Medicine, NIHR Biomedical Research Centre at Guy’s and St.
Thomas’s Hospitals and King’s College London, King’s College
London School of Medicine, St. John’s Institute of Dermatology,
Guy’s Hospital, King’s College London, London, United
Kingdom
| | - Pooja Takhar
- Randall Division of Cell and Molecular Biophysics and Division of Asthma,
Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of
Asthma, King's College London, London, United Kingdom
| | - Jenny L. C. Geh
- Skin Tumour Unit, Guy's and St. Thomas's NHS Trust, St.
John’s Institute of Dermatology, Guy’s Hospital, London, United
Kingdom
| | - Ciaran Healy
- Skin Tumour Unit, Guy's and St. Thomas's NHS Trust, St.
John’s Institute of Dermatology, Guy’s Hospital, London, United
Kingdom
| | - Mark Harries
- Clinical Oncology, Guy’s and St. Thomas’s NHS Foundation
Trust, London, United Kingdom
| | - Katharine M. Acland
- Skin Tumour Unit, Guy's and St. Thomas's NHS Trust, St.
John’s Institute of Dermatology, Guy’s Hospital, London, United
Kingdom
| | - Sarah M. Rudman
- Division of Cancer Studies, Department of Academic Oncology, King’s
College London, Guy's Hospital, London, United Kingdom
| | - Rebecca L. Beavil
- Randall Division of Cell and Molecular Biophysics and Division of Asthma,
Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of
Asthma, King's College London, London, United Kingdom
| | - Philip J. Blower
- Division of Imaging Sciences, King’s College London School of
Medicine, Rayne Institute, St. Thomas's Hospital, King’s College
London, London, United Kingdom
| | - Andrew J. Beavil
- Randall Division of Cell and Molecular Biophysics and Division of Asthma,
Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of
Asthma, King's College London, London, United Kingdom
| | - Hannah J. Gould
- Randall Division of Cell and Molecular Biophysics and Division of Asthma,
Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of
Asthma, King's College London, London, United Kingdom
| | - James Spicer
- Division of Cancer Studies, Department of Academic Oncology, King’s
College London, Guy's Hospital, London, United Kingdom
| | - Frank O. Nestle
- Cutaneous Medicine and Immunotherapy Unit, Division of Genetics and
Molecular Medicine, NIHR Biomedical Research Centre at Guy’s and St.
Thomas’s Hospitals and King’s College London, King’s College
London School of Medicine, St. John’s Institute of Dermatology,
Guy’s Hospital, King’s College London, London, United
Kingdom
| | - Sophia N. Karagiannis
- Cutaneous Medicine and Immunotherapy Unit, Division of Genetics and
Molecular Medicine, NIHR Biomedical Research Centre at Guy’s and St.
Thomas’s Hospitals and King’s College London, King’s College
London School of Medicine, St. John’s Institute of Dermatology,
Guy’s Hospital, King’s College London, London, United
Kingdom
| |
Collapse
|
244
|
Campoli M, Ferrone S. HLA antigen and NK cell activating ligand expression in malignant cells: a story of loss or acquisition. Semin Immunopathol 2011; 33:321-34. [PMID: 21523560 DOI: 10.1007/s00281-011-0270-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 12/22/2022]
Abstract
Malignant transformation of cells is often associated with changes in classical and non-classical HLA class I antigen, HLA class II antigen as well as NK cell activating ligand (NKCAL) expression. These changes are believed to play a role in the clinical course of the disease since these molecules are critical to the interactions between tumor cells and components of both innate and adaptive immune system. For some time, it has been assumed that alterations in the expression profile of HLA antigens and NKCAL on malignant cells represented loss of classical HLA class I antigen and induction of HLA class II antigen, non-classical HLA class I antigen and/or NKCAL expression. In contrast to these assumptions, experimental evidence suggests that in some cases dysplastic and malignant cells can acquire classical HLA class I antigen expression and/or lose the ability to express HLA class II antigens. In light of the latter findings as well as of the revival of the cancer immune surveillance theory, a reevaluation of the interpretation of changes in HLA antigen and NKCAL expression in malignant lesions is warranted. In this article, we first briefly describe the conventional types of changes in HLA antigen and NKCAL expression that have been identified in malignant cells to date. Second, we discuss the evidence indicating that, in at least some cell types, classical HLA class I antigen expression can be acquired and/or the ability to express HLA class II antigens is lost. Third, we review the available evidence for the role of immune selective pressure in the generation of malignant lesions with changes in HLA antigen expression. This information contributes to our understanding of the role of the immune system in the control of tumor development and to the optimization of the design of immunotherapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Michael Campoli
