201
|
Issa-Zacharia A, Kamitani Y, Miwa N, Muhimbula H, Iwasaki K. Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.10.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
202
|
Sheng H, Wang J, Lim JY, Davitt C, Minnich SA, Hovde CJ. Internalization of Escherichia coli o157:h7 by bovine rectal epithelial cells. Front Microbiol 2011; 2:32. [PMID: 21687423 PMCID: PMC3109292 DOI: 10.3389/fmicb.2011.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/06/2011] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli O157:H7 (O157) causes human diarrheal disease and healthy cattle are its primary reservoir. O157 colonize the bovine epithelial mucosa at the recto-anal junction (RAJ). Previous studies show that O157 at this site are not eliminated by aggressive interventions including applications of O157-specific lytic bacteriophages and other bactericidal agents. We hypothesize that some O157 at the RAJ mucosa are protected from these killing agents by host cell internalization. To test this hypothesis, rectal biopsies from O157 culture positive and negative cattle were analyzed by fluorescent microscopy and subjected to gentamicin protection assays. GFP-labeled bacteria were found located deep within the tissue crypts and a small number of O157 were recovered from rectal biopsies after gentamicin treatment. Primary bovine rectal epithelial (PBRE) cell cultures were incubated with O157 and subjected to gentamicin protection assays. Strains ATCC 43895, 43894, Sakai, and WSU180 entered the PBRE cells with different levels of efficiency ranging from 0.18 to 19.38% of the inocula. Intracellular bacteria were confirmed to be within membrane-bounded vacuoles by electron microscopy. Cytochalasin D curtailed internalization of O157 indicating internalization was dependent on eukaryotic microfilament assembly. Strain ATCC 43895 exhibited the highest efficiency of internalization and survived for at least 24 h within PBRE cells. Deletion mutation of intimin or its receptor in ATCC 43895 did not reduce bacterial internalization. This strain produced more biofilm than the others tested. Retrospective analysis of cattle challenged with two O157 strains, showed ATCC 43895, the most efficient at host cell internalization, was most persistent.
Collapse
Affiliation(s)
- Haiqing Sheng
- School of Food Science, University of IdahoMoscow, ID, USA
| | - Jing Wang
- School of Food Science, University of IdahoMoscow, ID, USA
| | - Ji Youn Lim
- School of Food Science, University of IdahoMoscow, ID, USA
- Department of Chemistry, Stanford UniversityStanford, CA, USA
| | - Christine Davitt
- Franceschi Microscopy and Imaging Center, Washington State UniversityPullman, WA, USA
| | | | | |
Collapse
|
203
|
Determination of adhesin gene sequences in, and biofilm formation by, O157 and non-O157 Shiga toxin-producing Escherichia coli strains isolated from different sources. Appl Environ Microbiol 2011; 77:2201-8. [PMID: 21317257 DOI: 10.1128/aem.01920-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Biofilm formation by Shiga toxin-producing Escherichia coli (STEC) has been associated with the expression of different adhesins (type 1 fimbria, curli, Ag43, Cah, and EhaA). In this study, biofilm formation and the presence of adhesin-related gene sequences were determined by PCR in 18 O157 strains and 33 non-O157 strains isolated from different sources (human, animal, food, and water). The expression of different adhesins was also assessed by reverse transcription-PCR (RT-PCR), Congo red agar plates, and mannose-sensitive hemagglutination (MSHA) assay. Biofilm formation occurred in 5/18 (28%) O157 STEC strains and 17/33 (51%) non-O157 STEC strains from different serotypes and sources, when the assays were performed at 28°C for 48 h. Among the non-O157 biofilm-producing isolates, 12/17 (71%) expressed type 1 fimbriae and 11/17 (65%) expressed curli and produced cellulose, while 8/17 (47%) were considered to be Ag43(+) by RT-PCR. Among O157 strains, a close correlation was observed between biofilm formation and expression of curli and cellulose. In non-O157 strains, it seems that, in addition to the presence of curli, the ability to form biofilm is associated with the presence of other factors such as type 1 fimbriae and autotransporter proteins, which may contribute to the persistence of these organisms in the environment.
Collapse
|
204
|
Shaw RK, Berger CN, Pallen MJ, Sjöling A, Frankel G. Flagella mediate attachment of enterotoxigenic Escherichia coli to fresh salad leaves. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:112-117. [PMID: 23761239 DOI: 10.1111/j.1758-2229.2010.00195.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes child and travelers' diarrhea and is presumed to be water- and food-borne. Sporadic outbreaks were traced to consumption of contaminated fresh produce, particularly salad leaves as lettuce and parsley. Importantly, the mechanism by which ETEC binds salad leaves is not known. In this study we investigated the ability of clinical ETEC isolates to adhere to Eruca vesicaria (commonly known as rocket). Towards this end we inoculated pieces of cut E. vesicaria leaves with clinical ETEC isolates grown in Luria broth at 20°C, conditions that are not permissive for expression of the plasmid-encoded colonization factors and hence mimic the actual transmission pathways of ETEC through intake of contaminated food. We found that ETEC strains bind E. vesicaria at various efficiencies. Examination of representative strains by scanning electron microscopy revealed that they adhere to the E. vesicaria surface in a diffuse pattern by extended filaments resembling flagella. Using the prototype ETEC strain H10407 we found that it also binds to lettuce, basil and spinach leaves. Binding of H10407 was dependent on flagella as a fliC mutant attached to leaves at a much lower efficiency. Interestingly, under the employed environmental conditions EtpA, which forms a flagellar tip structure, and colonization factor I are dispensable for leaf attachment. The results show that ETEC can bind specifically to salad leaves, which might represent an important, yet less recognized, source of infection.
Collapse
Affiliation(s)
- Robert K Shaw
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK Centre for Systems Biology, Department of Biosciences, University of Birmingham, Birminghan, UK Department of Microbiology and Immunology, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
205
|
Money P, Kelly AF, Gould SWJ, Denholm-Price J, Threlfall EJ, Fielder MD. Cattle, weather and water: mapping Escherichia coli O157:H7 infections in humans in England and Scotland. Environ Microbiol 2011; 12:2633-44. [PMID: 20642796 DOI: 10.1111/j.1462-2920.2010.02293.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Entero-haemorrhagic Escherichia coli O157:H7 is a zoonotic pathogen, responsible for a relatively small number of food poisoning and illness outbreaks each year, when compared with other food-borne bacteria capable of causing infections in the population. Nevertheless, E. coli O157:H7 is a bacterial pathogen associated with severe human illnesses including bloody diarrhoea and haemolytic uremic syndrome occurring in both outbreak and sporadic settings. In England and Wales approximately 1% of all laboratory-confirmed cases of food poisoning are the result of E. coli O157:H7; however, in Scotland this figure increases to 3%. When the size of the population is taken into account and the rate of E. coli O157:H7 confirmed cases per 100,000 population is examined, the rate of E. coli 0157:H7 infections in Scotland is much greater than England and Wales. The routes of transmission have changed over time, with new routes of transmission such as farm visits emerging. The prevalence of E. coli O157:H7 has a seasonal dependency, with greater faecal shedding of the organism in the warmer months; this is directly mirrored in the increased reporting of E. coli O157:H7 infection among hospitalized patients. This review attempts to suggest why this phenomenon occurs, paying particular attention to weather, animal movement and private water supplies.
