201
|
Wang H, Zhao S, Gao Y, Yang J. Characterization of Dof Transcription Factors and Their Responses to Osmotic Stress in Poplar (Populus trichocarpa). PLoS One 2017; 12:e0170210. [PMID: 28095469 PMCID: PMC5241002 DOI: 10.1371/journal.pone.0170210] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022] Open
Abstract
The DNA-binding One Zinc Finger (Dof) genes are ubiquitous in many plant species and are especial transcription regulators that participate in plant growth, development and various procedures, including biotic and abiotic stress reactions. In this study, we identified 41 PtrDof members from Populus trichocarpa genomes and classified them into four groups. The conserved motifs and gene structures of some PtrDof genes belonging to the same subgroup were almost the same. The 41 PtrDof genes were dispersed on 18 of the 19 Populus chromosomes. Many key stress- or phytohormone-related cis-elements were discovered in the PtrDof gene promoter regions. Consequently, we undertook expression profiling of the PtrDof genes in leaves and roots in response to osmotic stress and abscisic acid. A total of seven genes (PtrDof14, 16, 25, 27, 28, 37 and 39) in the Populus Dof gene family were consistently upregulated at point in all time in the leaves and roots under osmotic and abscisic acid (ABA) stress. We observed that 12 PtrDof genes could be targeted by 15 miRNAs. Moreover, we mapped the cleavage site in PtrDof30 using the 5’RLM-RACE. The results showed that PtrDofs may have a role in resistance to abiotic stress in Populus trichocarpa.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yuchi Gao
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
202
|
Showalter AM, Keppler BD, Liu X, Lichtenberg J, Welch LR. Bioinformatic Identification and Analysis of Hydroxyproline-Rich Glycoproteins in Populus trichocarpa. BMC PLANT BIOLOGY 2016; 16:229. [PMID: 27769192 PMCID: PMC5073881 DOI: 10.1186/s12870-016-0912-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/29/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Hydroxyproline-rich glycoproteins (HRGPs) constitute a plant cell wall protein superfamily that functions in diverse aspects of growth and development. This superfamily contains three members: the highly glycosylated arabinogalactan-proteins (AGPs), the moderately glycosylated extensins (EXTs), and the lightly glycosylated proline-rich proteins (PRPs). Chimeric and hybrid HRGPs, however, also exist. A bioinformatics approach is employed here to identify and classify AGPs, EXTs, PRPs, chimeric HRGPs, and hybrid HRGPs from the proteins predicted by the completed genome sequence of poplar (Populus trichocarpa). This bioinformatics approach is based on searching for biased amino acid compositions and for particular protein motifs associated with known HRGPs with a newly revised and improved BIO OHIO 2.0 program. Proteins detected by the program are subsequently analyzed to identify the following: 1) repeating amino acid sequences, 2) signal peptide sequences, 3) glycosylphosphatidylinositol lipid anchor addition sequences, and 4) similar HRGPs using the Basic Local Alignment Search Tool (BLAST). RESULTS The program was used to identify and classify 271 HRGPs from poplar including 162 AGPs, 60 EXTs, and 49 PRPs, which are each divided into various classes. This is in contrast to a previous analysis of the Arabidopsis proteome which identified 162 HRGPs consisting of 85 AGPs, 59 EXTs, and 18 PRPs. Poplar was observed to have fewer classical EXTs, to have more fasciclin-like AGPs, plastocyanin AGPs and AG peptides, and to contain a novel class of PRPs referred to as the proline-rich peptides. CONCLUSIONS The newly revised and improved BIO OHIO 2.0 bioinformatics program was used to identify and classify the inventory of HRGPs in poplar in order to facilitate and guide basic and applied research on plant cell walls. The newly identified poplar HRGPs can now be examined to determine their respective structural and functional roles, including their possible applications in the areas plant biofuel and natural products for medicinal or industrial uses. Additionally, other plants whose genomes are sequenced can now be examined in a similar way using this bioinformatics program which will provide insight to the evolution of the HRGP family in the plant kingdom.
Collapse
Affiliation(s)
- Allan M. Showalter
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, 504 Porter Hall, Athens, OH 45701-2979 USA
| | - Brian D. Keppler
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, 504 Porter Hall, Athens, OH 45701-2979 USA
| | - Xiao Liu
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, 504 Porter Hall, Athens, OH 45701-2979 USA
| | - Jens Lichtenberg
- Russ College of Engineering and Technology, Center for Intelligent, Distributed and Dependable Systems, Ohio University, Athens, OH 45701-2979 USA
| | - Lonnie R. Welch
- Russ College of Engineering and Technology, Center for Intelligent, Distributed and Dependable Systems, Ohio University, Athens, OH 45701-2979 USA
| |
Collapse
|
203
|
Cho JS, Nguyen VP, Jeon HW, Kim MH, Eom SH, Lim YJ, Kim WC, Park EJ, Choi YI, Ko JH. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. TREE PHYSIOLOGY 2016; 36:1162-76. [PMID: 27259636 DOI: 10.1093/treephys/tpw046] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/26/2016] [Indexed: 05/12/2023]
Abstract
Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120 function as transcriptional activators of anthocyanin accumulation in both Arabidopsis and poplar.
Collapse
Affiliation(s)
- Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Van Phap Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Hyung-Woo Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| |
Collapse
|
204
|
Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission. Sci Rep 2016; 6:32006. [PMID: 27573926 PMCID: PMC5004182 DOI: 10.1038/srep32006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022] Open
Abstract
Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation.
Collapse
|
205
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
206
|
Li Z, Peng R, Tian Y, Han H, Xu J, Yao Q. Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum. PLANT & CELL PHYSIOLOGY 2016; 57:1657-77. [PMID: 27279646 DOI: 10.1093/pcp/pcw091] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/29/2016] [Indexed: 05/21/2023]
Abstract
MYB proteins constitute one of the largest transcription factor families in the plant kingdom, members of which perform a variety of functions in plant biological processes. However, there are only very limited reports on the characterization of MYB transcription factors in tomato (Solanum lycopersicum). In our study, a total of 127 MYB genes have been identified in the tomato genome. A complete overview of these MYB genes is presented, including the phylogeny, gene structures, protein motifs, chromosome locations and expression patterns. The 127 SlMYB proteins could be classified into 18 subgroups based on domain similarity and phylogenetic topology. Phylogenetic analysis of SlMYBs along with MYBs from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) indicated 14 subfamilies. Conserved motifs outside the MYB domain may reflect their functional conservation. The identified tomato MYB genes were distributed on 12 chromosomes at various densities but mainly in chromosomes 6 and 10 (12.6% and 11.8%, respectively). Genome-wide segmental and tandem duplications were also found, which may contribute to the expansion of SlMYB genes. RNA-sequencing and microarray data revealed tissue-specific and stress-responsive expression patterns of SlMYB genes. The expression profiles of SlMYB genes in response to salicylic acid (SA) and jasmonic acid methyl ester (MeJA) were also investigated by real-time PCR. Moreover, ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motifs were found in 24 SlMYB proteins. Collectively, our comprehensive analysis of SlMYB genes will facilitate future functional studies of the tomato MYB gene family and probably other Solanaceae plants.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| |
Collapse
|
207
|
Li Y, Shan X, Gao R, Yang S, Wang S, Gao X, Wang L. Two IIIf Clade-bHLHs from Freesia hybrida Play Divergent Roles in Flavonoid Biosynthesis and Trichome Formation when Ectopically Expressed in Arabidopsis. Sci Rep 2016; 6:30514. [PMID: 27465838 PMCID: PMC4964595 DOI: 10.1038/srep30514] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/06/2016] [Indexed: 11/09/2022] Open
Abstract
The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
208
|
Abstract
Background Intronless genes are a significant characteristic of prokaryotes. Systematic identification and annotation are primary and crucial steps for determining the functions of intronless genes and understanding their occurrence in eukaryotes. Description In this paper, we describe the construction of the Intronless Genes Database in Dicots (IGDD; available at http://bio.njfu.edu.cn/igdd/), which contains data for five well-annotated plants including Arabidopsis thaliana, Carica papaya, Populus trichocarpa, Salix suchowensis and Vitis vinifera. Using highly visual settings, IGDD displays the structural and functional annotations, the homolog groups, the syntenic relationships, the expression patterns, and the statistical characteristics of intronless genes. In addition, useful tools such as an advanced search and local BLAST are available through a user-friendly and intuitive web interface. Conclusion In conclusion, the IGDD provides a comprehensive and up-to-date platform for researchers to assist the exploration of intronless genes in dicot plants.
