201
|
Brown JB, Cheresh P, Zhang Z, Ryu H, Managlia E, Barrett TA. P-selectin glycoprotein ligand-1 is needed for sequential recruitment of T-helper 1 (Th1) and local generation of Th17 T cells in dextran sodium sulfate (DSS) colitis. Inflamm Bowel Dis 2012; 18:323-32. [PMID: 22009715 PMCID: PMC3262920 DOI: 10.1002/ibd.21779] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Activated effector T cells contribute to tissue injury observed in inflammatory bowel disease. T cells are recruited to effector sites after activation in peripheral lymph nodes directs expression of tissue-specific homing receptors. One such mechanism for effector T cell recruitment employs activation-induced fucosylation of P-selectin glycoprotein ligand (PSGL)-1 that mediates binding to endothelial P-selectin. Here we examine the differential role of PSGL-1 in recruiting effector T-cell subsets in colitis. METHODS C57BL/6 wildtype and PSGL-1 mice received 2.5% dextran sodium sulfate (DSS) for 6 days and were euthanized 7 and 14 days after the initiation of DSS. Disease activity was monitored throughout. Histologic colitis scores, colonic CD4+ accumulation, and cytokine production were assessed at days 7 and 14. Recruitment of T-helper (Th) subsets was assessed by enumerating adoptively transferred Th1 or Th17 CD4+ cells 2 days after transfer to DSS-treated mice. RESULTS DSS colitis increases CD4+ T cells in colonic tissue and induces Th1 (interferon gamma [IFN-γ], tumor necrosis factor [TNF]) and Th17 (interleukin [IL]-17, IL-22) cytokines. Loss of PSGL-1 attenuates DSS colitis, decreases colonic CD4+ T cell numbers, and reduces both Th1 and Th17 cytokine production. Colitis increases recruitment of Th1 (19-fold) and Th17 (2.5-fold) cells. PSGL-1 deficiency in transferred T cells abrogates colonic recruitment of Th1 cells in DSS colitis, whereas Th17 recruitment is unaffected. CONCLUSIONS PSGL-1 selectively controls Th1 recruitment in colitis. Whereas Th17 recruitment is independent of PSGL-1, generation of colonic Th17 cytokine requires initial Th1 recruitment. Therefore, attenuating PSGL-1 binding may prevent colonic recruitment of disease-causing Th1 cells that promote local Th17 generation.
Collapse
Affiliation(s)
- Jeffrey B. Brown
- Department of Pediatrics/Children's Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul Cheresh
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zheng Zhang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hyunji Ryu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth Managlia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Terrence A. Barrett
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
202
|
Moon Y. Cellular alterations of mucosal integrity by ribotoxins: Mechanistic implications of environmentally-linked epithelial inflammatory diseases. Toxicon 2012; 59:192-204. [DOI: 10.1016/j.toxicon.2011.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/20/2011] [Accepted: 11/10/2011] [Indexed: 01/01/2023]
|
203
|
Lagishetty V, Liu NQ, Hewison M. Vitamin D metabolism and innate immunity. Mol Cell Endocrinol 2011; 347:97-105. [PMID: 21664425 PMCID: PMC3200473 DOI: 10.1016/j.mce.2011.04.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 12/31/2022]
Abstract
Effects of vitamin D on the immune system have been recognized for over 30 years and stemmed in part from analysis of the dysregulated vitamin D metabolism associated with granulomatous diseases. However, it is only in more recent years that a role for interaction between vitamin D and normal immune function has been proposed. As with the original studies, the basis for this new perspective on immunomodulation by vitamin D stems from studies of vitamin D metabolism by immune cells. In particular, induction of the vitamin D-activating enzyme CYP27B1 in monocytes via pathogen recognizing receptors has highlighted an entirely new function for vitamin D as a potent inducer of antibacterial innate immune responses. This has prompted a new potential role for vitamin D in protecting against infection in a wide range of tissues but has also prompted revision of the parameters for adequate vitamin D status. The following review describes some of the key developments in innate immune responses to vitamin D with particular emphasis on the role of key metabolic enzyme as determinants of localized immune activity of vitamin D.
Collapse
Affiliation(s)
- Venu Lagishetty
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Martin Hewison
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
204
|
Bacillus subtilis-mediated protection from Citrobacter rodentium-associated enteric disease requires espH and functional flagella. Infect Immun 2011; 80:710-9. [PMID: 22144475 DOI: 10.1128/iai.05843-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Commensals limit disease caused by invading pathogens; however, the mechanisms and genes utilized by beneficial microbes to inhibit pathogenesis are poorly understood. The attaching and effacing mouse pathogen Citrobacter rodentium associates intimately with the intestinal epithelium, and infections result in acute colitis. C. rodentium is used to model the human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. To confirm that Bacillus subtilis, a spore-forming bacterium found in the gut of mammals, could reduce C. rodentium-associated disease, mice received wild-type B. subtilis spores and 24 h later were infected by oral gavage with pathogenic C. rodentium. Disease was assessed by determining the extent of colonic epithelial hyperplasia, goblet cell loss, diarrhea, and pathogen colonization. Mice that received wild-type B. subtilis prior to enteric infection were protected from disease even though C. rodentium colonization was not inhibited. In contrast, espH and hag mutants, defective in exopolysaccharides and flagellum production, respectively, did not protect mice from C. rodentium-associated disease. A motAB mutant also failed to protect mice from disease, suggesting that B. subtilis-mediated protection requires functional flagella. By expanding our current mechanistic knowledge of bacterial protection, we can better utilize beneficial microbes to prevent intestinal disease caused by pathogenic bacteria, ultimately reducing human disease. Our data demonstrate that wild-type B. subtilis reduced disease caused by C. rodentium infection through a mechanism that required espH and functional flagella.
Collapse
|
205
|
Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, Hornova M, Srutkova D, Hudcovic T, Ridl J, Tlaskalova-Hogenova H. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 2011; 6:e27961. [PMID: 22132181 PMCID: PMC3222668 DOI: 10.1371/journal.pone.0027961] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
Background Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD. Methodology/Principal Findings The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4+FoxP3+ regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4+FoxP3+ regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyer's patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway. Conclusion/Significance Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment.
Collapse
Affiliation(s)
- Zuzana Zakostelska
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miloslav Kverka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| | - Klara Klimesova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Rossmann
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kopecny
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Hornova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dagmar Srutkova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Tomas Hudcovic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Jakub Ridl
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
206
|
Identification of specific miRNAs targeting proteins of the apical junctional complex that simulate the probiotic effect of E. coli Nissle 1917 on T84 epithelial cells. Int J Biochem Cell Biol 2011; 44:341-9. [PMID: 22101077 DOI: 10.1016/j.biocel.2011.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 12/17/2022]
Abstract
In the intestine, dysregulation of miRNA is associated with inflammation, disruption of the gastrointestinal barrier, and the onset of gastrointestinal disorders. This study identifies miRNAs involved in the maintenance of intercellular junctions and barrier integrity. For the functional identification of barrier affecting miRNAs, we took advantage of the barrier-enforcing effects of the probiotic bacterium Escherichia coli Nissle 1917 (EcN) which can be monitored by enhanced transepithelial resistance (TER). miRNA-profiling of T84 monolayers prior and after co-incubation with EcN revealed for the first time differentially regulated miRNAs (miR-203, miR-483-3p, miR-595) targeting tight junction (TJ) proteins. Using real-time PCR, Western blotting and specific miRNA mimics, we showed that these miRNAs are involved in the regulation of barrier function by modulating the expression of regulatory and structural components of tight junctional complexes. Furthermore, specific inhibitors directed at these miRNA abrogated the disturbance of tight junctions induced by enteropathogenic E. coli (EPEC). The half-maximal inhibitory concentration (IC(50)) was determined to 340 nM by monitoring inhibitor kinetics. In summary, we conclude that specific miRNAs effect regulatory as well as structural proteins of the junctional complex which in turn are involved in the barrier enhancing effect of EcN. Hence, we suggest that the application of miRNAs might be refined and further developed as a novel supportive strategy for the treatment of gastrointestinal disorders.
