201
|
Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2012; 239-240:302-7. [PMID: 23021314 DOI: 10.1016/j.jhazmat.2012.08.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 05/03/2023]
Abstract
Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
202
|
Shi T, Gao Z, Wang L, Zhang Z, Zhuang W, Sun H, Zhong W. Identification of differentially-expressed genes associated with pistil abortion in Japanese apricot by genome-wide transcriptional analysis. PLoS One 2012; 7:e47810. [PMID: 23091648 PMCID: PMC3472986 DOI: 10.1371/journal.pone.0047810] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/17/2012] [Indexed: 12/05/2022] Open
Abstract
The phenomenon of pistil abortion widely occurs in Japanese apricot, and imperfect flowers with pistil abortion seriously decrease the yield in production. Although transcriptome analyses have been extensively studied in the past, a systematic study of differential gene expression has not been performed in Japanese apricot. To investigate genes related to the pistil development of Japanese apricot, high-throughput sequencing technology (Illumina) was employed to survey gene expression profiles from perfect and imperfect Japanese apricot flower buds. 3,476,249 and 3,580,677 tags were sequenced from two libraries constructed from perfect and imperfect flower buds of Japanese apricot, respectively. There were 689 significant differentially-expressed genes between the two libraries. GO annotation revealed that highly ranked genes were those implicated in small molecule metabolism, cellular component organisation or biogenesis at the cellular level and fatty acid metabolism. According to the results, we assumed that late embryogenesis abundant protein (LEA), Dicer-like 3 (DCL3) Xyloglucan endotransglucosylase/hydrolase 2 (XTH2), Pectin lyase-like superfamily protein (PPME1), Lipid transfer protein 3 (LTP3), Fatty acid biosynthesis 1 (FAB1) and Fatty acid desaturase 5 (FAD5) might have relationships with the pistil abortion in Japanese apricot. The expression patterns of 36 differentially expressed genes were confirmed by real-time (RT)-PCR. This is the first report of the Illumina RNA-seq technique being used for the analysis of differentially-expressed gene profiles related to pistil abortion that both computationally and experimentally provides valuable information for the further functional characterisation of genes associated with pistil development in woody plants.
Collapse
Affiliation(s)
- Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic China
- * E-mail:
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic China
| | - Weibing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic China
| | - Hailong Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic China
| | - Wenjun Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic China
| |
Collapse
|
203
|
Hindt MN, Guerinot ML. Getting a sense for signals: regulation of the plant iron deficiency response. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1521-30. [PMID: 22483849 PMCID: PMC4008143 DOI: 10.1016/j.bbamcr.2012.03.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/30/2022]
Abstract
Understanding the Fe deficiency response in plants is necessary for improving both plant health and the human diet, which relies on Fe from plant sources. In this review we focus on the regulation of the two major strategies for iron acquisition in plants, exemplified by the model plants Arabidopsis and rice. Critical to our knowledge of Fe homeostasis in plants is determining how Fe is sensed and how this signal is transmitted and integrated into a response. We will explore the evidence for an Fe sensor in plants and summarize the recent findings on hormones and signaling molecules which contribute to the Fe deficiency response. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Maria N. Hindt
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
204
|
Wang B, Li Y, Zhang WH. Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. ANNALS OF BOTANY 2012; 110:681-8. [PMID: 22684685 PMCID: PMC3400454 DOI: 10.1093/aob/mcs126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/20/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Brassinosteroids (BR) are a class of plant polyhydroxysteroids with diverse functions in plant growth and development. However, there is little information on the role of BRs played in the response to nutrient deficiency. METHODS To evaluate the role of BR in the response of plants to iron (Fe) deficiency, the effect of 24-epibrassinolide (EBR) on ferric reductase (FRO) activity, acidification of the rhizosphere and Fe content in cucumber (Cucumis sativus) seedlings under Fe-deficient (1 µm FeEDTA) and Fe-sufficient (50 µm FeEDTA) conditions were investigated. KEY RESULTS There was a significant increase in FRO activity upon exposure of cucumber seedlings to an Fe-deficient medium, and the Fe deficiency-induced increase in FRO activity was substantially suppressed by EBR. In contrast, application of EBR to Fe-sufficient seedlings stimulated FRO activity. Ethylene production evoked by Fe deficiency was suppressed by EBR, while EBR induced ethylene production from Fe-sufficient seedlings. Fe contents in shoots were reduced by treatment with EBR, while Fe contents in roots were markedly increased under both Fe-deficient and Fe-sufficient conditions. The reductions in Fe contents of shoots were independent of chlorophyll (CHL) contents under Fe-sufficient conditions, but they were positively correlated with CHL contents under Fe-deficient conditions. At the transcriptional level, transcripts encoding FRO (CsFRO1) and Fe transporter (CsIRT1) were increased upon exposure to the Fe-deficient medium, and the increases in transcripts were reversed by EBR. CONCLUSIONS The results demonstrate that BRs are likely to play a negative role in regulating Fe-deficiency-induced FRO, expressions of CsFRO1 and CsIRT1, as well as Fe translocation from roots to shoots.