Collapse
|
209
|
Wong DCJ, Schlechter R, Vannozzi A, Höll J, Hmmam I, Bogs J, Tornielli GB, Castellarin SD, Matus JT. A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Res 2016; 23:451-466. [PMID: 27407139 PMCID: PMC5066171 DOI: 10.1093/dnares/dsw028] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
R2R3-MYB transcription factors (TFs) belong to a large and functionally diverse protein superfamily in plants. In this study, we explore the evolution and function of this family in grapevine (Vitis vinifera L.), a high-value fruit crop. We identified and manually curated 134 genes using RNA-Seq data, and named them systematically according to the Super-Nomenclature Committee. We identified novel genes, splicing variants and grapevine/woody-specific duplicated subgroups, suggesting possible neo- and sub-functionalization events. Regulatory network analysis ascribed biological functions to uncharacterized genes and validated those of known genes (e.g. secondary cell wall biogenesis and flavonoid biosynthesis). A comprehensive analysis of different MYB binding motifs in the promoters of co-expressed genes predicted grape R2R3-MYB binding preferences and supported evidence for putative downstream targets. Enrichment of cis-regulatory motifs for diverse TFs reinforced the notion of transcriptional coordination and interaction between MYBs and other regulators. Analysis of the network of Subgroup 2 showed that the resveratrol-related VviMYB14 and VviMYB15 share common co-expressed STILBENE SYNTHASE genes with the uncharacterized VviMYB13. These regulators have distinct expression patterns within organs and in response to biotic and abiotic stresses, suggesting a pivotal role of VviMYB13 in regulating stilbene accumulation in vegetative tissues and under biotic stress conditions.
Collapse
Affiliation(s)
| | | | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro, Padova, Italy
| | - Janine Höll
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ibrahim Hmmam
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro, Padova, Italy
| | - Jochen Bogs
- Dienstleistungszentrum Laendlicher Raum Rheinpfalz, Breitenweg 71, Viticulture and Enology Group, 67435 Neustadt/W, Germany.,Fachhochschule Bingen, Berlinstr. 109, 55411 Bingen am Rhein, Germany
| | | | | | - José Tomás Matus
- Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| |
Collapse
|
210
|
Saha G, Park JI, Ahmed NU, Kayum MA, Kang KK, Nou IS. Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:200-15. [PMID: 27038155 DOI: 10.1016/j.plaphy.2016.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 05/27/2023]
Abstract
MYB proteins comprise a large family of plant transcription factors that play regulatory roles in different biological processes such as plant development, metabolism, and defense responses. To gain insight into this gene superfamily and to elucidate its roles in stress resistance, we performed a comprehensive genome-wide identification, characterization, and expression analysis of MYB genes in Chinese cabbage (Brassica rapa ssp. pekinensis). We identified 475 Chinese cabbage MYB genes, among which most were from R2R3-MYB (256 genes) and MYB-related (202) subfamilies. Analysis of sequence characteristics, phylogenetic classification, and protein motif structures confirmed the existence of several categories (1R, 2R, 3R, 4R, and 5R) of Chinese cabbage MYB genes, which is comparable with MYB genes of other crops. An extensive in silico functional analysis, based on established functional properties of MYB genes from different crop species, revealed 11 and four functional clades within the Chinese cabbage R2R3-MYB and MYB-related subfamilies, respectively. In this study, we reported a MYB-like group within the MYB-related subfamily contains 77 MYB genes. Expression analysis using low temperature-treated whole-genome microarray data revealed variable transcript abundance of 1R/2R/3R/4R/5R-MYB genes in 11 clusters between two inbred lines of Chinese cabbage, Chiifu and Kenshin, which differ in cold tolerance. In further validation tests, we used qRT-PCR to examine the cold-responsive expression patterns of 27 BrMYB genes; surprisingly, the MYB-related genes were induced more highly than the R2R3-MYB genes. In addition, we identified 10 genes with corresponsive expression patterns from a set of salt-, drought-, ABA-, JA-, and SA-induced R2R3-MYB genes. We identified 11 R2R3-MYBs functioning in resistance against biotic stress, including 10 against Fusarium oxysporum f.sp. conglutinans and one against Pectobacterium carotovoram subsp. caratovorum. Furthermore, based on organ-specific expression data, we identified nine R2R3-MYBs that were constitutively expressed in male reproductive tissue, which may provide an important key for studying male sterility in Chinese cabbage. The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of MYB genes in stress resistance in addition to their growth regulatory functions, ultimately providing the basis for functional characterization and exploitation of the candidate MYB genes for genetic engineering of Chinese cabbage.
Collapse
Affiliation(s)
- Gopal Saha
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, South Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, South Korea
| | - Nasar Uddin Ahmed
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, South Korea
| | - Kwon-Kyoo Kang
- Department of Horticulture, Hankyong National University, Ansung, Kyonggi-do, 456-749, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, South Korea.
| |
Collapse
|
211
|
Xie J, Tian J, Du Q, Chen J, Li Y, Yang X, Li B, Zhang D. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3325-38. [PMID: 27091876 DOI: 10.1093/jxb/erw151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits.
Collapse
Affiliation(s)
- Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Department of Forestry, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
212
|
Li X, Xue C, Li J, Qiao X, Li L, Yu L, Huang Y, Wu J. Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (Pyrus bretschneideri). PLANT & CELL PHYSIOLOGY 2016; 57:824-47. [PMID: 26872835 DOI: 10.1093/pcp/pcw029] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
The MYB superfamily is large and functionally diverse in plants. To date, MYB family genes have not yet been identified in Chinese white pear (Pyrus bretschneideri), and their functions remain unclear. In this study, we identified 231 genes as candidate MYB genes and divided them into four subfamilies. The R2R3-MYB (PbrMYB) family shared an R2R3 domain with 104 amino acid residues, including five conserved tryptophan residues. The Pbr MYB family was divided into 37 functional subgroups including 33 subgroups which contained both MYB genes of Rosaceae plants and AtMYB genes, and four subgroups which included only Rosaceae MYB genes or AtMYB genes. PbrMYB genes with similar functions clustered into the same subgroup, indicating functional conservation. We also found that whole-genome duplication (WGD) and dispersed duplications played critical roles in the expansion of the MYB family. The 87 Pbr MYB duplicated gene pairs dated back to the two WGD events. Purifying selection was the primary force driving Pbr MYB gene evolution. The 15 gene pairs presented 1-7 codon sites under positive selection. A total of 147 expressed genes were identified from RNA-sequencing data of fruit, and six Pbr MYB members in subgroup C1 were identified as important candidate genes in the regulation of lignin synthesis by quantitative real-time PCR analysis. Further correlation analysis revealed that six PbrMYBs were significantly correlated with five structural gene families (F5H, HCT, CCR, POD and C3'H) in the lignin pathway. The phylogenetic, evolution and expression analyses of the MYB gene family in Chinese white pear establish a solid foundation for future comprehensive functional analysis of Pbr MYB genes.
