201
|
Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proc Natl Acad Sci U S A 2018; 115:5480-5485. [PMID: 29724857 PMCID: PMC6003520 DOI: 10.1073/pnas.1803989115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.
Collapse
|
202
|
Coneva V, Chitwood DH. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:322. [PMID: 29593772 PMCID: PMC5861201 DOI: 10.3389/fpls.2018.00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 05/16/2023]
Abstract
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Collapse
|
203
|
The Responses of Plant Leaf CO2/H2O Exchange and Water Use Efficiency to Drought: A Meta-Analysis. SUSTAINABILITY 2018. [DOI: 10.3390/su10020551] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Persistent drought severely inhibits plant growth and productivity, which negatively affects terrestrial primary productivity worldwide. Therefore, it is important to investigate the impacts of drought on plant leaf CO2/H2O exchange and water use efficiency. This study assessed the responses of net photosynthesis (Pn), stomatal conductance (Gs), transpiration (Tr), and instantaneous water use efficiency (WUE) to drought based on a worldwide meta-analysis of 112 published studies. The results demonstrated that drought decreased Pn, Tr, and Gs significantly and differently among different moderators. C4 plants had smaller Pn reduction than C3 plants, which gives C4 plants an advantage in Pn. But their WUE decreased under drought conditions, indicating a great flexibility in C4 WUE. Annual herbs sacrificed WUE (−6.2%) to maintain efficient Pn. Perennial herbs took a different strategy in response to drought with an increased WUE (25.1%). Deciduous tree species displayed a greater increase in WUE than conifers and evergreen species. Additionally, Gs had a significant correlation with Pn and Tr, but an insignificant correlation with WUE, which could be because WUE is affected by other factors (e.g., air flow, CO2 concentration, and relative humidity). These findings have significant implications for understanding the worldwide effects of drought on plant leaf CO2/H2O exchange and water use efficiency.
Collapse
|
204
|
Responses of the photosynthetic apparatus of
Abies koreana
to drought under different light conditions. Ecol Res 2018. [DOI: 10.1007/s11284-018-1561-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
205
|
Flexas J, Cano FJ, Carriquí M, Coopman RE, Mizokami Y, Tholen D, Xiong D. CO2 Diffusion Inside Photosynthetic Organs. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
206
|
Oguchi R, Onoda Y, Terashima I, Tholen D. Leaf Anatomy and Function. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
207
|
Ivanova LA, Yudina PK, Ronzhina DA, Ivanov LA, Hölzel N. Quantitative mesophyll parameters rather than whole-leaf traits predict response of C 3 steppe plants to aridity. THE NEW PHYTOLOGIST 2018; 217:558-570. [PMID: 29053190 DOI: 10.1111/nph.14840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
We studied the impact of aridity on leaf and mesophyll traits in dominant and very abundant plant species of Eurasian steppe plant communities. We covered a 500-km latitudinal gradient across three vegetation zones in the Volga region of southern European Russia. Whole-leaf traits, volumetric fractions of leaf tissues, quantitative parameters of photosynthetic cells and chloroplasts, and chlorophyll, carbon (C) and nitrogen (N) contents were analyzed and related to plant functional type (PFT), type of mesophyll anatomy, phylogeny and climate aridity. The proportions of prevailing PFTs in the communities, such as C3 monocots, C3 dicots with dorsiventral and isopalisade anatomy and C4 dicots, changed with increasing aridity which influenced the whole-leaf parameters and tissue composition in the leaf. Leaf mass per unit area and leaf thickness slightly increased along the aridity gradient, but the most significant changes were observed in the mesophyll. Mesophyll cell surface area, chloroplast number and chloroplast surface area per unit leaf area were higher in C3 plants growing in the desert steppe compared with those of the forest steppe, while chlorophyll content per single chloroplast and per unit N content as well chlorophyll a/b ratio decreased. Our results identify a suite of mesophyll traits as a typical 'syndrome' of increasingly drought-adapted steppe plants.