Collapse
|
207
|
Karrasch T, Spaeth T, Allard B, Jobin C. PI3K-dependent GSK3ß(Ser9)-phosphorylation is implicated in the intestinal epithelial cell wound-healing response. PLoS One 2011; 6:e26340. [PMID: 22039465 PMCID: PMC3198390 DOI: 10.1371/journal.pone.0026340] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/25/2011] [Indexed: 01/12/2023] Open
Abstract
Introduction The ability of the intestinal epithelial barrier to respond to various injurious insults is an essential component of intestinal homeostasis. However, the molecular mechanisms responsible for wound-healing and repair in the intestine are poorly understood. The glycogen synthase kinase 3ß (GSK3ß) has been implicated in various biological processes such as cellular motility, cell spreading and recently inflammation. Aim To investigate the role of GSK3ß in intestinal epithelial cell restitution. Methods Rat intestinal epithelial IEC18 cells were serum-starved for 16 to 24h and wounded by multiple scraping. Akt(Ser473)-, GSK3ß(Ser9)- and RelA(Ser536)-phosphorylation were determined by Western blot using specific phospho-antibodies. The inhibitors AG1478 (1 µM) and Ly294002 (25 µM) were used to block EGF-R autophosphorylation and PI3K-activation, respectively. ß-catenin/LEF/TCF dependent transcription was determined by reporter gene assay (TOP/FOP system). C-myc gene expression was evaluated by real-time RT-PCR. GSK3ß−/− mouse embryonic fibroblasts were used to characterize the role of GSK3ß in wounding-induced cell migration. Results Wounding induced GSK3ß(Ser9) phosphorylation in IEC-18 cells, which led to ß-catenin accumulation as well as nuclear translocation of ß-catenin. ß-catenin stabilization/nuclear translocation led to enhanced LEF-TCF transcriptional activity and subsequent c-myc mRNA accumulation in wounded cell monolayers. Blocking PI3K/Akt signaling with Ly294002 prevented wound-induced GSK3ß(Ser9) phosphorylation as well as ß-catenin nuclear translocation and significantly attenuated restitution. Additionally, wounding induced rapid NF-kB(Ser536) phosphorylation, which was inhibited by AG1478, but not by Ly294002. GSK3ß−/− cells demonstrated significantly attenuated wound-induced restitution compared to wild-type cells. Conclusion We conclude that PI3K-mediated GSK3ß phosphorylation is involved in the intestinal epithelial wound-healing response. Phosphorylation of GSK3ß may be important for intestinal restitution by promoting cell motility in response to wounding.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
208
|
Helicobacter bilis colonization enhances susceptibility to Typhlocolitis following an inflammatory trigger. Dig Dis Sci 2011; 56:2838-48. [PMID: 21503679 DOI: 10.1007/s10620-011-1701-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant mucosal immune responses to antigens of the resident microbiota are a significant cause of inflammatory bowel diseases (IBD), as are genetic and environmental factors. Previous work from our laboratory demonstrated that Helicobacter bilis colonization of immunocompetent, defined microbiota mice induced antigen-specific immune responses to the resident microbiota, yet these mice failed to develop colitis, suggesting that the immunological provocation induced by H. bilis alone was insufficient to induce disease. AIM The purpose of this study was to test the hypothesis that the introduction of a bacterial provocateur such as H. bilis enhances the host's susceptibility to IBD following an inflammatory event. METHODS Defined microbiota (DM) mice colonized with H. bilis were administered low dose (1.5%) dextran sodium sulfate (DSS) in drinking water for 5 days followed by a 4-day restitution period. Severity of lesions was assessed grossly and microscopically. Differential expression of select mucosal genes and histopathologic lesions was characterized. RESULTS Helicobacter bilis colonization increased the severity of intestinal inflammation induced by an inflammatory trigger in the form of low-dose DSS. An analysis of the molecular and cellular mechanisms associated with H. bilis colonization revealed significant increases in expression of mucosal genes associated with lymphocyte activation and inflammatory cell chemotaxis as well as increased infiltration of mucosal macrophages and T cells in mice colonized with H. bilis prior to DSS treatment versus DSS treatment alone. CONCLUSIONS These results indicate that prior colonization with H. bilis heightens the host's sensitivity to enteric inflammation by altering mucosal homeostasis and initiating immune cell activation and migration.
Collapse
|
209
|
Tang Y, Forsyth CB, Keshavarzian A. New molecular insights into inflammatory bowel disease-induced diarrhea. Expert Rev Gastroenterol Hepatol 2011; 5:615-25. [PMID: 21910579 PMCID: PMC3227675 DOI: 10.1586/egh.11.64] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diarrhea is one of the common symptoms that significantly affects quality of life in patients with inflammatory bowel disease (IBD). The clinical manifestation of diarrhea is mainly dependant on the type of IBD and the location, extent and severity of intestinal inflammation. Understanding the pathophysiologic mechanisms of diarrhea in patients with IBD will be beneficial to developing effective treatments for IBD-associated diarrhea. In recent years, modern molecular techniques have been used intensively to dissect the role of the intestinal microbiota, epithelial barrier and the host immune system in the mechanisms of IBD-induced diarrhea. These studies have significantly advanced our knowledge of the mechanisms of IBD-induced diarrhea. In this article, we focus on the new and critical molecular insights into the contributions of the intestinal microbiota, epithelial tight junctions, proinflammatory cytokines and microRNA as potential mechanisms underlying to IBD-induced diarrhea.
Collapse
Affiliation(s)
- Yueming Tang
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA,Department of Biochemistry, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA,Department of Pharmacology, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA,Department of Molecular Biophysics and Physiology, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
210
|
Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 2011. [PMID: 21575910 DOI: 10.1016/j.chom.2011.04.009.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD.
Collapse
|
211
|
Abstract
Immunomodulatory actions of vitamin D have been recognised for over a quarter of a century, but it is only in the last few years that the significance of this to normal human physiology has become apparent. Two key factors have underpinned this revised perspective. Firstly, there are increasing data linking vitamin insufficiency with prevalent immune disorders. Improved awareness of low circulating levels of precursor 25-hydroxyvitamin D in populations across the globe has prompted epidemiological investigations of health problems associated with vitamin D insufficiency. Prominent among these are autoimmune diseases such as multiple sclerosis, type 1 diabetes and Crohn's disease, but more recent studies indicate that infections such as tuberculosis may also be linked to low 25-hydroxyvitamin D levels. The second factor expanding the link between vitamin D and the immune system is our improved knowledge of the mechanisms that facilitate this association. It is now clear that cells from the immune system contain all the machinery needed to convert 25-hydroxyvitamin D to active 1,25-dihydroxyvitamin D, and for subsequent responses to 1,25-dihydroxyvitamin D. Mechanisms such as this are important for promoting antimicrobial responses to pathogens in macrophages, and for regulating the maturation of antigen-presenting dendritic cells. The latter may be a key pathway by which vitamin D controls T-lymphocyte (T-cell) function. However, T-cells also exhibit direct responses to 1,25-dihydroxyvitamin D, notably the development of suppressor regulatory T-cells. Collectively these observations suggest that vitamin D is a key factor linking innate and adaptive immunity, and both of these functions may be compromised under conditions of vitamin D insufficiency.
Collapse
|
212
|
D'Autréaux F, Margolis KG, Roberts J, Stevanovic K, Mawe G, Li Z, Karamooz N, Ahuja A, Morikawa Y, Cserjesi P, Setlick W, Gershon MD. Expression level of Hand2 affects specification of enteric neurons and gastrointestinal function in mice. Gastroenterology 2011; 141:576-87, 587.e1-6. [PMID: 21669203 PMCID: PMC3152642 DOI: 10.1053/j.gastro.2011.04.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 03/20/2011] [Accepted: 04/12/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Hand2 is a basic helix-loop-helix transcription factor required for terminal differentiation of enteric neurons. We studied Hand2 haploinsufficient mice, to determine whether reduced expression of Hand2 allows sufficient enteric neurogenesis for survival, but not for development of a normal enteric nervous system (ENS). METHODS Enteric transcripts that encode Hand2 and the neuron-specific embryonic lethal abnormal vision proteins HuB, HuC, and HuD were quantified. Immunocytochemistry was used to identify and quantify neurons. Apoptosis was analyzed with the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling procedure. Intracellular microelectrodes were used to record inhibitory junction potentials. Gastrointestinal transit and colonic motility were measured in vivo. RESULTS Levels of of enteric Hand2 transcripts were associated with genotypes of mice, in the following order: Hand2(+/+) > Hand2(LoxP/+) > Hand2(+/-) > Hand2(LoxP/-). Parallel reductions were found in expression of HuD and in regional and phenotypic manners. Numbers of neurons, numbers of neuronal nitric oxide synthase(+) and calretinin(+), but not substance P(+) or vasoactive intestinal peptide(+) neurons, decreased. No effects were observed in stomach or cecum. Apoptosis was not detected, consistent with the concept that Hand2 inhibits neuronal differentiation, rather than regulates survival. The amplitude of inhibitory junction potentials in colonic circular muscle was similar in Hand2 wild-type and haploinsufficient mice, although in haploinsufficient mice, the purinergic component was reduced and a nitrergic component appeared. The abnormal ENS of haploinsufficient mice slowed gastrointestinal motility but protected mice against colitis. CONCLUSIONS Reduced expression of factors required for development of the ENS can cause defects in the ENS that are subtle enough to escape detection yet cause significant abnormalities in bowel function.
