201
|
Li J, Gao H, Jiang J, Dzyubenko N, Chapurin V, Wang Z, Wang X. Overexpression of the Galega orientalis gibberellin receptor improves biomass production in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:1-6. [PMID: 23995087 DOI: 10.1016/j.plaphy.2013.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/28/2013] [Indexed: 05/01/2023]
Abstract
Gibberellins (GAs) are well-known phytohormones that contribute to a wide range of plant growth and development functions including stem elongation and leaf expansion. GA receptors perceive GA and transmit signals to activate GA-regulated reactions. In this study, a GA receptor gene with homology to other leguminous plants was isolated from Galega orientalis and termed GoGID. The 1732-bp full-length GoGID gene included an open reading frame of 1035 bp encoding a peptide of 344 amino acids. Sequence analysis indicated that GoGID shares conserved HGGS motif and active amino acid sites (Ser-Asp-Val/IIe) that are essential for maintaining it GA-binding activity. GoGID mRNA expression was more abundant in leaves than in roots or stems and could be up-regulated by the exogenous hormones. Overexpression of GoGID in transgenic tobacco plants promoted plant elongation and improved biomass production. These results suggested that GoGID functions as a GA receptor to alter GA-mediated signaling. GoGID may have a role in genetic engineering for the improvement of forage crops.
Collapse
Affiliation(s)
- Jun Li
- Department of Forage Germplasm Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
202
|
Xu H, Iwashiro R, Li T, Harada T. Long-distance transport of Gibberellic Acid Insensitive mRNA in Nicotiana benthamiana. BMC PLANT BIOLOGY 2013; 13:165. [PMID: 24144190 PMCID: PMC4015358 DOI: 10.1186/1471-2229-13-165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 10/10/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The Gibberellic Acid (GA) signal is governed by the GAI (Gibberellic Acid Insensitive) repressor, which is characterized by a highly conserved N-terminal DELLA domain. Deletion of the DELLA domain results in constitutive suppression of GA signaling. As the GAI transcript is transportable in phloem elements, a Δ-DELLA GAI (gai) transgenic stock plant can reduce the stature of a scion through transport of gai mRNA from the stock. However, little is known about the characteristics of a scion on a gai stock. RESULTS Arabidopsis Δ-DELLA GAI (gai) was fused with a T7 epitope tag and expressed under the control of a companion cell-specific expression promoter, Commelina yellow mottle virus promoter (CoYMVp), to enhance transport in the phloem. The CoYMVp:Atgai-T7 (CgT) transgenic Nicotiana benthamiana exhibited a dwarf phenotype and lower sensitivity to GA enhancement of shoot stature. A wild-type (WT) scion on a CgT stock contained both Atgai-T7 mRNA and the translated product. Microarray analysis to clarify the effect of the CgT stock on the gene expression pattern in the scion clearly revealed that the WT scions on CgT stocks had fewer genes whose expression was altered in response to GA treatment. An apple rootstock variety, Malus prunifolia, integrating CoYMVp:Atgai moderately reduced the tree height of the apple cultivar scion. CONCLUSIONS Our results demonstrate that Atgai mRNA can move from companion cells to sieve tubes and that the translated product remains at the sites to which it is transported, resulting in attenuation of GA responses by reducing the expression of many genes. The induction of semi-dwarfism in an apple cultivar on root stock harbouring Atgai suggests that long-distance transport of mRNA from grafts would be applicable to horticulture crops.
Collapse
Affiliation(s)
- Haiyan Xu
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
- Present address: Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Reika Iwashiro
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agriculture University, Beijing 100193, China
| | - Takeo Harada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
203
|
de Saint Germain A, Bonhomme S, Boyer FD, Rameau C. Novel insights into strigolactone distribution and signalling. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:583-9. [PMID: 23830996 DOI: 10.1016/j.pbi.2013.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs), a group of small carotenoid-derived molecules, were first known for their function in the rhizosphere in both symbiotic and parasitic interactions. Most of the progress for deciphering SL biosynthesis and signalling pathways comes from the use of high branching mutants identified in several species demonstrating that SLs also play a hormonal role in plant development. How SLs are perceived by the different organisms on which they show bioactivity is a current major challenge for the growing SL research community. These molecules very likely predate the colonization of land by plants and represent a fascinating example of signalling molecules involved in key innovations during plant evolution.