Collapse
Affiliation(s)
- Larissa A Ivanova
- Plant Ecophysiology Group, Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 8 Marta 202a, 620144, Ekaterinburg, Russia
- Tyumen State University, 625003, Tyumen, Russia
| | - Polina K Yudina
- Plant Ecophysiology Group, Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 8 Marta 202a, 620144, Ekaterinburg, Russia
| | - Dina A Ronzhina
- Plant Ecophysiology Group, Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 8 Marta 202a, 620144, Ekaterinburg, Russia
- Tyumen State University, 625003, Tyumen, Russia
| | - Leonid A Ivanov
- Plant Ecophysiology Group, Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 8 Marta 202a, 620144, Ekaterinburg, Russia
- Tyumen State University, 625003, Tyumen, Russia
| | - Norbert Hölzel
- Biodiversity and Ecosystem Research Group, Institute of Landscape Ecology, University of Münster, 48149, Münster, Germany
| |
Collapse
|
208
|
Lu Z, Pan Y, Hu W, Cong R, Ren T, Guo S, Lu J. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency. BMC PLANT BIOLOGY 2017; 17:240. [PMID: 29228924 PMCID: PMC5725657 DOI: 10.1186/s12870-017-1201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/01/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Most studies of photosynthesis in chlorenchymas under potassium (K) deficiency focus exclusively on leaves; however, little information is available on the physiological role of K on reproductive structures, which play a critical role in plant carbon gain. Brassica napus L., a natural organ-succession species, was used to compare the morphological, anatomical and photo-physiological differences between leaves and siliques exposed to K-deficiency. RESULTS Compared to leaves, siliques displayed considerably lower CO2 assimilation rates (A) under K-deficient (-K) or sufficient conditions (+K), limited by decreased stomatal conductance (g s), apparent quantum yield (α) and carboxylation efficiency (CE), as well as the ratio of the maximum rate of electron transport (J max) and the maximum rate of ribulose 1,5-bisphosphate (RuBP) carboxylation (V cmax). The estimated J max, V cmax and α of siliques were considerably lower than the theoretical value calculated on the basis of a similar ratio between these parameters and chlorophyll concentration (i.e. J max/Chl, V cmax/Chl and α/Chl) to leaves, of which the gaps between estimated- and theoretical-J max was the largest. In addition, the average ratio of J max to V cmax was 16.1% lower than that of leaves, indicating that the weakened electron transport was insufficient to meet the requirements for carbon assimilation. Siliques contained larger but fewer stoma, tightly packed cross-section with larger cells and fewer intercellular air spaces, fewer and smaller chloroplasts and thin grana lamellae, which might be linked to the reduction in light capture and CO2 diffusion. K-deficiency significantly decreased leaf and silique A under the combination of down-regulated stomatal size and g s, chloroplast number, α, V cmax and J max, while the CO2 diffusion distance between chloroplast and cell wall (D chl-cw) was enhanced. Siliques were more sensitive than leaves to K-starvation, exhibiting smaller reductions in tissue K and parameters such as g s, V cmax, J max and D chl-cw. CONCLUSION Siliques had substantially smaller A than leaves, which was attributed to less efficient functioning of the photosynthetic apparatus, especially the integrated limitations of biochemical processes (J max and V cmax) and α; however, siliques were slightly less sensitive to K deficiency.
Collapse
Affiliation(s)
- Zhifeng Lu
- Collge of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Shizishan Street 1, Wuhan, 430070 People’s Republic of China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Yonghui Pan
- Collge of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Shizishan Street 1, Wuhan, 430070 People’s Republic of China
| | - Wenshi Hu
- Collge of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Shizishan Street 1, Wuhan, 430070 People’s Republic of China
| | - Rihuan Cong
- Collge of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Shizishan Street 1, Wuhan, 430070 People’s Republic of China
| | - Tao Ren
- Collge of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Shizishan Street 1, Wuhan, 430070 People’s Republic of China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Jianwei Lu
- Collge of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Shizishan Street 1, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
209
|
Sugiura D, Watanabe CKA, Betsuyaku E, Terashima I. Sink-Source Balance and Down-Regulation of Photosynthesis in Raphanus sativus: Effects of Grafting, N and CO2. PLANT & CELL PHYSIOLOGY 2017; 58:2043-2056. [PMID: 29216401 DOI: 10.1093/pcp/pcx132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
To clarify whether excessive accumulation of total non-structural carbohydrate (TNC) causes down-regulation of photosynthesis in Raphanus sativus, we manipulated sink-source balance to alter TNC levels in source leaves and examined its effects on photosynthetic characteristics, whole-plant biomass allocation and anatomical characteristics of leaves and petioles. Comet and Leafy varieties with large and small hypocotyls were reciprocally grafted to change hypocotyl sink strength. They were grown at high or low nitrogen (N) availability and at elevated or ambient CO2. Maximum photosynthetic rate, which was highly correlated with Rubisco and leaf N contents, was hardly correlated with TNC across the grafting combinations and growth conditions. Biomass allocation to petioles and hypocotyls and accumulation of TNC in each organ were significantly higher at low N. TNC and structural carbohydrates such as cellulose and hemicellulose were higher and the proportion of intercellular air space in source leaves was lower at low N and elevated CO2. We conclude that excess TNC does not cause severe down-regulation of photosynthesis, and cell walls and petioles are also major carbohydrate sinks responding to changes in sink-source and carbon-nitrogen balances, which contribute to alleviating further accumulation of TNC to avoid its negative effects in source leaves.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Chihiro K A Watanabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama 332-0012, Japan
| | - Eriko Betsuyaku
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama 332-0012, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
210
|
Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, Mitchell A, Bellasio C, Green A, Bouyer D, Schnittger A, Sturrock C, Osborne CP, Rolfe S, Mooney S, Fleming AJ. Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:981-994. [PMID: 28963748 PMCID: PMC5725688 DOI: 10.1111/tpj.13727] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 05/04/2023]
Abstract
The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach.