Collapse
Affiliation(s)
- Xiaolong Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Li'ang Yu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Huang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
213
|
Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii. Sci Rep 2016; 6:22980. [PMID: 27009386 PMCID: PMC4806351 DOI: 10.1038/srep22980] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/29/2016] [Indexed: 11/09/2022] Open
Abstract
The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement.
Collapse
|
214
|
Peng X, Liu H, Wang D, Shen S. Genome-wide identification of the Jatropha curcas MYB family and functional analysis of the abiotic stress responsive gene JcMYB2. BMC Genomics 2016; 17:251. [PMID: 27004683 PMCID: PMC4804483 DOI: 10.1186/s12864-016-2576-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The MYB family is one of the most abundant transcription factor families in plants. MYB proteins are involved in plant development, abiotic stress tolerance, hormone signal transduction and disease resistance. Here we perform genome-wide identification of MYB family transcription factors in an energy plant J. curcas, including determining family composition, phylogenetic evolution and functional prediction analysis. In addition, we further elucidate the function of the JcMYB2 gene. METHODS The phylogenetic trees were constructed by using the neighbor-joining method in MEGA 5.2. The biological functions of some JcMYBs were predicted according to orthology. The full length cDNA of JcMYB2 was cloned by using the RACE method. GUS histochemical staining was used to test the activity of the JcMYB2 promoter. Expression patterns of JcMYB2 were detected by using qPCR Transcriptional activity JcMYB2 were confirmed through yeast one hybrid. Subcellular Localization of JcMYB2 Protein were demonstrated by transient expression in the tobacco leaf. The function of JcMYB2 in salt and freezing tolerance were detected in transgenic plants. RESULTS A genome-wide analysis identified 128 MYB genes, including 123 R2R3-MYBs, 4 R1R2R3-MYBs and 1 4R-MYB. All of the R2R3-MYBs are further classified into 19 groups which indicated functional conservation among previously identified groups of R2R3-MYB proteins. Among of these newly identified MYBs, the JcMYB2 belongs to group G11 and its expression is induced obviously by cold, salt and MeJA (Methyl Jasmonate) and slightly by ABA (abscisic acid). JcMYB2 is localized to the nucleus and has transcriptional activity. JcMYB2 overexpressing plants are more tolerant to salt and cold stress than wild type plants. Tissue specific expression profiles showed that the JcMYB2 gene was expressed ubiquitously throughout the plant, with higher expression levels observed in the root. CONCLUSION A comprehensive genome-wide analysis and phylogenetic relationship of R2R3-MYB subfamily in J. curcas present the global identification and functional prediction of JcR2R3-MYBs. Additionally, JcMYB2 regulates the stress response signaling networks by interacting with MeJA and ABA signaling pathway and functions in the root development of J. curcas.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Dan Wang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
215
|
Zhou C, Li C. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:315. [PMID: 27047502 PMCID: PMC4801893 DOI: 10.3389/fpls.2016.00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/29/2016] [Indexed: 06/01/2023]
Abstract
We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.
Collapse
|
216
|
Docimo T, Francese G, Ruggiero A, Batelli G, De Palma M, Bassolino L, Toppino L, Rotino GL, Mennella G, Tucci M. Phenylpropanoids Accumulation in Eggplant Fruit: Characterization of Biosynthetic Genes and Regulation by a MYB Transcription Factor. FRONTIERS IN PLANT SCIENCE 2016; 6:1233. [PMID: 26858726 PMCID: PMC4729908 DOI: 10.3389/fpls.2015.01233] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/19/2015] [Indexed: 05/26/2023]
Abstract
Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70-90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C-terminal region of SmMyb1 does not limit its capability to regulate CGA accumulation, but impairs anthocyanin biosynthesis. To our knowledge, this is the first study reporting a functional elucidation of the role of the C-term conserved domain in MYB activator proteins.
Collapse
Affiliation(s)
- Teresa Docimo
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BiorisorseUOS Portici, Italy
| | - Gianluca Francese
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per l’OrticolturaPontecagnano, Italy
| | - Alessandra Ruggiero
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BiorisorseUOS Portici, Italy
| | - Giorgia Batelli
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BiorisorseUOS Portici, Italy
| | - Monica De Palma
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BiorisorseUOS Portici, Italy
| | - Laura Bassolino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Unità di Ricerca per l’OrticolturaMontanaso Lombardo, Italy
| | - Laura Toppino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Unità di Ricerca per l’OrticolturaMontanaso Lombardo, Italy
| | - Giuseppe L. Rotino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Unità di Ricerca per l’OrticolturaMontanaso Lombardo, Italy
| | - Giuseppe Mennella
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per l’OrticolturaPontecagnano, Italy
| | - Marina Tucci
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BiorisorseUOS Portici, Italy
| |
Collapse
|
217
|
Chen B, Niu F, Liu WZ, Yang B, Zhang J, Ma J, Cheng H, Han F, Jiang YQ. Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death. DNA Res 2016; 23:101-14. [PMID: 26800702 PMCID: PMC4833418 DOI: 10.1093/dnares/dsv040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/14/2015] [Indexed: 11/16/2022] Open
Abstract
The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some plant species, little is known about R2R3-MYB genes in canola (Brassica napus L.). In this study, we have identified 76 R2R3-MYB genes in the canola genome through mining of expressed sequence tags (ESTs). The cDNA sequences of 44 MYB genes were successfully cloned. The transcriptional activities of BnaMYB proteins encoded by these genes were assayed in yeast. The subcellular localizations of representative R2R3-MYB proteins were investigated through GFP fusion. Besides, the transcript abundance level analysis during abiotic conditions and ABA treatment identified a group of R2R3-MYB genes that responded to one or more treatments. Furthermore, we identified a previously functionally unknown MYB gene-BnaMYB78, which modulates reactive oxygen species (ROS)-dependent cell death in Nicotiana benthamiana, through regulating the transcription of a few ROS- and defence-related genes. Taken together, this study has provided a solid foundation for understanding the roles and regulatory mechanism of canola R2R3-MYB genes.
Collapse
Affiliation(s)
- Bisi Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fangfang Niu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wu-Zhen Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bo Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jingxiao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jieyu Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hao Cheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Feng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
218
|
Roy S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. PLANT SIGNALING & BEHAVIOR 2016; 11:e1117723. [PMID: 26636625 PMCID: PMC4871670 DOI: 10.1080/15592324.2015.1117723] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Plants have developed highly efficient and remarkable mechanisms to survive under frequent and extreme environmental stress conditions. Exposure of plants to various stress factors is associated with coordinated changes in gene expression at the transcriptional level and hence transcription factors, such as those belonging to the MYB family play a central role in triggering the right responses. MYB transcription factors have been extensively studied in regard of their involvement in the regulation of a number of such stress responses in plants. Genetic and molecular biological studies, primarily in Arabidopsis, have also begun to unravel the role of MYB transcription factors in the epigenetic regulation of stress responses in plants. This review focuses on the role of MYB transcription factors in the regulation of various stress responses in general, highlighting on recent advances in our understanding of the involvement of this class of transcription factors in epigenetic regulation of stress response in plant genome.
Collapse
Affiliation(s)
- Sujit Roy
- Department of Botany, UGC Center of Advanced Studies, Golapbag, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
219
|
Kumar M, Campbell L, Turner S. Secondary cell walls: biosynthesis and manipulation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:515-31. [PMID: 26663392 DOI: 10.1093/jxb/erv533] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.