Collapse
Affiliation(s)
- Fabien D'Autréaux
- Département de Biologie, Dévelopement et évolution du système nerveux, CNRS-Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Claes IJJ, De Keersmaecker SCJ, Vanderleyden J, Lebeer S. Lessons from probiotic-host interaction studies in murine models of experimental colitis. Mol Nutr Food Res 2011; 55:1441-53. [PMID: 21796777 DOI: 10.1002/mnfr.201100139] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/17/2011] [Accepted: 05/11/2011] [Indexed: 12/19/2022]
Abstract
In inflammatory bowel diseases (IBD), it is known that besides genetic and environmental factors (e.g. diet, drugs, stress), the microbiota play an important role in the pathogenesis. Patients with IBD have an altered microbiota (dysbiosis) and therefore, probiotics, defined as 'live micro-organisms that when administered in adequate amounts can confer a health benefit on the host', have been suggested as nutritional supplements to restore these imbalances. The best response on probiotics among the different types of IBD appears to be in the case of ulcerative colitis. Although probiotics show promise in IBD in both clinical and animal studies, further mechanistic studies are necessary to optimize the use of probiotics as supporting therapy in IBD. Murine models of experimental colitis have been used for decades to study this pathology, and these models have been proven useful to search for new therapeutic approaches. The purpose of this review is to summarize probiotic-host interaction studies in murine models of experimental colitis and to evaluate how these models can further help in understanding these complex interactions. Unraveling the molecular mechanisms behind the beneficial effects will assist in better and possibly more efficient probiotic formulations.
Collapse
Affiliation(s)
- Ingmar J J Claes
- Centre of Microbial and Plant Genetics, K.U. Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
214
|
Hubbard VM, Cadwell K. Viruses, autophagy genes, and Crohn's disease. Viruses 2011; 3:1281-311. [PMID: 21994779 PMCID: PMC3185787 DOI: 10.3390/v3071281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/08/2023] Open
Abstract
The etiology of the intestinal disease Crohn's disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn's disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders.
Collapse
Affiliation(s)
| | - Ken Cadwell
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-263-8891; Fax: +1-212-263-5711
| |
Collapse
|
215
|
Frank DN, Zhu W, Sartor RB, Li E. Investigating the biological and clinical significance of human dysbioses. Trends Microbiol 2011; 19:427-34. [PMID: 21775143 DOI: 10.1016/j.tim.2011.06.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/08/2011] [Accepted: 06/20/2011] [Indexed: 12/13/2022]
Abstract
Culture-independent microbiological technologies that interrogate complex microbial populations without prior axenic culture, coupled with high-throughput DNA sequencing, have revolutionized the scale, speed and economics of microbial ecological studies. Their application to the medical realm has led to a highly productive merger of clinical, experimental and environmental microbiology. The functional roles played by members of the human microbiota are being actively explored through experimental manipulation of animal model systems and studies of human populations. In concert, these studies have appreciably expanded our understanding of the composition and dynamics of human-associated microbial communities (microbiota). Of note, several human diseases have been linked to alterations in the composition of resident microbial communities, so-called dysbiosis. However, how changes in microbial communities contribute to disease etiology remains poorly defined. Correlation of microbial composition represents integration of only two datasets (phenotype and microbial composition). This article explores strategies for merging the human microbiome data with multiple additional datasets (e.g. host single nucleotide polymorphisms and host gene expression) and for integrating patient-based data with results from experimental animal models to gain deeper understanding of how host-microbe interactions impact disease.
Collapse
Affiliation(s)
- Daniel N Frank
- Division of Infectious Diseases, School of Medicine, University of Colorado, School of Medicine, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
216
|
Abstract
Interaction between vitamin D and the immune system has been recognized for many years, but its relevance to normal human physiology has only become evident in the past 5 years. Studies of innate immune responses to pathogens such as Mycobacterium tuberculosis have shown that pathogen-recognition receptor-mediated activation of localized vitamin D metabolism and signaling is a key event associated with infection. Vitamin D, acting in an intracrine fashion, is able to induce expression of antibacterial proteins and enhance the environment in which they function. The net effect of these actions is to support increased bacterial killing in a variety of cell types. The efficacy of such a response is highly dependent on vitamin D status; in other words, the availability of circulating 25-hydroxyvitamin D for intracrine conversion to active 1,25-dihydroxyvitamin D by the enzyme 25-hydroxyvitamin D-1α-hydroxylase. The potential importance of this mechanism as a determinant of human disease is underlined by increasing awareness of vitamin D insufficiency across the globe. This Review will explore the molecular and cellular systems associated with antibacterial responses to vitamin D in different tissues and possible consequences of such a response for the prevention and treatment of human immune disorders.
Collapse
Affiliation(s)
- Martin Hewison
- Department of Orthopaedic Surgery, Room 410D, Orthopaedic Hospital Research Center, 615 Charles E. Young Drive South, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
217
|
Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, Dunne WM, Allen PM, Stappenbeck TS. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 2011; 9:390-403. [PMID: 21575910 PMCID: PMC3241010 DOI: 10.1016/j.chom.2011.04.009] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/09/2011] [Accepted: 04/22/2011] [Indexed: 02/08/2023]
Abstract
The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD.
Collapse
Affiliation(s)
- Seth M. Bloom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Vinieth N. Bijanki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gerardo M. Nava
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lulu Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nicole P. Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David L. Donermeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - W. Michael Dunne
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Paul M. Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
218
|
Hoption Cann SA, van Netten JP. Spontaneous remission of Crohn's disease following a febrile infection: case report and literature review. BMC Gastroenterol 2011; 11:57. [PMID: 21592411 PMCID: PMC3123294 DOI: 10.1186/1471-230x-11-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/19/2011] [Indexed: 02/08/2023] Open
Abstract
Crohn's disease is a chronic illness that may often follow a relapsing-remitting course. Many of the factors that may be associated with the spontaneous remission of this disease (i.e. not related to specific treatment) remain to be determined. In the present report, we review the medical history of a patient with a long history of moderate to severe Crohn's whose complete remission immediately followed the development of a febrile infection.The patient first developed symptoms of Crohn's in her late adolescent years. At the time of diagnosis at age 23, she was placed on mesalamine--without effective control her disease symptoms. Due to progressive deterioration, the patient underwent a bowel resection at age 25. Soon afterwards symptoms recurred, gradually increasing in severity. In February 2005, at age 36, the patient developed a painful abscess associated with a rectal fistula. Other symptoms at the time included chronic bone and stomach pain, swollen joints, and debilitating fatigue. Surgical correction was scheduled in mid-March. In late February, the patient developed a respiratory infection associated with fevers of 103-104°F. After the onset of fever, the abscess pain disappeared and this was soon followed by a disappearance of all other disease symptoms. By the time the corrective surgery occurred, she had no Crohn's symptoms. Her remission lasted 10 weeks when the previous symptoms then reappeared. The patient has subsequently used a variety of conventional therapies, but still suffers from severe symptoms of her disease.In recent years, a growing body of literature has emphasized the important role that innate immunity plays in the etiology of Crohn's disease; however, a key component of innate immunity, the febrile response, has been overlooked. Other cases of spontaneous remission following febrile infection in inflammatory bowel disease have been reported. Moreover, induction of a febrile response was in the past used as a treatment for inflammatory bowel disease, but was later replaced by surgery and corticosteroids. Further exploration of this arm of the innate immune response may provide new opportunities for patients where conventional therapies fail to secure relief.
