201
|
Kou L, Kou P, Luo G, Wei S. Progress of Statin Therapy in the Treatment of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6197219. [PMID: 35345828 PMCID: PMC8957418 DOI: 10.1155/2022/6197219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD) characterized by the proliferation of fibroblasts and aberrant accumulation of extracellular matrix. These changes are accompanied by structural destruction of the lung tissue and the progressive decline of pulmonary function. In the past few decades, researchers have investigated the pathogenesis of IPF and sought a therapeutic approach for its treatment. Some studies have shown that the occurrence of IPF is related to pulmonary inflammatory injury; however, its specific etiology and pathogenesis remain unknown, and no effective treatment, with the exception of lung transplantation, has been identified yet. Several basic science and clinical studies in recent years have shown that statins, the traditional lipid-lowering drugs, exert significant antifibrotic effects, which can delay the progression of IPF and impairment of pulmonary function. This article is aimed at summarizing the current understanding of the pathogenesis of IPF, the progress of research on the use of statins in IPF models and clinical trials, and its main molecular targets.
Collapse
Affiliation(s)
- Leiya Kou
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Pei Kou
- Department of Medical Record, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Guangwei Luo
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
202
|
Liu H, Chen YG. The Interplay Between TGF-β Signaling and Cell Metabolism. Front Cell Dev Biol 2022; 10:846723. [PMID: 35359452 PMCID: PMC8961331 DOI: 10.3389/fcell.2022.846723] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling plays a critical role in the development and tissue homeostasis in metazoans, and deregulation of TGF-β signaling leads to many pathological conditions. Mounting evidence suggests that TGF-β signaling can actively alter metabolism in diverse cell types. Furthermore, metabolic pathways, beyond simply regarded as biochemical reactions, are closely intertwined with signal transduction. Here, we discuss the role of TGF-β in glucose, lipid, amino acid, redox and polyamine metabolism with an emphasis on how TGF-β can act as a metabolic modulator and how metabolic changes can influence TGF-β signaling. We also describe how interplay between TGF-β signaling and cell metabolism regulates cellular homeostasis as well as the progression of multiple diseases, including cancer.
Collapse
|
203
|
Chen Z, Xiang L, Li L, Ou H, Fang Y, Xu Y, Liu Q, Hu Z, Huang Y, Li X, Yang D. TGF-β1 induced deficiency of linc00261 promotes epithelial–mesenchymal-transition and stemness of hepatocellular carcinoma via modulating SMAD3. J Transl Med 2022; 20:75. [PMID: 35123494 PMCID: PMC8818189 DOI: 10.1186/s12967-022-03276-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the metastasis and recurrence of hepatocellular carcinoma (HCC). A kinds of lncRNAs were found to be involved in regulating epithelial–mesenchymal transition (EMT) or stem-like traits in human cancers, however, the molecular mechanism and signaling pathways targeting EMT and stemness remains largely unknown. Previously, we found that linc00261 was down-regulated in HCC and associated with multiple worse clinical pathological parameters and poor prognosis. Here, we show that linc00261 was down-regulated in TGF-β1 stimulated cells, and forced expression of linc00261 attenuated EMT and stem-like traits in HCC. Linc00261 also inhibited the tumor sphere forming in vitro and decreased the tumorigenicity in vivo. Furthermore, we revealed that linc00261 suppressed the expression and phosphorylation of SMAD3 (p-SMAD3), which could be core transcriptional modulator in TGF-β1 signaling mediated EMT and the acquisition of stemness traits. A negative correlation between linc00261 and p-SMAD3 was determined in HCC samples. Conclusion: Our study revealed that linc00261 suppressed EMT and stem-like traits in HCC cells by inhibiting TGF-β1/SMAD3 signaling.
Collapse
|
204
|
Knowles H, Santucci N, Studdert J, Goh HN, Kaufman-Francis K, Salehin N, Tam PPL, Osteil P. Differential impact of TGFβ/SMAD signaling activity elicited by Activin A and Nodal on endoderm differentiation of epiblast stem cells. Genesis 2022; 60:e23466. [PMID: 35104045 DOI: 10.1002/dvg.23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
Allocation of cells to an endodermal fate in the gastrulating embryo is driven by Nodal signaling and consequent activation of TGFβ pathway. In vitro methodologies striving to recapitulate the process of endoderm differentiation, however, use TGFβ family member Activin in place of Nodal. This is despite Activin not known to have an in vivo role in endoderm differentiation. In this study, five epiblast stem cell lines were subjected to directed differentiation using both Activin A and Nodal to induce endodermal fate. A reporter line harboring endoderm markers FoxA2 and Sox17 was further analyzed for TGFβ pathway activation and WNT response. We demonstrated that Activin A-treated cells remain more primitive streak-like when compared to Nodal-treated cells that have a molecular profile suggestive of more advanced differentiation. Activin A elicited a robust TGFβ/SMAD activity, enhanced WNT signaling activity and promoted the generation of DE precursors. Nodal treatment resulted in lower TGFβ/SMAD activity, and a weaker, sustained WNT response, and ultimately failed to upregulate endoderm markers. This is despite signaling response resembling more closely the activity seen in vivo. These findings emphasize the importance of understanding the downstream activities of Activin A and Nodal signaling in directing in vitro endoderm differentiation of primed-state epiblast stem cells.
Collapse
Affiliation(s)
- Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Joshua Studdert
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Hwee Ngee Goh
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Keren Kaufman-Francis
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia.,Swiss Cancer Research Institute (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
205
|
Dai CJ, Cao YT, Huang F, Wang YG. Multiple roles of mothers against decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy. World J Stem Cells 2022; 14:41-53. [PMID: 35126827 PMCID: PMC8788178 DOI: 10.4252/wjsc.v14.i1.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor (TGF)-β signaling pathway controls many cellular processes, including proliferation, differentiation, and apoptosis. Abnormalities in the TGF-β signaling pathway and its components are closely related to the occurrence of many human diseases, including cancer. Mothers against decapentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 4, is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways. It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions. Smad4 also interacts with cytokines, miRNAs, and other signaling pathways, jointly regulating cell behavior. However, the regulatory function of Smad4 in tumorigenesis, stem cells, and drug resistance is currently controversial. In addition, Smad4 represents an attractive therapeutic target for cancer. Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment. Here, we review the identification and characterization of Smad4, the canonical TGF-β/Smad pathway, as well as the multiple roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.
Collapse
Affiliation(s)
- Chuan-Jing Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yu-Ting Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People’s Hospital of Hangzhou Medical University, Hangzhou 310014, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
206
|
Identification of Molecular Subgroups in Liver Cirrhosis by Gene Expression Profiles. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon.118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Liver cirrhosis is characterized by high mortality, bringing a serious health and economic burden to the world. The clinical manifestations of liver cirrhosis are complex and heterogeneous. According to subgroup characteristics, identifying cirrhosis has become a challenge. Objectives: The purpose of this study was to evaluate the difference between different subgroups of cirrhosis. The ultimate goal of research on these different phenotypes was to discover groups of patients with unique treatment characteristics, and formulate targeted treatment plans that improve the prognosis of the disease and improve the patients’ quality of life. Methods: We obtained the relevant gene chip by searching the gene expression omnibus (GEO) database. According to the gene expression profile, 79 patients with liver cirrhosis were divided into four subgroups, which showed different expression patterns. Therefore, we used weighted gene coexpression network analysis (WGCNA) to find differences between subgroups. Results: The characteristics of the WGCNA module indicated that subjects in subgroup I might exhibit inflammatory characteristics; subjects in subgroup II might exhibit metabolically active characteristics; arrhythmogenic right ventricular cardiomyopathy and neuroactive ligand-receptive somatic interaction pathways were significantly enriched in subgroup IV. We did not find a significantly upregulated pathway in the third subgroup. Conclusions: In this study, a new type of clinical phenotype classification of liver cirrhosis was derived by consensus clustering. This study found that patients in different subgroups may have unique gene expression patterns. This new classification method helps researchers explore new treatment strategies for cirrhosis based on clinical phenotypic characteristics.
Collapse
|
207
|
Saad HKM, Abd Rahman AA, Ab Ghani AS, Taib WRW, Ismail I, Johan MF, Al-Wajeeh AS, Al-Jamal HAN. Activation of STAT and SMAD Signaling Induces Hepcidin Re-Expression as a Therapeutic Target for β-Thalassemia Patients. Biomedicines 2022; 10:biomedicines10010189. [PMID: 35052868 PMCID: PMC8773737 DOI: 10.3390/biomedicines10010189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Iron homeostasis is regulated by hepcidin, a hepatic hormone that controls dietary iron absorption and plasma iron concentration. Hepcidin binds to the only known iron export protein, ferroportin (FPN), which regulates its expression. The major factors that implicate hepcidin regulation include iron stores, hypoxia, inflammation, and erythropoiesis. When erythropoietic activity is suppressed, hepcidin expression is hampered, leading to deficiency, thus causing an iron overload in iron-loading anemia, such as β-thalassemia. Iron overload is the principal cause of mortality and morbidity in β-thalassemia patients with or without blood transfusion dependence. In the case of thalassemia major, the primary cause of iron overload is blood transfusion. In contrast, iron overload is attributed to hepcidin deficiency and hyperabsorption of dietary iron in non-transfusion thalassemia. Beta-thalassemia patients showed marked hepcidin suppression, anemia, iron overload, and ineffective erythropoiesis (IE). Recent molecular research has prompted the discovery of new diagnostic markers and therapeutic targets for several diseases, including β-thalassemia. In this review, signal transducers and activators of transcription (STAT) and SMAD (structurally similar to the small mothers against decapentaplegic in Drosophila) pathways and their effects on hepcidin expression have been discussed as a therapeutic target for β-thalassemia patients. Therefore, re-expression of hepcidin could be a therapeutic target in the management of thalassemia patients. Data from 65 relevant published experimental articles on hepcidin and β-thalassemia between January 2016 and May 2021 were retrieved by using PubMed and Google Scholar search engines. Published articles in any language other than English, review articles, books, or book chapters were excluded.