Collapse
Affiliation(s)
- Manoj Kumar
- University of Manchester, The Micheal Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Liam Campbell
- University of Manchester, The Micheal Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Turner
- University of Manchester, The Micheal Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
220
|
Wu S, Wu M, Dong Q, Jiang H, Cai R, Xiang Y. Genome-wide identification, classification and expression analysis of the PHD-finger protein family in Populus trichocarpa. Gene 2016; 575:75-89. [DOI: 10.1016/j.gene.2015.08.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/04/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
|
221
|
Allwright MR, Payne A, Emiliani G, Milner S, Viger M, Rouse F, Keurentjes JJB, Bérard A, Wildhagen H, Faivre-Rampant P, Polle A, Morgante M, Taylor G. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). BIOTECHNOLOGY FOR BIOFUELS 2016; 9:195. [PMID: 27617034 PMCID: PMC5017058 DOI: 10.1186/s13068-016-0603-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Second generation (2G) bioenergy from lignocellulosic feedstocks has the potential to develop as a sustainable source of renewable energy; however, significant hurdles still remain for large-scale commercialisation. Populus is considered as a promising 2G feedstock and understanding the genetic basis of biomass yield and feedstock quality are a research priority in this model tree species. RESULTS We report the first coppiced biomass study for 714 members of a wide population of European black poplar (Populus nigra L.), a native European tree, selected from 20 river populations ranging in latitude and longitude between 40.5 and 52.1°N and 1.0 and 16.4°E, respectively. When grown at a single site in southern UK, significant Site of Origin (SO) effects were seen for 14 of the 15 directly measured or derived traits including biomass yield, leaf area and stomatal index. There was significant correlation (p < 0.001) between biomass yield traits over 3 years of harvest which identified leaf size and cell production as strong predictors of biomass yield. A 12 K Illumina genotyping array (constructed from 10,331 SNPs in 14 QTL regions and 4648 genes) highlighted significant population genetic structure with pairwise FST showing strong differentiation (p < 0.001) between the Spanish and Italian subpopulations. Robust associations reaching genome-wide significance are reported for main stem height and cell number per leaf; two traits tightly linked to biomass yield. These genotyping and phenotypic data were also used to show the presence of significant isolation by distance (IBD) and isolation by adaption (IBA) within this population. CONCLUSIONS The three associations identified reaching genome-wide significance at p < 0.05 include a transcription factor; a putative stress response gene and a gene of unknown function. None of them have been previously linked to bioenergy yield; were shown to be differentially expressed in a panel of three selected genotypes from the collection and represent exciting, novel candidates for further study in a bioenergy tree native to Europe and Euro-Asia. A further 26 markers (22 genes) were found to reach putative significance and are also of interest for biomass yield, leaf area, epidermal cell expansion and stomatal patterning. This research on European P. nigra provides an important foundation for the development of commercial native trees for bioenergy and for advanced, molecular breeding in these species.
Collapse
Affiliation(s)
- Mike Robert Allwright
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Adrienne Payne
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Giovanni Emiliani
- CNR-IVALSA, Sesto Fiorentino, via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI Italy
| | - Suzanne Milner
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Maud Viger
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Franchesca Rouse
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Joost J. B. Keurentjes
- Laboratory of Genetics, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | | | | | | | - Andrea Polle
- Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Michele Morgante
- Dipartimento di Scienze agroalimentari, ambientali e animali, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
- Istituto di Genomica Applicata (IGA), via J. Linussio 51, 33100 Udine, Italy
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
222
|
Li D, Xu X, Hu X, Liu Q, Wang Z, Zhang H, Wang H, Wei M, Wang H, Liu H, Li C. Genome-Wide Analysis and Heavy Metal-Induced Expression Profiling of the HMA Gene Family in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2015; 6:1149. [PMID: 26779188 DOI: 10.1007/s11104-018-3637-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/03/2015] [Indexed: 05/25/2023]
Abstract
The heavy metal ATPase (HMA) family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs), of which PtHMA1-PtHMA4 belonged to the zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) subgroup, and PtHMA5-PtHMA8 were members of the copper (Cu)/silver (Ag) subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8) genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb, and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Xuemei Xu
- Library of Northeast Forestry University Harbin, China
| | - Xiaoqing Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Quangang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Zhanchao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Haizhen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Han Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Hanzeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Haimei Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin, China
| |
Collapse
|
223
|
Zeng JK, Li X, Xu Q, Chen JY, Yin XR, Ferguson IB, Chen KS. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1325-34. [PMID: 25778106 DOI: 10.1111/pbi.12351] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/21/2014] [Accepted: 01/18/2015] [Indexed: 05/04/2023]
Abstract
Lignin biosynthesis is regulated by many transcription factors, such as those of the MYB and NAC families. However, the roles of AP2/ERF transcription factors in lignin biosynthesis have been rarely investigated. Eighteen EjAP2/ERF genes were isolated from loquat fruit (Eriobotrya japonica), which undergoes postharvest lignification during low temperature storage. Among these, expression of EjAP2-1, a transcriptional repressor, was negatively correlated with fruit lignification. The dual-luciferase assay indicated that EjAP2-1 could trans-repress activities of promoters of lignin biosynthesis genes from both Arabidopsis and loquat. However, EjAP2-1 did not interact with the target promoters (Ej4CL1). Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated protein-protein interactions between EjAP2-1 and lignin biosynthesis-related EjMYB1 and EjMYB2. Furthermore, repression effects on the Ej4CL1 promoter were observed with the combination of EjAP2-1 and EjMYB1 or EjMYB2, while EjAP2-1 with the EAR motif mutated (mEjAP2-1) lost such repression, although mEjAP2-1 still interacted with EjMYB protein. Based on these results, it is proposed that EjAP2-1 is an indirect transcriptional repressor on lignin biosynthesis, and the repression effects were manifested by EAR motifs and were conducted via protein-protein interaction with EjMYBs.
Collapse
Affiliation(s)
- Jiao-Ke Zeng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Qian Xu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Xue-Ren Yin
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Ian B Ferguson
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kun-Song Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
224
|
Wang Y, Azhar S, Gandini R, Divne C, Ezcurra I, Aspeborg H. Biochemical characterization of the novel endo-β-mannanase AtMan5-2 from Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:151-163. [PMID: 26706067 DOI: 10.1016/j.plantsci.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Plant mannanases are enzymes that carry out fundamentally important functions in cell wall metabolism during plant growth and development by digesting manno-polysaccharides. In this work, the Arabidopsis mannanase 5-2 (AtMan5-2) from a previously uncharacterized subclade of glycoside hydrolase family 5 subfamily 7 (GH5_7) has been heterologously produced in Pichia pastoris. Purified recombinant AtMan5-2 is a glycosylated protein with an apparent molecular mass of 50kDa, a pH optimum of 5.5-6.0 and a temperature optimum of 25°C. The enzyme exhibits high substrate affinity and catalytic efficiency on mannan substrates with main chains containing both glucose and mannose units such as konjac glucomannan and spruce galactoglucomannan. Product analysis of manno-oligosaccharide hydrolysis shows that AtMan5-2 requires at least six substrate-binding subsites. No transglycosylation activity for the recombinant enzyme was detected in the present study. Our results demonstrate diversification of catalytic function among members in the Arabidopsis GH5_7 subfamily.