Collapse
|
204
|
Wang C, Shang JX, Chen QX, Oses-Prieto JA, Bai MY, Yang Y, Yuan M, Zhang YL, Mu CC, Deng Z, Wei CQ, Burlingame AL, Wang ZY, Sun Y. Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification. Mol Cell Proteomics 2013; 12:3653-65. [PMID: 24019147 DOI: 10.1074/mcp.m113.029256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brassinosteroids (BRs) are essential phytohormones for plant growth and development. BRs are perceived by the cell surface receptor kinase BRI1, and downstream signal transduction through multiple components leads to activation of the transcription factors BZR1 and BZR2/BES1. BZR1 activity is highly controlled by BR through reversible phosphorylation, protein degradation, and nucleocytoplasmic shuttling. To further understand the molecular function of BZR1, we performed tandem affinity purification of the BZR1 complex and identified BZR1-associated proteins using mass spectrometry. These BZR1-associated proteins included several known BR signaling components, such as BIN2, BSK1, 14-3-3λ, and PP2A, as well as a large number of proteins with previously unknown functions in BR signal transduction, including the kinases MKK5 and MAPK4, histone deacetylase 19, cysteine proteinase inhibitor 6, a DEAD-box RNA helicase, cysteine endopeptidases RD21A and RD21B, calmodulin-binding transcription activator 5, ubiquitin protease 12, cyclophilin 59, and phospholipid-binding protein synaptotagmin A. Their interactions with BZR1 were confirmed by in vivo and in vitro assays. Furthermore, MKK5 was found to phosphorylate BZR1 in vitro. This study demonstrates an effective method for purifying proteins associated with low-abundance transcription factors, and identifies new BZR1-interacting proteins with potentially important roles in BR response.
Collapse
Affiliation(s)
- Chunming Wang
- Institute of Molecular Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E, Porri A, Sacharowski S, Gratkowska DM, Zugaj DL, Taff A, Zalewska A, Archacki R, Davis SJ, Coupland G, Koncz C, Jerzmanowski A, Sarnowski TJ. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:305-17. [PMID: 23893173 PMCID: PMC3762652 DOI: 10.1104/pp.113.223933] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 05/18/2023]
Abstract
Switch (SWI)/Sucrose Nonfermenting (SNF)-type chromatin-remodeling complexes (CRCs) are involved in regulation of transcription, DNA replication and repair, and cell cycle. Mutations of conserved subunits of plant CRCs severely impair growth and development; however, the underlying causes of these phenotypes are largely unknown. Here, we show that inactivation of SWI3C, the core component of Arabidopsis (Arabidopsis thaliana) SWI/SNF CRCs, interferes with normal functioning of several plant hormone pathways and alters transcriptional regulation of key genes of gibberellin (GA) biosynthesis. The resulting reduction of GA4 causes severe inhibition of hypocotyl and root elongation, which can be rescued by exogenous GA treatment. In addition, the swi3c mutation inhibits DELLA-dependent transcriptional activation of GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptor genes. Down-regulation of GID1a in parallel with the DELLA repressor gene REPRESSOR OF GA1-3 1 in swi3c indicates that lack of SWI3C also leads to defects in GA signaling. Together with the recent demonstration of function of SWI/SNF ATPase BRAHMA in the GA pathway, these results reveal a critical role of SWI/SNF CRC in the regulation of GA biosynthesis and signaling. Moreover, we demonstrate that SWI3C is capable of in vitro binding to, and shows in vivo bimolecular fluorescence complementation interaction in cell nuclei with, the DELLA proteins RGA-LIKE2 and RGA-LIKE3, which affect transcriptional activation of GID1 and GA3ox (GIBBERELLIN 3-OXIDASE) genes controlling GA perception and biosynthesis, respectively. Furthermore, we show that SWI3C also interacts with the O-GlcNAc (O-linked N-acetylglucosamine) transferase SPINDLY required for proper functioning of DELLAs and acts hypostatically to (SPINDLY) in the GA response pathway. These findings suggest that DELLA-mediated effects in GA signaling as well as their role as a hub in hormonal cross talk may be, at least in part, dependent on their direct physical interaction with complexes responsible for modulation of chromatin structure.
Collapse
|
206
|
Li QF, He JX. Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. PLANT SIGNALING & BEHAVIOR 2013; 8:e24686. [PMID: 23603943 PMCID: PMC3909037 DOI: 10.4161/psb.24686] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brassinosteroids (BRs) and Gibberellins (GAs) are two principal groups of growth-promoting phytohormones. Accumulating evidence supports that there are crosstalks between BR and GA signaling pathways. However, a molecular mechanism for direct signaling crosstalk between BRs and GAs was not revealed until recently. Works from three different groups demonstrated that an interaction between BZR1/BES1 and DELLAs, two groups of key transcriptional regulators from the BR and GA signaling pathways, respectively, mediates the direct signaling crosstalk between BRs and GAs in controlling cell elongation in Arabidopsis. It was shown that DELLA proteins not only affect the protein stability but also inhibit the transcriptional activity of BZR1. Thus, GAs promote cell elongation, at least in part, through releasing DELLA-mediated inhibition of BZR1. This review aims to introduce these recent advances in our understanding of how BRs and GAs coordinate to regulate plant growth and development at the molecular level.