Collapse
Affiliation(s)
- Stephen A Hoption Cann
- 1School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Johannes P van Netten
- 1School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
219
|
Suchodolski JS. Companion animals symposium: microbes and gastrointestinal health of dogs and cats. J Anim Sci 2011; 89:1520-30. [PMID: 21075970 PMCID: PMC7199667 DOI: 10.2527/jas.2010-3377] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022] Open
Abstract
Recent molecular studies have revealed complex bacterial, fungal, archaeal, and viral communities in the gastrointestinal tract of dogs and cats. More than 10 bacterial phyla have been identified, with Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria constituting more than 99% of all gut microbiota. Microbes act as a defending barrier against invading pathogens, aid in digestion, provide nutritional support for enterocytes, and play a crucial role in the development of the immune system. Of significance for gastrointestinal health is their ability to ferment dietary substrates into short-chain fatty acids, predominantly to acetate, propionate, and butyrate. However, microbes can have also a detrimental effect on host health. Specific pathogens (e.g., Salmonella, Campylobacter jejuni, and enterotoxigenic Clostridium perfringens) have been implicated in acute and chronic gastrointestinal disease. Compositional changes in the small intestinal microbiota, potentially leading to changes in intestinal permeability and digestive function, have been suggested in canine small intestinal dysbiosis or antibiotic-responsive diarrhea. There is mounting evidence that microbes play an important role in the pathogenesis of canine and feline inflammatory bowel disease (IBD). Current theories for the development of IBD favor a combination of environmental factors, the intestinal microbiota, and a genetic susceptibility of the host. Recent studies have revealed a genetic susceptibility for defective bacterial clearance in Boxer dogs with granulomatous colitis. Differential expression of pathogen recognition receptors (i.e., Toll-like receptors) were identified in dogs with chronic enteropathies. Similarly to humans, a microbial dysbiosis has been identified in feline and canine IBD. Commonly observed microbial changes are increased Proteobacteria (i.e., Escherichia coli) with concurrent decreases in Firmicutes, especially a reduced diversity in Clostridium clusters XIVa and IV (i.e., Lachnospiraceae, Ruminococcaceae, Faecalibacterium spp.). This would indicate that these bacterial groups, important short-chain fatty acid producers, may play an important role in promoting intestinal health.
Collapse
Affiliation(s)
- J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4474, USA.
| |
Collapse
|
220
|
Whary MT, Taylor NS, Feng Y, Ge Z, Muthupalani S, Versalovic J, Fox JG. Lactobacillus reuteri promotes Helicobacter hepaticus-associated typhlocolitis in gnotobiotic B6.129P2-IL-10(tm1Cgn) (IL-10(-/-) ) mice. Immunology 2011; 133:165-78. [PMID: 21426337 DOI: 10.1111/j.1365-2567.2011.03423.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To model inflammatory bowel disease, we assessed infection with Helicobacter hepaticus 3B1 (ATCC 51449) and a potential probiotic Lactobacillus reuteri (ATCC PTA-6475) in gnotobiotic B6.129P2-IL-10(tm1Cgn) (IL-10(-/-) ) mice. No typhlocolitis developed in germ-free controls (n=21) or in L. reuteri (n=8) or H. hepaticus (n=18) mono-associated mice for 20 weeks post-infection. As positive controls, three specific pathogen-free IL-10(-/-) mice dosed with H. hepaticus developed severe typhlocolitis within 11 weeks. Because L. reuteri PTA-6475 has anti-inflammatory properties in vitro, it was unexpected to observe significant typhlocolitis (P<0·0001) in mice that had been infected with L. reuteri followed in 1 week by H. hepaticus (n=16). The H. hepaticus colonization was not affected through 20 weeks post-infection but L. reuteri colonization was lower in co-infected compared with L. reuteri mono-associated mice at 8-11 weeks post-infection (P<0·05). Typhlocolitis was associated with an increased T helper type 1 serum IgG2c response to H. hepaticus in co-infected mice compared with H. hepaticus mono-associated mice (P<0·005) and similarly, mRNA expression in caecal-colonic tissue was elevated at least twofold for chemokine ligands and pro-inflammatory interleukin-1α (IL-1α), IL-1β, IL-12 receptor, tumour necrosis factor-α and inducible nitric oxide synthase. Anti-inflammatory transforming growth factor-β, lactotransferrin, peptidoglycan recognition proteins, Toll-like receptors 4, 6, 8 and particularly 9 gene expression, were also elevated only in co-infected mice (P<0·05). These data support that the development of typhlocolitis in H. hepaticus-infected IL-10(-/-) mice required co-colonization with other microbiota and in this study, required only L. reuteri. Although the effects other microbiota may have on H. hepaticus virulence properties remain speculative, further investigations using this gnotobiotic model are now possible.
Collapse
Affiliation(s)
- Mark T Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
221
|
Carlisle EM, Morowitz MJ. Pediatric surgery and the human microbiome. J Pediatr Surg 2011; 46:577-84. [PMID: 21376215 DOI: 10.1016/j.jpedsurg.2010.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/16/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Bold advances in the past decade have made it possible to carefully study the contributions of microbes to normal human development and to disease pathogenesis. The intestinal microbiota has been implicated in adult diseases ranging from obesity to cancer, but there have been relatively few investigations of bacteria in surgical diseases of infancy and childhood. In this review, we discuss how novel culture-independent approaches have been harnessed to profile microbes present within clinical specimens. Unique features of the pediatric microbiota and innovative approaches to manipulate the gut flora are also reviewed. Finally, we detail the contributions of gut microbes to 3 diseases relevant to pediatric surgeons: necrotizing enterocolitis, obesity, and inflammatory bowel disease. Current and future research regarding the pediatric microbiota is likely to translate to improved outcomes for infants and children with surgical diseases.
Collapse
Affiliation(s)
- Erica M Carlisle
- Department of Surgery, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
222
|
Man SM, Kaakoush NO, Mitchell HM. The role of bacteria and pattern-recognition receptors in Crohn's disease. Nat Rev Gastroenterol Hepatol 2011; 8:152-68. [PMID: 21304476 DOI: 10.1038/nrgastro.2011.3] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crohn's disease is widely regarded as a multifactorial disease, and evidence from human and animal studies suggests that bacteria have an instrumental role in its pathogenesis. Comparison of the intestinal microbiota of patients with Crohn's disease to that of healthy controls has revealed compositional changes. In most studies these changes are characterized by an increase in the abundance of Bacteroidetes and Proteobacteria and a decrease in that of Firmicutes. In addition, a number of specific mucosa-associated bacteria have been postulated to have a role in Crohn's disease, including Mycobacterium avium subspecies paratuberculosis, adherent and invasive Escherichia coli, Campylobacter and Helicobacter species. The association between mutations in pattern-recognition receptors (Toll-like receptors and Nod-like receptors) and autophagy proteins and Crohn's disease provides further evidence to suggest that defective sensing and killing of bacteria may drive the onset of disease. In this Review, we present recent advances in understanding the role of bacteria and the contribution of pattern-recognition receptors and autophagy in the pathogenesis of Crohn's disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | | |
Collapse
|
223
|
Antunes LCM, Davies JE, Finlay BB. Chemical signaling in the gastrointestinal tract. F1000 BIOLOGY REPORTS 2011; 3:4. [PMID: 21399765 PMCID: PMC3042312 DOI: 10.3410/b3-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chemical signaling via the production of small molecules such as hormones has been studied in detail in higher organisms. These molecules have important functions in maintaining physiological homeostasis as well as allowing organisms to respond to external insults. Virtually every living cell produces hormone-like diffusible small molecules that can be used to convey messages to neighboring cells-a vital step in adaptation, development, and survival within populations. Although most of our knowledge on cellular chemical communication comes from studies of multicellular eukaryotes, it is now understood that bacteria can also communicate using sophisticated signaling systems, in a way analogous to those used by higher organisms. Many of these microbes live in close association with higher eukaryotes, in mutualistic or commensal relationships. We suggest that there may be a wealth of unidentified bioactive small molecules in the human body, originating from both microbial and human cells and that have important biological functions. Because chemical signaling has important roles for the biology of both microbes and humans, detecting, identifying, and studying these chemical signals can further our understanding of the chemical interplay between microbiota and their hosts and provide us with an unexplored source of molecules that could be used for human benefit.
Collapse
Affiliation(s)
- L. Caetano M. Antunes
- Michael Smith Laboratories, The University of British Columbia2185 East Mall, Vancouver, BC, V6T 1Z4Canada
| | - Julian E. Davies
- Department of Microbiology and Immunology, The University of British Columbia350 Health Sciences Mall, Vancouver, BC, V6T 1Z4Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of British Columbia2185 East Mall, Vancouver, BC, V6T 1Z4Canada
- Department of Microbiology and Immunology, The University of British Columbia350 Health Sciences Mall, Vancouver, BC, V6T 1Z4Canada
| |
Collapse
|
224
|
Kellermayer R, Dowd SE, Harris RA, Balasa A, Schaible TD, Wolcott RD, Tatevian N, Szigeti R, Li Z, Versalovic J, Smith CW. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J 2011; 25:1449-60. [PMID: 21228220 DOI: 10.1096/fj.10-172205] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The connection between intestinal microbiota and host physiology is increasingly becoming recognized. The details of this dynamic interaction, however, remain to be explored. Toll-like receptor 2 (Tlr2) is important for its role in bacterial recognition, intestinal inflammation, and obesity-related metabolic changes. Therefore, we sought to determine the epigenomic and metagenomic consequences of Tlr2 deficiency in the colonic mucosa of mice to gain insights into biological pathways that shape the interface between the gut microbiota and the mammalian host. Colonic mucosa from wild type (WT) and Tlr2(-/-) C57BL/6 mice was interrogated by microarrays specific for DNA methylation and gene expression. The mucosal microbiome was studied by next-generation pyrosequencing of bacterial 16S rRNA. The expression of genes involved in immune processes was significantly modified by the absence of Tlr2, a number of which correlated with DNA methylation changes. The epigenomic and transcriptomic modifications associated with alteration in mucosal microbial composition. Several bacterial species, including members of the Firmicutes were significantly different in abundance between WT and Tlr2(-/-) animals. This manuscript highlights the intimate interrelationships between expression of immune-related genes and immunity pathways in the host with compositional and functional differences of the mammalian microbiome.