Collapse
Affiliation(s)
- Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Alawiyah Awang Abd Rahman
- Pathology Department, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Terengganu, Malaysia; (A.A.A.R.); (A.S.A.G.)
| | - Azly Sumanty Ab Ghani
- Pathology Department, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Terengganu, Malaysia; (A.A.A.R.); (A.S.A.G.)
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
- Correspondence: ; Tel.: +60-1747-29012
| |
Collapse
|
208
|
Lin M, Liu J, Zhang F, Qi G, Tao S, Fan W, Chen M, Ding K, Zhou F. The role of leucine-rich alpha-2-glycoprotein-1 in proliferation, migration, and invasion of tumors. J Cancer Res Clin Oncol 2022; 148:283-291. [PMID: 35037101 DOI: 10.1007/s00432-021-03876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leucine-rich alpha-2-glycoprotein-1 (LRG1) is widely involved in proliferation, migration, and invasion of various tumor cells. Recent studies have evaluated the potential of LRG1 as both an early tumor and a prognostic biomarker. METHOD The relevant literature from PubMed is reviewed in this article. RESULTS It has been found that LRG1 mainly acts on the regulatory mechanisms of angiogenesis, epithelial-mesenchymal transition (EMT), and apoptosis by transforming growth factor (TGF-β) signaling pathway as well as affecting the occurrence and development of the tumors. Moreover, with advancement of research, LRG1 regulation pathways which are independent of TGF-β signaling pathway have been gradually revealed in different tumor cells; There are several studies on the biological effects of LRG1 as an inflammatory factor, vascular growth regulator, cell adhesion, and a cell viability influencing factor. In addition, various tumor suppression methods which are based on regulation of LRG1 levels have also shown high potential clinical value. CONCLUSIONS LRG1 are critical for the processes of tumorigenesis, development, and metastasis in various tumors. The present study reviewed the latest research on the achievements of LRG1 in tumor genesis and development. Further, this study also discussed the related molecular mechanisms of various biological functions of LRG1.
Collapse
Affiliation(s)
- Meng Lin
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jinmeng Liu
- Laboratory of Biochemistry and Molecular Biology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fengping Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Shuqi Tao
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Wenyuan Fan
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Min Chen
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Kang Ding
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
209
|
Li Y, Zi Z. Optogenetic Control of TGF-β Signaling. Methods Mol Biol 2022; 2488:113-124. [PMID: 35347686 DOI: 10.1007/978-1-0716-2277-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells employ signaling pathways to make decisions in response to changes in their immediate environment. The Transforming Growth Factor β (TGF-β) signaling pathway plays pivotal roles in regulating many cellular processes, including cell proliferation, differentiation, and migrations. In order to manipulate and explore the dynamic behavior of TGF-β signaling at high spatiotemporal resolution, we developed an optogenetic system (the optoTGFBRs system), in which light is used to control TGF-β signaling precisely in time and space. Here, we describe about experimental details of how to build the optoTGFBRs system and utilize it to manipulate TGF-β signaling in a single cell or a cell population using microscope or LED array, respectively.
Collapse
Affiliation(s)
- Yuchao Li
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | - Zhike Zi
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
210
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
211
|
Yang G, Wu Y, Tang S. TRPM7 Elicits Proliferation and Differentiation of Human Lens Epithelial Cells through the TGF-β/Smad Pathways. Folia Biol (Praha) 2022; 68:72-77. [PMID: 36384264 DOI: 10.14712/fb2022068020072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of cataract. This study aimed to explore the effects of TRPM7 on the proliferation and differentiation of human lens epithelial cells. TRPM7 was over-expressed in LECs treated with TGF-β2. Down-regulation of TRPM7 attenuated the increase in cell viability and cell proliferation induced by TGF-β2. The LEC migration induced by TGF-β2 was also repressed by down-regulation of TRPM7. Epithelial-specific protein E-cadherin was up-regulated through knock-down of TRPM7. EMT-specific proteins, α-SMA, fibronectin and vimentin, were down-regulated through knockdown of TRPM7. Moreover, phosphorylation of Smad2 and Smad3 was also prevented by inhibition of TRPM7. Therefore, TRPM7 elicited LEC proliferation and EMT through enhancing activation of the TGF-β/Smad pathways, implying a new therapeutic target for cataract.
Collapse
Affiliation(s)
- G Yang
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - Y Wu
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - S Tang
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
212
|
Tejera-Muñoz A, Marquez-Exposito L, Tejedor-Santamaría L, Rayego-Mateos S, Orejudo M, Suarez-Álvarez B, López-Larrea C, Ruíz-Ortega M, Rodrigues-Díez RR. CCN2 Increases TGF-β Receptor Type II Expression in Vascular Smooth Muscle Cells: Essential Role of CCN2 in the TGF-β Pathway Regulation. Int J Mol Sci 2021; 23:375. [PMID: 35008801 PMCID: PMC8745763 DOI: 10.3390/ijms23010375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a mediator of the fibrotic responses induced by other factors including the transforming growth factor β (TGF-β). However, several studies have defined a direct role of CCN2 acting as a growth factor inducing oxidative and proinflammatory responses. The presence of CCN2 and TGF-β together in the cellular context has been described as a requisite to induce a persistent fibrotic response, but the precise mechanisms implicated in this relation are not described yet. Considering the main role of TGF-β receptors (TβR) in the TGF-β pathway activation, our aim was to investigate the effects of CCN2 in the regulation of TβRI and TβRII levels in vascular smooth muscle cells (VSMCs). While no differences were observed in TβRI levels, an increase in TβRII expression at both gene and protein level were found 48 h after stimulation with the C-terminal fragment of CCN2 (CCN2(IV)). Cell pretreatment with a TβRI inhibitor did not modify TβRII increment induced by CCN2(VI), demonstrating a TGF-β-independent response. Secondly, CCN2(IV) rapidly activated the SMAD pathway in VSMCs, this being crucial in the upregulation of TβRII since the preincubation with an SMAD3 inhibitor prevented it. Similarly, pretreatment with the epidermal growth factor receptor (EGFR) inhibitor erlotinib abolished TβRII upregulation, indicating the participation of this receptor in the observed responses. Our findings suggest a direct role of CCN2 maintaining the TGF-β pathway activation by increasing TβRII expression in an EGFR-SMAD dependent manner activation.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Laura Marquez-Exposito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Macarena Orejudo
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
| | - Beatriz Suarez-Álvarez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos López-Larrea
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, 33011 Oviedo, Spain
| | - Marta Ruíz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
213
|
Genome-Wide Analysis of Smad7-Mediated Transcription in Mouse Embryonic Stem Cells. Int J Mol Sci 2021; 22:ijms222413598. [PMID: 34948395 PMCID: PMC8708723 DOI: 10.3390/ijms222413598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Smad7 has been identified as a negative regulator of the transforming growth factor TGF-β pathway by direct interaction with the TGF-β type I receptor (TβR-I). Although Smad7 has also been shown to play TGF-β unrelated functions in the cytoplasm and in the nucleus, a comprehensive analysis of its nuclear function has not yet been performed. Here, we show that in ESCs Smad7 is mainly nuclear and acts as a general transcription factor regulating several genes unrelated to the TGF-β pathway. Loss of Smad7 results in the downregulation of several key stemness master regulators, including Pou5f1 and Zfp42, and in the upregulation of developmental genes, with consequent loss of the stem phenotype. Integrative analysis of genome-wide mapping data for Smad7 and ESC self-renewal and pluripotency transcriptional regulators revealed that Smad7 co-occupies promoters of highly expressed key stemness regulators genes, by binding to a specific consensus response element NCGGAAMM. Altogether, our data establishes Smad7 as a new, integral component of the regulatory circuitry that controls ESC identity.