Collapse
Affiliation(s)
- Baolan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yansu Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
205
|
Abstract
Recently we could demonstrate that FIT is post-translationally regulated in way of protein turnover and that such turnover can be counteracted by the signaling compound NO. Here we summarize findings about FIT regulation and point out which signals and post-translational modifications could act on FIT activity to regulate iron uptake from the soil.
Collapse
|
206
|
Lan P, Li W, Wen TN, Schmidt W. Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. PLANT PHYSIOLOGY 2012; 159:403-17. [PMID: 22438062 PMCID: PMC3375974 DOI: 10.1104/pp.112.193987] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Iron (Fe) is an essential mineral nutrient for plants, but often it is not available in sufficient quantities to sustain optimal growth. To gain insights into adaptive processes to low Fe availability at the posttranslational level, we conducted a quantitative analysis of Fe deficiency-induced changes in the phosphoproteome profile of Arabidopsis (Arabidopsis thaliana) roots. Isobaric tags for relative and absolute quantitation-labeled phosphopeptides were analyzed by liquid chromatography-tandem mass spectrometry on an LTQ-Orbitrap with collision-induced dissociation and high-energy collision dissociation capabilities. Using a combination of titanium dioxide and immobilized metal affinity chromatography to enrich phosphopeptides, we extracted 849 uniquely identified phosphopeptides corresponding to 425 proteins and identified several not previously described phosphorylation motifs. A subset of 45 phosphoproteins was defined as being significantly changed in abundance upon Fe deficiency. Kinase motifs in Fe-responsive proteins matched to protein kinase A/calcium calmodulin-dependent kinase II, casein kinase II, and proline-directed kinase, indicating a possible critical function of these kinase classes in Fe homeostasis. To validate our analysis, we conducted site-directed mutagenesis on IAA-CONJUGATE-RESISTANT4 (IAR4), a protein putatively functioning in auxin homeostasis. iar4 mutants showed compromised root hair formation and developed shorter primary roots. Changing serine-296 in IAR4 to alanine resulted in a phenotype intermediate between mutant and wild type, whereas acidic substitution to aspartate to mimic phosphorylation was either lethal or caused an extreme dwarf phenotype, supporting the critical importance of this residue in Fe homeostasis. Our analyses further disclose substantial changes in the abundance of phosphoproteins involved in primary carbohydrate metabolism upon Fe deficiency, complementing the picture derived from previous proteomic and transcriptomic profiling studies.
Collapse
|
207
|
Meng ZB, Chen LQ, Suo D, Li GX, Tang CX, Zheng SJ. Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus). ANNALS OF BOTANY 2012; 109:1055-64. [PMID: 22351487 PMCID: PMC3336943 DOI: 10.1093/aob/mcs024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/16/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root formation. METHODS Measurements were made of the internal concentration of nutrients, levels of nitric oxide (NO), citrate exudation and expression of some specific genes under four P × Fe combinations, namely (1) 50 µm P and 10 µm Fe (+P + Fe); (2) 0 P and 10 µm Fe (-P + Fe); (3) 50 µm P and 0 Fe (+P-Fe); and (4) 0 P and 0 Fe (-P-Fe), and these were examined in relation to the formation of cluster roots. KEY RESULTS The deficiency of P, Fe or both increased the cluster root number and cluster zones. It also enhanced NO accumulation in pericycle cells and rootlet primordia at various stages of cluster root development. The formation of cluster roots and rootlet primordia, together with the expression of LaSCR1 and LaSCR2 which is crucial in cluster root formation, were induced by the exogenous NO donor S-nitrosoglutathione (GSNO) under the +P + Fe condition, but were inhibited by the NO-specific endogenous scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl- 3-oxide (cPTIO) under -P + Fe, +P-Fe and -P-Fe conditions. However, cluster roots induced by an exogenous supply of the NO donor did not secrete citrate, unlike those formed under -P or -Fe conditions. CONCLUSIONS NO plays an important role in the shared signalling pathway of the P- and Fe-deficiency-induced formation of cluster roots in white lupin.
Collapse
Affiliation(s)
- Zhi Bin Meng
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Li Qian Chen
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong Suo
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Cai Xian Tang
- School of Life Sciences, La Trobe University, Bundoora (Melbourne), Vic 3086, Australia
| | - Shao Jian Zheng
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- For correspondence. E-mail
| |
Collapse
|
208
|
Luo BF, Du ST, Lu KX, Liu WJ, Lin XY, Jin CW. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3127-36. [PMID: 22378950 PMCID: PMC3350926 DOI: 10.1093/jxb/ers036] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO₃⁻ accumulated more Cd than plants fed NH₄⁺. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO₃⁻. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO₃⁻ and NH₄⁺ treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO₃⁻-facilitated Cd accumulation in plants.