Collapse
Affiliation(s)
- Richard Kellermayer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2399, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
|
226
|
Pierce ES. Ulcerative colitis and Crohn's disease: is Mycobacterium avium subspecies paratuberculosis the common villain? Gut Pathog 2010; 2:21. [PMID: 21167058 PMCID: PMC3031217 DOI: 10.1186/1757-4749-2-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium avium, subspecies paratuberculosis (MAP) causes a chronic disease of the intestines in dairy cows and a wide range of other animals, including nonhuman primates, called Johne's ("Yo-knee's") disease. MAP has been consistently identified by a variety of techniques in humans with Crohn's disease. The research investigating the presence of MAP in patients with Crohn's disease has often identified MAP in the "negative" ulcerative colitis controls as well, suggesting that ulcerative colitis is also caused by MAP. Like other infectious diseases, dose, route of infection, age, sex and genes influence whether an individual infected with MAP develops ulcerative colitis or Crohn's disease. The apparently opposite role of smoking, increasing the risk of Crohn's disease while decreasing the risk of ulcerative colitis, is explained by a more careful review of the literature that reveals smoking causes an increase in both diseases but switches the phenotype from ulcerative colitis to Crohn's disease. MAP as the sole etiologic agent of both ulcerative colitis and Crohn's disease explains their common epidemiology, geographic distribution and familial and sporadic clusters, providing a unified hypothesis for the prevention and cure of the no longer "idiopathic" inflammatory bowel diseases.
Collapse
|
227
|
Latella G, Fiocchi C, Caprili R. News from the "5th International Meeting on Inflammatory Bowel Diseases" CAPRI 2010. J Crohns Colitis 2010; 4:690-702. [PMID: 21122584 DOI: 10.1016/j.crohns.2010.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 08/22/2010] [Indexed: 02/06/2023]
Abstract
At the "5th International Meeting on Inflammatory Bowel Diseases selected topics of inflammatory bowel disease (IBD), including the environment, genetics, the gut flora, the cell response and immunomodulation were discussed in order to better understand specific clinical and therapeutic aspects. The incidence of IBD continues to rise, both in low and in high-incidence areas. It is believed that factors associated with 'Westernization' may be conditioning the expression of these disorders. The increased incidence of IBD among migrants from low-incidence to high-incidence areas within the same generation suggests a strong environmental influence. The development of genome-wide association scanning (GWAS) technologies has lead to the discovery of more than 100 IBD loci. Some, as the Th 17 pathway genes, are shared between Crohn's disease (CD) and ulcerative colitis (UC), while other are IBD subtype-specific (autophagy genes, epithelial barrier genes). Disease-specific therapies targeting these pathways should be developed. Epigenetic regulation of the inflammatory response also appears to play an important role in the pathogenesis of IBD. The importance of gut flora in intestinal homeostasis and inflammation was reinforced, the concepts of eubiosis and dysbiosis were introduced, and some strategies for reverting dysbiosis to a homeostatic state of eubiosis were proposed. The current status of studies on the human gut microbiota metagenome, metaprotome, and metabolome was also presented. The cell response in inflammation, including endoplasmic reticulum (ER) stress responses, autophagy and inflammasome-dependent events were related to IBD pathogenesis. It was suggested that inflammation-associated ER stress responses may be a common trait in the pathogenesis of various chronic immune and metabolic diseases. How innate and adaptive immunity signaling events can perpetuate chronic inflammation was discussed extensively. Signal transduction pathways provide intracellular mechanisms by which cells respond and adapt to multiple environmental stresses. The identification of these signals has led to a greater mechanistic understanding of IBD pathogenesis and pointed to potentially new therapeutic targets. A critical analysis of clinical trials and of risk-benefit of biological therapy was presented. The problem of Epstein-Barr virus (EBV) and lymphoma in IBD was extensively discussed. Lymphomas can develop in intestinal segments affected by IBD and are in most cases associated with EBV. The reasons of treatment failure were also analyzed both from basic and clinical points of view. Two very interesting presentations on the integration of research and clinical care in the near future closed the meeting. These presentations were focused on macrotrends affecting healthcare delivery and research, and the need to innovate traditional infrastructures to deal with these changing trends as well as new opportunities to accelerate scientific knowledge.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Internal Medicine, GI Unit, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
228
|
Kaakoush NO, Holmes J, Octavia S, Man SM, Zhang L, Castaño-Rodríguez N, Day AS, Leach ST, Lemberg DA, Dutt S, Stormon M, O'Loughlin EV, Magoffin A, Mitchell H. Detection of Helicobacteraceae in intestinal biopsies of children with Crohn's disease. Helicobacter 2010; 15:549-557. [PMID: 21073612 DOI: 10.1111/j.1523-5378.2010.00792.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Given that members of Helicobacteraceae family colonize the intestinal mucus layer, it has been hypothesized that they may play a role in Crohn's disease. This study investigated the presence of Helicobacteraceae DNA in biopsies collected from children with Crohn's disease and controls. MATERIALS AND METHODS The presence of Helicobacteraceae DNA was investigated in intestinal biopsies collected from 179 children undergoing colonoscopy (Crohn's disease n = 77, controls n = 102) using a Helicobacteraceae-specific PCR. RESULTS Members of the Helicobacteraceae were detected in 32/77 children with Crohn's disease (41.5%) and 23/102 controls (22.5%). Statistical analysis showed the prevalence of Helicobacteraceae detected in patients to be significantly higher than that in controls (p = .0062). Analysis of non-pylori Helicobacteraceae showed that their prevalence was also significantly higher in patients than in controls (p = .04). Helicobacter pylori was detected in 14.0% of the biopsies across all groups. Given that all children tested were negative for gastric H. pylori, this was a surprising finding. Phylogenetic analysis of H. pylori sequences detected in the biopsies showed that the H. pylori strains identified in the patients did not group with gastric H. pylori included in the analysis, but rather with other H. pylori strains detected in the intestine, gall bladder, and liver. CONCLUSIONS The higher prevalence of Helicobacteraceae DNA in Crohn's disease patients would suggest that members of this family may be involved in this disease. In addition, phylogenetic analysis of H. pylori strains showed that extragastric sequences clustered together, indicating that different H. pylori strains may adapt to colonize extragastric niches.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
PURPOSE OF REVIEW Recent evidence shows that disruption of Paneth cell homeostasis by induction of endoplasmic reticulum stress or autophagy, with consequent apoptosis, contributes to inflammation and morbidity in a variety of experimental mouse models. RECENT FINDINGS Recent advances show that proinflammatory mediators in Paneth cell dense core secretory granules mediate tumor necrosis factor-α-induced shock, that Paneth cell α-defensins modulate the composition of the small intestinal microflora, that development of crypt organoid culture systems provides a novel means for investigating the crypt microenvironment, and that varied genetic defects that disrupt Paneth cell homeostasis are emergent as risk factors in inflammatory bowel disease. SUMMARY This recent literature identifies Paneth cells as particularly sensitive targets of endoplasmic reticulum stress responses and implicates this unique small intestinal lineage in inflammatory bowel disease pathogenesis resulting from diverse heritable and environmental causes.