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
245
|
Abstract
The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor-suppressor mechanisms. However, the immune system can also promote tumor progression. Together, the dual host-protective and tumor-promoting actions of immunity are referred to as cancer immunoediting. In this review, we discuss the current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
246
|
Cany J, Barteau B, Tran L, Gauttier V, Archambeaud I, Couty JP, Turlin B, Pitard B, Vassaux G, Ferry N, Conchon S. AFP-specific immunotherapy impairs growth of autochthonous hepatocellular carcinoma in mice. J Hepatol 2011; 54:115-21. [PMID: 20961645 DOI: 10.1016/j.jhep.2010.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/10/2010] [Accepted: 06/09/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS In this study, we have assessed the potential of antigen-specific immunotherapy against hepatocellular carcinoma (HCC) in conditions of low tumour burden, in an autochthonous HCC model. METHODS Diethylnitrosamine (DEN) injected into infant mice results in the development of multi-nodular HCC in which alpha-fetoprotein (AFP) is re-expressed. DEN-injected animals received an antigen-specific immunization with a synthetic vector consisting of a low dose of AFP-encoding plasmid formulated with the amphiphilic block copolymer 704 (DNAmAFP/704). Animals were treated at 4 and 5 months, before macroscopic nodules were detected, and were sacrificed at 8 months. The tumour burden, as well as liver histology, was assessed. AFP and MHC class I molecule expression in the nodules were monitored by qRT-PCR. RESULTS The AFP-specific immunotherapy led to a significant (65%) reduction in tumour size. The reduced expression of AFP and MHC class I molecules was measured in the remaining nodules taken from the DNAmAFP/704-treated group. CONCLUSIONS This is the first study demonstrating the relevance of antigen-specific immunotherapy in an autochthonous HCC model. In this context, we validated the use of an anti-tumour immunotherapy based on vaccination with nanoparticles consisting of low dose antigen-encoding DNA formulated with a block copolymer. Our results demonstrate the potential of this strategy as adjuvant immunotherapy to reduce the recurrence risk after local treatment of HCC patients.
Collapse
|
247
|
Martorelli D, Muraro E, Merlo A, Turrini R, Rosato A, Dolcetti R. Role of CD4+ cytotoxic T lymphocytes in the control of viral diseases and cancer. Int Rev Immunol 2010; 29:371-402. [PMID: 20635880 DOI: 10.3109/08830185.2010.489658] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our knowledge on the physiological role of CD4(+) T lymphocytes has improved in the last decade: available data convincingly demonstrate that, besides the 'helper' activity, CD4(+) T cells may be also endowed with lytic properties. The cytotoxic function of these effector cells has a relevant role in the control of pathogenic infections and in mediating antitumor immune responses. On these bases, several immunotherapeutic approaches exploiting the cytotoxic properties of CD4(+) T cells are under investigation. This review summarizes available data supporting the functional and therapeutic relevance of cytotoxic CD4(+) T cells, with a particular focus on Epstein-Barr virus (EBV)-related disorders.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN), Italy
| | | | | | | | | | | |
Collapse
|
248
|
Abstract