Collapse
Affiliation(s)
- Yang Wang
- From KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Shoaib Azhar
- From Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Rosaria Gandini
- From KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, 106 91 Stockholm, Sweden; From Karolinska Institute, Department of Medical Biochemistry and Biophysics, Scheelelaboratoriet, Scheeles väg 2, 17177 Stockholm, Sweden
| | - Christina Divne
- From KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, 106 91 Stockholm, Sweden; From Karolinska Institute, Department of Medical Biochemistry and Biophysics, Scheelelaboratoriet, Scheeles väg 2, 17177 Stockholm, Sweden
| | - Ines Ezcurra
- From KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Henrik Aspeborg
- From KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, 106 91 Stockholm, Sweden.
| |
Collapse
|
225
|
Li C, Wang X, Ran L, Tian Q, Fan D, Luo K. PtoMYB92 is a Transcriptional Activator of the Lignin Biosynthetic Pathway During Secondary Cell Wall Formation in Populus tomentosa. PLANT & CELL PHYSIOLOGY 2015; 56:2436-2446. [PMID: 26508520 DOI: 10.1093/pcp/pcv157] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Wood is the most abundant biomass in perennial woody plants and is mainly made up of secondary cell wall. R2R3-MYB transcription factors are important regulators of secondary wall biosynthesis in plants. In this study, we describe the identification and characterization of a poplar MYB transcription factor PtoMYB92, a homolog of Arabidopsis MYB42 and MYB85, which is involved in the regulation of secondary cell wall biosynthesis. PtoMYB92 is specifically expressed in xylem tissue in poplar. Subcellular localization and transcriptional activation analysis suggest that PtoMYB92 is a nuclear-localized transcriptional activator. Overexpression of PtoMYB92 in poplar resulted in an increase in secondary cell wall thickness in stems and ectopic deposition of lignin in leaves. Quantitative real-time PCR showed that PtoMYB92 specifically activated the expression of lignin biosynthetic genes. Furthermore, transient expression assays using a β-glucuronidase (GUS) reporter gene revealed that PtoMYB92 is an activator in the lignin biosynthetic pathway during secondary cell wall formation. Taken together, our results suggest that PtoMYB92 is involved in the regulation of secondary cell wall formation in poplar by controlling the biosynthesis of monolignols.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008 Xining, China These authors contributed equally to this work
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China These authors contributed equally to this work
| | - Lingyu Ran
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qiaoyan Tian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008 Xining, China
| |
Collapse
|
226
|
Genome-wide analysis of the MYB gene family in physic nut ( Jatropha curcas L.). Gene 2015; 572:63-71. [DOI: 10.1016/j.gene.2015.06.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 11/18/2022]
|
227
|
Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:882. [PMID: 26557129 PMCID: PMC4617109 DOI: 10.3389/fpls.2015.00882] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK, and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II) as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Xue Yang
- Department of Life Sciences, Jilin Agricultural UniversityJilin, China
| | - Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Tiange Lang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
| |
Collapse
|
228
|
Liu Q, Wang Z, Xu X, Zhang H, Li C. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa). PLoS One 2015; 10:e0134753. [PMID: 26237514 PMCID: PMC4523194 DOI: 10.1371/journal.pone.0134753] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND C2H2 zinc-finger (C2H2-ZF) proteins are a large gene family in plants that participate in various aspects of normal plant growth and development, as well as in biotic and abiotic stress responses. To date, no overall analysis incorporating evolutionary history and expression profiling of the C2H2-ZF gene family in model tree species poplar (Populus trichocarpa) has been reported. PRINCIPAL FINDINGS Here, we identified 109 full-length C2H2-ZF genes in P. trichocarpa, and classified them into four groups, based on phylogenetic analysis. The 109 C2H2-ZF genes were distributed unequally on 19 P. trichocarpa linkage groups (LGs), with 39 segmental duplication events, indicating that segmental duplication has been important in the expansion of the C2H2-ZF gene family. Promoter cis-element analysis indicated that most of the C2H2-ZF genes contain phytohormone or abiotic stress-related cis-elements. The expression patterns of C2H2-ZF genes, based on heatmap analysis, suggested that C2H2-ZF genes are involved in tissue and organ development, especially root and floral development. Expression analysis based on quantitative real-time reverse transcription polymerase chain reaction indicated that C2H2-ZF genes are significantly involved in drought, heat and salt response, possibly via different mechanisms. CONCLUSIONS This study provides a thorough overview of the P. trichocarpa C2H2-ZF gene family and presents a new perspective on the evolution of this gene family. In particular, some C2H2-ZF genes may be involved in environmental stress tolerance regulation. PtrZFP2, 19 and 95 showed high expression levels in leaves and/or roots under environmental stresses. Additionally, this study provided a solid foundation for studying the biological roles of C2H2-ZF genes in Populus growth and development. These results form the basis for further investigation of the roles of these candidate genes and for future genetic engineering and gene functional studies in Populus.
Collapse
Affiliation(s)
- Quangang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Zhanchao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Xuemei Xu
- Library of Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Haizhen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
229
|
Tang X, Zhuang Y, Qi G, Wang D, Liu H, Wang K, Chai G, Zhou G. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Sci Rep 2015; 5:12240. [PMID: 26179205 PMCID: PMC4503951 DOI: 10.1038/srep12240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/23/2015] [Indexed: 12/27/2022] Open
Abstract
Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of cellulose, xylan and lignin. Currently, few transcription factors involved in the direct regulation of secondary wall biosynthesis have been characterized in tree species. Here, we show that PdMYB221, a poplar ortholog of the Arabidopsis R2R3-MYB transcription factor AtMYB4, directly regulates secondary wall biosynthesis during wood formation. PdMYB221 is predominantly expressed in cells of developing wood, and the protein it encodes localizes to the nucleus and acts as a transcriptional repressor. Ectopic expression of PdMYB221 resulted in reduced cell wall thicknesses of fibers and vessels in Arabidopsis inflorescence stems. The amounts of cellulose, xylose, and lignin were decreased and the expression of key genes synthesizing the three components was suppressed in PdMYB221 overexpression plants. Transcriptional activation assays showed that PdMYB221 repressed the promoters of poplar PdCESA7/8, PdGT47C, PdCOMT2 and PdCCR1. Electrophoretic mobility shift assays revealed that PdMYB221 bound directly to the PdCESA8, PdGT47C, and PdCOMT2 promoters. Together, our results suggest that PdMYB221 may be involved in the negative regulation of secondary wall formation through the direct and indirect suppression of the gene expression of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Xianfeng Tang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Zhuang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huanhuan Liu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Kairong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
230
|
Identification and Characterization of 40 Isolated Rehmannia glutinosa MYB Family Genes and Their Expression Profiles in Response to Shading and Continuous Cropping. Int J Mol Sci 2015; 16:15009-30. [PMID: 26147429 PMCID: PMC4519885 DOI: 10.3390/ijms160715009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
The v-myb avian myeloblastosis viral oncogene homolog (MYB) superfamily constitutes one of the most abundant groups of transcription factors (TFs) described in plants. To date, little is known about the MYB genes in Rehmannia glutinosa. Forty unique MYB genes with full-length cDNA sequences were isolated. These 40 genes were grouped into five categories, one R1R2R3-MYB, four TRFL MYBs, four SMH MYBs, 25 R2R3-MYBs, and six MYB-related members. The MYB DNA-binding domain (DBD) sequence composition was conserved among proteins of the same subgroup. As expected, most of the closely related members in the phylogenetic tree exhibited common motifs. Additionally, the gene structure and motifs of the R. glutinosa MYB genes were analyzed. MYB gene expression was analyzed in the leaf and the tuberous root under two abiotic stress conditions. Expression profiles showed that most R. glutinosa MYB genes were expressed in the leaf and the tuberous root, suggesting that MYB genes are involved in various physiological and developmental processes in R. glutinosa. Seven MYB genes were up-regulated in response to shading in at least one tissue. Two MYB genes showed increased expression and 13 MYB genes showed decreased expression in the tuberous root under continuous cropping. This investigation is the first comprehensive study of the MYB gene family in R. glutinosa.