Collapse
Affiliation(s)
- André J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of The University of Southern California, Los Angeles, California 90089-9601, USA.
| |
Collapse
|
230
|
Ricanek P, Lothe SM, Szpinda I, Jorde AT, Brackmann S, Perminow G, Jørgensen KK, Rydning A, Vatn MH, Tønjum T. Paucity of mycobacteria in mucosal bowel biopsies from adults and children with early inflammatory bowel disease. J Crohns Colitis 2010; 4:561-6. [PMID: 21122560 DOI: 10.1016/j.crohns.2010.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/14/2010] [Accepted: 05/14/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND The presence of Mycobacterium avium subspecies paratuberculosis (MAP) has previously been inferred in the genesis of Crohn's disease (CD), and a higher incidence of MAP PCR positivity has been demonstrated in the gut and peripheral blood of CD patients than in healthy individuals. The objective of this prospective study was to assess the potential etiological role of MAP in the pathogenesis of CD. METHODS The presence of mycobacteria was assessed in bowel biopsies from newly diagnosed, treatment naïve Norwegian patients with IBD, including CD and ulcerative colitis (UC), as compared to a hospital-based cohort of CD and UC patients. Biopsies were collected from the small and large bowel in 354 individuals with suspected IBD. Detection of mycobacteria was performed by long-term cultivation in combination with direct detection by MAP IS900-specific PCR. RESULTS Among the specimens included from the patients with early IBD, samples from only two of the patients with CD (2.7%) and two of the non-IBD controls (1.5%) exhibited a positive growth signal. None of the CD patients and only one of the non-IBD controls was MAP PCR positive. Only the single PCR positive non-IBD control was also mycobacterial culture positive with Mycobacterium avium subsp. hominissuis. In the referral patients with long-term IBD, the prevalence of growth signal and MAP PCR positivity was higher (52 and 9%, respectively). CONCLUSIONS These findings demonstrate the paucity of MAP in the gut of treatment naïve CD patients. This study does not provide evidence for a role of MAP in early IBD.
Collapse
Affiliation(s)
- Petr Ricanek
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
|
232
|
MacDonald TT. Cytokine regulation of intestinal epithelial cell proliferation. Expert Rev Clin Immunol 2010; 6:531-5. [PMID: 20594125 DOI: 10.1586/eci.10.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
233
|
In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics. Anaerobe 2010; 16:493-500. [DOI: 10.1016/j.anaerobe.2010.07.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/07/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022]
|
234
|
Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, Laghi L, Calanni F, Brigidi P, Gibson GR, Costabile A. Rifaximin modulates the colonic microbiota of patients with Crohn's disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother 2010; 65:2556-65. [PMID: 20852272 DOI: 10.1093/jac/dkq345] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Rifaximin, a rifamycin derivative, has been reported to induce clinical remission of active Crohn's disease (CD), a chronic inflammatory bowel disorder. In order to understand how rifaximin affects the colonic microbiota and its metabolism, an in vitro human colonic model system was used in this study. METHODS We investigated the impact of the administration of 1800 mg/day of rifaximin on the faecal microbiota of four patients affected by colonic active CD [Crohn's disease activity index (CDAI > 200)] using a continuous culture colonic model system. We studied the effect of rifaximin on the human gut microbiota using fluorescence in situ hybridization, quantitative PCR and PCR-denaturing gradient gel electrophoresis. Furthermore, we investigated the effect of the antibiotic on microbial metabolic profiles, using (1)H-NMR and solid phase microextraction coupled with gas chromatography/mass spectrometry, and its potential genotoxicity and cytotoxicity, using Comet and growth curve assays. RESULTS Rifaximin did not affect the overall composition of the gut microbiota, whereas it caused an increase in concentration of Bifidobacterium, Atopobium and Faecalibacterium prausnitzii. A shift in microbial metabolism was observed, as shown by increases in short-chain fatty acids, propanol, decanol, nonanone and aromatic organic compounds, and decreases in ethanol, methanol and glutamate. No genotoxicity or cytotoxicity was attributed to rifaximin, and conversely rifaximin was shown to have a chemopreventive role by protecting against hydrogen peroxide-induced DNA damage. CONCLUSIONS We demonstrated that rifaximin, while not altering the overall structure of the human colonic microbiota, increased bifidobacteria and led to variation of metabolic profiles associated with potential beneficial effects on the host.
Collapse
Affiliation(s)
- Simone Maccaferri
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
The immune system is commonly perceived as an army of organs, tissues, cells, and molecules that protect from disease by eliminating pathogens. However, as in human society, a clear definition of good and evil might be sometimes difficult to achieve. Not only do we live in contact with a multitude of microbes, but we also live with billions of symbionts that span all the shades from mutualists to potential killers. Together, we compose a superorganism that is capable of optimal living. In that context, the immune system is not a killer, but rather a force that shapes homeostasis within the superorganism.
Collapse
Affiliation(s)
- G Eberl
- Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
236
|
Claes IJJ, Lebeer S, Shen C, Verhoeven TLA, Dilissen E, De Hertogh G, Bullens DMA, Ceuppens JL, Van Assche G, Vermeire S, Rutgeerts P, Vanderleyden J, De Keersmaecker SCJ. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol 2010; 162:306-14. [PMID: 20731672 DOI: 10.1111/j.1365-2249.2010.04228.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While some probiotic strains might have adjuvant effects in the therapy for inflammatory bowel diseases (IBD), these effects remain controversial and cannot be generalized. In this study, a dltD mutant of the model probiotic Lactobacillus rhamnosus GG (LGG), having a drastic modification in its lipoteichoic acid (LTA) molecules, was analysed for its effects in an experimental colitis model. Dextran sulphate sodium (DSS) was used to induce either moderate to severe or mild chronic colitis in mice. Mice received either phosphate-buffered saline (PBS), LGG wild-type or the dltD mutant via the drinking water. Macroscopic parameters, histological abnormalities, cytokine and Toll-like receptor (TLR) expression were analysed to assess disease activity. LGG wild-type did not show efficacy in the different experimental colitis set-ups. This wild-type strain even seemed to exacerbate the severity of colitic parameters in the moderate to severe colitis model compared to untreated mice. In contrast, mice treated with the dltD mutant showed an improvement of some colitic parameters compared to LGG wild-type-treated mice in both experimental models. In addition, treatment with the dltD mutant correlated with a significant down-regulation of Toll-like receptor-2 expression and of downstream proinflammatory cytokine expression in the colitic mice. These results show that molecular cell surface characteristics of probiotics are crucial when probiotics are considered for use as supporting therapy in IBD.
Collapse
Affiliation(s)
- I J J Claes
- Centre of Microbial and Plant Genetics, University Hospital, K. U. Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Ohkusa T, Kato K, Terao S, Chiba T, Mabe K, Murakami K, Mizokami Y, Sugiyama T, Yanaka A, Takeuchi Y, Yamato S, Yokoyama T, Okayasu I, Watanabe S, Tajiri H, Sato N. Newly developed antibiotic combination therapy for ulcerative colitis: a double-blind placebo-controlled multicenter trial. Am J Gastroenterol 2010; 105:1820-1829. [PMID: 20216533 DOI: 10.1038/ajg.2010.84] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Fusobacterium varium may contribute to ulcerative colitis (UC). We conducted a double-blind placebo-controlled multicenter trial to determine whether antibiotic combination therapy induces and/or maintains remission of active UC. METHODS Patients with chronic mild-to-severe relapsing UC were randomly assigned to oral amoxicillin 1500 mg/day, tetracycline 1500 mg/day, and metronidazole 750 mg/day, vs. placebo, for 2 weeks, and then followed up. The primary study end point was clinical response (Mayo score at 3 months after treatment completion) and secondary end points were clinical and endoscopic score improvements at 12 months. Anti-F. varium antibodies were measured by enzyme-linked immunosorbent assay. RESULTS Treatment and placebo groups each had 105 subjects. At the primary end point, response rates were significantly greater with antibiotics than with placebo (44.8 vs. 22.8%, P=0.0011). Endoscopic scores significantly improved at 3 months (P=0.002 vs. placebo). Remission rates were 19.0% (antibiotics) vs. 15.8% (placebo) at 3 months (P=0.59). At the secondary end point, response rates were significantly greater with antibiotics than with placebo (49.5 vs. 21.8%, respectively, P<0.0001). Endoscopic scores were significantly improved at 12 months after antibiotic treatment (P=0.002 vs. placebo). Remission rates had improved to 26.7% with antibiotics vs. 14.9% for placebo, at 12 months (P=0.041). F. varium antibody titers decreased in responders but not in nonresponders, and more in the antibiotic than in the placebo group. More pretreatment steroid-dependent UC patients discontinued corticosteroids after treatment completion (6 months: 28.6 vs. 11.8%, respectively, P=0.046; 9 months: 34.7 vs. 13.7%, respectively, P=0.019; and 12 months: 34.7 vs. 13.7%, respectively, P=0.019). These effects were greater in the subanalysis of the active group (Mayo scores of 6-12) than in that of total cases (0-12). No serious drug-related toxicities occurred. CONCLUSIONS The 2-week triple antibiotic therapy produced improvement, remission, and steroid withdrawal in active UC more effectively than a placebo.