Collapse
|
214
|
Min KD, Asakura M, Shirai M, Yamazaki S, Ito S, Fu HY, Asanuma H, Asano Y, Minamino T, Takashima S, Kitakaze M. ASB2 is a novel E3 ligase of SMAD9 required for cardiogenesis. Sci Rep 2021; 11:23056. [PMID: 34845242 PMCID: PMC8630118 DOI: 10.1038/s41598-021-02390-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiogenesis requires the orchestrated spatiotemporal tuning of BMP signalling upon the balance between induction and counter-acting suppression of the differentiation of the cardiac tissue. SMADs are key intracellular transducers and the selective degradation of SMADs by the ubiquitin-proteasome system is pivotal in the spatiotemporal tuning of BMP signalling. However, among three SMADs for BMP signalling, SMAD1/5/9, only the specific E3 ligase of SMAD9 remains poorly investigated. Here, we report for the first time that SMAD9, but not the other SMADs, is ubiquitylated by the E3 ligase ASB2 and targeted for proteasomal degradation. ASB2, as well as Smad9, is conserved among vertebrates. ASB2 expression was specific to the cardiac region from the very early stage of cardiac differentiation in embryogenesis of mouse. Knockdown of Asb2 in zebrafish resulted in a thinned ventricular wall and dilated ventricle, which were rescued by simultaneous knockdown of Smad9. Abundant Smad9 protein leads to dysregulated cardiac differentiation through a mechanism involving Tbx2, and the BMP signal conducted by Smad9 was downregulated under quantitative suppression of Smad9 by Asb2. Our findings demonstrate that ASB2 is the E3 ligase of SMAD9 and plays a pivotal role in cardiogenesis through regulating BMP signalling.
Collapse
Affiliation(s)
- Kyung-Duk Min
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masanori Asakura
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Manabu Shirai
- Department of Bioscience, National Cerebral and Cardiovascular Center, Osaka, Japan
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoru Yamazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hai Ying Fu
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan.
- Hanwa Daini Senboku Hospital, Sakai, Osaka, Japan.
| |
Collapse
|
215
|
Transcriptome Analysis of Neuroendocrine Regulation of Ovine Hypothalamus-Pituitary-Ovary Axis during Ovine Anestrus and the Breeding Season. Genes (Basel) 2021; 12:genes12121861. [PMID: 34946810 PMCID: PMC8701943 DOI: 10.3390/genes12121861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Most sheep are seasonal estrus, and they breed in autumn when the days get shorter. Seasonal estrus is an important factor that affects the productivity and fertility of sheep. The key point to solve this problem is to explore the regulation mechanism of estrus in sheep. Therefore, in this study, transcriptomic sequencing technology was used to identify differentially expressed mRNAs in the hypothalamus, pituitary and ovary of Small Tail Han sheep (year-round estrus) and tan sheep (seasonal estrus) among luteal, proestrus and estrus stages. There were 256,923,304,156 mRNAs being identified in the hypothalamus, pituitary and ovary, respectively. Functional analysis showed that the photosensor, leucine and isoleucine biosynthesis pathways were enriched significantly. It is speculated that photoperiod may initiate estrus by stimulating the corresponding pathways in hypothalamus. ODC1, PRLH, CRYBB2, SMAD5, OPN1SW, TPH1 are believed to be key genes involved in the estrogen process. In conclusion, this study expanded the database of indigenous sheep breeds, and also provided new candidate genes for future genetic and molecular studies on the seasonal estrus trait in sheep.
Collapse
|
216
|
Liu Z, Ren Y, Meng L, Li L, Beatson R, Deng J, Zhang T, Liu J, Han X. Epigenetic Signaling of Cancer Stem Cells During Inflammation. Front Cell Dev Biol 2021; 9:772211. [PMID: 34722553 PMCID: PMC8554148 DOI: 10.3389/fcell.2021.772211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant tumors pose a great challenge to human health, which has led to many studies increasingly elucidating the tumorigenic process. Cancer Stem Cells (CSCs) have profound impacts on tumorigenesis and development of drug resistance. Recently, there has been increased interest in the relationship between inflammation and CSCs but the mechanism underlying this relationship has not been fully elucidated. Inflammatory cytokines produced during chronic inflammation activate signaling pathways that regulate the generation of CSCs through epigenetic mechanisms. In this review, we focus on the effects of inflammation on cancer stem cells, particularly the role of signaling pathways such as NF-κB pathway, STAT3 pathway and Smad pathway involved in regulating epigenetic changes. We hope to provide a novel perspective for improving strategies for tumor treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
217
|
Du H, Tang J, Li X, Wang X, Wu L, Zhang R, Hu P, Yang Y. Siglec-15 Is an Immune Suppressor and Potential Target for Immunotherapy in the Pre-Metastatic Lymph Node of Colorectal Cancer. Front Cell Dev Biol 2021; 9:691937. [PMID: 34722496 PMCID: PMC8548766 DOI: 10.3389/fcell.2021.691937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/06/2021] [Indexed: 01/25/2023] Open
Abstract
Lymph node metastasis indicates a poor prognosis in colorectal cancer. To better understand the underlying mechanisms of lymph node metastasis, we analyzed transcriptome characteristics of the pre-metastatic lymph node, a putative microenvironment favorable for the seeding and proliferation of cancer cells. Thus, we tried to compare and elucidate the transcriptional and immune characteristics of sentinel lymph nodes (SNs) with matched non-sentinel lymph nodes (NSNs) in colorectal cancer patients. In this study, a total of 38 pairs of SNs and NSNs were collected, in which 26 pairs of non-metastatic lymph nodes were subjected to RNA-seq and bioinformatics analysis for the gene expression profiles. There were 16 differentially expressed genes between SNs and NSNs being identified, including 9 upregulated and 7 downregulated genes in SN. Gene Ontology (GO) classification analysis revealed that the differentially expressed genes were mainly involved in leukocyte differentiation, chemokine secretion, and immune system regulation. In the meantime, gene set enrichment analysis (GSEA) showed that immune-related signaling pathways, such as transforming growth factor beta (TGF-β) signaling and tumor necrosis factor alpha (TNF-α)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, were enriched in NSN, while cell proliferation–related signaling pathways were enriched in SN, including MYC signaling and G2M checkpoint signaling. We further identified SIGLEC15 as a top upregulated gene in SN. However, RNAscope assay showed that SIGLEC15 was not largely co-expressed with M2 macrophage marker CD163. We then selected eight pairs of lymph nodes for further cytological studies. Flow cytometry analysis revealed that Siglec-15 was expressed on all myeloid cell subsets. The relative expression of SEGLEC15 (SN/NSN) was correlated with the microsatellite instability (MSI) status in colorectal cancer patients. Further studies found that small interfering ribonucleic acid (siRNA)-mediated silencing of SLGLEC15 can enhance the anti-tumor function of T cells, as indicated by cytokine release analysis. In conclusion, we presented here a first report on the gene expression profiling of the pre-metastatic lymph node in colorectal cancer. The findings in this study suggest that SIGLEC15 plays an important role in SN immunosuppression. SEGLEC15 silencing could be a therapeutic strategy for restoring T cell function in tumor SNs.
Collapse
Affiliation(s)
- Hang Du
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jingling Tang
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiaoyun Li
- Department of Anorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xinjun Wang
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Liyun Wu
- Department of Research and Development, Sinorda Biotechnology Co., Ltd, Guizhou, China
| | - Ruyi Zhang
- Department of Anorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Pingsheng Hu
- Department of Research and Development, Sinorda Biotechnology Co., Ltd, Guizhou, China
| | - Yuan Yang
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
218
|
RGS5-TGFβ-Smad2/3 axis switches pro- to anti-apoptotic signaling in tumor-residing pericytes, assisting tumor growth. Cell Death Differ 2021; 28:3052-3076. [PMID: 34012071 PMCID: PMC8564526 DOI: 10.1038/s41418-021-00801-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Regulator-of-G-protein-signaling-5 (RGS5), a pro-apoptotic/anti-proliferative protein, is a signature molecule of tumor-associated pericytes, highly expressed in several cancers, and is associated with tumor growth and poor prognosis. Surprisingly, despite the negative influence of intrinsic RGS5 expression on pericyte survival, RGS5highpericytes accumulate in progressively growing tumors. However, responsible factor(s) and altered-pathway(s) are yet to report. RGS5 binds with Gαi/q and promotes pericyte apoptosis in vitro, subsequently blocking GPCR-downstream PI3K-AKT signaling leading to Bcl2 downregulation and promotion of PUMA-p53-Bax-mediated mitochondrial damage. However, within tumor microenvironment (TME), TGFβ appeared to limit the cytocidal action of RGS5 in tumor-residing RGS5highpericytes. We observed that in the presence of high RGS5 concentrations, TGFβ-TGFβR interactions in the tumor-associated pericytes lead to the promotion of pSmad2-RGS5 binding and nuclear trafficking of RGS5, which coordinately suppressed RGS5-Gαi/q and pSmad2/3-Smad4 pairing. The RGS5-TGFβ-pSmad2 axis thus mitigates both RGS5- and TGFβ-dependent cellular apoptosis, resulting in sustained pericyte survival/expansion within the TME by rescuing PI3K-AKT signaling and preventing mitochondrial damage and caspase activation. This study reports a novel mechanism by which TGFβ fortifies and promotes survival of tumor pericytes by switching pro- to anti-apoptotic RGS5 signaling in TME. Understanding this altered RGS5 signaling might prove beneficial in designing future cancer therapy.