Collapse
|
231
|
Abstract
Wood (also termed secondary xylem) is the most abundant biomass produced by plants, and is one of the most important sinks for atmospheric carbon dioxide. The development of wood begins with the differentiation of the lateral meristem, vascular cambium, into secondary xylem mother cells followed by cell expansion, secondary wall deposition, programmed cell death, and finally heartwood formation. Significant progress has been made in the past decade in uncovering the molecular players involved in various developmental stages of wood formation in tree species. Hormonal signalling has been shown to play critical roles in vascular cambium cell proliferation and a peptide-receptor-transcription factor regulatory mechanism similar to that controlling the activity of apical meristems is proposed to be involved in the maintenance of vascular cambium activity. It has been demonstrated that the differentiation of vascular cambium into xylem mother cells is regulated by plant hormones and HD-ZIP III transcription factors, and the coordinated activation of secondary wall biosynthesis genes during wood formation is mediated by a transcription network encompassing secondary wall NAC and MYB master switches and their downstream transcription factors. Most genes encoding the biosynthesis enzymes for wood components (cellulose, xylan, glucomannan, and lignin) have been identified in poplar and a number of them have been functionally characterized. With the availability of genome sequences of tree species from both gymnosperms and angiosperms, and the identification of a suite of wood-associated genes, it is expected that our understanding of the molecular control of wood formation in trees will be greatly accelerated.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
232
|
The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion. Sci Rep 2015; 5:11037. [PMID: 26047035 PMCID: PMC4603784 DOI: 10.1038/srep11037] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/28/2015] [Indexed: 01/21/2023] Open
Abstract
R2R3-MYB proteins (2R-MYBs) are one of the main transcription factor families in higher plants. Since the evolutionary history of this gene family across the eukaryotic kingdom remains unknown, we performed a comparative analysis of 2R-MYBs from 50 major eukaryotic lineages, with particular emphasis on land plants. A total of 1548 candidates were identified among diverse taxonomic groups, which allowed for an updated classification of 73 highly conserved subfamilies, including many newly identified subfamilies. Our results revealed that the protein architectures, intron patterns, and sequence characteristics were remarkably conserved in each subfamily. At least four subfamilies were derived from early land plants, 10 evolved from spermatophytes, and 19 from angiosperms, demonstrating the diversity and preferential expansion of this gene family in land plants. Moreover, we determined that their remarkable expansion was mainly attributed to whole genome and segmental duplication, where duplicates were preferentially retained within certain subfamilies that shared three homologous intron patterns (a, b, and c) even though up to 12 types of patterns existed. Through our integrated distributions, sequence characteristics, and phylogenetic tree analyses, we confirm that 2R-MYBs are old and postulate that 3R-MYBs may be evolutionarily derived from 2R-MYBs via intragenic domain duplication.
Collapse
|
233
|
Du Q, Wang L, Yang X, Gong C, Zhang D. Populus endo-β-1,4-glucanases gene family: genomic organization, phylogenetic analysis, expression profiles and association mapping. PLANTA 2015; 241:1417-34. [PMID: 25716095 DOI: 10.1007/s00425-015-2271-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/19/2015] [Indexed: 05/05/2023]
Abstract
Extensive characterization of the poplar GH9 gene family provides new insights into GH9 function and evolution in woody species, and may drive novel progress for molecular breeding in trees. In higher plants, endo-β-1,4-glucanases (cellulases) belonging to the glycosyl hydrolase family 9 (GH9) have roles in cell wall synthesis, remodeling and degradation. To increase the understanding of the GH9 family in perennial woody species, we conducted an extensive characterization of the GH9 family in the model tree species, Populus. We characterized 25 putative GH9 members in Populus with three subclasses (A, B, and C), using structures and bioinformatic analysis. Phylogenetic analyses of 114 GH9s from plant (dicot, monocot, and conifer) and bacterial species (outgroup) demonstrated that plant GH9s are monophyletic with respect to bacteria GH9s. Three subclasses, A, B, and C, of plant GH9 are formed before the divergence of angiosperms and gymnosperms. Chromosomal localization and duplications of GH9s in the Populus genome showed that eight paralogous pairs remained in conserved positions on segmental duplicated blocks, suggesting duplication of chromosomal segments has contributed to the family expansion. By examining tissue-specific expression profiles for all 25 members, we found that GH9 members exhibited distinct but partially overlapping expression patterns, while certain members have higher transcript abundance in mature or developing xylem. Based on our understanding of intraspecific variation and linkage disequilibrium of two KORRIGANs (PtoKOR1 and PtoKOR2) in natural population of Populus tomentosa, two non-synonymous SNPs in PtoKOR1 associated with fiber width and holocellulose content were obtained. Characterizations of the poplar GH9 family provide new insights into GH9 function and evolution in woody species, and may drive novel progress for molecular breeding in trees.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China,
| | | | | | | | | |
Collapse
|
234
|
Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J. Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. THE NEW PHYTOLOGIST 2015; 206:1337-50. [PMID: 25385212 DOI: 10.1111/nph.13139] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/24/2014] [Indexed: 05/21/2023]
Abstract
NAC domain transcription factors regulate many developmental processes and stress responses in plants and vary widely in number and family structure. We analysed the characteristics and evolution of the NAC gene family of Eucalyptus grandis, a fast-growing forest tree in the rosid order Myrtales. NAC domain genes identified in the E. grandis genome were subjected to amino acid sequence, phylogenetic and motif analyses. Transcript abundance in developing tissues and abiotic stress conditions in E. grandis and E. globulus was quantified using RNA-seq and reverse transcription quantitative PCR (RT-qPCR). One hundred and eighty-nine E. grandis NAC (EgrNAC) proteins, arranged into 22 subfamilies, are extensively duplicated in subfamilies associated with stress response. Most EgrNAC genes form tandem duplicate arrays that frequently carry signatures of purifying selection. Sixteen amino acid motifs were identified in EgrNAC proteins, eight of which are enriched in, or unique to, Eucalyptus. New candidates for the regulation of normal and tension wood development and cold responses were identified. This first description of a Myrtales NAC domain family reveals an unique history of tandem duplication in stress-related subfamilies that has likely contributed to the adaptation of eucalypts to the challenging Australian environment. Several new candidates for the regulation of stress, wood formation and tree-specific development are reported.
Collapse
Affiliation(s)
- Steven G Hussey
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Mohammed N Saïdi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse, UPS, CNRS, BP 42617, F-31326, Castanet-Tolosan, France
| | - Charles A Hefer
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada, V6T 1Z4
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse, UPS, CNRS, BP 42617, F-31326, Castanet-Tolosan, France
| |
Collapse
|
235
|
Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JAP, Myburg AA, Grima-Pettenati J. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. THE NEW PHYTOLOGIST 2015; 206:1364-77. [PMID: 25250741 DOI: 10.1111/nph.13039] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/05/2014] [Indexed: 05/19/2023]
Abstract
The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth.
Collapse
Affiliation(s)
- Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Eduardo Leal Oliveira Camargo
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Victor Carocha
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Charles A Hefer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jorge A Pinto Paiva
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
- Instituto de Investigaçao Científica e Tropical (IICT/MNE) Palacio Burnay - Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| |
Collapse
|
236
|
Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. FRONTIERS IN PLANT SCIENCE 2015; 6:288. [PMID: 25999964 PMCID: PMC4419676 DOI: 10.3389/fpls.2015.00288] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/09/2015] [Indexed: 05/08/2023]
Abstract
Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Masatoshi Yamaguchi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan
- PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology AgencyKawaguchi, Japan
| | - Hitoshi Endo
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Nur Ardiyana Rejab
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
237
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 521] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
238
|
Tian FX, Zang JL, Wang T, Xie YL, Zhang J, Hu JJ. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs. PLoS One 2015; 10:e0124669. [PMID: 25909656 PMCID: PMC4409362 DOI: 10.1371/journal.pone.0124669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 11/18/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.