Collapse
|
207
|
Hao GF, Yang SG, Yang GF, Zhan CG. Computational gibberellin-binding channel discovery unraveling the unexpected perception mechanism of hormone signal by gibberellin receptor. J Comput Chem 2013; 34:2055-64. [PMID: 23765254 DOI: 10.1002/jcc.23355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/01/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA-binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008, 456, 459] involving two conformational states ("OPEN" and "CLOSED") of GID1. According to the new perception mechanism, GA acts as a "conformational stabilizer," rather than the previously speculated "allosteric inducer," to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism-based rational design of novel, potent growth regulators that target crops and ornamental plants.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | | | | | | |
Collapse
|
208
|
Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J, Piquemal J, Lippi Y, Blanchard P, Romestant M, Pouilly N, Rengel D, Gouzy J, Langlade N, Mangin B, Vincourt P. Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1337-56. [PMID: 23435733 DOI: 10.1007/s00122-013-2056-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/20/2013] [Indexed: 05/20/2023]
Abstract
Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.
Collapse
Affiliation(s)
- Elena Cadic
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 2013. [PMID: 23381136 DOI: 10.1038/cr.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
|
210
|
Li A, Yang W, Li S, Liu D, Guo X, Sun J, Zhang A. Molecular characterization of three GIBBERELLIN-INSENSITIVE DWARF1 homologous genes in hexaploid wheat. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:432-443. [PMID: 23261263 DOI: 10.1016/j.jplph.2012.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
GIBBERELLIN-INSENSITIVE DWARF1 (GID1) functions as a gibberellin (GA) receptor and is a key component in the GA signaling pathway. In this paper, three TaGID1 genes, orthologous to rice OsGID1 (the first identified GA receptor GID1 gene), were isolated from hexaploid wheat using homology cloning. Like OsGID1, the three homologous TaGID1 genes consisted of two exons and one intron. Physical location analyses using nullisomic-tetrasomic and deletion lines derived from the wheat cultivar Chinese Spring revealed that the three homologous TaGID1 genes reside in the chromosome bins 1AL3-0.61-1, 1BL1-0.47-0.69, and 1DL2-0.41-1. Accordingly, they were named TaGID1-A1, TaGID1-B1, and TaGID1-D1, respectively. The expression patterns of the three TaGID1 genes were determined by real-time PCR in various wheat tissues at the heading stage, including flag leaves, young spikes, peduncles, and the third and fourth internodes. The three TaGID1 genes had similar transcript patterns, and all exhibited greater expression in flag leaves than in the other tissues. Moreover, they were all down-regulated after treatment with exogenous gibberellic acid (GA(3)) in young seedlings, suggesting a feedback regulation of TaGID1 in wheat. Yeast two-hybrid assays demonstrated strong interactions between each putative TaGID1 and the wheat DELLA proteins RHT-A1, RHT-B1, and RHT-D1 in the presence of GA(3), and weak interactions in the absence of GA(3) in yeast cells. Furthermore, over-expression of each TaGID1 gene in the Arabidopsis double mutant gid1a/1c partially rescued the dwarf phenotype. These results suggest that the three TaGID1 homologous genes are all functional GA receptor genes in wheat.
Collapse
Affiliation(s)
- Aixia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
211
|
Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 2013; 23:436-9. [PMID: 23381136 PMCID: PMC3587710 DOI: 10.1038/cr.2013.19] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
212
|
Ma X, Song L, Yang Y, Liu D. A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:751-762. [PMID: 23206262 DOI: 10.1111/nph.12056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/21/2012] [Indexed: 05/20/2023]
Abstract
Plant architecture is an important agronomic trait and is useful for identification of plant species. The molecular basis of plant architecture, however, is largely unknown. Forward genetics was used to identify an Arabidopsis mutant with altered plant architecture. Using genetic and molecular approaches, we analyzed the roles of a mutated cyclophilin in the control of plant architecture. The Arabidopsis mutant roc1 has reduced stem elongation and increased shoot branching, and the mutant phenotypes are strongly affected by temperature and photoperiod. Map-based cloning and transgenic experiments demonstrated that the roc1 mutant phenotypes are caused by a gain-of-function mutation in a cyclophilin gene, ROC1. Besides, application of the plant hormone gibberellic acid (GA) further suppresses stem elongation in the mutant. GA treatment enhances the accumulation of mutated but not of wildtype (WT) ROC1 proteins. The roc1 mutation does not seem to interfere with GA biosynthesis or signaling. GA signaling, however, antagonizes the effect of the roc1 mutation on stem elongation. The altered plant architecture may result from the activation of an R gene by the roc1 protein. We also present a working model for the interaction between the roc1 mutation and GA signaling in regulating stem elongation.