Collapse
Affiliation(s)
- Bing Fang Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Shao Ting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Kai Xing Lu
- Laboratory of Plant Molecular Biology, College of Science and Technology Ningbo University, Ningbo, 315211, China
| | - Wen Jing Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xian Yong Lin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
209
|
Zhou Y, Xu XY, Chen LQ, Yang JL, Zheng SJ. Nitric oxide exacerbates Al-induced inhibition of root elongation in rice bean by affecting cell wall and plasma membrane properties. PHYTOCHEMISTRY 2012; 76:46-51. [PMID: 22230427 DOI: 10.1016/j.phytochem.2011.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 11/24/2011] [Accepted: 12/08/2011] [Indexed: 05/10/2023]
Abstract
Aluminum (Al) toxicity is one of the most widespread problems for crop production on acid soils, and nitric oxide (NO) is a key signaling molecule involved in the mediation of various biotic and abiotic stresses in plants. Here we found that exogenous application of the NO donor sodium nitroprusside (SNP) exacerbated the inhibition of Al-induced root growth in rice bean [Vigna umbellata (Thunb.) Ohwi & Ohashi 'Jiangnan', Fabaceae]. This was accompanied by an increased accumulation of Al in the root apex. However, Al treatments had no effect on endogenous NO concentrations in root apices. These results indicate that a change in NO concentration is not the cause of Al-induced root growth inhibition and the adverse effect of SNP on Al-induced root growth inhibition should result from increased Al accumulation. Al could significantly induce citrate efflux but SNP had no effects on citrate efflux either in the absence or presence of Al. On the other hand, SNP pretreatment significantly increased Al-induced malondialdehyde accumulation and Evans Blue staining, indicating an intensification of the disruption of plasma membrane integrity. Furthermore, SNP pretreatment also caused greater induction of pectin methylesterase activity by Al, which could be the cause of the increased Al accumulation. Taken together, it is concluded that NO exacerbates Al-induced root growth inhibition by affecting cell wall and plasma membrane properties.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
210
|
Bai X, Todd CD, Desikan R, Yang Y, Hu X. N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. PLANT PHYSIOLOGY 2012; 158:725-36. [PMID: 22138973 PMCID: PMC3271762 DOI: 10.1104/pp.111.185769] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/02/2011] [Indexed: 05/18/2023]
Abstract
N-Acyl-homoserine-lactones (AHLs) are bacterial quorum-sensing signaling molecules that regulate population density. Recent evidence demonstrates their roles in plant defense responses and root development. Hydrogen peroxide (H(2)O(2)), nitric oxide (NO), and cyclic GMP (cGMP) are essential messengers that participate in various plant physiological processes, but how these messengers modulate the plant response to N-acyl-homoserine-lactone signals remains poorly understood. Here, we show that the N-3-oxo-decanoyl-homoserine-lactone (3-O-C10-HL), in contrast to its analog with an unsubstituted branch chain at the C3 position, efficiently stimulated the formation of adventitious roots and the expression of auxin-response genes in explants of mung bean (Vigna radiata) seedlings. This response was mimicked by the exogenous application of auxin, H(2)O(2), NO, or cGMP homologs but suppressed by treatment with scavengers or inhibitors of H(2)O(2), NO, or cGMP metabolism. The 3-O-C10-HL treatment enhanced auxin basipetal transport; this effect could be reversed by treatment with H(2)O(2) or NO scavengers but not by inhibitors of cGMP synthesis. Inhibiting 3-O-C10-HL-induced H(2)O(2) or NO accumulation impaired auxin- or 3-O-C10-HL-induced cGMP synthesis; however, blocking cGMP synthesis did not affect auxin- or 3-O-C10-HL-induced H(2)O(2) or NO generation. Additionally, cGMP partially rescued the inhibitory effect of H(2)O(2) or NO scavengers on 3-O-C10-HL-induced adventitious root development and auxin-response gene expression. These results suggest that 3-O-C10-HL, unlike its analog with an unmodified branch chain at the C3 position, can accelerate auxin-dependent adventitious root formation, possibly via H(2)O(2)- and NO-dependent cGMP signaling in mung bean seedlings.
Collapse
|
211
|
Hill RD. Non-symbiotic haemoglobins-What's happening beyond nitric oxide scavenging? AOB PLANTS 2012; 2012:pls004. [PMID: 22479675 PMCID: PMC3292739 DOI: 10.1093/aobpla/pls004] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/25/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. PRINCIPAL RESULTS Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. CONCLUSIONS Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction.
Collapse
|
212
|
Fan QJ, Liu JH. Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. PLANT CELL REPORTS 2012; 31:145-154. [PMID: 21938448 DOI: 10.1007/s00299-011-1148-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/03/2011] [Accepted: 09/01/2011] [Indexed: 05/31/2023]
Abstract
Nitric oxide (NO) is a component of the repertoire of signals implicated in plant responses to environmental stimuli. In the present study, we investigated the effects of exogenous application of NO-releasing donor sodium nitroprusside (SNP) and nitric oxide synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) on dehydration and drought tolerance of Poncirus trifoliata. The endogenous NO level was enhanced by SNP pretreatment, but decreased by L-NAME, in the hydroponic or potted plants with or without stresses. Under dehydration, leaves from the SNP-treated hydroponic seedlings displayed less water loss, lower electrolyte leakage and reactive oxygen species accumulation, higher antioxidant enzyme activities and smaller stomatal apertures as compared with the control (treated with water). In addition, pretreatment of the potted plants with SNP resulted in lower electrolyte leakage, higher chlorophyll content, smaller stomatal conductance and larger photosynthetic rate relative to the control. By contrast, the inhibitor treatment changed these physiological attributes or phenotypes in an opposite way. These results indicate that NO in the form of SNP enhanced dehydration and drought tolerance, whereas the inhibitor makes the leaves or plants more sensitive to the stresses. The stress tolerance by NO might be ascribed to a combinatory effect of modulation of stomatal response and activation of the antioxidant enzymes. Taken together, NO is involved in dehydration and drought tolerance of P. trifoliata, implying that manipulation of this signal molecule may provide a practical approach to combat the environmental stresses.