Collapse
|
219
|
P75 neurotrophin receptor controls subventricular zone neural stem cell migration after stroke. Cell Tissue Res 2021; 387:415-431. [PMID: 34698916 PMCID: PMC8975773 DOI: 10.1007/s00441-021-03539-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR−/−) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR−/− NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR−/− NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR−/− NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.
Collapse
|
220
|
Yang H, Wan Z, Jin Y, Wang F, Zhang Y. SMAD2 regulates testicular development and testosterone synthesis in Hu sheep. Theriogenology 2021; 174:139-148. [PMID: 34454319 DOI: 10.1016/j.theriogenology.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 01/01/2023]
Abstract
The SMAD protein family plays crucial roles in reproduction as a downstream target genes of the TGFβ signaling pathway. Many studies have focused on the expression change exploration of SMADs during testicular development and investigation of SMAD2 in hormone synthesis regulation. However, little attention has been given to determining the regulatory mechanism of SMADs in sheep testes. In the present study, we first detected SMAD mRNA expression levels in three-month-old (3 M), six-month-old (6 M), nine-month-old (9 M) and two-year-old (2Y) sheep testes. Different SMADs showed various expression patterns. In addition, the subcellular localization of SMAD2 was also analyzed, and Sertoli cells (SCs), Leydig cells (LCs) and spermatogonia presented mainly positive staining. Protein and nucleic acid sequence alignment showed that the SMAD2 gene was extremely homologous between various species. SMAD2 interference RNA was transfected into sheep LCs to examine the cell proliferation and hormone levels. The testosterone level was significantly decreased, and cell proliferation efficiency presented the same trend (P < 0.05). Moreover, SMAD2 downregulation promoted cell apoptosis (P < 0.05) and changed the cell cycle. In total, our results revealed that downregulating the expression of SMAD2 can effectively inhibit testosterone levels by affecting cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Hua Yang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Wan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanshan Jin
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
221
|
Babyshkina N, Dronova T, Erdyneeva D, Gervas P, Cherdyntseva N. Role of TGF-β signaling in the mechanisms of tamoxifen resistance. Cytokine Growth Factor Rev 2021; 62:62-69. [PMID: 34635390 DOI: 10.1016/j.cytogfr.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.
Collapse
Affiliation(s)
- Nataliya Babyshkina
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation; Siberian State Medical University, Tomsk 634050, Russian Federation.
| | - Tatyana Dronova
- Department of Biology of Tumor Progression, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Daiana Erdyneeva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Polina Gervas
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Nadejda Cherdyntseva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| |
Collapse
|
222
|
Eritja N, Navaridas R, Ruiz-Mitjana A, Vidal-Sabanés M, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Endometrial PTEN Deficiency Leads to SMAD2/3 Nuclear Translocation. Cancers (Basel) 2021; 13:cancers13194990. [PMID: 34638474 PMCID: PMC8507901 DOI: 10.3390/cancers13194990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary PTEN is a protein highly altered in endometrial cancer. PTEN mutation or deficiency leads to the activation of other downstream proteins that are important to the development of cancers. In this study, we have identified the SMAD2/3 proteins as targets of PTEN deficiency. We have found that loss of PTEN in endometrial cells leads to SMAD2/3 activation. To investigate the role of SMAD2/3 activation downstream of PTEN deficiency, we have used endometrial cells lacking both PTEN and SMAD2/3 proteins. These cells display even more tumorigenic potential than cells lacking only PTEN. These results suggest that SMAD2/3 acts as an obstacle for cancer development triggered by PTEN loss. Abstract TGF-β has a dichotomous function, acting as tumor suppressor in premalignant cells but as a tumor promoter for cancerous cells. These contradictory functions of TGF-β are caused by different cellular contexts, including both intracellular and environmental determinants. The TGF-β/SMAD and the PI3K/PTEN/AKT signal transduction pathways have an important role in the regulation of epithelial cell homeostasis and perturbations in either of these two pathways’ contributions to endometrial carcinogenesis. We have previously demonstrated that both PTEN and SMAD2/3 display tumor-suppressive functions in the endometrium, and genetic ablation of either gene results in sustained activation of PI3K/AKT signaling that suppresses TGF-β-induced apoptosis and enhances cell proliferation of mouse endometrial cells. However, the molecular and cellular effects of PTEN deficiency on TGF-β/SMAD2/3 signaling remain controversial. Here, using an in vitro and in vivo model of endometrial carcinogenesis, we have demonstrated that loss of PTEN leads to a constitutive SMAD2/3 nuclear translocation. To ascertain the function of nuclear SMAD2/3 downstream of PTEN deficiency, we analyzed the effects of double deletion PTEN and SMAD2/3 in mouse endometrial organoids. Double PTEN/SMAD2/3 ablation results in a further increase of cell proliferation and enlarged endometrial organoids compared to those harboring single PTEN, suggesting that nuclear translocation of SMAD2/3 constrains tumorigenesis induced by PTEN deficiency.
Collapse
Affiliation(s)
- Núria Eritja
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Raúl Navaridas
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Anna Ruiz-Mitjana
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Maria Vidal-Sabanés
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Joaquim Egea
- Molecular Developmental Neurobiology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Medicina Experimental, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Department of Pathology, Hospital Universitari de Bellvitge, 08908 Barcelona, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Correspondence:
| |
Collapse
|
223
|
Çelen S, Öngöz Dede F, Avşar C. Role of Inhibitor SMADs in Stage 3 Grade B periodontitis before and after periodontal treatment. J Periodontal Res 2021; 57:41-51. [PMID: 34581437 DOI: 10.1111/jre.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to examine the levels of transforming growth factor-beta (TGF-β) and inhibitory-Smads (I-Smads) in saliva and gingival crevicular fluid (GCF) in patients with Stage 3 Grade B periodontitis before and after non-surgical periodontal treatment. BACKGROUND Recently, it has been stated that Smads play an active role in all conditions where TGF-β is involved, including periodontal inflammation. METHODS Twenty healthy participants (control) and 20 patients with Stage 3, Grade B periodontitis were recruited. GCF and saliva samples and clinical periodontal recordings were investigated at the baseline and 1 month after treatment. TGF-β and I-Smads (Smads 6 and 7) were determined by ELISA. RESULTS Salivary Smad6 and Smad7 levels were significantly lower in the periodontitis group than healthy controls (p < .05), while there was no difference in salivary TGF-β levels between groups at baseline (p > .05). The total amounts and concentrations of GCF TGF-β, Smad6, and Smad7 were significantly lower in the periodontitis group than healthy controls at baseline (p < .05), and then decreased in concentration levels with treatment (p < .001). Positive correlations were found between total amounts and concentrations of GCF TGF-β, Smad6, and Smad7 (p < .05). CONCLUSION Our findings revealed that Smad6 and Smad7 in GCF and saliva decreased in periodontitis and then increased after periodontal treatment. Our study suggests that I-Smads act in parallel with TGF-β in periodontal inflammation and may have a role in the development of periodontitis.
Collapse
Affiliation(s)
- Selman Çelen
- Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Figen Öngöz Dede
- Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Candeğer Avşar
- Faculty of Medicine, Department of Medical Biochemistry, İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
224
|
Zhang J, Zhang G, Miao Y. Identification, Molecular Characterization, and Tissue Expression Profiles of Three Smad Genes from Water Buffalo ( Bubalus bubalis). Genes (Basel) 2021; 12:genes12101536. [PMID: 34680931 PMCID: PMC8535384 DOI: 10.3390/genes12101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
Smads are involved in a variety of biological activities by mediating bone morphogenetic protein (BMP) signals. The full-length coding sequences (CDSs) of buffalo Smads 1, 4, and 5 were isolated and identified through RT-PCR in this study. Their lengths are 1398 bp, 1662 bp, and 1398 bp, respectively. In silico analysis showed that their transcriptional region structures, as well as their amino acid sequences, physicochemical characteristics, motifs, conserved domains, and three-dimensional structures of their encoded proteins are highly consistent with their counterparts in the species of Bovidae. The three Smad proteins are all hydrophilic without the signal peptides and transmembrane regions. Each of them has an MH1 domain and an MH2 domain. A nuclear localization sequence was found in the MH1 domain of buffalo Smads 1 and 5. Prediction showed that the function of the three Smads is mainly protein binding, and they can interact with BMPs and their receptors. The three genes were expressed in all 10 buffalo tissues assayed, and their expression in the mammary gland, gonad, and spleen was relatively high. The results here indicate that the three buffalo Smads may be involved in the transcriptional regulation of genes in a variety of tissues.