Collapse
Affiliation(s)
- P Money
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston Upon Thames, London KT1 2EE, UK
| | | | | | | | | | | |
Collapse
|
206
|
A Salmonella Typhimurium phage type (PT) U320 outbreak in England, 2008: continuation of a trend involving ready-to-eat products. Epidemiol Infect 2011; 139:1936-44. [DOI: 10.1017/s0950268810003080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYIn March 2008, the Health Protection Agency in England conducted a retrospective case-control study to investigate the cause of 179 cases of the newly recognized, fully antimicrobial-sensitive Salmonella Typhimurium PT U320. Forty-three symptomatic laboratory-confirmed case-patients and 84 asymptomatic location-matched controls were interviewed by telephone about exposures in the 3 days prior to illness or interview. Multivariate logistic analysis indicated consumption of pre-packaged egg sandwiches (odds ratio 3·29, 95% confidence interval 1·19–9·09) was independently associated with illness. Eight of the 15 case-patients who consumed egg sandwiches did so from retail chain A (53·3%) whereas none of the eight controls consumed similar sandwiches (χ2=7·20, P⩽0·01). A review of the pre-packaged egg sandwich ingredients suggested this outbreak was probably caused by exposure to an ingredient common to pre-packaged sandwiches and prepared salads but we established a definitive epidemiological link with only the former. Short shelf-life, product diversity and investigation lag hinder epidemiological investigations of such popular products, providing continued challenges for food safety enforcement of freshly prepared produce.
Collapse
|
207
|
Ji XW, Liao YL, Zhu YF, Wang HG, Gu L, Gu J, Dong C, Ding HL, Mao XH, Zhu FC, Zou QM. Multilocus sequence typing and virulence factors analysis of Escherichia coli O157 strains in China. J Microbiol 2011; 48:849-55. [PMID: 21221945 PMCID: PMC7091087 DOI: 10.1007/s12275-010-0132-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022]
Abstract
Escherichia coli O157:H7, an important food-borne pathogen, has become a major public health concern worldwide. The aim of this study was to investigate the molecular epidemiologic feature of E. coli O157:H7 strains in China. 105 E. coli O157:H7 isolates were collected from various hosts and places over 9 years. A multilocus sequence typing scheme (MLST) was applied for bacteria genotyping and polymerase chain reaction (PCR) was used for virulence factor identification. Seven new MLST sequence types (STs), namely ST836, ST837, ST838, ST839, ST840, ST841, and ST842 were identified, which grouped into two lineages. Phylogenetic analysis suggested that the most two frequent STs in China, ST837 and ST836, may be the derivatives of E. coli O157:H7 Sakai or E. coli O157:H7 EDL933. Geographical diversity and host variety of E. coli O157:H7 were observed in China. In addition, the different distribution of tccp was detected. The data presented herein provide new insights into the molecular epidemiologic feature of E. coli O157:H7, and aid in the investigation of the transmission regularity and evolutionary mechanism of E. coli O157:H7.
Collapse
Affiliation(s)
- Xiao W. Ji
- Department of Clinical Micbiology and Immunology, Faculty of Medical Laboratory Science, the Third Military Medical University, Chongqing, 400038 P. R. China
| | - Ya L. Liao
- Department of Clinical Micbiology and Immunology, Faculty of Medical Laboratory Science, the Third Military Medical University, Chongqing, 400038 P. R. China
| | - Ye F. Zhu
- Jiangsu Centres for Disesase Prevention and Control, Jiangsu, 210009 P. R. China
| | - Hai G. Wang
- Department of Clinical Micbiology and Immunology, Faculty of Medical Laboratory Science, the Third Military Medical University, Chongqing, 400038 P. R. China
| | - Ling Gu
- Jiangsu Centres for Disesase Prevention and Control, Jiangsu, 210009 P. R. China
| | - Jiang Gu
- Department of Clinical Micbiology and Immunology, Faculty of Medical Laboratory Science, the Third Military Medical University, Chongqing, 400038 P. R. China
| | - Chen Dong
- Jiangsu Centres for Disesase Prevention and Control, Jiangsu, 210009 P. R. China
| | - Hong L. Ding
- Department of Clinical Micbiology and Immunology, Faculty of Medical Laboratory Science, the Third Military Medical University, Chongqing, 400038 P. R. China
| | - Xu H. Mao
- Department of Clinical Micbiology and Immunology, Faculty of Medical Laboratory Science, the Third Military Medical University, Chongqing, 400038 P. R. China
| | - Feng C. Zhu
- Jiangsu Centres for Disesase Prevention and Control, Jiangsu, 210009 P. R. China
| | - Quan M. Zou
- Department of Clinical Micbiology and Immunology, Faculty of Medical Laboratory Science, the Third Military Medical University, Chongqing, 400038 P. R. China
| |
Collapse
|
208
|
Mohawk KL, O'Brien AD. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. J Biomed Biotechnol 2011; 2011:258185. [PMID: 21274267 PMCID: PMC3022220 DOI: 10.1155/2011/258185] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/03/2010] [Indexed: 01/19/2023] Open
Abstract
Escherichia coli O157:H7 has been responsible for multiple food- and waterborne outbreaks of diarrhea and/or hemorrhagic colitis (HC) worldwide. More importantly, a portion of E. coli O157:H7-infected individuals, particularly young children, develop a life-threatening sequela of infection called hemolytic uremic syndrome (HUS). Shiga toxin (Stx), a potent cytotoxin, is the major virulence factor linked to the presentation of both HC and HUS. Currently, treatment of E. coli O157:H7 and other Stx-producing E. coli (STEC) infections is limited to supportive care. To facilitate development of therapeutic strategies and vaccines for humans against these agents, animal models that mimic one or more aspect of STEC infection and disease are needed. In this paper, we focus on the characteristics of various mouse models that have been developed and that can be used to monitor STEC colonization, disease, pathology, or combinations of these features as well as the impact of Stx alone.