Collapse
Affiliation(s)
- Qi-Jun Fan
- Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
213
|
Xiong J, Fu G, Yang Y, Zhu C, Tao L. Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:33-41. [PMID: 21914661 DOI: 10.1093/jxb/err268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrate reductase (NR) is an enzymatic source of nitric oxide (NO) in plants, and it needs Mo for the Mo-cofactor to be activated. Because NR-deficient mutants are not always available in some species, a cheap and simple pharmacological application of tungstate, which substitutes for Mo in the Mo-cofactor as a competitive antagonist, is widely used as a NR inhibitor in plant NO research. However, evidence indicates that tungstate not only inactivates NR but also inhibits other molybdate-dependent enzymes in plants. In addition, a number of investigations have shown that tungstate also inhibits root growth, affects cortical microtubule formation, and induces programmed cell death (PCD) in plants, just like other heavy metals do. Therefore, tungstate has been shown to exert many other effects that are not connected with the inhibition of NR activity. The origin and mechanism of using tungstate as a NR inhibitor in plants is reviewed here and the progress regarding tungstate toxicity to plants and the possible problems involved in using tungstate as a NR inhibitor in plant NO research are analysed. In summary, the use of tungstate as a NR inhibitor in plant NO research must be treated with caution, keeping in mind that it is not completely specific. It is necessary to search for more NR-deficient mutants and new, specific NR inhibitors. A combination of pharmacological and biochemical analysis with a genetic approach will be necessary in order to investigate the roles of NO in plants.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China.
| | | | | | | | | |
Collapse
|
214
|
Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:131-52. [PMID: 22404471 DOI: 10.1146/annurev-arplant-042811-105522] [Citation(s) in RCA: 669] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Iron is essential for the survival and proliferation of all plants. Higher plants have developed two distinct strategies to acquire iron, which is only slightly soluble, from the rhizosphere: the reduction strategy of nongraminaceous plants and the chelation strategy of graminaceous plants. Key molecular components-including transporters, enzymes, and chelators-have been clarified for both strategies, and many of these components are now thought to also function inside the plant to facilitate internal iron transport. Transporters for intracellular iron trafficking are also being clarified. A majority of genes encoding these components are transcriptionally regulated in response to iron availability. Recent research has uncovered central transcription factors, cis-acting elements, and molecular mechanisms regulating these genes. Manipulation of these molecular components has produced transgenic crops with enhanced tolerance to iron deficiency or with increased iron content in the edible parts.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan.
| | | |
Collapse
|
215
|
Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH. Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:859-70. [PMID: 22058407 PMCID: PMC3254686 DOI: 10.1093/jxb/err314] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iron is a critical cofactor for a number of metalloenzymes involved in respiration and photosynthesis, but plants often suffer from iron deficiency due to limited supplies of soluble iron in the soil. Iron deficiency induces a series of adaptive responses in various plant species, but the mechanisms by which they are triggered remain largely unknown. Using pH imaging and hormone localization techniques, it has been demonstrated here that root Fe(III) reductase activity and proton extrusion upon iron deficiency are up-regulated by systemic auxin signalling in a Fe-efficient woody plant, Malus xiaojinensis. Split-root experiments demonstrated that Fe-deprivation in a portion of the root system induced a dramatic increase in Fe(III) reductase activity and proton extrusion in the Fe-supplied portion, suggesting that the iron deficiency responses were mediated by a systemic signalling. Reciprocal grafting experiments of M. xiaojinensis with Malus baccata, a plant with no capability to produce the corresponding responses, indicate that the initiation of the systemic signalling is likely to be determined by roots rather than shoots. Iron deficiency induced a substantial increase in the IAA content in the shoot apex and supplying exogenous IAA analogues (NAA) to the shoot apex could mimic the iron deficiency to trigger the corresponding responses. Conversely, preventing IAA transport from shoot to roots blocked the iron deficiency responses. These results strongly indicate that the iron deficiency-induced physiological responses are mediated by systemic auxin signalling.