Collapse
Affiliation(s)
- Xiqing Ma
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Li Song
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaxuan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
213
|
Heinrich M, Hettenhausen C, Lange T, Wünsche H, Fang J, Baldwin IT, Wu J. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:591-606. [PMID: 23190261 DOI: 10.1111/tpj.12058] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/26/2012] [Accepted: 10/17/2012] [Indexed: 05/20/2023]
Abstract
Hormones play pivotal roles in regulating plant development, growth, and stress responses, and cross-talk among different hormones fine-tunes various aspects of plant physiology. Jasmonic acid (JA) is important for plant defense against herbivores and necrotic fungi and also regulates flower development; in addition, Arabidopsis mutants over-producing JA usually have stunted stems and wound-induced jasmonates suppress Arabidopsis growth, suggesting that JA is also involved in stem elongation. Gibberellins (GAs) promote stem and leaf growth and modulate seed germination, flowering time, and the development of flowers, fruits, and seeds. However, little is known about the interaction between the JA and GA pathways. Two calcium-dependent protein kinases, CDPK4 and CDPK5, are important suppressors of JA accumulation in a wild tobacco species, Nicotiana attenuata. The stems of N. attenuata silenced in CDPK4 and CDPK5 (irCDPK4/5 plants) had dramatically increased levels of JA and exhibited stunted elongation and had very high contents of secondary metabolites. Genetic analysis indicated that the high JA levels in irCDPK4/5 stems accounted for the suppressed stem elongation and the accumulation of secondary metabolites. Supplementation of GA(3) to irCDPK4/5 plants largely restored normal stem growth to wild-type levels. Measures of GA levels indicated that over-accumulation of JA in irCDPK4/5 stems inhibited the biosynthesis of GAs. Finally, we show that JA antagonizes GA biosynthesis by strongly inhibiting the transcript accumulation of GA20ox and possibly GA13ox, the key genes in GA production, demonstrating that high JA levels antagonize GA biosynthesis in stems.
Collapse
Affiliation(s)
- Maria Heinrich
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
214
|
Ramos ML, Altieri E, Bulos M, Sala CA. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:251-263. [PMID: 22972203 DOI: 10.1007/s00122-012-1978-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.
Collapse
Affiliation(s)
- María Laura Ramos
- Biotechnology Department, NIDERA S.A, Ruta 8 km 376, Casilla de Correo 6, 2600 Venado Tuerto, Santa Fe, Argentina
| | | | | | | |
Collapse
|
215
|
Meldau S, Erb M, Baldwin IT. Defence on demand: mechanisms behind optimal defence patterns. ANNALS OF BOTANY 2012; 110:1503-14. [PMID: 23022676 PMCID: PMC3503495 DOI: 10.1093/aob/mcs212] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. SCOPE This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. CONCLUSIONS Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| | | | | |
Collapse
|
216
|
Mosca E, Eckert AJ, Liechty JD, Wegrzyn JL, La Porta N, Vendramin GG, Neale DB. Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evol Appl 2012; 5:762-75. [PMID: 23144662 PMCID: PMC3492901 DOI: 10.1111/j.1752-4571.2012.00256.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/11/2012] [Indexed: 11/29/2022] Open
Abstract
A candidate gene approach was used to identify levels of nucleotide diversity and to identify genes departing from neutral expectations in coniferous species of the Alpine European forest. Twelve samples were collected from four species that dominate montane and subalpine forests throughout Europe: Abies alba Mill, Larix decidua Mill, Pinus cembra L., and Pinus mugo Turra. A total of 800 genes, originally resequenced in Pinus taeda L., were resequenced across 12 independent trees for each of the four species. Genes were assigned to two categories, candidate and control, defined through homology-based searches to Arabidopsis. Estimates of nucleotide diversity per site varied greatly between polymorphic candidate genes (range: 0.0004–0.1295) and among species (range: 0.0024–0.0082), but were within the previously established ranges for conifers. Tests of neutrality using stringent significance thresholds, performed under the standard neutral model, revealed one to seven outlier loci for each species. Some of these outliers encode proteins that are involved with plant stress responses and form the basis for further evolutionary enquiries.
Collapse
Affiliation(s)
- Elena Mosca
- Department of Plant Sciences, University of California at Davis Davis, CA, USA ; IASMA Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige Italy
| | | | | | | | | | | | | |
Collapse
|
217
|
Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nat Cell Biol 2012; 14:788-90. [PMID: 22854813 DOI: 10.1038/ncb2551] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The steroid hormones found in plants, the brassinosteroids, were originally genetically identified about 15 years ago as critical regulators of seedling photomorphogenesis. Two studies now shed light on the molecular mechanisms behind this observation. Brassinosteroids control seedling morphogenesis through direct interaction with master transcriptional regulators downstream of growth-promoting hormones and light signalling.