Collapse
Affiliation(s)
- Christoph Lehmeier
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
- Present address:
Department of Ecology and Evolutionary BiologyKansas Biological SurveyThe University of Kansas2101 Constant Ave.LawrenceKS66047USA
| | - Radoslaw Pajor
- Division of Agriculture and Environmental SciencesSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Marjorie R. Lundgren
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Andrew Mathers
- Division of Agriculture and Environmental SciencesSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Jen Sloan
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Marion Bauch
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Alice Mitchell
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Chandra Bellasio
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
- Present address:
Research School of BiologyAustralian National UniversityActonACT2601Australia
| | - Adam Green
- Department of Physics and AstronomyUniversity of SheffieldHounsfield RoadSheffieldS3 7RHUK
| | - Daniel Bouyer
- Institut de Biologie Moleculaire des Plantes du CNRSIBMP‐CNRS‐UPR235712, rue du General Zimmer67084StrasbourgFrance
- Present address:
Institut de Biologie de l'ENSUMR8197 ‐ INSERM U1024Ecole Normale Supérieure46 rue d'Ulm75230Paris cedex 05France
| | - Arp Schnittger
- Institut de Biologie Moleculaire des Plantes du CNRSIBMP‐CNRS‐UPR235712, rue du General Zimmer67084StrasbourgFrance
- Present address:
Department of Developmental BiologyUniversity of HamburgBiozentrum Klein FlottbekOhnhorststr. 18 – 22609HamburgGermany
| | - Craig Sturrock
- Division of Agriculture and Environmental SciencesSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Colin P. Osborne
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Stephen Rolfe
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Sacha Mooney
- Division of Agriculture and Environmental SciencesSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Andrew J. Fleming
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
211
|
Ouyang W, Struik PC, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5191-5205. [PMID: 28992130 PMCID: PMC5853379 DOI: 10.1093/jxb/erx314] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/09/2017] [Indexed: 05/18/2023]
Abstract
Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits.
Collapse
Affiliation(s)
- Wenjing Ouyang
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Jianchang Yang
- College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
212
|
He W, Adachi S, Sage RF, Ookawa T, Hirasawa T. Leaf photosynthetic rate and mesophyll cell anatomy changes during ontogenesis in backcrossed indica × japonica rice inbred lines. PHOTOSYNTHESIS RESEARCH 2017; 134:27-38. [PMID: 28540586 DOI: 10.1007/s11120-017-0403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
The high-yielding indica rice variety, 'Takanari', has the high rate of leaf photosynthesis compared with the commercial japonica varieties. Among backcrossed inbred lines from a cross between 'Takanari' and a japonica variety, 'Koshihikari', two lines, BTK-a and BTK-b, showed approximately 20% higher photosynthetic rate than that of 'Takanari' for a flag leaf at full heading. This is a highest recorded rate of rice leaf photosynthesis. Here, the timing and cause of the increased leaf photosynthesis in the BTK lines were investigated by examining the photosynthesis and related parameters, as well as mesophyll cell anatomy during ontogenesis. Their photosynthetic rate was greater than that of 'Takanari' in the 13th leaf, as well as the flag leaf, but there were no differences in the 7th and 10th leaves. There were no consistent differences in the stomatal conductance, or the leaf nitrogen and Rubisco contents in the 13th and flag leaves. The total surface area of mesophyll cells per leaf area (TAmes) in the 13th and flag leaves increased significantly in the BTK lines due to the increased number and developed lobes of mesophyll cells compared with in 'Takanari'. The mesophyll conductance (g m) became greater in the BTK lines compared with 'Takanari' in the flag leaves but not in the 10th leaves. A close correlation was observed between TAmes and g m. We concluded that the increased mesophyll conductance through the development of mesophyll cells during the reproductive period is a probable cause of the greater photosynthetic rate in the BTK lines.