Allovectin-7, a bicistronic plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin formulated with a cationic lipid system, is an immunotherapeutic agent designed to express allogeneic major histocompatibility complex class I antigen upon intralesional administration. A phase 2 dose-escalation study (VCL-1005-208) was conducted to evaluate the safety and efficacy of Allovectin-7 in patients with metastatic melanoma. Eligible patients had stage III or IV metastatic melanoma recurrent or unresponsive to prior therapy, an Eastern Cooperative Oncology Group performance status 0 or 1, and adequate organ function. Patients with brain or visceral (except lung) metastases, abnormal lactate dehydrogenase, or any lesion greater than 100 cm were excluded. Patients received six weekly intralesional injections followed by 3 weeks of observation and evaluation. Overall response was assessed using Response Evaluation Criteria in Solid Tumors guidelines. Patients with stable or responding disease were eligible to receive additional cycles of Allovectin-7. All 133 patients were evaluated for safety and 127 patients (2 mg, high dose) were evaluated for efficacy. Fifteen patients (11.8%, 95% confidence interval: 6.2-17.4) achieved an objective response with median duration of response of 13.8 months (95% confidence interval: 8.5, not estimable). A histological examination of tissue from two responding patients who had their lesions resected has shown no evidence of melanoma. Median time-to-progression in this study was 1.6 months. In conclusion, these results indicate that high-dose Allovectin-7 seems to be an active, well-tolerated treatment for selected stage III/IV metastatic melanoma patients with injectable cutaneous, subcutaneous, or nodal lesions.
Collapse
|
249
|
Steer HJ, Lake RA, Nowak AK, Robinson BWS. Harnessing the immune response to treat cancer. Oncogene 2010; 29:6301-13. [PMID: 20856204 DOI: 10.1038/onc.2010.437] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that the immune system has the capacity to attack malignant cells. During malignant transformation cells acquire numerous molecular and biochemical changes that render them potentially vulnerable to immune cells. Yet it is self-evident that a growing tumour has managed to evade these host defence mechanisms. The exact ways in which the immune system interacts with tumour cells and how cancers are able to escape immunological eradication have only recently started to be fully elucidated. Understanding the relationship between the tumour and the anti-tumour immune response and how this can be altered with conventional treatments and immune-targeted therapies is crucial to developing new treatments for patients with cancer. In this review, focusing on the anti-tumour T-cell response, we summarize our understanding of how tumours, cancer treatments and the immune system interact, how tumours evade the immune response and how this process could be manipulated for the benefit of patients with cancer.
Collapse
Affiliation(s)
- H J Steer
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | |
Collapse
|
250
|
Garrido F, Cabrera T, Aptsiauri N. "Hard" and "soft" lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 2010; 127:249-56. [PMID: 20178101 DOI: 10.1002/ijc.25270] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability of cancer cells to escape from the natural or immunotherapy-induced antitumor immune response is often associated with alterations in the tumor cell surface expression of Major Histocompatibility Complex (MHC) Class I antigens. Considerable knowledge has been gained on the prevalence of various patterns of MHC Class I defects and the underlying molecular mechanisms in different types of cancer. In contrast, few data are available on the changes in MHC Class I expression happening during the course of cancer immunotherapy. We have recently proposed that the progression or regression of a tumor lesion in cancer patients undergoing immunotherapy could be predetermined by the molecular mechanism responsible for the MHC Class I alteration and not by the type of immunotherapy used, i.e., interleukin-2 (IL-2), Bacillus Calmette-Guèrin (BCG), interferon-alpha (IFN-alpha), peptides alone, dendritic cells loaded with peptides, protein-bound polysaccharide etc. If the molecular alteration responsible for the changes in MHC Class I expression is reversible by cytokines ("soft" lesion), the MHC Class I expression will be upregulated, the specific T cell-mediated response will increase and the lesion will regress. However, if the molecular defect is structural ("hard" lesion), the MHC Class I expression will remain low, the escape mechanism will prevail and the primary tumor or the metastatic lesion will progress. According to this idea, the nature of the preexisting MHC Class I lesion in the cancer cell has a crucial impact determining the final outcome of cancer immunotherapy. In this article, we discuss the importance of these two types of molecular mechanisms of MHC Class I-altered expression.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Bioquímica, Universidad de Granada, Granada, Spain.
| | | | | |
Collapse
|