Collapse
Affiliation(s)
- Krystle L. Mohawk
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Alison D. O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
209
|
ARAKAWA YUMI, SAWADA TAKUO, TAKATORI KOSUKE, LEE KENICHI, HARA-KUDO YUKIKO. Rapid Detection of Shiga Toxin-Producing Escherichia coli in Ground Beef by an Immunochromatography Kit in Combination with Short-Term Enrichment and Treatment for Shiga Toxin Release. Biocontrol Sci 2011; 16:159-64. [DOI: 10.4265/bio.16.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
210
|
Melton-Celsa A, Mohawk K, Teel L, O’Brien A. Pathogenesis of Shiga-Toxin Producing Escherichia coli. Curr Top Microbiol Immunol 2011; 357:67-103. [DOI: 10.1007/82_2011_176] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
211
|
Functional and phylogenetic analysis of ureD in Shiga toxin-producing Escherichia coli. J Bacteriol 2010; 193:875-86. [PMID: 21148732 DOI: 10.1128/jb.00922-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that can cause severe health complications and utilizes a much lower infectious dose than other E. coli pathotypes. Despite having an intact ure locus, ureDABCEFG, the majority of EHEC strains are phenotypically urease negative under tested conditions. Urease activity potentially assists with survival fitness by enhancing acid tolerance during passage through the stomach or by aiding with colonization in either human or animal reservoirs. Previously, in the EHEC O157:H7 Sakai strain, a point mutation in ureD, encoding a urease chaperone protein, was identified, resulting in a substitution of an amber stop codon for glutamine. This single nucleotide polymorphism (SNP) is observed in the majority of EHEC O157:H7 isolates and correlates with a negative urease phenotype in vitro. We demonstrate that the lack of urease activity in vitro is not solely due to the amber codon in ureD. Our analysis has identified two additional SNPs in ureD affecting amino acid positions 38 and 205, in both cases determining whether the encoded amino acid is leucine or proline. Phylogenetic analysis based on Ure protein sequences from a variety of urease-encoding bacteria demonstrates that the proline at position 38 is highly conserved among Gram-negative bacteria. Experiments reveal that the L38P substitution enhances urease enzyme activity; however, the L205P substitution does not. Multilocus sequence typing analysis for a variety of Shiga toxin-producing E. coli isolates combined with the ureD sequence reveals that except for a subset of the O157:H7 strains, neither the in vitro urease-positive phenotype nor the ureD sequence is phylogenetically restricted.
Collapse
|
212
|
Ferens WA, Hovde CJ. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 2010; 8:465-87. [PMID: 21117940 DOI: 10.1089/fpd.2010.0673] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA.
| | | |
Collapse
|
213
|
Clark WF, Sontrop JM, Macnab JJ, Salvadori M, Moist L, Suri R, Garg AX. Long term risk for hypertension, renal impairment, and cardiovascular disease after gastroenteritis from drinking water contaminated with Escherichia coli O157:H7: a prospective cohort study. BMJ 2010; 341:c6020. [PMID: 21084368 PMCID: PMC3191723 DOI: 10.1136/bmj.c6020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To evaluate the risk for hypertension, renal impairment, and cardiovascular disease within eight years of gastroenteritis from drinking water contaminated with Escherichia coli O157:H7 and Campylobacter. DESIGN A prospective cohort study. Setting Walkerton, Ontario, Canada. PARTICIPANTS 1977 adult participants in the Walkerton Health Study recruited between 2002 and 2005 after an outbreak of gastroenteritis in May 2000, when a municipal water system was contaminated, with no pre-outbreak history of outcome measures. OUTCOME MEASURES Information was collected annually via survey, physical examination, and laboratory assessment. Primary measures were acute gastroenteritis (diarrhoeal illness lasting >3 days, bloody diarrhoea, or >3 loose stools/day), hypertension (blood pressure ≥140/90 mm Hg), and renal impairment (microalbuminuria or estimated glomerular filtration rate <60 ml/min/1.73 m(2)). Self reported physician diagnosis of cardiovascular disease (myocardial infarction, stroke, or congestive heart failure) was a secondary outcome. RESULTS Acute gastroenteritis at the time of the outbreak was reported by 1067 (54%) of participants. Incident hypertension was detected in 697 (35%) (294 (32%) of group not exposed to acute gastroenteritis v 403 (38%) of exposed group). While 572 (29%) had at least one indicator of renal impairment (266 (29%) of unexposed v 306 (29%) of exposed), only 30 (1.5%) had both (8 (0.9%) of unexposed v 22 (2.1%) of exposed). Cardiovascular disease was reported by 33/1749 (1.9%). The adjusted hazard ratios for hypertension and cardiovascular disease after acute gastroenteritis were 1.33 (95% confidence interval 1.14 to 1.54) and 2.13 (1.03 to 4.43) respectively. The adjusted hazard ratio for the presence of either indicator of renal impairment was 1.15 (0.97 to 1.35) and was 3.41 (1.51 to 7.71) for the presence of both. CONCLUSION Gastroenteritis from drinking water contaminated with E coli O157:H7 and Campylobacter was associated with an increased risk for hypertension, renal impairment, and self reported cardiovascular disease. Annual monitoring of blood pressure and periodic monitoring of renal function may be warranted for individuals who experience E coli O157:H7 gastroenteritis.
Collapse
Affiliation(s)
- William F Clark
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
214
|
Probiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect Immun 2010; 79:185-91. [PMID: 20974822 DOI: 10.1128/iai.00880-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Strains of enterohemorrhagic Escherichia coli (EHEC) are a group of Shiga toxin-producing food-borne pathogens that cause severe hemorrhagic colitis and can lead to hemolytic-uremic syndrome (HUS), a life-threatening condition that principally affects children and for which there is no effective treatment. We used a germfree mouse model of renal and enteric disease due to EHEC to determine if probiotic Lactobacillus reuteri ATCC PTA 6475 is effective in suppressing disease symptoms caused by EHEC. When germfree Swiss Webster mice are monocolonized with EHEC, they develop disease characterized by weight loss, cecal luminal fluid accumulation, and renal tubular necrosis. When L. reuteri was administered 1 day prior to EHEC challenge and every other day thereafter, EHEC colonization was suppressed and mice were significantly protected from the manifestations of disease. Protection from disease did not require the induction of the antimicrobial compound reuterin in L. reuteri prior to treatment. The twice-daily administration of L. reuteri appeared more effective than every-other-day administration. These data indicated that L. reuteri partially protects mice from disease manifestations of EHEC.
Collapse
|
215
|
|
216
|
Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 2010; 12:2385-97. [DOI: 10.1111/j.1462-2920.2010.02297.x] [Citation(s) in RCA: 581] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
217
|
The influence of non-lethal temperature on the rate of inactivation of vegetative bacteria in inimical environments may be independent of bacterial species. Food Microbiol 2010; 27:453-9. [DOI: 10.1016/j.fm.2009.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 11/17/2022]
|
218
|
Puttamreddy S, Cornick NA, Minion FC. Genome-wide transposon mutagenesis reveals a role for pO157 genes in biofilm development in Escherichia coli O157:H7 EDL933. Infect Immun 2010; 78:2377-84. [PMID: 20351142 PMCID: PMC2876562 DOI: 10.1128/iai.00156-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/02/2010] [Accepted: 03/19/2010] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7, a world-wide human food-borne pathogen, causes mild to severe diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. The ability of this pathogen to persist in the environment contributes to its dissemination to a wide range of foods and food processing surfaces. Biofilms are thought to be involved in persistence, but the process of biofilm formation is complex and poorly understood in E. coli O157:H7. To better understand the genetics of this process, a mini-Tn5 transposon insertion library was constructed in strain EDL933 and screened for biofilm-negative mutants using a microtiter plate assay. Ninety-five of 11,000 independent insertions (0.86%) were biofilm negative, and transposon insertions were located in 51 distinct genes/intergenic regions that must be involved either directly or indirectly in biofilm formation. All of the 51 biofilm-negative mutants showed reduced biofilm formation on both hydrophilic and hydrophobic surfaces. Thirty-six genes were unique to this study, including genes on the virulence plasmid pO157. The type V secreted autotransporter serine protease EspP and the enterohemolysin translocator EhxD were found to be directly involved in biofilm formation. In addition, EhxD and EspP were also important for adherence to T84 intestinal epithelial cells, suggesting a role for these genes in tissue interactions in vivo.