Collapse
Affiliation(s)
- Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Shandong Provincial Key Laboratory of Network Intelligent Computing, Jinan, 250022, China
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Rowan F Sage
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S3B2, Canada
| | - Taiichiro Ookawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tadashi Hirasawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
213
|
Dow GJ, Berry JA, Bergmann DC. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange. THE NEW PHYTOLOGIST 2017; 216:69-75. [PMID: 28833173 PMCID: PMC5601202 DOI: 10.1111/nph.14746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/14/2017] [Indexed: 05/20/2023]
Abstract
Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (Vcmax ) with gas-exchange capacity (gsmax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency.
Collapse
Affiliation(s)
- Graham J. Dow
- Department of BiologyBoston UniversityBostonMA02215USA
| | - Joseph A. Berry
- Department of Global EcologyCarnegie Institution for ScienceStanfordCA94305USA
| | - Dominique C. Bergmann
- Department of BiologyStanford UniversityStanfordCA94305USA
- HHMIStanford UniversityStanfordCA94305USA
| |
Collapse
|
214
|
Li L, Ma Z, Niinemets Ü, Guo D. Three Key Sub-leaf Modules and the Diversity of Leaf Designs. FRONTIERS IN PLANT SCIENCE 2017; 8:1542. [PMID: 28932233 PMCID: PMC5592238 DOI: 10.3389/fpls.2017.01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/23/2017] [Indexed: 05/29/2023]
Abstract
Earth harbors a highly diverse array of plant leaf forms. A well-known pattern linking diverse leaf forms with their photosynthetic function across species is the global leaf economics spectrum (LES). However, within homogeneous plant functional groups such as tropical woody angiosperms or temperate deciduous woody angiosperms, many species can share a similar position in the LES but differ in other vital leaf traits, and thus function differently under the given suite of environmental drivers. How diverse leaves differentiate from each other has yet to be fully explained. Here, we propose a new perspective for linking leaf structure and function by arguing that a leaf may be divided into three key sub-modules, the light capture module, the water-nutrient flow module and the gas exchange module. Each module consists of a set of leaf tissues corresponding to a certain resource acquisition function, and the combination and configuration of different modules may differ depending on overall leaf functioning in a given environment. This modularized-leaf perspective differs from the whole-leaf perspective used in leaf economics theory and may serve as a valuable tool for tracing the evolution of leaf form and function. This perspective also implies that the evolutionary direction of various leaf designs is not to optimize a single critical trait, but to optimize the combination of different traits to better adapt to the historical and current environments. Future studies examining how different modules are synchronized for overall leaf functioning should offer critical insights into the diversity of leaf designs worldwide.
Collapse
Affiliation(s)
- Le Li
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing, China
- College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Zeqing Ma
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing, China
| | - Ülo Niinemets
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life SciencesTartu, Estonia
- Estonian Academy of SciencesTallinn, Estonia
| | - Dali Guo
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing, China
- College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
215
|
Coneva V, Frank MH, Balaguer MADL, Li M, Sozzani R, Chitwood DH. Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii. PLANT PHYSIOLOGY 2017; 175:376-391. [PMID: 28794258 PMCID: PMC5580771 DOI: 10.1104/pp.17.00790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/01/2017] [Indexed: 05/05/2023]
Abstract
Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato.