Collapse
Affiliation(s)
- Toshifumi Ohkusa
- Department of Gastroenterology and Hepatology, Jikei University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 2010; 8:564-77. [PMID: 20622892 DOI: 10.1038/nrmicro2403] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a major human health problem. The bacteria that live in the gut play an important part in the pathogenesis of IBD. However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in establishing a healthy intestinal barrier and in its disruption is evolving only slowly. In recent years, mouse models of intestinal inflammatory disorders based on defined bacterial infections have been used intensively to dissect the roles of individual bacterial species and specific bacterial components in the pathogenesis of IBD. In this Review, we focus on the impact of pathogenic and commensal bacteria on IBD-like pathogenesis in mouse infection models and summarize important recent developments.
Collapse
|
239
|
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this “organ” has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Inna Sekirov
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M. Antunes
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
240
|
Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 2010; 141:1135-45. [PMID: 20602997 PMCID: PMC2908380 DOI: 10.1016/j.cell.2010.05.009] [Citation(s) in RCA: 708] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/26/2010] [Accepted: 04/19/2010] [Indexed: 02/07/2023]
Abstract
It is unclear why disease occurs in only a small proportion of persons carrying common risk alleles of disease susceptibility genes. Here we demonstrate that an interaction between a specific virus infection and a mutation in the Crohn's disease susceptibility gene Atg16L1 induces intestinal pathologies in mice. This virus-plus-susceptibility gene interaction generated abnormalities in granule packaging and unique patterns of gene expression in Paneth cells. Further, the response to injury induced by the toxic substance dextran sodium sulfate was fundamentally altered to include pathologies resembling aspects of Crohn's disease. These pathologies triggered by virus-plus-susceptibility gene interaction were dependent on TNFalpha and IFNgamma and were prevented by treatment with broad spectrum antibiotics. Thus, we provide a specific example of how a virus-plus-susceptibility gene interaction can, in combination with additional environmental factors and commensal bacteria, determine the phenotype of hosts carrying common risk alleles for inflammatory disease.
Collapse
Affiliation(s)
- Ken Cadwell
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Khushbu K. Patel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nicole S. Maloney
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aylwin C.Y. Ng
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Chad E. Storer
- Inflammation and Immunology Research Unit, Pfizer Global Research and Development, St. Louis, MO 63017, USA
| | - Richard D. Head
- Inflammation and Immunology Research Unit, Pfizer Global Research and Development, St. Louis, MO 63017, USA
| | - Ramnik Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Herbert W. Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research
| |
Collapse
|
241
|
Abstract
Interaction with the immune system is one of the most well-established nonclassic effects of vitamin D. For many years this was considered to be a manifestation of granulomatous diseases such sarcoidosis, in which synthesis of active 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is known to be dysregulated. However, recent reports have supported a role for 1,25(OH)(2)D(3) in mediating normal function of the innate and adaptive immune systems. Crucially, these effects seem to be mediated via localized autocrine or paracrine synthesis of 1,25(OH)(2)D(3) from precursor 25-hydroxyvitamin D(3), the main circulating metabolite of vitamin D. The ability of vitamin D to influence normal human immunity is highly dependent on the vitamin D status of individuals, and may lead to aberrant response to infection or autoimmunity in those who are lacking vitamin D. The potential health significance of this has been underlined by increasing awareness of impaired vitamin D status in populations across the globe. This article describes some of the recent developments with respect to vitamin D and the immune system, and possible clinical implications.
Collapse
Affiliation(s)
- Martin Hewison
- Department of Orthopaedic Surgery, Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
242
|
Welch MG, Anwar M, Chang CY, Gross KJ, Ruggiero DA, Tamir H, Gershon MD. Combined administration of secretin and oxytocin inhibits chronic colitis and associated activation of forebrain neurons. Neurogastroenterol Motil 2010; 22:654-e202. [PMID: 20210978 PMCID: PMC3068601 DOI: 10.1111/j.1365-2982.2010.01477.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The pathogenesis of inflammatory bowel disease is unknown; however, the disorder is aggravated by psychological stress and is itself psychologically stressful. Chronic intestinal inflammation, moreover, has been reported to activate forebrain neurons. We tested the hypotheses that the chronically inflamed bowel signals to the brain through the vagi and that administration of a combination of secretin (S) and oxytocin (OT) inhibits this signaling. METHODS Three daily enemas containing 2,4,6-trinitrobenzene sulfonic acid (TNBS), which were given to rats produced chronic colitis and ongoing activation of Fos in brain neurons. KEY RESULTS Fos was induced in neurons in the paraventricular nucleus of the hypothalamus, basolateral amygdala, central amygdala, and piriform cortex. Subdiaphragmatic vagotomy failed to inhibit this activation of Fos, suggesting that colitis activates forebrain neurons independently of the vagi. When administered intravenously, but not when given intracerebroventricularly, in doses that were individually ineffective, combined S/OT prevented colitis-associated activation of central neurons. Strikingly, S/OT decreased inflammatory infiltrates into the colon and colonic expression of tumor necrosis factor-alpha and interferon-gamma. CONCLUSIONS & INFERENCES These observations suggest that chronic colonic inflammation is ameliorated by the systemic administration of S/OT, which probably explains the parallel ability of systemic S/OT to inhibit the colitis-associated activation of forebrain neurons. It is possible that S and OT, which are endogenous to the colon, might normally combine to restrict the severity of colonic inflammatory responses and that advantage might be taken of this system to develop novel means of treating inflammation-associated intestinal disorders.
Collapse
Affiliation(s)
- Martha G Welch
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
243
|
Lagishetty V, Misharin AV, Liu NQ, Lisse TS, Chun RF, Ouyang Y, McLachlan SM, Adams JS, Hewison M. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 2010; 151:2423-32. [PMID: 20392825 PMCID: PMC2875827 DOI: 10.1210/en.2010-0089] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/15/2010] [Indexed: 02/07/2023]
Abstract
Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.
Collapse
Affiliation(s)
- Venu Lagishetty
- Room 410D, Orthopaedic Hospital Research Center, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Shen XJ, Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, Jovov B, Abdo Z, Sandler RS, Keku TO. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 2010; 1:138-47. [PMID: 20740058 PMCID: PMC2927011 DOI: 10.4161/gmic.1.3.12360] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 02/03/2023] Open
Abstract
The human large bowel is colonized by complex and diverse bacterial communities. However, the relationship between commensal bowel bacteria and adenomas (colorectal cancer precursors) is unclear. This study aimed to characterize adherent bacteria in normal colon and evaluate differences in community composition associated with colorectal adenomas. We evaluated adherent bacteria in normal colonic mucosa of 21 adenoma and 23 non-adenoma subjects enrolled in a cross sectional study. Terminal restriction fragment length polymorphism, clone sequencing and fluorescent in-situ hybridization analysis of the 16S rRNA genes were used to characterize adherent bacteria. A total of 335 clones were sequenced and processed for phylogenetic and taxonomic analysis. Differences in bacterial composition between cases and controls were evaluated by UniFrac and analysis of similarity matrix. Overall, Firmicutes (62%), Bacteroidetes (26%) and Proteobacteria (11%) were the most dominant phyla. The bacterial composition differed significantly between cases and controls (UniFrac p < 0.001). We observed significantly higher abundance of Proteobacteria (p < 0.05) and lower abundance of Bacteroidetes (p < 0.05) in cases compared to controls. At the genus level, case subjects showed increased abundance of Dorea spp. (p < 0.005), Faecalibacterium spp. (p < 0.05) and lower proportions of Bacteroides spp. (p < 0.03) and Coprococcus spp. (p < 0.05) than controls. Cases had higher bacterial diversity and richness than controls. These findings reveal that alterations in bacterial community composition associated with adenomas may contribute to the etiology of colorectal cancer. Extension of these findings could lead to strategies to manipulate the microbiota to prevent colorectal adenomas and cancer as well as to identify individuals at high risk.