Collapse
Affiliation(s)
- Supraja Puttamreddy
- Department of Veterinary Microbiology and Preventive Medicine and Interdepartmental Genetics Program, Iowa State University, Ames, Iowa 50011
| | - Nancy A. Cornick
- Department of Veterinary Microbiology and Preventive Medicine and Interdepartmental Genetics Program, Iowa State University, Ames, Iowa 50011
| | - F. Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine and Interdepartmental Genetics Program, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
219
|
Influence of plasmid pO157 on Escherichia coli O157:H7 Sakai biofilm formation. Appl Environ Microbiol 2009; 76:963-6. [PMID: 19966025 DOI: 10.1128/aem.01068-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of plasmid pO157 in biofilm formation was investigated using wild-type and pO157-cured Escherichia coli O157:H7 Sakai. Compared to the wild type, the biofilm formed by the pO157-cured mutant produced fewer extracellular carbohydrates, had lower viscosity, and did not give rise to colony morphology variants that hyperadhered to solid surfaces.
Collapse
|
220
|
Riordan JT, Tietjen JA, Walsh CW, Gustafson JE, Whittam TS. Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7. MICROBIOLOGY-SGM 2009; 156:719-730. [PMID: 19942657 DOI: 10.1099/mic.0.032631-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alternative sigma factor 54 (RpoN) is an important regulator of stress resistance and virulence genes in many bacterial species. In this study, we report on the gene expression alterations that follow rpoN inactivation in Escherichia coli O157 : H7 strain Sakai (Sakai rpoN : : kan), and the influence of RpoN on the acid resistance phenotype. Microarray gene expression profiling revealed the differential expression of 103 genes in SakairpoN : : kan relative to Sakai. This included the growth-phase-dependent upregulation of genes required for glutamate-dependent acid resistance (GDAR) ( gadA, gadB, gadC and gadE), and the downregulation of locus of enterocyte effacement (LEE) genes, which encode a type III secretion system. Upregulation of gad genes in SakairpoN : : kan during exponential growth correlated with increased GDAR and survival in a model stomach system. Complementation of SakairpoN : : kan with a cloned version of rpoN restored acid susceptibility. Genes involved in GDAR regulation, including rpoS (sigma factor 38) and gadE (acid-responsive regulator), were shown to be required for the survival of SakairpoN : : kan by the GDAR mechanism. This study describes the contribution of rpoN to acid resistance and GDAR gene regulation, and reveals RpoN to be an important regulator of stress resistance and virulence genes in E. coli O157 : H7.
Collapse
Affiliation(s)
- James T Riordan
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620, USA
| | - Jillian A Tietjen
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Coilin W Walsh
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - John E Gustafson
- Microbiology Group, Biology Department and Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Thomas S Whittam
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
221
|
Abu-Ali GS, Ouellette LM, Henderson ST, Whittam TS, Manning SD. Differences in adherence and virulence gene expression between two outbreak strains of enterohaemorrhagic Escherichia coli O157 : H7. MICROBIOLOGY-SGM 2009; 156:408-419. [PMID: 19892762 DOI: 10.1099/mic.0.033126-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Escherichia coli O157 : H7 TW14359 strain was implicated in a multi-state outbreak in North America in 2006, which resulted in high rates of severe disease. Similarly, the O157 : H7 RIMD0509952 (Sakai) strain caused the largest O157 : H7 outbreak to date. Both strains were shown to represent divergent phylogenetic lineages. Here we compared global gene expression patterns before and after epithelial cell exposure, as well as the ability to adhere to and invade epithelial cells, between the two outbreak strains. Epithelial cell assays demonstrated a 2.5-fold greater adherence of the TW14359 strain relative to Sakai, while whole-genome microarrays detected significant differential expression of 914 genes, 206 of which had a fold change >/=1.5. Interestingly, most locus of enterocyte effacement (LEE) genes were upregulated in TW14359, whereas flagellar and chemotaxis genes were primarily upregulated in Sakai, suggesting discordant expression of these genes between the two strains. The Shiga toxin 2 genes were also upregulated in the TW14359 strain, as were several pO157-encoded genes that promote adherence, including type II secretion genes and their effectors stcE and adfO. Quantitative RT-PCR confirmed the expression differences detected in the microarray analysis, and expression levels were lower for a subset of LEE genes before versus after exposure to epithelial cells. In all, this study demonstrated the upregulation of major and ancillary virulence genes in TW14359 and of flagellar and chemotaxis genes in Sakai, under conditions that precede intimate bacterial attachment to epithelial cells. Differences in the level of adherence to epithelial cells were also observed, implying that these two phylogenetically divergent O157 : H7 outbreak strains vary in their ability to colonize, or initiate the disease process.
Collapse
Affiliation(s)
- Galeb S Abu-Ali
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey M Ouellette
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Scott T Henderson
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas S Whittam
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Shannon D Manning
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
222
|
Snedeker KG, Shaw DJ, Locking ME, Prescott RJ. Primary and secondary cases in Escherichia coli O157 outbreaks: a statistical analysis. BMC Infect Dis 2009; 9:144. [PMID: 19715594 PMCID: PMC2741466 DOI: 10.1186/1471-2334-9-144] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/28/2009] [Indexed: 11/13/2022] Open
Abstract
Background Within outbreaks of Escherichia coli O157 (E. coli O157), at least 10–15% of cases are thought to have been acquired by secondary transmission. However, there has been little systematic quantification or characterisation of secondary outbreak cases worldwide. The aim of this study was to characterise secondary outbreak cases, estimate the overall proportion of outbreak cases that were the result of secondary transmission and to analyse the relationships between primary and secondary outbreak cases by mode of transmission, country and median age. Methods Published data was obtained from 90 confirmed Escherichia coli O157 outbreaks in Great Britain, Ireland, Scandinavia, Canada, the United States and Japan, and the outbreaks were described in terms of modes of primary and secondary transmission, country, case numbers and median case age. Outbreaks were tested for statistically significant differences in the number of ill, confirmed, primary and secondary cases (analysis of variance and Kruskal-Wallis) and in the rate of secondary cases between these variables (Generalised Linear Models). Results The outbreaks had a median of 13.5 confirmed cases, and mean proportion of 0.195 secondary cases. There were statistically significant differences in the numbers of ill, confirmed, primary and secondary cases between modes of primary transmission (p < 0.021), and in primary and secondary cases between median age categories (p < 0.039) and modes of secondary transmission (p < 0.001). Secondary case rates differed statistically significantly between modes of secondary and primary transmission and median age categories (all p < 0.001), but not between countries (p = 0.23). Statistically significantly higher rates of secondary transmission were found in outbreaks with a median age <6 years and those with secondary transmission via person to person spread in nurseries. No statistically significant interactions were found between country, mode of transmission and age category. Conclusion Our analyses indicated that ~20% of E. coli O157 outbreak cases were the result of secondary spread, and that this spread is significantly influenced by age and modes of primary and secondary transmission, but not country. In particular, the results provide further data emphasising the importance of simple but effective preventive strategies, such as handwashing, that can reduce the risk of secondary spread, particularly amongst young children in nurseries.