Collapse
Affiliation(s)
| | | | - Maria A de Luis Balaguer
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | | |
Collapse
|
216
|
Baird AS, Anderegg LDL, Lacey ME, HilleRisLambers J, Van Volkenburgh E. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. TREE PHYSIOLOGY 2017; 37:1140-1150. [PMID: 28379516 DOI: 10.1093/treephys/tpx035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Developmental phenotypic plasticity can allow plants to buffer the effects of abiotic and biotic environmental stressors. Therefore, it is vital to improve our understanding of how phenotypic plasticity in ecological functional traits is coordinated with variation in physiological performance in plants. To identify coordinated leaf responses to low-water (LW) versus low-light (LL) availability, we measured leaf mass per area (LMA), leaf anatomical characteristics and leaf gas exchange of juvenile Populus tremuloides Michx. trees. Spongy mesophyll tissue surface area (Asmes/A) was correlated with intrinsic water-use efficiency (WUEi: photosynthesis, (Aarea)/stomatal conductance (gs)). Under LW availability, these changes occurred at the cost of greater leaf tissue density and reduced expansive growth, as leaves were denser but were only 20% the final area of control leaves, resulting in elevated LMA and elevated WUEi. Low light resulted in reduced palisade mesophyll surface area (Apmes/A) while spongy mesophyll surface area was maintained (Asmes/A), with no changes to WUEi. These leaf morphological changes may be a plastic strategy to increase laminar light capture while maintaining WUEi. With reduced density and thickness, however, leaves were 50% the area of control leaves, ultimately resulting in reduced LMA. Our results illustrate that P. tremuloides saplings partially maintain physiological function in response to water and light limitation by inducing developmental plasticity in LMA with underlying anatomical changes. We discuss additional implications of these results in the context of developmental plasticity, growth trade-offs and the ecological impacts of climate change.
Collapse
Affiliation(s)
- Alec S Baird
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Leander D L Anderegg
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Melissa E Lacey
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | | | | |
Collapse
|
217
|
Hatakeyama Y, Ueno O. Intracellular position of mitochondria in mesophyll cells differs between C 3 and C 4 grasses. JOURNAL OF PLANT RESEARCH 2017; 130:885-892. [PMID: 28434121 DOI: 10.1007/s10265-017-0947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
In C3 plants, part of the CO2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C3 grasses would increase the efficiency of refixation of CO2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C4 grasses of different C4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C3-C4 intermediate grass, Steinchisma hians, under an electron microscope. In C4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C3 cells. These results suggest that the mitochondrial positioning in C4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.
Collapse
Affiliation(s)
- Yuto Hatakeyama
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
- NARO Kyushu Okinawa Agricultural Research Center, Chikugoshi, Fukuoka, 833-0027, Japan
| | - Osamu Ueno
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan.
- Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan.
| |
Collapse
|
218
|
Wu Y, Gong W, Yang W. Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean. Sci Rep 2017; 7:9259. [PMID: 28835715 PMCID: PMC5569092 DOI: 10.1038/s41598-017-10026-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/02/2017] [Indexed: 11/23/2022] Open
Abstract
To gain more insight into the physiological function of shade and how shade affects leaf size, we investigated the growth, leaf anatomical structure, hormones and genes expressions in soybean. Soybean seeds were sown in plastic pots and were allowed to germinate and grow for 30 days under shade or full sunlight conditions. Shade treated plants showed significantly increase on stem length and petiole length, and decrease on stem diameters, shoot biomass and its partition to leaf also were significantly lower than that in full sunlight. Smaller and thinner on shade treated leaves than corresponding leaves on full sunlight plants. The decreased leaf size caused by shade was largely attributable to cell proliferation in young leaves and both cell proliferation and enlargement in old leaves. Shade induced the expression of a set of genes related to cell proliferation and/or enlargement, but depended on the developmental stage of leaf. Shade significantly increased the auxin and gibberellin content, and significantly decreased the cytokinin content in young, middle and old leaves. Taken together, these results indicated that shade inhibited leaf size by controlling cell proliferation and enlargement, auxin, gibberellin and cytokinin may play important roles in this process.
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China
| | - Wanzhuo Gong
- Characteristic Crops Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, P.R. China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China.
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China.
| |
Collapse
|
219
|
Oenology in the Kitchen: The Sensory Experience Offered by Culinary Dishes Cooked with Alcoholic Drinks, Grapes and Grape Leaves. BEVERAGES 2017. [DOI: 10.3390/beverages3030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
220
|
Oguchi R, Hiura T, Hikosaka K. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest. TREE PHYSIOLOGY 2017; 37:1113-1127. [PMID: 28431185 DOI: 10.1093/treephys/tpx042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire shade tolerances, sacrificing photosynthetic plasticity. This strategic difference among species would contribute to species coexistence in cool-temperate deciduous forests.
Collapse
Affiliation(s)
- Riichi Oguchi
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tsutom Hiura
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Takaoka, Tomakomai 053-0035, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
221
|
Rishmawi L, Bühler J, Jaegle B, Hülskamp M, Koornneef M. Quantitative trait loci controlling leaf venation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1429-1441. [PMID: 28252189 DOI: 10.1111/pce.12938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 05/23/2023]
Abstract
Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning.