Collapse
Affiliation(s)
- Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China
| | - Heng-Tao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China
| | - Wen-Suo Jia
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China
| | - Xue-Feng Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China
| | - Xin-Zhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China
| | - Zhen Hai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China
- To whom correspondence should be addressed. Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China, Telephone: 86-10-62732467, E-mail:
| |
Collapse
|
216
|
Ivanov R, Brumbarova T, Bauer P. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. MOLECULAR PLANT 2012; 5:27-42. [PMID: 21873619 DOI: 10.1093/mp/ssr065] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Iron is an essential element for life on Earth and its shortage, or excess, in the living organism may lead to severe health disorders. Plants serve as the primary source of dietary iron and improving crop iron content is an important step towards a better public health. Our review focuses on the control of iron acquisition in dicotyledonous plants and monocots that apply a reduction-based strategy in order to mobilize and import iron from the rhizosphere. Achieving a balance between shortage and excess of iron requires a tight regulation of the activity of the iron uptake system. A number of studies, ranging from single gene characterization to systems biology analyses, have led to the rapid expansion of our knowledge on iron uptake in recent years. Here, we summarize the novel insights into the regulation of iron acquisition and internal mobilization from intracellular stores. We present a detailed view of the main known regulatory networks defined by the Arabidopsis regulators FIT and POPEYE (PYE). Additionally, we analyze the root and leaf iron-responsive regulatory networks, revealing novel potential gene interactions and reliable iron-deficiency marker genes. We discuss perspectives and open questions with regard to iron sensing and post-translational regulation.
Collapse
Affiliation(s)
- Rumen Ivanov
- Department of Biosciences-Plant Biology, Saarland University, Campus A2.4, D-66123 Saarbrücken, Germany
| | | | | |
Collapse
|
217
|
Giehl RF, Lima JE, von Wirén N. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. THE PLANT CELL 2012; 24:33-49. [PMID: 22234997 PMCID: PMC3289578 DOI: 10.1105/tpc.111.092973] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/15/2011] [Accepted: 12/09/2011] [Indexed: 05/18/2023]
Abstract
Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.
Collapse
Affiliation(s)
- Ricardo F.H. Giehl
- Molecular Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
- Leibniz-Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Joni E. Lima
- Molecular Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
- Leibniz-Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Address correspondence to
| |
Collapse
|
218
|
Vigani G. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1-11. [PMID: 22050893 DOI: 10.1016/j.jplph.2011.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 05/22/2023]
Abstract
In plants, iron (Fe) deficiency-induced chlorosis is a major problem, affecting both yield and quality of crops. Plants have evolved multifaceted strategies, such as reductase activity, proton extrusion, and specialised storage proteins, to mobilise Fe from the environment and distribute it within the plant. Because of its fundamental role in plant productivity, several issues concerning Fe homeostasis in plants are currently intensively studied. The activation of Fe uptake reactions requires an overall adaptation of the primary metabolism because these activities need the constant supply of energetic substrates (i.e., NADPH and ATP). Several studies concerning the metabolism of Fe-deficient plants have been conducted, but research focused on mitochondrial implications in adaptive responses to nutritional stress has only begun in recent years. Mitochondria are the energetic centre of the root cell, and they are strongly affected by Fe deficiency. Nevertheless, they display a high level of functional flexibility, which allows them to maintain the viability of the cell. Mitochondria represent a crucial target of studies on plant homeostasis, and it might be of interest to concentrate future research on understanding how mitochondria orchestrate the reprogramming of root cell metabolism under Fe deficiency. In this review, I summarise what it is known about the effect of Fe deficiency on mitochondrial metabolism and morphology. Moreover, I present a detailed view of the possible roles of mitochondria in the development of plant responses to Fe deficiency, integrating old findings with new and discussing new hypotheses for future investigations.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
219
|
Meiser J, Lingam S, Bauer P. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. PLANT PHYSIOLOGY 2011; 157:2154-66. [PMID: 21972265 PMCID: PMC3327203 DOI: 10.1104/pp.111.183285] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/21/2011] [Indexed: 05/19/2023]
Abstract
Understanding iron (Fe) sensing and regulation is important for targeting key genes for important nutritional traits like Fe content. The basic helix-loop-helix transcription factor FIT (for FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) controls Fe acquisition genes in dicot roots. Posttranscriptional regulation of transcription factors allows rapid adaptation to cellular changes and was also described for FIT. However, the mechanisms behind this regulation of FIT were for a long time not known. Here, we studied the posttranscriptional control mechanisms of FIT in Arabidopsis (Arabidopsis thaliana) and identified nitric oxide as a stabilizing stimulus for FIT protein abundance. Using cycloheximide, we confirmed that the level of FIT protein was regulated by way of protein turnover in wild-type and hemagglutinin-FIT plants. Upon cycloheximide treatment, FIT activity was hardly compromised, since Fe deficiency genes like IRON-REGULATED TRANSPORTER1 and FERRIC REDUCTASE OXIDASE2 were still inducible by Fe deficiency. A small pool of "active" FIT was sufficient for the induction of Fe deficiency downstream responses. Nitric oxide inhibitors caused a decrease of FIT protein abundance and, in the wild type, also a decrease in FIT activity. This decrease of FIT protein levels was reversed by the proteasomal inhibitor MG132, suggesting that in the presence of nitric oxide FIT protein was less likely to be a target of proteasomal degradation. Independent of FIT transcription, FIT protein stability and FIT protein activity, therefore, were targets of control mechanisms in response to Fe and nitric oxide. We summarize our results in a model that explains the different steps of FIT regulation integrating the plant signals that control FIT.