Collapse
Affiliation(s)
- Kate G Snedeker
- Department of Population Medicine and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | |
Collapse
|
223
|
Takahashi H, Kimura B, Tanaka Y, Shinozaki J, Suda T, Fujii T. Real-time PCR and enrichment culture for sensitive detection and enumeration of Escherichia coli. J Microbiol Methods 2009; 79:124-7. [PMID: 19679150 DOI: 10.1016/j.mimet.2009.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
Rapid enumeration of Escherichia coli strains by quantitative real-time PCR targeting the uidA gene was developed and confirmed for minced beef, tuna and raw oyster. Higher sensitivity (1 CFU/g of E. coli in all three food samples) was obtained by incubating for 7 h in TSB. Colony-directed E. coli specific TaqMan PCR assay could effectively distinguish colonies grown on various selective media within 1.5-h. Inspection of E. coli in food testing laboratories is important, and our rapid E. coli detection strategy will contribute to quality control in food industries.
Collapse
Affiliation(s)
- Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 5-7 Konan 4, Minato, Tokyo 108-8477, Japan
| | | | | | | | | | | |
Collapse
|
224
|
Holden N, Pritchard L, Toth I. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol Rev 2009; 33:689-703. [PMID: 19076238 DOI: 10.1111/j.1574-6976.2008.00153.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Members of the Enterobacteriaceae have the capacity to adapt to a wide variety of environments and can be isolated from a range of host species across biological kingdoms. Bacteria that are pathogenic to animals, in particular humans, are increasingly found to be transmitted through the food chain by fruits and vegetables. Rather than simply contaminating plant surfaces, there is a growing body of evidence to show that these bacteria actively interact with plants and can colonize them as alternative hosts. This review draws together evidence from studies that investigate proven and potential mechanisms involved in colonization of plants by human pathogenic enterobacteria.
Collapse
Affiliation(s)
- Nicola Holden
- Department of Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | |
Collapse
|
225
|
Vaillant V, Espié E, de Valk H, Durr U, Barataud D, Bouvet P, Grimont F, Desenclos JC. Undercooked ground beef and person-to-person transmission as major risk factors for sporadic hemolytic uremic syndrome related to Shiga-toxin producing Escherchia coli infections in children in France. Pediatr Infect Dis J 2009; 28:650-3. [PMID: 19483660 DOI: 10.1097/inf.0b013e3181993731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a prospective matched case-control study of sporadic pediatric hemolytic uremic syndrome related to Shiga-toxin producing Escherichia coli infection in France, eating undercooked ground beef, contact with a person with diarrhea, and drinking well water during the summer period were identified as risk factors. Prevention efforts in France should focus on reducing not only food-borne but also person-to-person transmission.
Collapse
Affiliation(s)
- Véronique Vaillant
- Department of Infectious Diseases, Institut de veille sanitaire, Saint-Maurice, France.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Analysis of the genome of the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect Immun 2009; 77:3713-21. [PMID: 19564389 DOI: 10.1128/iai.00198-09] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to causing diarrhea, Escherichia coli O157:H7 infection can lead to hemolytic-uremic syndrome (HUS), a severe disease characterized by hemolysis and renal failure. Differences in HUS frequency among E. coli O157:H7 outbreaks have been noted, but our understanding of bacterial factors that promote HUS is incomplete. In 2006, in an outbreak of E. coli O157:H7 caused by consumption of contaminated spinach, there was a notably high frequency of HUS. We sequenced the genome of the strain responsible (TW14359) with the goal of identifying candidate genetic factors that contribute to an enhanced ability to cause HUS. The TW14359 genome contains 70 kb of DNA segments not present in either of the two reference O157:H7 genomes. We identified seven putative virulence determinants, including two putative type III secretion system effector proteins, candidate genes that could result in increased pathogenicity or, alternatively, adaptation to plants, and an intact anaerobic nitric oxide reductase gene, norV. We surveyed 100 O157:H7 isolates for the presence of these putative virulence determinants. A norV deletion was found in over one-half of the strains surveyed and correlated strikingly with the absence of stx(1). The other putative virulence factors were found in 8 to 35% of the O157:H7 isolates surveyed, and their presence also correlated with the presence of norV and the absence of stx(1), indicating that the presence of norV may serve as a marker of a greater propensity for HUS, similar to the correlation between the absence of stx(1) and a propensity for HUS.
Collapse
|
227
|
Bergholz TM, Vanaja SK, Whittam TS. Gene expression induced in Escherichia coli O157:H7 upon exposure to model apple juice. Appl Environ Microbiol 2009; 75:3542-53. [PMID: 19346340 PMCID: PMC2687279 DOI: 10.1128/aem.02841-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/27/2009] [Indexed: 01/05/2023] Open
Abstract
Escherichia coli O157:H7 has caused serious outbreaks of food-borne illness via transmission in a variety of food vehicles, including unpasteurized apple juice, dried salami, and spinach. To understand how this pathogen responds to the multiple stresses of the food environment, we compared global transcription patterns before and after exposure to model apple juice. Transcriptomes of mid-exponential- and stationary-phase cells were evaluated after 10 min in model apple juice (pH 3.5) using microarrays probing 4,886 open reading frames. A total of 331 genes were significantly induced upon exposure of cells to model apple juice, including genes involved in the acid, osmotic, and oxidative stress responses as well as the envelope stress response. Acid and osmotic stress response genes, including asr, osmC, osmB, and osmY, were significantly induced in response to model apple juice. Multiple envelope stress responses were activated as evidenced by increased expression of CpxR and Rcs phosphorelay-controlled genes. Genes controlled by CpxR (cpxP, degP, and htpX) were significantly induced 2- to 15-fold upon exposure to apple juice. Inactivation of CpxRA resulted in a significant decrease in survival of O157:H7 in model apple juice compared to the isogenic parent strain. Of the 331 genes induced in model apple juice, 104 are O157-specific genes, including those encoding type three secretion effectors (espJ, espB, espM2, espL3, and espZ). Elucidating the response of O157:H7 to acidic foods provides insight into how this pathogen is able to survive in food matrices and how exposure to foods influences subsequent transmission and virulence.