Collapse
|
218
|
Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 2012; 46:701-24. [PMID: 23020777 DOI: 10.1146/annurev-genet-102209-163450] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In plants, the steroidal hormone brassinosteroid (BR) regulates numerous developmental processes, including photomorphogenesis. Genetic, proteomic, and genomic studies in Arabidopsis have illustrated a fully connected BR signal transduction pathway from the cell surface receptor kinase BRI1 to the BZR1 family of transcription factors. Genome-wide analyses of protein-DNA interactions have identified thousands of BZR1 target genes that link BR signaling to various cellular, metabolic, and developmental processes, as well as other signaling pathways. In controlling photomorphogenesis, BR signaling is highly integrated with the light, gibberellin, and auxin pathways through both direct interactions between signaling proteins and transcriptional regulation of key components of these pathways. BR signaling also cross talks with other receptor kinase pathways to modulate stomata development and innate immunity. The molecular connections in the BR signaling network demonstrate a robust steroid signaling system that has evolved in plants to orchestrate signal transduction, genome expression, metabolism, defense, and development.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
219
|
Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:443-453. [PMID: 22429711 DOI: 10.1111/j.1365-313x.2012.05000.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
220
|
Abstract
The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
Collapse
|
221
|
Tanimoto E. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. ANNALS OF BOTANY 2012; 110:373-81. [PMID: 22437663 PMCID: PMC3394641 DOI: 10.1093/aob/mcs049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/07/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. SCOPE This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. CONCLUSIONS This paper reviews: (1) the breakthrough dose-response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender or thick axial organs.
Collapse
Affiliation(s)
- Eiichi Tanimoto
- Nagoya City University, Graduate School of Natural Sciences, Mizuho-ku, Nagoya, Japan.
| |
Collapse
|
222
|
Hong YF, Ho THD, Wu CF, Ho SL, Yeh RH, Lu CA, Chen PW, Yu LC, Chao A, Yu SM. Convergent starvation signals and hormone crosstalk in regulating nutrient mobilization upon germination in cereals. THE PLANT CELL 2012; 24:2857-73. [PMID: 22773748 PMCID: PMC3426119 DOI: 10.1105/tpc.112.097741] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Germination is a unique developmental transition from metabolically quiescent seed to actively growing seedling that requires an ensemble of hydrolases for coordinated nutrient mobilization to support heterotrophic growth until autotrophic photosynthesis is established. This study reveals two crucial transcription factors, MYBS1 and MYBGA, present in rice (Oryza sativa) and barley (Hordeum vulgare), that function to integrate diverse nutrient starvation and gibberellin (GA) signaling pathways during germination of cereal grains. Sugar represses but sugar starvation induces MYBS1 synthesis and its nuclear translocation. GA antagonizes sugar repression by enhancing conuclear transport of the GA-inducible MYBGA with MYBS1 and the formation of a stable bipartite MYB-DNA complex to activate the α-amylase gene. We further discovered that not only sugar but also nitrogen and phosphate starvation signals converge and interconnect with GA to promote the conuclear import of MYBS1 and MYBGA, resulting in the expression of a large set of GA-inducible but functionally distinct hydrolases, transporters, and regulators associated with mobilization of the full complement of nutrients to support active seedling growth in cereals.
Collapse
Affiliation(s)
- Ya-Fang Hong
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Chin-Feng Wu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Shin-Lon Ho
- Department of Agronomy, National Chia-Yi University, Chiayi 600, Taiwan, Republic of China
| | - Rong-Hwei Yeh
- Department of Photonics and Communication Engineering, Asia University, Wu-Feng, Taichung 413, Taiwan, Republic of China
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli, Taoyuan 320, Taiwan, Republic of China
| | - Peng-Wen Chen
- Institute of Agricultural Biotechnology, National Chia-Yi University, Chiayi 600, Taiwan, Republic of China
| | - Lin-Chih Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Annlin Chao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
- Address correspondence to
| |
Collapse
|
223
|
Claeys H, Skirycz A, Maleux K, Inzé D. DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. PLANT PHYSIOLOGY 2012; 159:739-47. [PMID: 22535421 PMCID: PMC3375938 DOI: 10.1104/pp.112.195032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is responsible for considerable yield losses in agriculture due to its detrimental effects on growth. Drought responses have been extensively studied, but mostly on the level of complete plants or mature tissues. However, stress responses were shown to be highly tissue and developmental stage specific, and dividing tissues have developed unique mechanisms to respond to stress. Previously, we studied the effects of osmotic stress on dividing leaf cells in Arabidopsis (Arabidopsis thaliana) and found that stress causes early mitotic exit, in which cells end their mitotic division and start endoreduplication earlier. In this study, we analyzed this phenomenon in more detail. Osmotic stress induces changes in gibberellin metabolism, resulting in the stabilization of DELLAs, which are responsible for mitotic exit and earlier onset of endoreduplication. Consequently, this response is absent in mutants with altered gibberellin levels or DELLA activity. Mitotic exit and onset of endoreduplication do not correlate with an up-regulation of known cell cycle inhibitors but are the result of reduced levels of DP-E2F-LIKE1/E2Fe and UV-B-INSENSITIVE4, both inhibitors of the developmental transition from mitosis to endoreduplication by modulating anaphase-promoting complex/cyclosome activity, which are down-regulated rapidly after DELLA stabilization. This work fits into an emerging view of DELLAs as regulators of cell division by regulating the transition to endoreduplication and differentiation.