Collapse
Affiliation(s)
- Feng-Xia Tian
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jian-Lei Zang
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Tan Wang
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yu-Li Xie
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- * E-mail: (JZ); (JJH)
| | - Jian-Jun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- * E-mail: (JZ); (JJH)
| |
Collapse
|
239
|
Péros JP, Launay A, Berger G, Lacombe T, This P. MybA1 gene diversity across the Vitis genus. Genetica 2015; 143:373-84. [PMID: 25896368 DOI: 10.1007/s10709-015-9836-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
The MybA1 gene in the genus Vitis encodes a transcription factor, belonging to the R2R3 Myb family, that controls the last steps in the anthocyanins biosynthesis pathway. Polymorphism within MybA1 has been associated with color variation in berries of V. vinifera and other Vitis species. In this work, we analyzed the sequence variation in MybA1 both in the subg. Muscadinia and in an extended set of Asian, American and European genotypes of subg. Vitis. Our aims were to infer the evolution of this gene during the speciation process and to identify polymorphisms that could potentially generate changes in gene regulation. The results show that MybA1 experienced many insertions and deletions in non-coding regions but also in the third exon sequence. Owing to the larger set of Vitis species compared here, new indels were identified and the origin of previously described indels was reconsidered. A large number of single nucleotide polymorphisms were found in non-coding regions but also in the sequence coding for the R2R3 domain and the C terminal part of the protein. Some of these changes led to amino acid substitutions and therefore could have modified MybA1 protein activity. Bayesian phylogenetic analysis of all polymorphisms did not provide a consensus tree depicting the geographical partitioning of the species but allowed highlighting several species relationships within subgenus Vitis. Finally, the evolutionary events described could be useful to gain more insight into the role of MybA1 for anthocyanin biosynthesis in grapevine.
Collapse
Affiliation(s)
- Jean-Pierre Péros
- Institut National de La Recherche Agronomique, UMR 1334 AGAP, 2 place Viala, 34060, Montpellier, France,
| | | | | | | | | |
Collapse
|
240
|
Tian F, Wang T, Xie Y, Zhang J, Hu J. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus. PLoS One 2015; 10:e0123225. [PMID: 25867623 PMCID: PMC4395111 DOI: 10.1371/journal.pone.0123225] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background In plants, 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Although twelve Populus 14-3-3s were identified based on the Populus trichocarpa genome V1.1 in a previous study, no systematic analysis including genome organization, gene structure, duplication relationship, evolutionary analysis and expression compendium has been conducted in Populus based on the latest P. trichocarpa genome V3.0. Principal Findings Here, a comprehensive analysis of Populus 14-3-3 family is presented. Two new 14-3-3 genes were identified based on the latest P. trichocarpa genome. In P. trichocarpa, fourteen 14-3-3 genes were grouped into ε and non-ε group. Exon-intron organizations of Populus 14-3-3s are highly conserved within the same group. Genomic organization analysis indicated that purifying selection plays a pivotal role in the retention and maintenance of Populus 14-3-3 family. Protein conformational analysis indicated that Populus 14-3-3 consists of a bundle of nine α-helices (α1-α9); the first four are essential for formation of the dimer, while α3, α5, α7, and α9 form a conserved peptide-binding groove. In addition, α1, α3, α5, α7, and α9 were evolving at a lower rate, while α2, α4, and α6 were evolving at a relatively faster rate. Microarray analyses showed that most Populus 14-3-3s are differentially expressed across tissues and upon exposure to various stresses. Conclusions The gene structures and their coding protein structures of Populus 14-3-3s are highly conserved among group members, suggesting that members of the same group might also have conserved functions. Microarray and qRT-PCR analyses showed that most Populus 14-3-3s were differentially expressed in various tissues and were induced by various stresses. Our investigation provided a better understanding of the complexity of the 14-3-3 gene family in poplars.
Collapse
Affiliation(s)
- Fengxia Tian
- College of Life Science and Technology, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tan Wang
- College of Life Science and Technology, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuli Xie
- College of Life Science and Technology, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail: (JZ); (JH)
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail: (JZ); (JH)
| |
Collapse
|
241
|
Eastmond PJ, Astley HM, Parsley K, Aubry S, Williams BP, Menard GN, Craddock CP, Nunes-Nesi A, Fernie AR, Hibberd JM. Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. Nat Commun 2015; 6:6659. [PMID: 25858700 PMCID: PMC4403315 DOI: 10.1038/ncomms7659] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/17/2015] [Indexed: 11/09/2022] Open
Abstract
Gluconeogenesis is a fundamental metabolic process that allows organisms to make sugars from non-carbohydrate stores such as lipids and protein. In eukaryotes only one gluconeogenic route has been described from organic acid intermediates and this relies on the enzyme phosphoenolpyruvate carboxykinase (PCK). Here we show that two routes exist in Arabidopsis, and that the second uses pyruvate, orthophosphate dikinase (PPDK). Gluconeogenesis is critical to fuel the transition from seed to seedling. Arabidopsis pck1 and ppdk mutants are compromised in seed-storage reserve mobilization and seedling establishment. Radiolabelling studies show that PCK predominantly allows sugars to be made from dicarboxylic acids, which are products of lipid breakdown. However, PPDK also allows sugars to be made from pyruvate, which is a major product of protein breakdown. We propose that both routes have been evolutionarily conserved in plants because, while PCK expends less energy, PPDK is twice as efficient at recovering carbon from pyruvate. During seed germination plants use gluconeogenesis to mobilize noncarbohydrate energy reserves. Here Eastmond et al. show that plants, unlike other eukaryotes, do not solely rely on a gluconeogenic pathway via the enzyme PCK but also use a second pathway relying on PPDK.
Collapse
Affiliation(s)
- Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Holly M Astley
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Kate Parsley
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sylvain Aubry
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ben P Williams
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Guillaume N Menard
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Christian P Craddock
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.,College of Natural and Agricultural Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Adriano Nunes-Nesi
- Max-Planck-Insitüt für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany.,Departmento de Biologia Vegetal, Universidade Federal de Vicosa, Vicosa, Minas Gerais 36570-000, Brazil
| | - Alisdair R Fernie
- Max-Planck-Insitüt für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
242
|
Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 2015; 16:181. [PMID: 25887520 PMCID: PMC4373061 DOI: 10.1186/s12864-015-1398-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/24/2015] [Indexed: 11/21/2022] Open
Abstract
Background Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. Results Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. Conclusions The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1398-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Bobin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Li Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Yan Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada.
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jun Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
243
|
Huang BH, Pang E, Chen YW, Cao H, Ruan Y, Liao PC. Positive selection and functional divergence of R2R3-MYB paralogous genes expressed in inflorescence buds of Scutellaria species (Labiatae). Int J Mol Sci 2015; 16:5900-21. [PMID: 25782156 PMCID: PMC4394512 DOI: 10.3390/ijms16035900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/15/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Anthocyanin is the main pigment forming floral diversity. Several transcription factors that regulate the expression of anthocyanin biosynthetic genes belong to the R2R3-MYB family. Here we examined the transcriptomes of inflorescence buds of Scutellaria species (skullcaps), identified the expression R2R3-MYBs, and detected the genetic signatures of positive selection for adaptive divergence across the rapidly evolving skullcaps. In the inflorescence buds, seven R2R3-MYBs were identified. MYB11 and MYB16 were detected to be positively selected. The signature of positive selection on MYB genes indicated that species diversification could be affected by transcriptional regulation, rather than at the translational level. When comparing among the background lineages of Arabidopsis, tomato, rice, and Amborella, heterogeneous evolutionary rates were detected among MYB paralogs, especially between MYB13 and MYB19. Significantly different evolutionary rates were also evidenced by type-I functional divergence between MYB13 and MYB19, and the accelerated evolutionary rates in MYB19, implied the acquisition of novel functions. Another paralogous pair, MYB2/7 and MYB11, revealed significant radical amino acid changes, indicating divergence in the regulation of different anthocyanin-biosynthetic enzymes. Our findings not only showed that Scutellaria R2R3-MYBs are functionally divergent and positively selected, but also indicated the adaptive relevance of regulatory genes in floral diversification.