Collapse
|
220
|
Ramirez L, Simontacchi M, Murgia I, Zabaleta E, Lamattina L. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:582-92. [PMID: 21893255 DOI: 10.1016/j.plantsci.2011.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/08/2023]
Abstract
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production. More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.
Collapse
Affiliation(s)
- Leonor Ramirez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, CC 1245 Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
221
|
Hancock JT, Neill SJ, Wilson ID. Nitric oxide and ABA in the control of plant function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:555-9. [PMID: 21893252 DOI: 10.1016/j.plantsci.2011.03.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) and nitric oxide (NO) are both extremely important signalling molecules employed by plants to control many aspects of physiology. ABA has been extensively studied in the mechanisms which control stomatal movement as well as in seed dormancy and germination and plant development. The addition of either ABA or NO to plant cells is known to instigate the actions of many signal transduction components. Both may have an influence on the phosphorylation of proteins in cells mediated by effects on protein kinases and phosphatases, as well as recruiting a wide range of other signal transduction molecules to mediate the final effects. Both ABA and NO may also lead to the regulation of gene expression. However, it is becoming more apparent that NO may be acting downstream of ABA, with such action being mediated by reactive oxygen species such as hydrogen peroxide in some cases. However not all ABA responses require the action of NO. Here, examples of where ABA and NO have been put together into the same signal transduction pathways are discussed.
Collapse
Affiliation(s)
- J T Hancock
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | | | | |
Collapse
|
222
|
Wimalasekera R, Tebartz F, Scherer GFE. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:593-603. [PMID: 21893256 DOI: 10.1016/j.plantsci.2011.04.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), polyamines (PAs), diamine oxidases (DAO) and polyamine oxidases (PAO) play important roles in wide spectrum of physiological processes such as germination, root development, flowering and senescence and in defence responses against abiotic and biotic stress conditions. This functional overlapping suggests interaction of NO and PA in signalling cascades. Exogenous application of PAs putrescine, spermidine and spermine to Arabidopsis seedlings induced NO production as observed by fluorimetry and fluorescence microscopy using the NO-binding fluorophores DAF-2 and DAR-4M. The observed NO release induced by 1 mM spermine treatment in the Arabidopsis seedlings was very rapid without apparent lag phase. These observations pave a new insight into PA-mediated signalling and NO as a potential mediator of PA actions. When comparing the functions of NO and PA in plant development and abiotic and biotic stresses common to both signalling components it can be speculated that NO may be a link between PA-mediated stress responses filing a gap between many known physiological effects of PAs and amelioration of stresses. NO production indicated by PAs could be mediated either by H(2)O(2), one reaction product of oxidation of PAs by DAO and PAO, or by unknown mechanisms involving PAs, DAO and PAO.
Collapse
Affiliation(s)
- Rinukshi Wimalasekera
- Leibniz University of Hannover, Institute of Floriculture and Wood Science, Section of Molecular Developmental Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | |
Collapse
|
223
|
Van Ree K, Gehl B, Chehab EW, Tsai YC, Braam J. Nitric oxide accumulation in Arabidopsis is independent of NOA1 in the presence of sucrose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:225-33. [PMID: 21689173 DOI: 10.1111/j.1365-313x.2011.04680.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nitric oxide signals diverse responses in animals and plants. Whereas nitric oxide synthesis mechanisms in animals are well understood, how nitric oxide is synthesized and regulated in plants remains controversial. NOA1 is a circularly permuted GTPase that is important for chloroplast function and is implicated in nitric oxide synthesis. However, the reported consequences of a null mutation in NOA1 are inconsistent. Whereas some studies indicate that the noa1 mutant has severe reductions in nitric oxide accumulation, others report that nitric oxide levels are indistinguishable between noa1 and the wild type. Here, we identify a correlation between the reported ability of noa1 to accumulate nitric oxide with growth on sucrose-supplemented media. We report that noa1 accumulates both basal and salicylic acid-induced nitric oxide only when grown on media containing sucrose. In contrast, nitric oxide accumulation in wild type is largely insensitive to sucrose supplementation. When grown in the absence of sucrose, noa1 has low fumarate, pale green leaves, slow growth and reduced chlorophyll content. These phenotypes are consistent with a defect in chloroplast-derived photosynthate production and are largely rescued by sucrose supplementation. We conclude that NOA1 has a primary role in chloroplast function and that its effects on the accumulation of nitric oxide are likely to be indirect.
Collapse
Affiliation(s)
- Kalie Van Ree
- Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA
| | | | | | | | | |
Collapse
|
224
|
Cellini A, Corpas FJ, Barroso JB, Masia A. Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1543-1549. [PMID: 21507506 DOI: 10.1016/j.jplph.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 05/30/2023]
Abstract
Iron (Fe) chlorosis is a common nutritional deficiency in fruit trees grown in calcareous soils. Grafting on tolerant rootstocks is the most efficient practice to cope with it. In the present work, three Prunus hybrid genotypes, commonly used as peach rootstocks, and one peach cultivar were cultivated with bicarbonate in the growth medium. Parameters describing oxidative stress and the metabolism of reactive nitrogen species were studied. Lower contents of nitric oxide and a decreased nitrosoglutathione reductase activity were found in the most sensitive genotypes, characterized by higher oxidative stress and reduced antioxidant defense. In the peach cultivar, which behaved as a tolerant genotype, a specifically nitrated polypeptide was found.