Collapse
Affiliation(s)
- Xiang Jun Shen
- Center for Gastrointestinal Biology and Disease; University of North Carolina at Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Yamamoto-Furusho JK, Barnich N, Hisamatsu T, Podolsky DK. MDP-NOD2 stimulation induces HNP-1 secretion, which contributes to NOD2 antibacterial function. Inflamm Bowel Dis 2010; 16:736-42. [PMID: 19856414 PMCID: PMC2895931 DOI: 10.1002/ibd.21144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human neutrophil peptide 1 (HNP-1) is a defensin with antibacterial activity secreted by various cells as a component of the innate immune host defense. NOD2 is a cytoplasmic protein that recognizes bacterial derived muramyl dipeptide, and is involved in bacterial clearance. The aim of the present study was to investigate the relationship between antibacterial activity of NOD2 and HNP-1 expression in epithelial cell lines. METHODS Gentamicin protection assay using Salmonella typhimurium was performed in Caco-2 cells. The mRNA level was determined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) and defensin expression was assessed by Western blot and enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappaB activation was assessed using pIV luciferase and Renilla plasmids. A NOD2 mutant was generated by site-directed mutagenesis. RESULTS Among the defensins tested, only HNP-1 expression is induced in colonic epithelial model HCT116 cells after MDP-LD stimulation. HNP-1 secretion is significantly increased after MDP-LD stimulation in the cell supernatant of intestinal epithelial cells expressing endogenous NOD2, but not in cells that lack endogenous NOD2 expression. HNP-1 is required for NOD2-dependent NF-kappaB activation after MDP-LD stimulation since hnp-1 siRNA transfection abrogated the response to MDP-LD stimulation. The antibacterial function of NOD2 against S. typhimurium was impaired when expression of HNP-1 was blocked by siRNA. CONCLUSIONS HNP-1 secretion depends on NOD2 stimulation by MDP-LD and contributes to antibacterial activity in intestinal epithelial cells expressing endogenous NOD2, but not NOD2 3020insC mutant associated with increased susceptibility to Crohn's disease.
Collapse
Affiliation(s)
- Jesus K. Yamamoto-Furusho
- Gastrointestinal Unit, Department of Medicine, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, Inflammatory Bowel Disease Clinic, Department of Gastroenterology, instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Nicolas Barnich
- Gastrointestinal Unit, Department of Medicine, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, Univ Clermont1, Pathogénie Bactérienne Intestinale, USC-INRA 2018, Clermont-Ferrand F-63001, France
| | - Tadakazu Hisamatsu
- Gastrointestinal Unit, Department of Medicine, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel K. Podolsky
- Gastrointestinal Unit, Department of Medicine, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, University of Texas Southwestern Medical Center, Dallas, Texas,Correspondence to Daniel K. Podolsky, M.D., University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9002. Tel: 214-648-2508, Fax: 214-648-8690,
| |
Collapse
|
246
|
Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 2010; 7:265-276. [PMID: 20413095 PMCID: PMC2859213 DOI: 10.1016/j.chom.2010.03.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 02/02/2010] [Accepted: 03/01/2010] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract harbors a diverse microbiota that has coevolved with mammalian hosts. Though most associations are symbiotic or commensal, some resident bacteria (termed pathobionts) have the potential to cause disease. Bacterial type VI secretion systems (T6SSs) are one mechanism for forging host-microbial interactions. Here we reveal a protective role for the T6SS of Helicobacter hepaticus, a Gram-negative bacterium of the intestinal microbiota. H. hepaticus mutants with a defective T6SS display increased numbers within intestinal epithelial cells (IECs) and during intestinal colonization. Remarkably, the T6SS directs an anti-inflammatory gene expression profile in IECs, and CD4+ T cells from mice colonized with T6SS mutants produce increased interleukin-17 in response to IECs presenting H. hepaticus antigens. Thus, the H. hepaticus T6SS limits colonization and intestinal inflammation, promoting a balanced relationship with the host. We propose that disruption of such balances contributes to human disorders such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Janet Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
247
|
Borzutzky A, Fried A, Chou J, Bonilla FA, Kim S, Dedeoglu F. NOD2-associated diseases: Bridging innate immunity and autoinflammation. Clin Immunol 2010; 134:251-61. [DOI: 10.1016/j.clim.2009.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 11/25/2022]
|
248
|
Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet Microbiol 2010; 144:140-6. [PMID: 20092970 DOI: 10.1016/j.vetmic.2009.12.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 02/07/2023]
Abstract
The diversity of the feline intestinal microbiota has not been well elucidated. The aim of this study was to characterize fecal microbiota of cats by comparative sequence analysis with universal bacterial 16S rRNA gene and group-specific primers for Bifidobacterium and Lactobacillus spp. Using universal bacterial primers, a total of 133 non-redundant 16S rRNA gene sequences were identified in fecal samples obtained from 15 healthy pet cats. The majority of these sequences were assigned to the phylum Firmicutes, followed by Proteobacteria and Bacteroidetes. Further classification showed that Firmicutes were predominantly affiliated with Clostridium clusters XI, XIVa, and I. Using group-specific primers for Bifidobacterium and Lactobacillus spp., 364 clones were analyzed in fecal samples obtained from 12 additional cats and these bacterial genera were observed in 100% and 92% of cats, respectively. These detection rates differed from those obtained using universal bacterial primers, where Bifidobacterium and Lactobacillus spp. were each detected in 2 cats (13.3%). Overall, 23 different Lactobacillus-like and 11 Bifidobacterium-like sequences were identified. We observed marked differences in the prevalence of the various lactic acid bacteria in individual cats. In conclusion, the use of a combination of universal and group-specific primers allows a more detailed characterization of lactic acid bacteria in the feline intestine. While Bifidobacterium and Lactobacillus spp. are prevalent in feline fecal samples, individual animals show a unique species distribution.
Collapse
|
249
|
D'Amore M, Lisi S, Sisto M, Cucci L, Dow CT. Molecular identification of Mycobacterium avium subspecies paratuberculosis in an Italian patient with Hashimoto's thyroiditis and Melkersson–Rosenthal syndrome. J Med Microbiol 2010; 59:137-139. [DOI: 10.1099/jmm.0.013474-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Massimo D'Amore
- Department of Internal Medicine and Public Medicine, Section of Rheumatology, University of Bari, Piazza G. Cesare 1, I-70124 Bari, Italy
| | - Sabrina Lisi
- Department of Human Anatomy and Histology, University of Bari, Piazza G. Cesare 1, I-70124 Bari, Italy
| | - Margherita Sisto
- Department of Human Anatomy and Histology, University of Bari, Piazza G. Cesare 1, I-70124 Bari, Italy
| | - Liana Cucci
- Department of Human Anatomy and Histology, University of Bari, Piazza G. Cesare 1, I-70124 Bari, Italy
| | - C. Thomas Dow
- Department of Ophthalmology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
250
|
Suchodolski JS, Xenoulis PG, Paddock CG, Steiner JM, Jergens AE. Molecular analysis of the bacterial microbiota in duodenal biopsies from dogs with idiopathic inflammatory bowel disease. Vet Microbiol 2009; 142:394-400. [PMID: 19959301 DOI: 10.1016/j.vetmic.2009.11.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/30/2009] [Accepted: 11/03/2009] [Indexed: 02/06/2023]
Abstract
An association between mucosa-adherent commensal bacteria and inflammatory bowel disease (IBD) has been proposed for humans. There are no reports characterizing the mucosa-adherent duodenal microbiota in dogs with idiopathic IBD using molecular methods. The aim of this study was to investigate differences in the mucosa-adherent duodenal microbiota between dogs with idiopathic IBD and healthy dogs. Duodenal biopsy samples were collected from seven dogs with IBD and seven healthy control dogs. DNA was extracted, 16S ribosomal RNA genes were amplified and 16S rRNA gene clone libraries were constructed and compared between groups. A total of 1035 clones were selected, and based on a 98% similarity criterion, 133 unique phylotypes were identified across all dogs. These phylotypes belonged to seven bacterial phyla: Proteobacteria (52.9%), Firmicutes (26.1%), Bacteroidetes (7.7%), Actinobacteria (8.6%), Fusobacteria (4.4%), Tenericutes (0.2%) and Verrucomicrobia (0.1%). Significant differences were identified in the relative abundance of several bacterial groups between dogs with IBD and healthy dogs (p<0.001). Healthy dogs and dogs with IBD clustered according to their disease status. Dogs with IBD had a significantly higher abundance of clones belonging to Alpha-, Beta-, and Gamma-proteobacteria (p<0.0001 for all classes), and a significantly lower abundance of Clostridia (p<0.0001). Bacteria of the genera Pseudomonas, Acinetobacter, Conchiformibious, Achromobacter, Brucella, and Brevundimonas, were significantly more abundant in dogs with IBD. In conclusion, significant differences of the mucosa-adherent duodenal microbiota were observed between dogs with idiopathic IBD and healthy dogs in this study. These results warrant further investigations into the role of the intestinal microbiota in the pathophysiology of canine IBD.
Collapse
Affiliation(s)
- Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|