Collapse
|
225
|
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro TN, Macias MJ. Conformational landscape of multidomain SMAD proteins. Comput Struct Biotechnol J 2021; 19:5210-5224. [PMID: 34630939 PMCID: PMC8479633 DOI: 10.1016/j.csbj.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
SMAD transcription factors, the main effectors of the TGFβ (transforming growth factor β) network, have a mixed architecture of globular domains and flexible linkers. Such a complicated architecture precluded the description of their full-length (FL) structure for many years. In this study, we unravel the structures of SMAD4 and SMAD2 proteins through an integrative approach combining Small-angle X-ray scattering, Nuclear Magnetic Resonance spectroscopy, X-ray, and computational modeling. We show that both proteins populate ensembles of conformations, with the globular domains tethered by disordered and flexible linkers, which defines a new dimension of regulation. The flexibility of the linkers facilitates DNA and protein binding and modulates the protein structure. Yet, SMAD4FL is monomeric, whereas SMAD2FL is in different monomer-dimer-trimer states, driven by interactions of the MH2 domains. Dimers are present regardless of the SMAD2FL activation state and concentration. Finally, we propose that SMAD2FL dimers are key building blocks for the quaternary structures of SMAD complexes.
Collapse
Affiliation(s)
- Tiago Gomes
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria J. Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
226
|
Zhang Y, Liu L, Pillman KA, Hayball J, Su YW, Xian CJ. Differentially expressed miRNAs in bone after methotrexate treatment. J Cell Physiol 2021; 237:965-982. [PMID: 34514592 DOI: 10.1002/jcp.30583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that administration of antimetabolite methotrexate (MTX) caused a reduced trabecular bone volume and increased marrow adiposity (bone/fat switch), for which the underlying molecular mechanisms and recovery potential are unclear. Altered expression of microRNAs (miRNAs) has been shown to be associated with dysregulation of osteogenic and/or adipogenic differentiation by disrupting target gene expression. First, the current study confirmed the bone/fat switch following MTX treatment in precursor cell culture models in vitro. Then, using a rat intensive 5-once daily MTX treatment model, this study aimed to identify miRNAs associated with bone damage and recovery (in a time course over Days 3, 6, 9, and 14 after the first MTX treatment). RNA isolated from bone samples of treated and control rats were subjected to miRNA array and reverse transcription-polymerase chain reaction validation, which identified five upregulated miRNA candidates, namely, miR-155-5p, miR-154-5p, miR-344g, miR-6215, and miR-6315. Target genes of these miRNAs were predicted using TargetScan and miRDB. Then, the protein-protein network was established via STRING database, after which the miRNA-key messenger RNA (mRNA) network was constructed by Cytoscape. Functional annotation and pathway enrichment analyses for miR-6315 were performed by DAVID database. We found that TGF-β signaling was the most significantly enriched pathway and subsequent dual-luciferase assays suggested that Smad2 was the direct target of miR-6315. Our current study showed that miR-6315 might be a vital regulator involved in bone and marrow fat formation. Also, this study constructed a comprehensive miRNA-mRNA regulatory network, which may contribute to the pathogenesis/prognosis of MTX-associated bone loss and bone marrow adiposity.
Collapse
Affiliation(s)
- Yali Zhang
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Liang Liu
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, South Australia, Australia
| | - John Hayball
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cory J Xian
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
227
|
Zheng M, Erhardt S, Ai D, Wang J. Bmp Signaling Regulates Hand1 in a Dose-Dependent Manner during Heart Development. Int J Mol Sci 2021; 22:ijms22189835. [PMID: 34576009 PMCID: PMC8465227 DOI: 10.3390/ijms22189835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The bone morphogenetic protein (Bmp) signaling pathway and the basic helix–loop–helix (bHLH) transcription factor Hand1 are known key regulators of cardiac development. In this study, we investigated the Bmp signaling regulation of Hand1 during cardiac outflow tract (OFT) development. In Bmp2 and Bmp4loss-of-function embryos with varying levels of Bmp in the heart, Hand1 is sensitively decreased in response to the dose of Bmp expression. In contrast, Hand1 in the heart is dramatically increased in Bmp4 gain-of-function embryos. We further identified and characterized the Bmp/Smad regulatory elements in Hand1. Combined transfection assays and chromatin immunoprecipitation (ChIP) experiments indicated that Hand1 is directly activated and bound by Smads. In addition, we found that upon the treatment of Bmp2 and Bmp4, P19 cells induced Hand1 expression and favored cardiac differentiation. Together, our data indicated that the Bmp signaling pathway directly regulates Hand1 expression in a dose-dependent manner during heart development.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Di Ai
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
228
|
Xi Y, Li Y, Xu P, Li S, Liu Z, Tung HC, Cai X, Wang J, Huang H, Wang M, Xu M, Ren S, Li S, Zhang M, Lee YJ, Huang L, Yang D, He J, Huang Z, Xie W. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. SCIENCE ADVANCES 2021; 7:eabg9241. [PMID: 34516906 PMCID: PMC8442864 DOI: 10.1126/sciadv.abg9241] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Activation of the hepatic stellate cells (HSCs) is a key pathogenic event in liver fibrosis. Protein S-glutathionylation (PSSG) of cysteine residues is a distinct form of oxidative response that modifies protein structures and functions. Glutaredoxin-1 (GLRX) reverses PSSG by liberating glutathione (GSH). In this study, we showed that pirfenidone (PFD), an anti-lung fibrosis drug, inhibited HSC activation and liver fibrosis in a GLRX-dependent manner. Glrx depletion exacerbated liver fibrosis, and decreased GLRX and increased PSSG were observed in fibrotic mouse and human livers. In contrast, overexpression of GLRX inhibited PSSG and liver fibrosis. Mechanistically, the inhibition of HSC activation by GLRX may have been accounted for by deglutathionylation of Smad3, which inhibits Smad3 phosphorylation, leading to the suppression of fibrogenic gene expression. Our results have established GLRX as the therapeutic target of PFD and uncovered an important role of PSSG in liver fibrosis. GLRX/PSSG can be both a biomarker and a therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanping Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhengsheng Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hung-chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yong J. Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jinhan He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
229
|
Ammous Z, Rawlins LE, Jones H, Leslie JS, Wenger O, Scott E, Deline J, Herr T, Evans R, Scheid A, Kennedy J, Chioza BA, Ames RM, Cross HE, Puffenberger EG, Harries L, Baple EL, Crosby AH. A biallelic SNIP1 Amish founder variant causes a recognizable neurodevelopmental disorder. PLoS Genet 2021; 17:e1009803. [PMID: 34570759 PMCID: PMC8496849 DOI: 10.1371/journal.pgen.1009803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/07/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
SNIP1 (Smad nuclear interacting protein 1) is a widely expressed transcriptional suppressor of the TGF-β signal-transduction pathway which plays a key role in human spliceosome function. Here, we describe extensive genetic studies and clinical findings of a complex inherited neurodevelopmental disorder in 35 individuals associated with a SNIP1 NM_024700.4:c.1097A>G, p.(Glu366Gly) variant, present at high frequency in the Amish community. The cardinal clinical features of the condition include hypotonia, global developmental delay, intellectual disability, seizures, and a characteristic craniofacial appearance. Our gene transcript studies in affected individuals define altered gene expression profiles of a number of molecules with well-defined neurodevelopmental and neuropathological roles, potentially explaining clinical outcomes. Together these data confirm this SNIP1 gene variant as a cause of an autosomal recessive complex neurodevelopmental disorder and provide important insight into the molecular roles of SNIP1, which likely explain the cardinal clinical outcomes in affected individuals, defining potential therapeutic avenues for future research.
Collapse
Affiliation(s)
- Zineb Ammous
- The Community Health Clinic, Topeka, Indiana, United States of America
| | - Lettie E. Rawlins
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
| | - Hannah Jones
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Joseph S. Leslie
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Olivia Wenger
- New Leaf Center, Clinic for Special Children, Mount Eaton, Ohio, United States of America
| | - Ethan Scott
- New Leaf Center, Clinic for Special Children, Mount Eaton, Ohio, United States of America
| | - Jim Deline
- Center for Special Children, La Farge Medical Center, La Farge, Wisconsin, United States of America
| | - Tom Herr
- Center for Special Children, La Farge Medical Center, La Farge, Wisconsin, United States of America
| | - Rebecca Evans
- The Community Health Clinic, Topeka, Indiana, United States of America
| | - Angela Scheid
- The Community Health Clinic, Topeka, Indiana, United States of America
| | - Joanna Kennedy
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Barry A. Chioza
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Ryan M. Ames
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Harold E. Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | | | - Lorna Harries
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Emma L. Baple
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
| | - Andrew H. Crosby
- Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| |
Collapse
|
230
|
Systematic Analysis of Cytostatic TGF-Beta Response in Mesenchymal-Like Hepatocellular Carcinoma Cell Lines. J Gastrointest Cancer 2021; 52:1320-1335. [PMID: 34463913 DOI: 10.1007/s12029-021-00704-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most challenging malignancies, with high morbidity and mortality rates. The transforming growth factor-β (TGF-β) pathway plays a dual role in HCC, acting as both tumor suppressor and promoter. A thorough understanding of the mechanisms underlying its opposing functions is important. The growth suppressive effects of TGF-β remain largely unknown for mesenchymal HCC cells. Using a systematic approach, here we assess the cytostatic TGF-β responses and intracellular transduction of the canonical TGF-β/Smad signaling cascade in mesenchymal-like HCC cell lines. METHODS Nine mesenchymal-like HCC cell lines, including SNU182, SNU387, SNU398, SNU423, SNU449, SNU475, Mahlavu, Focus, and Sk-Hep1, were used in this study. The cytostatic effects of TGF-β were evaluated by cell cycle analysis, BrdU labeling, and SA-β-Gal assay. RT-PCR and western blot analysis were utilized to determine the mRNA and protein expression levels of TGF-β signaling components and cytostatic genes. Immunoperoxidase staining and luciferase reporter assays were performed to comprehend the transduction of the canonical TGF-β pathway. RESULTS We report that mesenchymal-like HCC cell lines are resistant to TGF-β-induced growth suppression. The vast majority of cell lines have an active canonical signaling from the cell membrane to the nucleus. Three cell lines had lost the expression of cytostatic effector genes. CONCLUSION Our findings reveal that cytostatic TGF-β responses have been selectively lost in mesenchymal-like HCC cell lines. Notably, their lack of responsiveness was not associated with a widespread impairment of TGF-β signaling cascade. These cell lines may serve as valuable models for studying the molecular mechanisms underlying the loss of TGF-β-mediated cytostasis during hepatocarcinogenesis.