Collapse
Affiliation(s)
- Teresa M Bergholz
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, 48824, USA.
| | | | | |
Collapse
|
228
|
Mellmann A, Bielaszewska M, Karch H. Intrahost genome alterations in enterohemorrhagic Escherichia coli. Gastroenterology 2009; 136:1925-38. [PMID: 19462505 DOI: 10.1053/j.gastro.2008.12.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacterial chromosomes are not fixed molecules; they evolve over the course of infections in human beings. During infection, a variety of strong selective pressures are exerted on the pathogen. The resulting genetic changes that occur in intestinal pathogens might influence clinical outcome and have an impact on diagnosis and epidemiology. Enterohemorrhagic Escherichia coli (EHEC) is a good example of this process. These zoonotic pathogens cause diarrhea, bloody diarrhea, and hemolytic uremic syndrome in human beings, whereas in their natural habitat they mostly are asymptomatic colonizers. Thus, EHEC must be able to quickly adapt from one milieu to another. The greatest challenge it might face is to infect human beings--profound chromosomal changes occur during the brief period that EHEC passes through the human gastrointestinal tract, leading to gains and losses of virulence determinants. The intensive study of human enteric factors that induce or modulate pathogen chromosome instability could provide important information about host-microbial interactions.
Collapse
Affiliation(s)
- Alexander Mellmann
- Institute of Hygiene, Interdisciplinary Center for Clinical Research, and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Münster, Germany
| | | | | |
Collapse
|
229
|
Successful steroid pulse therapy for brain lesion caused by Shiga toxin 2 in rabbits. Microb Pathog 2009; 46:179-84. [DOI: 10.1016/j.micpath.2009.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/15/2009] [Accepted: 01/22/2009] [Indexed: 11/20/2022]
|
230
|
A national outbreak of verotoxin-producing Escherichia coli O157 associated with consumption of lemon-and-coriander chicken wraps from a supermarket chain. Epidemiol Infect 2009; 137:375-82. [PMID: 19102799 DOI: 10.1017/s0950268808001702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A national outbreak of verotoxin-producing Escherichia coli O157 infection affected five English regions and Wales. Twelve cases were associated with lemon-and-coriander chicken wrap from a single supermarket chain consumed over a 5-day period. An outbreak investigation aimed to identify the source of infection. Descriptive epidemiology and phenotypic and genotypic tests on human isolates indicated a point-source outbreak; a case-control study showed a very strong association between consumption of lemon-and-coriander chicken wrap from the single supermarket chain and being a case (OR 46.40, 95% CI 5.39-infinity, P=0.0002). Testing of raw ingredients, products and faecal samples from staff in the food production unit did not yield any positive results. The outbreak was probably caused by one contaminated batch of an ingredient in the chicken wrap. Even when current best practice is in place, ready-to-eat foods can still be a risk for widespread infection.
Collapse
|
231
|
Health professionals' roles in animal agriculture, climate change, and human health. Am J Prev Med 2009; 36:182-7. [PMID: 19135909 DOI: 10.1016/j.amepre.2008.09.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/03/2008] [Accepted: 09/24/2008] [Indexed: 01/22/2023]
Abstract
What we eat is rapidly becoming an issue of global concern. With food shortages, the rise in chronic disease, and global warming, the impact of our dietary choices seems more relevant today than ever. Globally, a transition is taking place toward greater consumption of foods of animal origin, in lieu of plant-based diets. With this transition comes intensification of animal agriculture that in turn is associated with the emergence of zoonotic infectious diseases, environmental degradation, and the epidemics of chronic disease and obesity. Health professionals should be aware of these trends and consider them as they promote healthier and more environmentally-sustainable diets.
Collapse
|
232
|
Shiga-toxin producing Escherichia coli and the hemolytic uremic syndrome: what have we learned in the past 25 years? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 634:1-17. [PMID: 19280844 DOI: 10.1007/978-0-387-79838-7_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
233
|
Abstract
Integrating laterally acquired virulence genes into the backbone regulatory network is important for the pathogenesis of Escherichia coli O157:H7, which has captured many virulence genes through horizontal transfer during evolution. GadE is an essential transcriptional activator of the glutamate decarboxylase (GAD) system, the most efficient acid resistance (AR) mechanism in E. coli. The full contribution of GadE to the AR and virulence of E. coli O157:H7 remains largely unknown. We inactivated gadE in E. coli O157:H7 Sakai and compared global transcription profiles of the mutant with that of the wild type in the exponential and stationary phases of growth. Inactivation of gadE significantly altered the expression of 60 genes independently of the growth phase and of 122 genes in a growth phase-dependent manner. Inactivation of gadE markedly downregulated the expression of gadA, gadB, and gadC and of many acid fitness island genes. Nineteen genes encoded on the locus of enterocyte effacement (LEE), including ler, showed a significant increase in expression upon gadE inactivation. Inactivation of ler in the DeltagadE strain reversed the effect of gadE deletion on LEE expression, indicating that Ler is necessary for LEE repression by GadE. GadE is also involved in downregulation of LEE expression under conditions of moderately acidic pH. Characterization of AR of the DeltagadE strain revealed that GadE is indispensable for a functional GAD system and for survival of E. coli O157:H7 in a simulated gastric environment. Altogether, these data indicate that GadE is critical for the AR of E. coli O157:H7 and that it plays an important role in virulence by downregulating expression of LEE.
Collapse
|
234
|
Franz E, van Bruggen AH. Ecology ofE. coliO157:H7 andSalmonella entericain the Primary Vegetable Production Chain. Crit Rev Microbiol 2008; 34:143-61. [DOI: 10.1080/10408410802357432] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
235
|
Fremaux B, Prigent-Combaret C, Vernozy-Rozand C. Long-term survival of Shiga toxin-producing Escherichia coli in cattle effluents and environment: An updated review. Vet Microbiol 2008; 132:1-18. [DOI: 10.1016/j.vetmic.2008.05.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 01/01/2023]
|
236
|
Greger M. The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases. Crit Rev Microbiol 2008; 33:243-99. [DOI: 10.1080/10408410701647594] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
237
|
Zheng J, Cui S, Teel LD, Zhao S, Singh R, O'Brien AD, Meng J. Identification and characterization of Shiga toxin type 2 variants in Escherichia coli isolates from animals, food, and humans. Appl Environ Microbiol 2008; 74:5645-52. [PMID: 18658282 PMCID: PMC2547040 DOI: 10.1128/aem.00503-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 07/06/2008] [Indexed: 11/20/2022] Open
Abstract
There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates from food, animals, and humans for the gene encoding Stx2dact by using a novel one-step PCR procedure. This method targeted the region of stx(2dact) that encodes the elastase recognition site. The presence of stx(2dact) was confirmed by DNA sequencing of the complete toxin genes. Seven STEC isolates from cows (four isolates), meat (two isolates), and a human (one isolate) that carried the putative stx(2dact) gene were identified; all were eae negative, and none was the O157:H7 serotype. Three of the isolates (CVM9322, CVM9557, and CVM9584) also carried stx(1), two (P1332 and P1334) carried stx(1) and stx(2c), and one (CL-15) carried stx(2c). One isolate, P1130, harbored only stx(2dact). The Vero cell cytotoxicities of supernatants from P1130 and stx(1) deletion mutants of CVM9322, CVM9557, and CVM9584 were increased 13- to 30-fold after treatment with porcine elastase. Thus, Stx2dact-producing strains, as detected by our one-step PCR method, can be isolated not only from humans, as previously documented, but also from food and animals. The latter finding has important public health implications based on a recent report from Europe of a link between disease severity and infection with STEC isolates that produce Stx2dact.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Nutrition and Food Science, 0112 Skinner Building, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
238
|
Eaton KA, Friedman DI, Francis GJ, Tyler JS, Young VB, Haeger J, Abu-Ali G, Whittam TS. Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect Immun 2008; 76:3054-63. [PMID: 18443087 PMCID: PMC2446693 DOI: 10.1128/iai.01626-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/21/2008] [Accepted: 04/21/2008] [Indexed: 01/09/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes hemorrhagic colitis and acute renal failure. We used a germ-free mouse model to investigate the role of host factors, Shiga toxin 2 (Stx2), and bacterial strain in disease due to EHEC. Germ-free male and female Swiss-Webster mice that were 3 days to 12 weeks old were orally inoculated with 1 of 10 EHEC strains or derivatives of two of these strains with Stx2 deleted. All inoculated mice became infected regardless of the inoculum dose. All bacterial strains colonized the intestines, reaching levels of 10(9) to 10(12) CFU/g of feces by 4 days after inoculation. Seven of the 10 wild-type strains caused disease. However, the two Stx2 deletion mutants, unlike the Stx2(+) parental strains, did not cause disease. The clinical signs of disease in mice included lethargy, dehydration, polyuria, polydypsia, and death. Postmortem examination of affected mice revealed dehydration and luminal cecal fluid accumulation. Histologic examination revealed close adherence of bacteria to the intestinal epithelium in the ileum and cecum but not in the colon. Other lesions included progressive renal tubular necrosis, glomerular fibrin thrombosis, and red blood cell sludging. The severity of disease varied according to the bacterial strain and age, but not sex, of the host. This study demonstrated that EHEC colonizes germ-free mice in large numbers, adheres to the intestinal epithelium, and causes luminal cecal fluid accumulation and progressive renal failure. The disease in mice was Stx2 and bacterial strain dependent. This animal model should be a useful tool for studying the pathogenesis of renal disease secondary to EHEC infection.