Collapse
Affiliation(s)
- Louai Rishmawi
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| | - Jonas Bühler
- Forschungszentrum Jülich GmbH, IBG-2: Plant Sciences, 52425, Jülich, Germany
| | - Benjamin Jaegle
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| | - Maarten Koornneef
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Laboratory of Genetics, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| |
Collapse
|
222
|
Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, Niinemets Ü, Sancho-Knapik D, Gil-Pelegrín E. Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. TREE PHYSIOLOGY 2017; 37:1084-1094. [PMID: 28541538 DOI: 10.1093/treephys/tpx057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 05/25/2023]
Abstract
Leaf dry mass per unit area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm), the most limiting factor for photosynthesis per unit leaf area (AN) in many evergreens. Several anatomical traits (i.e., greater leaf thickness and thicker cell walls) constraining gm could explain the negative scaling of gm and AN with LMA across species. However, the Mediterranean sclerophyll Quercus ilex L. shows a major within-species variation in functional traits (greater LMA associated with higher nitrogen content and AN) that might contrast the worldwide trends. The objective of this study was to elucidate the existence of variations in other leaf anatomical parameters determining gm and/or biochemical traits improving the capacity of carboxylation (Vc,max) that could modulate the relationship of AN with LMA across this species. The results revealed that gm was the most limiting factor for AN in all the studied Q. ilex provenances from Spain and Italy. The within-species differences in gm can be partly attributed to the variation in several leaf anatomical traits, mainly cell-wall thickness (Tcw), chloroplast thickness (Tchl) and chloroplast exposed surface area facing intercellular air spaces (Sc/S). A positive scaling of gm and AN with Vc,max was also found, associated with an increased nitrogen content per area. A strong correlation of maximum photosynthetic electron transport (Jmax) with AN further indicated a coordination between the carboxylase activity and the electron transport chain. In conclusion, we have confirmed the strong ecotypic variation in the photosynthetic performance of individual provenances of Q. ilex. Thus, the within-species increases found in AN for Q. ilex with increasing foliage robustness can be explained by a synergistic effect among anatomical (at the subcellular and cellular level) and biochemical traits, which markedly improved gm and Vc,max.
Collapse
Affiliation(s)
- José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Sergio Sisó
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, 07122 Palma de Mallorca, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, 07122 Palma de Mallorca, Spain
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| |
Collapse
|
223
|
He N, Liu C, Tian M, Li M, Yang H, Yu G, Guo D, Smith MD, Yu Q, Hou J. Variation in leaf anatomical traits from tropical to cold‐temperate forests and linkage to ecosystem functions. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12934] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nianpeng He
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Miao Tian
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Meiling Li
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Hao Yang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Dali Guo
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Melinda D. Smith
- Department of Biology and Graduate Degree Program in EcologyColorado State University Fort Collins CO USA
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural Sciences Beijing China
| | - Jihua Hou
- The Key Laboratory for Forest Resources & Ecosystem Processes of BeijingBeijing Forestry University Beijing China
| |
Collapse
|
224
|
Xiong D, Huang J, Peng S, Li Y. A few enlarged chloroplasts are less efficient in photosynthesis than a large population of small chloroplasts in Arabidopsis thaliana. Sci Rep 2017; 7:5782. [PMID: 28720786 PMCID: PMC5515944 DOI: 10.1038/s41598-017-06460-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
The photosynthetic, biochemical, and anatomical traits of accumulation and replication of chloroplasts (arc) mutants of Arabidopsis thaliana were investigated to study the effects of chloroplast size and number on photosynthesis. Chloroplasts were found to be significantly larger, and the chloroplast surface area exposed to intercellular air spaces (S c) significantly lower in the mutants than in their wild-types. The decreased S c and increase cytoplasm thickness in the mutants resulted in a lower mesophyll conductance (g m) and a consequently lower chloroplast CO2 concentration (C c). There were no significant differences between the mutants and their wild-types in maximal carboxylation rate (V cmax), maximal electron transport (J cmax), and leaf soluble proteins. Leaf nitrogen (N) and Rubisco content were similar in both Wassilewskija (Ws) wild-type (Ws-WT) and the Ws mutant (arc 8), whereas they were slightly higher in Columbia (Col) wild-type (Col-WT) than the Col mutant (arc 12). The photosynthetic rate (A) and photosynthetic N use efficiency (PNUE) were significantly lower in the mutants than their wild-types. The mutants showed similar A/C c responses as their wild-type counterparts, but A at given C c was higher in Col and its mutant than in Ws and its mutant. From these results, we conclude that decreases in g m and C c are crucial to the reduction in A in arc mutants.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07121, Palma de Mallorca, Illes Balears, Spain
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
225
|
Reich PB, Flores-Moreno H. Peeking beneath the hood of the leaf economics spectrum. THE NEW PHYTOLOGIST 2017; 214:1395-1397. [PMID: 28485082 DOI: 10.1111/nph.14594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Habacuc Flores-Moreno
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
226
|
Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. Physiological and structural tradeoffs underlying the leaf economics spectrum. THE NEW PHYTOLOGIST 2017; 214:1447-1463. [PMID: 28295374 DOI: 10.1111/nph.14496] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/23/2017] [Indexed: 05/18/2023]
Abstract
The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18-70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.