Collapse
|
231
|
Petrillo S, Manco M, Altruda F, Fagoonee S, Tolosano E. Liver Sinusoidal Endothelial Cells at the Crossroad of Iron Overload and Liver Fibrosis. Antioxid Redox Signal 2021; 35:474-486. [PMID: 32689808 DOI: 10.1089/ars.2020.8168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Liver fibrosis results from different etiologies and represents one of the most serious health issues worldwide. Fibrosis is the outcome of chronic insults on the liver and is associated with several factors, including abnormal iron metabolism. Recent Advances: Multiple mechanisms underlying the profibrogenic role of iron have been proposed. The pivotal role of liver sinusoidal endothelial cells (LSECs) in iron-level regulation, as well as their morphological and molecular dedifferentiation occurring in liver fibrosis, has encouraged research on LSECs as prime regulators of very early fibrotic events. Importantly, normal differentiated LSECs may act as gatekeepers of fibrogenesis by maintaining the quiescence of hepatic stellate cells, while LSECs capillarization precedes the onset of liver fibrosis. Critical Issues: In the present review, the morphological and molecular alterations occurring in LSECs after liver injury are addressed in an attempt to highlight how vascular dysfunction promotes fibrogenesis. In particular, we discuss in depth how a vicious loop can be established in which iron dysregulation and LSEC dedifferentiation synergize to exacerbate and promote the progression of liver fibrosis. Future Directions: LSECs, due to their pivotal role in early liver fibrosis and iron homeostasis, show great promises as a therapeutic target. In particular, new strategies can be devised for restoring LSECs differentiation and thus their role as regulators of iron homeostasis, hence preventing the progression of liver fibrosis or, even better, promoting its regression. Antioxid. Redox Signal. 35, 474-486.
Collapse
Affiliation(s)
- Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
232
|
Gradari S, Herrera A, Tezanos P, Fontán-Lozano Á, Pons S, Trejo JL. The Role of Smad2 in Adult Neuroplasticity as Seen through Hippocampal-Dependent Spatial Learning/Memory and Neurogenesis. J Neurosci 2021; 41:6836-6849. [PMID: 34210778 PMCID: PMC8360684 DOI: 10.1523/jneurosci.2619-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
Adult neural plasticity is an important and intriguing phenomenon in the brain, and adult hippocampal neurogenesis is directly involved in modulating neural plasticity by mechanisms that are only partially understood. We have performed gain-of-function and loss-of-function experiments to study Smad2, a transcription factor selected from genes that are demethylated after exercise through the analysis of an array of physical activity-induced factors, and their corresponding gene expression, and an efficient inducer of plasticity. In these studies, changes in cell number and morphology were analyzed in the hippocampal dentate gyrus (cell proliferation and survival, including regional distribution, and structural maturation/differentiation, including arborization, dendritic spines, and neurotransmitter-specific vesicles) of sedentary male mice, after evaluation in a battery of behavioral tests. As a result, we reveal a role for Smad2 in the balance of proliferation versus maturation of differentiating immature cells (Smad2 silencing increases both the proliferation and survival of cycling cells in the dentate granule cell layer), and in the plasticity of both newborn and mature neurons in mice (by decreasing dendritic arborization and dendritic spine number). Moreover, Smad2 silencing specifically compromises spatial learning in mice (through impairments of spatial tasks acquisition both in long-term learning and working memory). These data suggest that Smad2 participates in adult neural plasticity by influencing the proliferation and maturation of dentate gyrus neurons.SIGNIFICANCE STATEMENT Smad2 is one of the main components of the transforming growth factor-β (TGF-β) pathway. The commitment of cell fate in the nervous system is tightly coordinated by SMAD2 signaling, as are further differentiation steps (e.g., dendrite and axon growth, myelination, and synapse formation). However, there are no studies that have directly evaluated the role of Smad2 gene in hippocampus of adult animals. Modulation of these parameters in the adult hippocampus can affect hippocampal-dependent behaviors, which may shed light on the mechanisms that regulate adult neurogenesis and behavior. We demonstrate here a role for Smad2 in the maturation of differentiating immature cells and in the plasticity of mature neurons. Moreover, Smad2 silencing specifically compromises the spatial learning abilities of adult male mice.
Collapse
Affiliation(s)
- Simona Gradari
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Antonio Herrera
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Patricia Tezanos
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Ángela Fontán-Lozano
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Department of Physiology, School of Biology, University of Sevilla, 41004 Sevilla, Spain
| | - Sebastián Pons
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - José Luis Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| |
Collapse
|
233
|
Chandra Jena B, Sarkar S, Rout L, Mandal M. The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Lett 2021; 520:222-232. [PMID: 34363903 DOI: 10.1016/j.canlet.2021.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, the Transforming growth factor- β (TGF-β) has been significantly considered as an effective and ubiquitous mediator of cell growth. The cytokine, TGF-β is being increasingly recognized as the most potent inducer of cancer cell initiation, differentiation, migration as well as progression through both the SMAD-dependent and independent pathways. There is growing evidence that supports the role of secretory cytokine TGF-β as a crucial mediator of tumor-stroma crosstalk. Contextually, the CAFs are the prominent component of tumor stroma that helps in tumor progression and onset of chemoresistance. The interplay between the CAFs and the tumor cells through the paracrine signals is facilitated by cytokine TGF-β to induce the malignant progression. Here in this review, we have dissected the most recent advancements in understanding the mechanisms of TGF-β induced CAF activation, their multiple origins, and most importantly their role in conferring chemoresistance. Considering the pivotal role of TGF-β in tumor perogression and associated stemness, it is one the proven clinical targets We have also included the clinical trials going on, targeting the TGF-β and CAFs crosstalk with the tumor cells. Ultimately, we have underscored some of the outstanding issues that must be deciphered with utmost importance to unravel the successful strategies of anti-cancer therapies.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Siddik Sarkar
- CSIR-Indian Institue of Chemical Biology, Translational Research Unit of Excellence, Kolkata, West Bengal, India
| | - Lipsa Rout
- Department of Chemistry, Institute of Technical Education and Research, Siksha'O'Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
234
|
Sabbadini F, Bertolini M, De Matteis S, Mangiameli D, Contarelli S, Pietrobono S, Melisi D. The Multifaceted Role of TGF-β in Gastrointestinal Tumors. Cancers (Basel) 2021; 13:cancers13163960. [PMID: 34439114 PMCID: PMC8391793 DOI: 10.3390/cancers13163960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The transforming growth factor β signaling pathway elicits a broad range of physiological re-sponses, and its misregulation has been related to cancer. The secreted cytokine TGFβ exerts a tumor-suppressive effect that counteracts malignant transformation. However, once tumor has developed, TGFβ can support tumor progression regulating epithelial to mesenchymal transition, invasion and metastasis, stimulating fibrosis, angiogenesis and immune suppression. Here we review the dichotomous role of TGF-β in the progression of gastrointestinal tumors, as well as its intricate crosstalk with other signaling pathways. We also discuss about the therapeutic strate-gies that are currently explored in clinical trials to counteract TGF-β functions. Abstract Transforming growth factor-beta (TGF-β) is a secreted cytokine that signals via serine/threonine kinase receptors and SMAD effectors. Although TGF-β acts as a tumor suppressor during the early stages of tumorigenesis, it supports tumor progression in advanced stages. Indeed, TGF-β can modulate the tumor microenvironment by modifying the extracellular matrix and by sustaining a paracrine interaction between neighboring cells. Due to its critical role in cancer development and progression, a wide range of molecules targeting the TGF-β signaling pathway are currently under active clinical development in different diseases. Here, we focused on the role of TGF-β in modulating different pathological processes with a particular emphasis on gastrointestinal tumors.