Collapse
|
224
|
Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 2012; 139:1285-95. [PMID: 22357928 DOI: 10.1242/dev.074567] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.
Collapse
Affiliation(s)
- Mark T Waters
- ARC Centre of Excellence for Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
225
|
Zhang Y, Liu Z, Liu R, Wang L, Bi Y. Gibberellins negatively regulate light-induced nitrate reductase activity in Arabidopsis seedlings. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2161-8. [PMID: 21856037 DOI: 10.1016/j.jplph.2011.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 05/08/2023]
Abstract
In the present study, the role of phytohormone gibberellins (GAs) on regulating the nitrate reductase (NR) activity was tested in Arabidopsis seedlings. The NR activity in light-grown Col-0 seedlings was reduced by exogenous GA₃ (an active form of GAs), but enhanced by exogenous paclobutrazol (PAC, a gibberellin biosynthesis inhibitor), suggesting that GAs negatively regulate the NR activity in light-grown seedlings. Light is known to influence the NR activity through both photosynthesis and phytochromes. When etiolated seedlings were transferred to white or red light, both exogenously applied GA₃ and PAC were found to function on the NR activity only in the presence of sucrose, implying that GAs are not involved in light signaling-induced but negatively regulate photoproducts-induced NR activity. NR is regulated by light mainly at two levels: transcript level and post-translational level. Our reverse transcription (RT)-PCR assays showed that GAs did not affect the transcript levels of NIA1 and NIA2, two genes that encode NR proteins. But the divalent cations (especially Mg²⁺) were required for GAs negative regulation of NR activity, in view of the importance of divalent cations during the process of post-translational regulation of NR activity, which indicates that GAs very likely regulate the NR activity at the post-translational level. In the following dark-light shift analyses, GAs were found to accelerate dark-induced decrease, but retard light-induced increase of the NR activity. Furthermore, it was observed that application of G₃ or PAC could impair diurnal variation of the NR activity. These results collectively indicate that GAs play a negative role during light regulation of NR activity in nature.
Collapse
Affiliation(s)
- Yongqiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
226
|
Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. PLANT PHYSIOLOGY 2011; 157:1820-31. [PMID: 22013218 PMCID: PMC3327217 DOI: 10.1104/pp.111.183657] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/19/2011] [Indexed: 05/18/2023]
Abstract
The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer "GA-insensitive" dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation.
Collapse
|
227
|
Plackett ARG, Thomas SG, Wilson ZA, Hedden P. Gibberellin control of stamen development: a fertile field. TRENDS IN PLANT SCIENCE 2011; 16:568-78. [PMID: 21824801 DOI: 10.1016/j.tplants.2011.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 05/04/2023]
Abstract
Stamen development is governed by a conserved genetic pathway, within which the role of hormones has been the subject of considerable recent research. Our understanding of the involvement of gibberellin (GA) signalling in this developmental process is further advanced than for the other phytohormones, and here we review recent experimental results in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) that have provided insight into the timing and mechanisms of GA regulation of stamen development, identifying the tapetum and developing pollen as major targets. GA signalling governs both tapetum secretory functions and entry into programmed cell death via the GAMYB class of transcription factor, the targets of which integrate with the established genetic framework for the regulation of tapetum function at multiple hierarchical levels.
Collapse
|
228
|
Siddiqua M, Nassuth A. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. PLANT, CELL & ENVIRONMENT 2011; 34:1345-59. [PMID: 21486303 DOI: 10.1111/j.1365-3040.2011.02334.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants growing in temperate regions encode several C-repeat binding factor/dehydration responsive element binding factors (CBF/DREB1) and the question is whether these transcription factors have different functions. In this study, Arabidopsis transformed with grape CBF1 (VrCBF1) or grape CBF4 (VrCBF4) were characterized. Electrolyte leakage assays showed that the freezing tolerance of transgenic lines was correlated with the level of VrCBF expression irrespective of the type of CBF, while drought tolerance was most increased by VrCBF1. VrCBF overexpression coincided with an increase in the expression of the cold-regulated genes AtCOR15a, AtRD29A, AtCOR6.6 and AtCOR47. In addition, the development of grape CBF overexpressing plants was seen to be altered and resulted in dwarf plants which flowered later and had thicker rosette leaves with a higher stomatal density. Analysis of gene expression showed that these morphological changes may be because of an increase in the expression of AtRGL3 in VrCBF4 lines or AtGA2ox7 in VrCBF1 lines, and AtFLC in both. In addition, the results show for the first time that CBFs can positively affect the expression of AtICE1/SCREAM1, the gene that is known to induce AtCBF3 expression. The difference in gene induction by VrCBF1 compared with VrCBF4 suggests that these CBFs have different regulons.