Collapse
Affiliation(s)
- Kathryn A Eaton
- Unit for Laboratory Animal Medicine, 018 Animal Research Facility, University of Michigan, Ann Arbor, MI 48109-0614, USA.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Shigeno T, Akamatsu T, Fujimori K, Nakatsuji Y, Nakamura Y. EVALUATION OF COLONOSCOPIC FINDINGS IN PATIENTS WITH DIARRHEAGENIC ESCHERICHIA COLI-INDUCED HEMORRHAGIC COLITIS. Dig Endosc 2008. [DOI: 10.1111/j.1443-1661.2008.00789.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
240
|
Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect Immun 2008; 76:3679-89. [PMID: 18541659 DOI: 10.1128/iai.01581-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Shiga toxin 1 (Stx1) and Stx2 produced by Escherichia coli O157 are known to be cytotoxic to Vero and HeLa cells by inhibiting protein synthesis and by inducing apoptosis. In the present study, we have demonstrated that 10 ng/ml Stx2 induced DNA fragmentation in human brain microvascular endothelial cells (HBMEC), with cleavage activation of caspase-3, -6, -8, and -9. A microarray approach used to search for apoptotic potential signals in response to Stx2 revealed that Stx2 treatment induced a marked upregulation of C/EBP homologous protein (CHOP)/growth arrest and DNA damage-inducible protein 153 (GADD153). Increased CHOP expression was dependent on enzymatically active Stx1. Knockdown of CHOP mRNA reduced the activation of caspase-3 and prevented apoptotic cell death. These results suggest that Stx2-induced apoptosis is mediated by CHOP in HBMEC and involves activation of both the intrinsic and extrinsic pathways of apoptosis.
Collapse
|
241
|
Shima K, Kawamura N, Hinenoya A, Sugimoto N, Wu Y, Asakura M, Nishimura K, Nair GB, Yamasaki S. Rapid culture-free identification and molecular typing of Shiga toxin-producingEscherichia coliby PCR-RFLP. Microbiol Immunol 2008; 52:310-3. [DOI: 10.1111/j.1348-0421.2008.00038.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
242
|
Shaw RK, Berger CN, Feys B, Knutton S, Pallen MJ, Frankel G. Enterohemorrhagic Escherichia coli exploits EspA filaments for attachment to salad leaves. Appl Environ Microbiol 2008; 74:2908-14. [PMID: 18310437 PMCID: PMC2394865 DOI: 10.1128/aem.02704-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/14/2008] [Indexed: 12/29/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are important food-borne pathogens that use a filamentous type III secretion system (fT3SS) for colonization of the gut epithelium. In this study we have shown that EHEC O157 and O26 strains use the fT3SS apparatus for attachment to leaves. Leaf attachment was independent of effector protein translocation.
Collapse
Affiliation(s)
- Robert K Shaw
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
243
|
Abstract
In recent years the importance of prepared salads as potential vehicles of gastrointestinal infection has been highlighted by several large outbreaks both nationally and across international boundaries. Between 1992 and 2006, 2274 foodborne general outbreaks of infectious intestinal disease were reported in England and Wales, of which 4% were associated with the consumption of prepared salads. In total, 3434 people were affected, with 66 hospitalizations and one death reported. The attribution of prepared salad types and pathogens among prepared salad associated outbreaks are presented and discussed. Findings from UK studies on salad vegetables, fruit and mixed salads from 1995 to 2007 (21 247 samples) indicate that most bacteria of concern with regard to human health are relatively rare in these products (98.6% of satisfactory quality); however, outbreaks of salmonellosis were uncovered associated with bagged salad leaves and fresh herbs during two such studies. Although it is known that fresh salad vegetables, herbs or fruit may become contaminated from environmental sources, only in recent years has the association of foods of nonanimal origin, such as salad vegetables, with foodborne illness become evident and recurrent, demonstrating that major health problems can arise from consumption of contaminated prepared salads if hygiene practices breakdown.
Collapse
Affiliation(s)
- C L Little
- Health Protection Agency, Department of Gastrointestinal, Emerging and Zoonotic Infections, HPA Centre for Infections, London, UK.
| | | |
Collapse
|
244
|
Genetic differentiation of Escherichia coli O157:H7 clades associated with human disease by real-time PCR. J Clin Microbiol 2008; 46:2070-3. [PMID: 18400915 DOI: 10.1128/jcm.00203-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid and accurate identification of Escherichia coli O157:H7 strains is central to reducing the impact of outbreaks. A real-time PCR-based approach to differentiating major outbreak lineages of O157 with novel single-nucleotide polymorphisms is described. The utility of this method is in detection of hypervirulent strains in cases of clinical disease.