Collapse
Affiliation(s)
- Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena De Matteis
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Experimental Cancer Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
235
|
Xia Y, Yu E, Li Z, Zhang K, Tian J, Wang G, Xie J, Gong W. Both TGF-β1 and Smad4 regulate type I collagen expression in the muscle of grass carp, Ctenopharyngodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:907-917. [PMID: 33813689 DOI: 10.1007/s10695-021-00941-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Type I collagen is proven to make an important contribution to fish muscle quality. Our previous study has shown the Smad4-dependent regulation of type I collagen expression in the muscle of crisp grass carp fed with faba bean. However, the regulatory roles of TGF-β1 or TGF-β1/Smad4 on type I collagen remain unclear in ordinary grass carp fed with normal diets or in other fish species. To clarify this point, the effect of TGF-β1 and Smad4 over-expression and RNAi knockdown on type I collagen (COL1-α1 and COL1-α2) expression were tested in vitro (zebrafish ZF4 cells) and in vivo (grass carp) along with the TGF-β1/Smad4 co-expression and co-knockdown. The mRNA levels of TGF-β1, Smad4, and type I collagen were upregulated in the groups with over-expressed TGF-β1 and Smad4 and downregulated in the groups of TGF-β1 and Smad4 RNAi in comparison to controls in vitro (P < 0.05). Similarly, in the in vivo experiment, the mRNA abundance of TGF-β1, Smad4, and type I collagen of over-expression group was higher than the controls at 36 h (P < 0.05). Co-injection of TGF-β1/Smad4 over-expression and RNAi vectors generally showed the higher efficacy. This study revealed that TGF-β1 and Smad4 genes regulated type I collagen expression in grass carp muscle and zebrafish. These findings will provide references for the collagen regulation of other freshwater fishes.
Collapse
Affiliation(s)
- Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
236
|
Habuddha V, Suwannasing C, Buddawong A, Seenprachawong K, Duangchan T, Sombutkayasith C, Supokawej A, Weerachatyanukul W, Asuvapongpatana S. Characterization of Thrombospondin Type 1 Repeat in Haliotis diversicolor and Its Possible Role in Osteoinduction. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:641-652. [PMID: 34471969 DOI: 10.1007/s10126-021-10054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Thrombospondin repeats (TSR) are important peptide domains present in the sequences of many extracellular and transmembrane proteins with which a variety of ligands interact. In this study, we characterized HdTSR domains in the ADAMTS3 protein of Thai abalone, Haliotis diversicolor, based on the transcriptomic analysis of its mantle tissues. PCR amplification and localization studies demonstrated the existence of HdTSR transcript and protein in H. diversicolor tissues, particularly in both the inner and outer mantle epithelial folds. We, therefore, generated a short recombinant protein, termed HdTSR1/2, based on the existence of the WxxWxxW or WxxxxW motif (which binds to TGF-β, a known signaling in bone formation/repair) in HdTSR1 and HdTSR2 sequences and used it to test the osteoinduction function in the pre-osteoblastic cell line, MC3T3-E1. This recombinant protein demonstrated the ability to induce the differentiation of MC3T3-E1 cells by the concentration- and time-dependent upregulation of many known osteogenic markers, including RUNX2, COL1A1, OCN, and OPN. We also demonstrated the upregulation of the SMAD2 gene after cell treatment with HdTSR1/2 proteinindicating its possible interaction through TGF-β, which thus activates its downstream signaling cascade and triggers the biomineralization process in the differentiated osteoblastic cells. Together, HdTSR domains existed in an extracellular ADAMTS3 protein in the mantle epithelium of H. diversicolor and played a role in osteoinduction as similar to the other nacreous proteins, opening up its possibility to be developed as an inducing agent of bone repair.
Collapse
Affiliation(s)
- Valainipha Habuddha
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- School of Allied Health Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanyatip Suwannasing
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Aticha Buddawong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Khlong Nueng Pathumthani 12121, Rangsit Campus, Thailand
| | - Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | - Thitinat Duangchan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | | |
Collapse
|
237
|
Summers JA, Schaeffel F, Marcos S, Wu H, Tkatchenko AV. Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Exp Eye Res 2021; 209:108693. [PMID: 34228967 PMCID: PMC11697408 DOI: 10.1016/j.exer.2021.108693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Susana Marcos
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hao Wu
- Department of Ophthalmology, Columbia University, New York, USA
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
238
|
Abstract
Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
239
|
Dong S, Tian Q, Zhu T, Wang K, Lei G, Liu Y, Xiong H, Shen L, Wang M, Zhao R, Wu H, Li B, Zhang Q, Yao Y, Guo H, Xia K, Xia L, Hu Z. SLC39A5 dysfunction impairs extracellular matrix synthesis in high myopia pathogenesis. J Cell Mol Med 2021; 25:8432-8441. [PMID: 34302427 PMCID: PMC8419198 DOI: 10.1111/jcmm.16803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
High myopia is one of the leading causes of visual impairment worldwide with high heritability. We have previously identified the genetic contribution of SLC39A5 to nonsyndromic high myopia and demonstrated that disease‐related mutations of SLC39A5 dysregulate the TGF‐β pathway. In this study, the mechanisms underlying SLC39A5 involvement in the pathogenesis of high myopia are determined. We observed the morphogenesis and migration abnormalities of the SLC39A5 knockout (KO) human embryonic kidney cells (HEK293) and found a significant injury of ECM constituents. RNA‐seq and qRT‐PCR revealed the transcription decrease in COL1A1, COL2A1, COL4A1, FN1 and LAMA1 in the KO cells. Further, we demonstrated that TGF‐β signalling, the regulator of ECM, was inhibited in SLC39A5 depletion situation, wherein the activation of receptor Smads (R‐Smads) via phosphorylation was greatly blocked. SLC39A5 re‐expression reversed the phenotype of TGF‐β signalling and ECM synthesis in the KO cells. The fact that TGF‐β signalling was zinc‐regulated and that SLC39A5 was identified as a zinc transporter urged us to check the involvement of intracellular zinc in TGF‐β signalling impairment. Finally, we determined that insufficient zinc chelation destabilized Smad proteins, which naturally inhibited TGF‐β signalling. Overall, the SLC39A5 depletion–induced zinc deficiency destabilized Smad proteins, which inhibited the TGF‐β signalling and downstream ECM synthesis, thus contributing to the pathogenesis of high myopia. This discovery provides a deep insight into myopic development.
Collapse
Affiliation(s)
- Shanshan Dong
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qi Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Zhu
- Department of Critical Care Medicine, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Kangli Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ganting Lei
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanling Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haofeng Xiong
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Rongjuan Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huidan Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yujun Yao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Molecular Precisional Medicine, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
240
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
241
|
BMP-9 downregulates StAR expression and progesterone production by activating both SMAD1/5/8 and SMAD2/3 signaling pathways in human granulosa-lutein cells obtained from gonadotropins induced ovarian cycles. Cell Signal 2021; 86:110089. [PMID: 34265413 DOI: 10.1016/j.cellsig.2021.110089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) are expressed in different cell types of the human ovarian follicle and play important roles in the regulation of ovarian function. BMP-9, also known as growth differentiation factor-2 (GDF-2), belongs to the transforming growth factor-beta (TGF-β) superfamily. BMP-9 is mainly synthesized in the liver and secreted into the blood which allows it to regulate various physiological and pathological functions. To date, the expression of BMP-9 in the human ovary and its function in human granulosa cells remains unknown. In the present study, we detect the protein expression of BMP-9 in the human follicular fluid. Using the primary culture of human granulosa-lutein (hGL) cells obtained from patients undergoing in vitro fertilization as a cell model, we show that treatment with BMP-9 downregulates steroidogenic acute regulatory protein (StAR) expression and suppresses progesterone (P4) production. The expression levels of the P450 side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) are not affected by BMP-9 treatment. Mechanistically, treatment of hGL cells with BMP-9 activates both SMAD1/5/8 and SMAD2/3 signaling pathways. Blocking the activations of SMAD1/5/8 and SMAD2/3 by pharmacological inhibitors or knockdown of SMAD4 attenuates the inhibitory effects of BMP-9 on StAR expression and P4 production. This study reveals a novel function of BMP-9 in the regulation of ovarian steroidogenesis.
Collapse
|
242
|
Grasso M, Caruso G, Godos J, Bonaccorso A, Carbone C, Castellano S, Currenti W, Grosso G, Musumeci T, Caraci F. Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants (Basel) 2021; 10:1075. [PMID: 34356309 PMCID: PMC8301008 DOI: 10.3390/antiox10071075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural compounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through multiple molecular mechanisms. A deficit of transforming growth factor-β1 (TGF-β1) pathway is an early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders, from depression to AD. In the present review, we provide evidence that different nutraceuticals, such as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and carnosine, can target TGF-β1 signaling and increase TGF-β1 production in the central nervous system as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism between nutraceuticals targeting the TGF-β1 pathway and current approved drugs might represent a novel pharmacological approach for reverting cognitive deficits in AD patients.