Collapse
Affiliation(s)
- Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kaoru Kitajima
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
227
|
Tomeo NJ, Rosenthal DM. Variable Mesophyll Conductance among Soybean Cultivars Sets a Tradeoff between Photosynthesis and Water-Use-Efficiency. PLANT PHYSIOLOGY 2017; 174:241-257. [PMID: 28270627 PMCID: PMC5411144 DOI: 10.1104/pp.16.01940] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/03/2017] [Indexed: 05/03/2023]
Abstract
Photosynthetic efficiency is a critical determinant of crop yield potential, although it remains below the theoretical optimum in modern crop varieties. Enhancing mesophyll conductance (i.e. the rate of carbon dioxide diffusion from substomatal cavities to the sites of carboxylation) may increase photosynthetic and water use efficiencies. To improve water use efficiency, mesophyll conductance should be increased without concomitantly increasing stomatal conductance. Here, we partition the variance in mesophyll conductance to within- and among-cultivar components across soybean (Glycine max) grown under both controlled and field conditions and examine the covariation of mesophyll conductance with photosynthetic rate, stomatal conductance, water use efficiency, and leaf mass per area. We demonstrate that mesophyll conductance varies more than 2-fold and that 38% of this variation is due to cultivar identity. As expected, mesophyll conductance is positively correlated with photosynthetic rates. However, a strong positive correlation between mesophyll and stomatal conductance among cultivars apparently impedes positive scaling between mesophyll conductance and water use efficiency in soybean. Contrary to expectations, photosynthetic rates and mesophyll conductance both increased with increasing leaf mass per area. The presence of genetic variation for mesophyll conductance suggests that there is potential to increase photosynthesis and mesophyll conductance by selecting for greater leaf mass per area. Increasing water use efficiency, though, is unlikely unless there is simultaneous stabilizing selection on stomatal conductance.
Collapse
Affiliation(s)
- Nicholas J Tomeo
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701
| | - David M Rosenthal
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701
| |
Collapse
|
228
|
Yin X, Struik PC. Simple generalisation of a mesophyll resistance model for various intracellular arrangements of chloroplasts and mitochondria in C 3 leaves. PHOTOSYNTHESIS RESEARCH 2017; 132:211-220. [PMID: 28197891 PMCID: PMC5387037 DOI: 10.1007/s11120-017-0340-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/17/2017] [Indexed: 05/23/2023]
Abstract
The classical definition of mesophyll conductance (g m) represents an apparent parameter (g m,app) as it places (photo)respired CO2 at the same compartment where the carboxylation by Rubisco takes place. Recently, Tholen and co-workers developed a framework, in which g m better describes a physical diffusional parameter (g m,dif). They partitioned mesophyll resistance (r m,dif = 1/g m,dif) into two components, cell wall and plasmalemma resistance (r wp) and chloroplast resistance (r ch), and showed that g m,app is sensitive to the ratio of photorespiratory (F) and respiratory (R d) CO2 release to net CO2 uptake (A): g m,app = g m,dif/[1 + ω(F + R d)/A], where ω is the fraction of r ch in r m,dif. We herein extend the framework further by considering various scenarios for the intracellular arrangement of chloroplasts and mitochondria. We show that the formula of Tholen et al. implies either that mitochondria, where (photo)respired CO2 is released, locate between the plasmalemma and the chloroplast continuum or that CO2 in the cytosol is completely mixed. However, the model of Tholen et al. is still valid if ω is replaced by ω(1-σ), where σ is the fraction of (photo)respired CO2 that experiences r ch (in addition to r wp and stomatal resistance) if this CO2 is to escape from being refixed. Therefore, responses of g m,app to (F + R d)/A lie somewhere between no sensitivity in the classical method (σ =1) and high sensitivity in the model of Tholen et al. (σ =0).