Collapse
Affiliation(s)
- Antonio Cellini
- Dipartimento di Colture Arboree, Università degli Studi di Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | | | | | | |
Collapse
|
225
|
Jin CW, Du ST, Shamsi IH, Luo BF, Lin XY. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3875-84. [PMID: 21511908 PMCID: PMC3134345 DOI: 10.1093/jxb/err078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 05/20/2023]
Abstract
In response to Fe-deficiency, various dicots increase their root branching which contributes to the enhancement of ferric-chelate reductase activity. Whether this Fe-deficiency-induced response eventually enhances the ability of the plant to tolerate Fe-deficiency or not is still unclear and evidence is also scarce about the signals triggering it. In this study, it was found that the SPAD-chlorophyll meter values of newly developed leaves of four tomato (Solanum lycocarpum) lines, namely line227/1 and Roza and their two reciprocal F(1) hybrid lines, were positively correlated with their root branching under Fe-deficient conditions. It indicates that Fe-deficiency-induced root branching is critical for plant tolerance to Fe-deficiency. In another tomato line, Micro-Tom, the increased root branching in Fe-deficient plants was accompanied by the elevation of endogenous auxin and nitric oxide (NO) levels, and was suppressed either by the auxin transport inhibitors NPA and TIBA or the NO scavenger cPTIO. On the other hand, root branching in Fe-sufficient plants was induced either by the auxin analogues NAA and 2,4-D or the NO donors NONOate or SNP. Further, in Fe-deficient plants, NONOate restored the NPA-terminated root branching, but NAA did not affect the cPTIO-terminated root branching. Fe-deficiency-induced root branching was inhibited by the NO-synthase (NOS) inhibitor L-NAME, but was not affected by the nitrate reductase (NR) inhibitor NH(4)(+), tungstate or glycine. Taking all of these findings together, a novel function and signalling pathway of Fe-deficiency-induced root branching is presented where NOS-generated rather than NR-generated NO acts downstream of auxin in regulating this Fe-deficiency-induced response, which enhances the plant tolerance to Fe-deficiency.
Collapse
Affiliation(s)
- Chong Wei Jin
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Shao Ting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Imran Haider Shamsi
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Bing Fang Luo
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xian Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
226
|
Bacaicoa E, Mora V, Zamarreño AM, Fuentes M, Casanova E, García-Mina JM. Auxin: a major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:545-56. [PMID: 21411331 DOI: 10.1016/j.plaphy.2011.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/17/2011] [Indexed: 05/19/2023]
Abstract
The aim of this study was to investigate the effects of IAA and ABA in the shoot-to-root regulation of the expression of the main Fe-stress physiological root responses in cucumber plants subjected to shoot Fe functional deficiency. Changes in the expression of the genes CsFRO1, CsIRT1, CsHA1 and CsHA2 (coding for Fe(III)-chelate reductase (FCR), the Fe(II) transporter and H+-ATPase, respectively) and in the enzyme activity of FCR and the acidification capacity were measured. We studied first the ability of exogenous applications of IAA and ABA to induce these Fe-stress root responses in plants grown in Fe-sufficient conditions. The results showed that IAA was able to activate these responses at the transcriptional and functional levels, whereas the results with ABA were less conclusive. Thereafter, we explored the role of IAA in plants with or without shoot Fe functional deficiency in the presence of two types of IAA inhibitors, affecting either IAA polar transport (TIBA) or IAA functionality (PCIB). The results showed that IAA is involved in the regulation at the transcriptional and functional levels of both Fe root acquisition (FCR, Fe(II) transport) and rhizosphere acidification (H+-ATPase), although through different, and probably complementary, mechanisms. These results suggest that IAA is involved in the shoot-to-root regulation of the expression of Fe-stress physiological root responses.