Collapse
Affiliation(s)
- Bing-Hong Huang
- Department of Life Science, National Taiwan Normal University, 88, Ting-Chow Rd., Sec. 4, Taipei 116, Taiwan.
| | - Erli Pang
- Laboratory of Computational Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yi-Wen Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung 912, Taiwan.
| | - Huifen Cao
- Laboratory of Computational Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yu Ruan
- School of Life Science and Engineering, Chongqing Three Gorges University, Chongqing 404001, China.
- The College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, 88, Ting-Chow Rd., Sec. 4, Taipei 116, Taiwan.
| |
Collapse
|
244
|
Yoshida K, Ma D, Constabel CP. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. PLANT PHYSIOLOGY 2015; 167:693-710. [PMID: 25624398 PMCID: PMC4348771 DOI: 10.1104/pp.114.253674] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/23/2015] [Indexed: 05/18/2023]
Abstract
Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism.
Collapse
Affiliation(s)
- Kazuko Yoshida
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| | - Dawei Ma
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| | - C Peter Constabel
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| |
Collapse
|
245
|
Carretero-Paulet L, Librado P, Chang TH, Ibarra-Laclette E, Herrera-Estrella L, Rozas J, Albert VA. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. Mol Biol Evol 2015; 32:1284-95. [PMID: 25637935 DOI: 10.1093/molbev/msv020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.
Collapse
Affiliation(s)
| | - Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tien-Hao Chang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica Para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica Para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
246
|
Wang Z, Tang J, Hu R, Wu P, Hou XL, Song XM, Xiong AS. Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. BMC Genomics 2015; 16:17. [PMID: 25613160 PMCID: PMC4334723 DOI: 10.1186/s12864-015-1216-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Background The MYB superfamily is one of the most abundant transcription factor (TF) families in plants. MYB proteins include highly conserved N-terminal MYB repeats (1R, R2R3, 3R, and atypical) and various C-terminal sequences that confer extensive functions. However, the functions of most MYB genes are unknown, and have been little studied in Chinese cabbage. Results Here, we analyzed 256 (55.2% of total MYBs) R2R3-MYB genes from Chinese cabbage (Brassica rapa ssp. pekinensis) and anchored them onto the 10 chromosomes and three subgenomes. The R2R3-, 3R- and atypical MYB proteins in Chinese cabbage formed 45 subgroups based on domain similarity and phylogenetic topology. Organization and syntenic analysis revealed the genomic distribution and collinear relationships of the R2R3-BrMYBs. Synonymous nucleotide substitution (Ka/Ks) analysis showed that the Chinese cabbage MYB DNA-binding domain is under strong purifying selection. Moreover, RNA-seq data revealed tissue-specific and distinct R2R3-BrMYB expression profiles, and quantitative real-time PCR (qPCR) analysis in leaves showed stress responsive expression and crosstalk with ABA-auxin signaling cascades. Conclusions In this study, we identified the largest MYB gene family in plants to date. Our results indicate that members of this superfamily may be involved in plant development, stress responses and leaf senescence, highlighting their functional diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1216-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jun Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Rong Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiao-Ming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
247
|
Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, Busse-Wicher M, Kosik O, Tanaka R, Winzéll A, Kallas Å, Leśniewska J, Berthold F, Immerzeel P, Teeri TT, Ezcurra I, Dupree P, Serimaa R, Mellerowicz EJ. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. THE NEW PHYTOLOGIST 2015; 205:666-81. [PMID: 25307149 DOI: 10.1111/nph.13099] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 05/02/2023]
Abstract
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Li D, Xu X, Hu X, Liu Q, Wang Z, Zhang H, Wang H, Wei M, Wang H, Liu H, Li C. Genome-Wide Analysis and Heavy Metal-Induced Expression Profiling of the HMA Gene Family in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2015; 6:1149. [PMID: 26779188 PMCID: PMC4688379 DOI: 10.3389/fpls.2015.01149] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/03/2015] [Indexed: 05/09/2023]
Abstract
The heavy metal ATPase (HMA) family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs), of which PtHMA1-PtHMA4 belonged to the zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) subgroup, and PtHMA5-PtHMA8 were members of the copper (Cu)/silver (Ag) subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8) genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb, and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Xuemei Xu
- Library of Northeast Forestry UniversityHarbin, China
| | - Xiaoqing Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Quangang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Zhanchao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Haizhen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Han Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Hanzeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Haimei Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- *Correspondence: Chenghao Li
| |
Collapse
|
249
|
Takata N, Taniguchi T. Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus. PLANTA 2015; 241:29-42. [PMID: 25486888 DOI: 10.1007/s00425-014-2217-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules. Gene duplication is an important mechanism for functional divergence of genes. Secondary cell wall-associated cellulose synthase genes (CesA4, CesA7 and CesA8) are duplicated in Populus plants due to a recent whole genome duplication event. Here, we demonstrate that duplicate CesA genes show tissue-dependent expression divergence in Populus plants. Real-time PCR analysis of Populus CesA genes suggested that Pt × tCesA8-B was more highly expressed than Pt × tCesA8-A in phloem and secondary xylem tissue of mature stem. Histochemical and histological analyses of transformants expressing a GFP-GUS fusion gene driven by Populus CesA promoters revealed that the duplicate CesA genes showed different expression patterns in phloem fibers, secondary xylem, root cap and leaf trichomes. We predicted putative cis-regulatory motifs that regulate expression of secondary cell wall-associated CesA genes, and identified 19 motifs that are highly conserved in the CesA gene family of eudicotyledonous plants. Furthermore, a transient transactivation assay identified candidate transcription factors that affect levels and patterns of expression of Populus CesA genes. The present study reveals that secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules.
Collapse
Affiliation(s)
- Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan,
| | | |
Collapse
|
250
|
Ratke C, Pawar PMA, Balasubramanian VK, Naumann M, Duncranz ML, Derba-Maceluch M, Gorzsás A, Endo S, Ezcurra I, Mellerowicz EJ. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:26-37. [PMID: 25100045 DOI: 10.1111/pbi.12232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 05/05/2023]
Abstract
The plant GT43 protein family includes xylosyltransferases that are known to be required for xylan backbone biosynthesis, but have incompletely understood specificities. RT-qPCR and histochemical (GUS) analyses of expression patterns of GT43 members in hybrid aspen, reported here, revealed that three clades of the family have markedly differing specificity towards secondary wall-forming cells (wood and extraxylary fibres). Intriguingly, GT43A and B genes (corresponding to the Arabidopsis IRX9 clade) showed higher specificity for secondary-walled cells than GT43C and D genes (IRX14 clade), although both IRX9 and IRX14 are required for xylosyltransferase activity. The remaining genes, GT43E, F and G (IRX9-L clade), showed broad expression patterns. Transient transactivation analyses of GT43A and B reporters demonstrated that they are activated by PtxtMYB021 and PNAC085 (master secondary wall switches), mediated in PtxtMYB021 activation by an AC element. The high observed secondary cell wall specificity of GT43B expression prompted tests of the efficiency of its promoter (pGT43B), relative to the CaMV 35S (35S) promoter, for overexpressing a xylan acetyl esterase (CE5) or downregulating REDUCED WALL ACETYLATION (RWA) family genes and thus engineering wood acetylation. CE5 expression was weaker when driven by pGT43B, but it reduced wood acetyl content substantially more efficiently than the 35S promoter. RNAi silencing of the RWA family, which was ineffective using 35S, was achieved when using GT43B promoter. These results show the utility of the GT43B promoter for genetically engineering properties of wood and fibres.
Collapse
Affiliation(s)
- Christine Ratke
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|