Collapse
Affiliation(s)
- Mahbuba Siddiqua
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
229
|
Krugman T, Peleg Z, Quansah L, Chagué V, Korol AB, Nevo E, Saranga Y, Fait A, Chalhoub B, Fahima T. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct Integr Genomics 2011; 11:565-83. [PMID: 21656015 DOI: 10.1007/s10142-011-0231-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 12/27/2022]
Abstract
Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.
Collapse
Affiliation(s)
- Tamar Krugman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Gao Y, Chen J, Zhao Y, Li T, Wang M. Molecular cloning and expression analysis of a RGA-like gene responsive to plant hormones in Brassica napus. Mol Biol Rep 2011; 39:1957-62. [PMID: 21643957 DOI: 10.1007/s11033-011-0943-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/26/2011] [Indexed: 01/04/2023]
Abstract
DELLA proteins are negative regulators of GA-induced growth. DELLA protein family is characterized by a DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. A full-length cDNA encoding a putative DELLA protein with high sequence homology to Arabidopsis thaliana RGA (AtRGA), designated as BnRGA, was isolated from Brassica napus. The full-length cDNA of BnRGA contained a 1,740 bp open reading frame (ORF) encoding a precursor protein of 579 amino acid residues. Comparative and bioinformatics analyses revealed that BnRGA showed a high degree of homology with DELLA proteins and contained the DELLA domain, TVHYNP domain, VHIID domain and RVER domain. Using real-time PCR, the expression patterns of BnRGA and two our previously isolated genes, BnGID1a and BnSLY1 in B. napus, were analyzed by adding exogenous gibberellins acid-3 (GA(3)), GA biosynthetic inhibitor paclobutrazol (PAC) and abscisic acid (ABA). The results showed that the expression of BnGID1a and BnSLY1 was down-regulated after treated by GA(3) and induced by PAC and ABA. These results suggest that the expression of BnGID1a and BnSLY1 may be negatively regulated by the level of endogenous GA in B. napus. Moreover, BnRGA was not significantly regulated by GA(3), PAC and ABA in the low concentrations. These suggest that GA-GID1-SCF-DELLA complex may have a mechanism of self-regulation, thereby preserving the stability of the expression level of BnRGA in B. napus.
Collapse
Affiliation(s)
- Yong Gao
- College of Bioscience and Biotechnology, Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
231
|
Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 2011; 68:2013-37. [PMID: 21611891 PMCID: PMC11115107 DOI: 10.1007/s00018-011-0673-y] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/08/2011] [Accepted: 03/17/2011] [Indexed: 01/01/2023]
Abstract
Plants undergo a major physiological change as they transition from vegetative growth to reproductive development. This transition is a result of responses to various endogenous and exogenous signals that later integrate to result in flowering. Five genetically defined pathways have been identified that control flowering. The vernalization pathway refers to the acceleration of flowering on exposure to a long period of cold. The photoperiod pathway refers to regulation of flowering in response to day length and quality of light perceived. The gibberellin pathway refers to the requirement of gibberellic acid for normal flowering patterns. The autonomous pathway refers to endogenous regulators that are independent of the photoperiod and gibberellin pathways. Most recently, an endogenous pathway that adds plant age to the control of flowering time has been described. The molecular mechanisms of these pathways have been studied extensively in Arabidopsis thaliana and several other flowering plants.
Collapse
Affiliation(s)
- Anusha Srikanth
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37-39/VI, 72076 Tübingen, Germany
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37-39/VI, 72076 Tübingen, Germany
| |
Collapse
|
232
|
Ariizumi T, Steber CM. Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling. PLANT SIGNALING & BEHAVIOR 2011; 6:831-3. [PMID: 21455025 PMCID: PMC3218480 DOI: 10.4161/psb.6.6.15164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 05/19/2023]
Abstract
We previously reported that the SLEEPY1 (SLY1) homolog, F-box gene SNEEZY/SLEEPY2 (SNE/SLY2), can partly replace SLY1 in gibberellin (GA) hormone signaling through interaction with DELLAs RGA and GAI. To determine whether SNE normally functions in GA signaling, we characterized the phenotypes of two T-DNA alleles, sne-t2 and sne-t3. These mutations result in no apparent vegetative phenotypes, but do result in increased ABA sensitivity in seed germination. Double mutants sly1-t2 sne-t2 and sly1-t2 sne-t3 result in a significant decrease in plant fertility and final plant height compared to sly1-t2. The fact that sne mutations have an additive effect with sly1 suggests that SNE normally functions as a redundant positive regulator of GA signaling.