Collapse
Affiliation(s)
- Eva Bacaicoa
- CIPAV TimacAGRO International-Roullier Group, Polígono Arazuri-Orcoyen, c/C n° 32, 31160 Orcoyen, Navarra, Spain
| | | | | | | | | | | |
Collapse
|
227
|
Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. THE PLANT CELL 2011; 23:1815-29. [PMID: 21586684 PMCID: PMC3123957 DOI: 10.1105/tpc.111.084715] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/31/2011] [Accepted: 04/17/2011] [Indexed: 05/19/2023]
Abstract
Understanding the regulation of key genes involved in plant iron acquisition is of crucial importance for breeding of micronutrient-enriched crops. The basic helix-loop-helix protein FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), a central regulator of Fe acquisition in roots, is regulated by environmental cues and internal requirements for iron at the transcriptional and posttranscriptional levels. The plant stress hormone ethylene promotes iron acquisition, but the molecular basis for this remained unknown. Here, we demonstrate a direct molecular link between ethylene signaling and FIT. We identified ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1) in a screen for direct FIT interaction partners and validated their physical interaction in planta. We demonstrate that the ein3 eil1 transcriptome was affected to a greater extent upon iron deficiency than normal iron compared with the wild type. Ethylene signaling by way of EIN3/EIL1 was required for full-level FIT accumulation. FIT levels were reduced upon application of aminoethoxyvinylglycine and in the ein3 eil1 background. MG132 could restore FIT levels. We propose that upon ethylene signaling, FIT is less susceptible to proteasomal degradation, presumably due to a physical interaction between FIT and EIN3/EIL1. Increased FIT abundance then leads to the high level of expression of genes required for Fe acquisition. This way, ethylene is one of the signals that triggers Fe deficiency responses at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Sivasenkar Lingam
- Department of Biosciences–Plant Biology, Saarland University, D-66123 Saarbrucken, Germany
| | - Julia Mohrbacher
- Department of Biosciences–Plant Biology, Saarland University, D-66123 Saarbrucken, Germany
| | - Tzvetina Brumbarova
- Department of Biosciences–Plant Biology, Saarland University, D-66123 Saarbrucken, Germany
| | - Thomas Potuschak
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | | | - Eddy Blondet
- Functional Genomics in Arabidopsis Team, Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Université d’Evry Val d’Essonne, Équipe de Recherche Labellisée, Centre National de la Recherche Scientifique 8196, CP 5708, F-91057 Evry Cedex, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | - Petra Bauer
- Department of Biosciences–Plant Biology, Saarland University, D-66123 Saarbrucken, Germany
| |
Collapse
|
228
|
García MJ, Suárez V, Romera FJ, Alcántara E, Pérez-Vicente R. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:537-44. [PMID: 21316254 DOI: 10.1016/j.plaphy.2011.01.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/23/2010] [Accepted: 01/11/2011] [Indexed: 05/18/2023]
Abstract
In previous work it has been shown that both ethylene and NO (nitric oxide) participate in a similar way in the up-regulation of several Fe-acquisition genes of Arabidopsis and other Strategy I plants. This raises the question as to whether NO acts through ethylene or ethylene acts through NO, or whether both act in conjunction. One possibility is that NO could increase ethylene production. Conversely, ethylene could increase NO production. By using Arabidopsis and cucumber plants, we have found that both possibilities occur: NO greatly induces the expression in roots of genes involved in ethylene synthesis: AtSAM1, AtSAM2, AtACS4, AtACS6, AtACO1, AtACO2, AtMTK; CsACS2 and CsACO2; on the other hand, ethylene greatly enhances NO production in the subapical region of the roots. These results suggest that each substance influences the production of the other and that both substances could be necessary for up-regulation of Fe-acquisition genes. This has been further confirmed in experiments with simultaneous application of the NO donor GSNO (S-nitrosoglutathione) and ethylene inhibitors; or with simultaneous application of the ethylene precursor ACC (1-aminocyclopropane-1-carboxylic acid) and an NO scavenger. Both GSNO and ACC enhanced ferric reductase activity in control plants, but not in those plants simultaneously treated with the ethylene inhibitors or the NO scavenger, respectively. To explain all these results and previous ones we have proposed a new model involving ethylene, NO, and Fe in the up-regulation of Fe-acquisition genes of Strategy I plants.
Collapse
Affiliation(s)
- María J García
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis (C-4), Campus de Rabanales, University of Córdoba, 14071-Córdoba, Spain
| | | | | | | | | |
Collapse
|
229
|
Romera FJ, García MJ, Alcántara E, Pérez-Vicente R. Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants. PLANT SIGNALING & BEHAVIOR 2011; 6:167-70. [PMID: 21248474 PMCID: PMC3122036 DOI: 10.4161/psb.6.1.14111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/03/2010] [Indexed: 05/18/2023]
Abstract
Under Fe deficiency, Strategy I (non-graminaceous) plants up-regulate the expression of many Fe acquisition genes and develop morphological changes in their roots. The regulation of these responses is not completely known, but since the 1980's different results suggest a role for auxin, ethylene and, more recently, nitric oxide. The up-regulation of the Fe acquisition genes does not depend solely on these hormones, that would act as activators, but also on some other signals, probably phloem Fe, that would act as an inhibitor. It is not known which of the hormones considered is the last activator of the Fe acquisition genes, but some results suggest that auxin acts upstream of ethylene and NO and that, perhaps, ethylene is the last activator.
Collapse
Affiliation(s)
- Francisco J Romera
- Department of Agronomy; Ecology and Plant Physiology; Edificio Celestino Mutis (C-4); Campus de Rabanales; University of Córdoba; Córdoba, Spain
| | - María J García
- Department of Botany, Ecology and Plant Physiology; Edificio Celestino Mutis (C-4); Campus de Rabanales; University of Córdoba; Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy; Ecology and Plant Physiology; Edificio Celestino Mutis (C-4); Campus de Rabanales; University of Córdoba; Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology; Edificio Celestino Mutis (C-4); Campus de Rabanales; University of Córdoba; Córdoba, Spain
| |
Collapse
|