Collapse
Affiliation(s)
- Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
243
|
Zhang YL, Liu L, Peymanfar Y, Anderson P, Xian CJ. Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22137210. [PMID: 34281266 PMCID: PMC8269269 DOI: 10.3390/ijms22137210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells which can differentiate into chondrocytes, osteoblasts, and fat cells. Under pathological stress, reduced bone formation in favour of fat formation in the bone marrow has been observed through a switch in the differentiation of BMSCs. The bone/fat switch causes bone growth defects and disordered bone metabolism in bone marrow, for which the mechanisms remain unclear, and treatments are lacking. Studies suggest that small non-coding RNAs (microRNAs) could participate in regulating BMSC differentiation by disrupting the post-transcription of target genes, leading to bone/fat formation changes. This review presents an emerging concept of microRNA regulation in the bone/fat formation switch in bone marrow, the evidence for which is assembled mainly from in vivo and in vitro human or animal models. Characterization of changes to microRNAs reveals novel networks that mediate signalling and factors in regulating bone/fat switch and homeostasis. Recent advances in our understanding of microRNAs in their control in BMSC differentiation have provided valuable insights into underlying mechanisms and may have significant potential in development of new therapeutics.
Collapse
|
244
|
Ye Z, Hu Y. TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 2021; 48:132. [PMID: 34013369 PMCID: PMC8136122 DOI: 10.3892/ijmm.2021.4965] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a worldwide disease characterized by the chronic and irreversible decline of lung function. Currently, there is no drug to successfully treat the disease except for lung transplantation. Numerous studies have been devoted to the study of the fibrotic process of IPF and findings showed that transforming growth factor‑β1 (TGF‑β1) plays a central role in the development of IPF. TGF‑β1 promotes the fibrotic process of IPF through various signaling pathways, including the Smad, MAPK, and ERK signaling pathways. There are intersections between these signaling pathways, which provide new targets for researchers to study new drugs. In addition, TGF‑β1 can affect the fibrosis process of IPF by affecting oxidative stress, epigenetics and other aspects. Most of the processes involved in TGF‑β1 promote IPF, but TGF‑β1 can also inhibit it. This review discusses the role of TGF‑β1 in IPF.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
245
|
Wang W, Ying Y, Xie H, Li J, Ma X, He L, Xu M, Chen S, Shen H, Zheng X, Liu B, Wang X, Xie L. miR-665 inhibits epithelial-to-mesenchymal transition in bladder cancer via the SMAD3/SNAIL axis. Cell Cycle 2021; 20:1242-1252. [PMID: 34196584 DOI: 10.1080/15384101.2021.1929677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging research indicates that miRNAs can regulate cancer progression by influencing molecular pathways. Here, we studied miR-665, part of the DLK1-DIO3 miRNA cluster, which is downregulated by upstream methylation in bladder cancer. MiR-665 overexpression significantly downregulated the expression of SMAD3, phospho-SMAD3, and SNAIL, reversed epithelial-mesenchymal transition progression, and inhibited the migration of bladder cancer cells. To predict potential targets of miR-665, we used online databases and subsequently determined that miR-665 binds directly to the 3' untranslated region of SMAD3. Moreover, silencing of SMAD3 with small interfering RNAs phenocopied the effect of miR-665 overexpression, and overexpression of SMAD3 restored miR-665-overexpression-induced metastasis. This study revealed the role of the miR-665/SMAD3/SNAIL axis in bladder cancer, as well as the potential of miR-665 as a promising therapeutic target.
Collapse
Affiliation(s)
- Weiyu Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yufan Ying
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haiyun Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiangfeng Li
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xueyou Ma
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liujia He
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Mingjie Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shiming Chen
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haixiang Shen
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ben Liu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
246
|
Alkobtawi M, Pla P, Monsoro-Burq AH. BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. Cell Rep 2021; 35:109289. [PMID: 34161771 DOI: 10.1016/j.celrep.2021.109289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal coordination of multiple morphogens is essential for embryonic patterning yet poorly understood. During neural crest (NC) formation, dynamic bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and WNT signals cooperate by acting on mesoderm and ectoderm. Here, we show that Fhl3, a scaffold LIM domain protein, modulates BMP gradient interpretation during NC induction. During gastrulation, low BMP signaling neuralizes the neural border (NB) ectoderm, while Fhl3 enhances Smad1 intracellular response in underlying paraxial mesoderm, triggering the high WNT8 signals needed to pattern the NB. During neurulation, fhl3 activation in NC ectoderm promotes simultaneous high BMP and BMP-dependent WNT activity required for specification. Mechanistically, Fhl3 interacts with Smad1 and promotes Smad1 binding to wnt8 promoter in a BMP-dependent manner. Consequently, differential Fhl3 expression in adjacent cells ensures a finely tuned coordination of BMP and WNT signaling at several stages of NC development, starting by positioning the NC-inducing mesoderm center under competent NB ectoderm.
Collapse
Affiliation(s)
- Mansour Alkobtawi
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, rue Henri Becquerel, F-91405 Orsay, France
| | - Patrick Pla
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, rue Henri Becquerel, F-91405 Orsay, France
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, rue Henri Becquerel, F-91405 Orsay, France; Institut Universitaire de France, F-75005 Paris, France.
| |
Collapse
|
247
|
Identification, molecular evolution, and expression analysis of the transcription factor Smad gene family in lamprey. Mol Immunol 2021; 136:128-137. [PMID: 34139553 DOI: 10.1016/j.molimm.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Transcription factor small mothers against decapentaplegic (Smad) family SMAD proteins are the essential intracellular signal mediators and transcription factors for transforming growth factor β (TGF-β) signal transduction pathway, which usually exert pleiotropic actions on cell physiology, including immune response, cell migration and differentiation. In this study, the Smad family was identified in the most primitive vertebrates through the investigation of the transcriptome data of lampreys. The topology of phylogenetic tree showed that the four Smads (Smad1, Smad3, Smad4 and Smad6) in lampreys were subdivided into four different groups. Meanwhile, homology analysis indicated that most Smads were conserved with typical Mad Homology (MH) 1 and MH2 domains. In addition, Lethenteron reissneri Smads (Lr-Smads) adopted general Smads folding structure and had high tertiary structural similarity with human Smads (H-Smads). Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey Smads presented dramatic differences compared with jawed vertebrates. Importantly, quantitative real-time PCR analysis demonstrated that Smads were widely expressed in lamprey, and the expression level of Lr-Smads mRNA was up-regulated with different pathogenic stimulations. Moreover, depending on the weighted gene co-expression network analysis (WGCNA), four Lr-Smads were identified as two meaningful modules (green and gray). The functional analysis of these two modules showed that they might have a correlation with ployI:C. And these genes presented strong positive correlation during the immune response from the results of Pearson's correlation analysis. In conclusion, our results would not only enrich the information of Smad family in jawless vertebrates, but also lay the foundation for immunity in further study.
Collapse
|
248
|
Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Nat Commun 2021; 12:3386. [PMID: 34099644 PMCID: PMC8184938 DOI: 10.1038/s41467-021-23571-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
During early pregnancy in the mouse, nidatory estrogen (E2) stimulates endometrial receptivity by activating a network of signaling pathways that is not yet fully characterized. Here, we report that bone morphogenetic proteins (BMPs) control endometrial receptivity via a conserved activin receptor type 2 A (ACVR2A) and SMAD1/5 signaling pathway. Mice were generated to contain single or double conditional deletion of SMAD1/5 and ACVR2A/ACVR2B receptors using progesterone receptor (PR)-cre. Female mice with SMAD1/5 deletion display endometrial defects that result in the development of cystic endometrial glands, a hyperproliferative endometrial epithelium during the window of implantation, and impaired apicobasal transformation that prevents embryo implantation and leads to infertility. Analysis of Acvr2a-PRcre and Acvr2b-PRcre pregnant mice determined that BMP signaling occurs via ACVR2A and that ACVR2B is dispensable during embryo implantation. Therefore, BMPs signal through a conserved endometrial ACVR2A/SMAD1/5 pathway that promotes endometrial receptivity during embryo implantation. Building on the known role of BMP signalling in implantation, the authors define the role of uterine ACVR2A and ALK3 (via SMAD1/5) in vivo in regulating murine endometrial receptivity and embryo implantation.
Collapse
|
249
|
Lin J, Luo Z, Liu S, Chen Q, Liu S, Chen J. Long non-coding RNA H19 promotes myoblast fibrogenesis via regulating the miR-20a-5p-Tgfbr2 axis. Clin Exp Pharmacol Physiol 2021; 48:921-931. [PMID: 33615521 DOI: 10.1111/1440-1681.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has indicated long non-coding RNAs (lncRNAs) play important roles in diverse biological processes, including fibrosis. Here, we report that lncRNA H19 is able to promote skeletal muscle fibrosis. lnc-H19 was identified to be highly expressed in skeletal muscle fibrosis in vivo and in vitro; while lnc-H19 knockdown attenuated fibrosis in vitro. The knockdown of lnc-H19 was proved to inhibit the activation of the TGFβ/Smad pathway in C2C12 myoblasts by sponging miR-20a-5p to regulate Tgfbr2 expression through the competing endogenous RNA function. Our study elucidates the roles of the lnc-H19-miR-20a-5p-Tgfbr2 axis in regulating the TGFβ/Smad pathway of myoblast fibrogenesis, which might provide a promising therapeutic target for skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingyan Chen
- Biology Department, Boston University, Boston, MA, USA
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
250
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|