Collapse
|
245
|
Wells TJ, Sherlock O, Rivas L, Mahajan A, Beatson SA, Torpdahl M, Webb RI, Allsopp LP, Gobius KS, Gally DL, Schembri MA. EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation. Environ Microbiol 2008; 10:589-604. [PMID: 18237301 DOI: 10.1111/j.1462-2920.2007.01479.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autotransporter (AT) proteins have been identified in many Gram-negative pathogens and are unique in that their primary sequence is sufficient to direct their transport across the bacterial membrane system. Where characterized they are uniformly associated with virulence. Using conserved AT motifs as a search tool, four putative AT proteins were identified in the Enterohemorrhagic Escherichia coli O157:H7 EDL933 genome. The genes encoding these proteins (z0402/ehaA, z0469/ehaB, z3487/ehaC and z3948/ehaD) were PCR amplified, cloned and expressed in an E. coli K-12 MG1655flu background. Preliminary characterization revealed that ehaA, ehaB and ehaD encode proteins associated with increased biofilm formation. One of these genes (ehaA) resides on a genomic island in E. coli O157:H7 strains EDL933 and Sakai. Over-expression of EhaA in E. coli K-12 demonstrated it is located at the cell surface and resulted in the formation of large cell aggregates, promoted significant biofilm formation and mediated adhesion to primary epithelial cells of the bovine terminal rectum. The expression of ehaA was demonstrated in E. coli EDL933 by RT-PCR. An EhaA-specific antibody revealed the EhaA protein was expressed in 24/50 generic Shiga toxin-producing E. coli (STEC) strains of various serotypes including O157:H7. However, the deletion of ehaA from E. coli EDL933 and a STEC strain from serotype O111:H(-) did not affect biofilm growth. Our results suggest that EhaA may contribute to adhesion, colonization and biofilm formation by E. coli O157:H7 and possibly other STEC serotypes.
Collapse
Affiliation(s)
- Timothy J Wells
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abong'o BO, Momba MNB, Mwambakana JN. Prevalence and antimicrobial susceptibility of Escherichia coli O157:H7 in vegetables sold in the Amathole District, Eastern Cape Province of South Africa. J Food Prot 2008; 71:816-9. [PMID: 18468039 DOI: 10.4315/0362-028x-71.4.816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fresh vegetables have been implicated in outbreaks of Escherichia coli O157:H7 in most parts of the world. Microbiological quality of vegetables used as recipes for salads is very crucial. Residents of the Amathole District in the Eastern Cape Province of South Africa consume salads frequently, although the microbial quality of recipe vegetables is questionable. The present study investigated the prevalence and antimicrobial susceptibility of E. coli O157:H7 isolated from selected vegetables sold within the Amathole District. One hundred eighty samples of the vegetables were analyzed. Strains of E. coli O157:H7 were isolated by enrichment culture and by immunomagnetic separation and identified by conventional and molecular techniques. In three settlements in this district, the mean counts of presumptive E. coli O157 for the vegetables ranged between 9 x 10(3) and 1.6 x 10(6) CFU/g for Fort Beaufort, 1.6 x 10(3) and 1.6 x 10(5) CFU/g for Mdantsane, and 1.3 x 10(3) and 4.1 x 10(4) CFU/g for Alice. Four (10.3%) of 39 vegetable samples were confirmed to carry E. coli O157:H7. Four representative E. coli O157:H7 isolates from these vegetables were susceptible to at least one of the eight antimicrobial agents tested against them. Even though the prevalence of E. coli O157:H7 was low and those isolated were susceptible to most of the antimicrobials, there remains a need for E. coli O157:H7 surveillance in vegetables used in salad recipes in urban and rural areas of South Africa.
Collapse
Affiliation(s)
- B O Abong'o
- Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1341, Alice 5700, South Africa
| | | | | |
Collapse
|
247
|
Henderson H. Direct and indirect zoonotic transmission of Shiga toxin–producingEscherichia coli. J Am Vet Med Assoc 2008; 232:848-59. [DOI: 10.2460/javma.232.6.848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
248
|
Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci U S A 2008; 105:4868-73. [PMID: 18332430 DOI: 10.1073/pnas.0710834105] [Citation(s) in RCA: 328] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli O157:H7, a toxin-producing food and waterborne bacterial pathogen, has been linked to large outbreaks of gastrointestinal illness for more than two decades. E. coli O157 causes a wide range of clinical illness that varies by outbreak, although factors that contribute to variation in disease severity are poorly understood. Several recent outbreaks involving O157 contamination of fresh produce (e.g., spinach) were associated with more severe disease, as defined by higher hemolytic uremic syndrome and hospitalization frequencies, suggesting that increased virulence has evolved. To test this hypothesis, we developed a system that detects SNPs in 96 loci and applied it to >500 E. coli O157 clinical strains. Phylogenetic analyses identified 39 SNP genotypes that differ at 20% of SNP loci and are separated into nine distinct clades. Differences were observed between clades in the frequency and distribution of Shiga toxin genes and in the type of clinical disease reported. Patients with hemolytic uremic syndrome were significantly more likely to be infected with clade 8 strains, which have increased in frequency over the past 5 years. Genome sequencing of a spinach outbreak strain, a member of clade 8, also revealed substantial genomic differences. These findings suggest that an emergent subpopulation of the clade 8 lineage has acquired critical factors that contribute to more severe disease. The ability to detect and rapidly genotype O157 strains belonging to such lineages is important and will have a significant impact on both disease diagnosis and treatment guidelines.
Collapse
|
249
|
Pedraza RO. Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 2007; 125:25-35. [PMID: 18177965 DOI: 10.1016/j.ijfoodmicro.2007.11.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 10/10/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects, as well as their association with different plants and contribution through BNF are described as an overview.
Collapse
Affiliation(s)
- Raúl O Pedraza
- Departamento de Ecología, Microbiología Agrícola. Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán. Av. Roca 1900, (4000) Tucumán, Argentina.
| |
Collapse
|
250
|
Denno DM, Klein EJ, Young VB, Fox JG, Wang D, Tarr PI. Explaining unexplained diarrhea and associating risks and infections. Anim Health Res Rev 2007; 8:69-80. [PMID: 17692144 DOI: 10.1017/s1466252307001302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gastrointestinal illnesses are common afflictions. However, knowledge of their etiology is often lacking. Moreover, most cases of infections with reportable enteric pathogens (Campylobacter jejuni, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, Cryptosporidia and Giardia) have sporadic modes of acquisition, yet control measures are often biased towards mitigation of risks discerned by outbreak analysis. To determine the etiology of unexplained diarrhea it is important to study populations that can be matched to appropriate controls and to couple thorough classic microbiologic evaluation on receipt of specimens with archiving and outgrowth capabilities. Research evaluations should address the potential roles of a broad panel of candidate bacterial pathogens including diarrheagenic E. coli, Listeria monocytogenes, Helicobacters and jejuni Campylobacters, and also apply novel massively parallel sequencing and nucleic acid detection technologies that allow the detection of viral pathogens. To fill voids in our knowledge regarding sources of known enteric pathogens it will be critical to extend case-control studies to assess risk factors and exposures to patients with non-epidemic illnesses and to appropriate controls. By filling these gaps in our knowledge it should be possible to formulate rational prevention mechanisms for human gastrointestinal illnesses.
Collapse
Affiliation(s)
- Donna M Denno
- Department of Health Services, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|