Collapse
Affiliation(s)
- Tohru Ariizumi
- USDA-ARS, Wheat Genetics; Quality Physiology and Disease Research Unit, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
233
|
Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 2011; 68:2013-2037. [PMID: 21611891 DOI: 10.1007/s00018-011-0673-y/figures/3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/08/2011] [Accepted: 03/17/2011] [Indexed: 05/26/2023]
Abstract
Plants undergo a major physiological change as they transition from vegetative growth to reproductive development. This transition is a result of responses to various endogenous and exogenous signals that later integrate to result in flowering. Five genetically defined pathways have been identified that control flowering. The vernalization pathway refers to the acceleration of flowering on exposure to a long period of cold. The photoperiod pathway refers to regulation of flowering in response to day length and quality of light perceived. The gibberellin pathway refers to the requirement of gibberellic acid for normal flowering patterns. The autonomous pathway refers to endogenous regulators that are independent of the photoperiod and gibberellin pathways. Most recently, an endogenous pathway that adds plant age to the control of flowering time has been described. The molecular mechanisms of these pathways have been studied extensively in Arabidopsis thaliana and several other flowering plants.
Collapse
Affiliation(s)
- Anusha Srikanth
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37-39/VI, Tübingen, Germany
| | | |
Collapse
|
234
|
Abstract
Circadian clocks are endogenous timekeeping mechanisms that allow organisms to anticipate rhythmic, daily environmental changes. Temporal coordination of transcription results in a set of gene expression patterns with peak levels occurring at precise times of the day. An intriguing question is how a single clock can generate different oscillatory rhythms, and it has been proposed that hormone signaling might act in plants as a relay mechanism to modulate the amplitude and the phase of output rhythms. Here we show that the circadian clock gates gibberellin (GA) signaling through transcriptional regulation of the GA receptors, resulting in higher stability of DELLA proteins during daytime and higher GA sensitivity at night. Oscillation of GA signaling appears to be particularly critical for rhythmic growth, given that constitutive expression of the GA receptor expands the daily growth period in seedlings, and complete loss of DELLA function causes continuous, arrhythmic hypocotyl growth. Moreover, transcriptomic analysis of a pentuple della KO mutant indicates that the GA pathway mediates the rhythmic expression of many clock-regulated genes related to biotic and abiotic stress responses and cell wall modification. Thus, gating of GA sensitivity by the circadian clock represents an additional layer of regulation that might provide extra robustness to the diurnal growth rhythm and constitute a regulatory module that coordinates the circadian clock with additional endogenous and environmental signals.
Collapse
|
235
|
F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2011; 108:8897-902. [PMID: 21555559 DOI: 10.1073/pnas.1100987108] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates responses to the structurally-related strigolactone family of phytohormones. Karrikins and the synthetic strigolactone GR24 trigger similar effects on seed germination, seedling photomorphogenesis, and expression of a small set of genes during these developmental stages. Karrikins also repress MAX4 and IAA1 transcripts, which show negative feedback regulation by strigolactone. We demonstrate that all of these common responses are abolished in max2 mutants. Unlike strigolactones, however, karrikins do not inhibit shoot branching in Arabidopsis or pea, indicating that plants can distinguish between these signals. These results suggest that a MAX2-dependent signal transduction mechanism was adapted to mediate responses to two chemical cues with distinct roles in plant ecology and development.
Collapse
|
236
|
Sun TP. The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Curr Biol 2011; 21:R338-45. [DOI: 10.1016/j.cub.2011.02.036] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
237
|
Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 2011; 12:149. [PMID: 21406116 PMCID: PMC3070656 DOI: 10.1186/1471-2164-12-149] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 03/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related cis-elements. RESULTS There were 5,284 genes detected to be differentially expressed under drought stress. Most of these genes were tissue- or stage-specific regulated by drought. The tissue-specific down-regulated genes showed distinct function categories as photosynthesis-related genes prevalent in leaf, and the genes involved in cell membrane biogenesis and cell wall modification over-presented in root and young panicle. In a drought environment, several genes, such as GA2ox, SAP15, and Chitinase III, were regulated in a reciprocal way in two tissues at the same development stage. A total of 261 transcription factor genes were detected to be differentially regulated by drought stress. Most of them were also regulated in a tissue- or stage-specific manner. A cis-element containing special CGCG box was identified to over-present in the upstream of 55 common induced genes, and it may be very important for rice plants responding to drought environment. CONCLUSIONS Genome-wide gene expression profiling revealed that most of the drought differentially expressed genes (DEGs) were under temporal and spatial regulation, suggesting a crosstalk between various development cues and environmental stimuli. The identification of the differentially regulated DEGs, including TF genes and unique candidate cis-element for drought responsiveness, is a very useful resource for the functional dissection of the molecular mechanism in rice responding to environment stress.
Collapse
Affiliation(s)
- Di Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|