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands.
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| |
Collapse
|
229
|
Théroux-Rancourt G, Gilbert ME. The light response of mesophyll conductance is controlled by structure across leaf profiles. PLANT, CELL & ENVIRONMENT 2017; 40:726-740. [PMID: 28039917 DOI: 10.1111/pce.12890] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 05/05/2023]
Abstract
Mesophyll conductance to CO2 (gm ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf gm (gm,leaf ). Thus, the bulk gm,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring gm,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of gm,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of gm,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that gm,leaf apparently responds to light has large implications for how gm,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring gm under full light saturation. Responses of gm,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon.
Collapse
Affiliation(s)
| | - Matthew E Gilbert
- Department of Plant Sciences, University of California, Davis, 95616, USA
| |
Collapse
|
230
|
Amada G, Onoda Y, Ichie T, Kitayama K. Influence of leaf trichomes on boundary layer conductance and gas-exchange characteristics inMetrosideros polymorpha(Myrtaceae). Biotropica 2017. [DOI: 10.1111/btp.12433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gaku Amada
- Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-Cho Sakyo-Ku Kyoto 606-8502 Japan
| | - Yusuke Onoda
- Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-Cho Sakyo-Ku Kyoto 606-8502 Japan
| | - Tomoaki Ichie
- Faculty of Agriculture; Kochi University; B200, Monobe Nankoku 783-8502 Japan
| | - Kanehiro Kitayama
- Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-Cho Sakyo-Ku Kyoto 606-8502 Japan
| |
Collapse
|
231
|
Tattini M, Sebastiani F, Brunetti C, Fini A, Torre S, Gori A, Centritto M, Ferrini F, Landi M, Guidi L. Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2425-2437. [PMID: 28419325 DOI: 10.1093/jxb/erx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton.
Collapse
Affiliation(s)
- Massimiliano Tattini
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Federico Sebastiani
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Fini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, via Celoria 2, I-20122 Milan, Italy
| | - Sara Torre
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Mauro Centritto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Ferrini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| |
Collapse
|
232
|
Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, García-Nogales A, Niinemets Ü, Sancho-Knapik D, Saz MÁ, Gil-Pelegrín E. Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. THE NEW PHYTOLOGIST 2017; 214:585-596. [PMID: 28058722 DOI: 10.1111/nph.14406] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/22/2016] [Indexed: 05/07/2023]
Abstract
Leaf mass per area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm ), which is the most limiting factor for area-based photosynthesis (AN ) in many Mediterranean sclerophyll species. However, despite their high LMA, these species have similar AN to plants from other biomes. Variations in other leaf anatomical traits, such as mesophyll and chloroplast surface area exposed to intercellular air space (Sm /S and Sc /S), may offset the restrictions imposed by high LMA in gm and AN in these species. Seven sclerophyllous Mediterranean oaks from Europe/North Africa and North America with contrasting LMA were compared in terms of morphological, anatomical and photosynthetic traits. Mediterranean oaks showed specific differences in AN that go beyond the common morphological leaf traits reported for these species (reduced leaf area and thick leaves). These variations resulted mainly from the differences in gm , the most limiting factor for carbon assimilation in these species. Species with higher AN showed increased Sc /S, which implies increased gm without changes in stomatal conductance. The occurrence of this anatomical adaptation at the cell level allowed evergreen oaks to reach AN values comparable to congeneric deciduous species despite their higher LMA.
Collapse
Affiliation(s)
- José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), 50013, Zaragoza, Spain
| | - Sergio Sisó
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Ana García-Nogales
- Department of Physical, Chemical and Natural Systems, University Pablo Olavide, Carretera de Utrera km 1, 41013, Sevilla, Spain
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), 50013, Zaragoza, Spain
| | - Miguel Ángel Saz
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), 50013, Zaragoza, Spain
| |
Collapse
|
233
|
Veromann-Jürgenson LL, Tosens T, Laanisto L, Niinemets Ü. Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1639-1653. [PMID: 28419340 PMCID: PMC5441924 DOI: 10.1093/jxb/erx045] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance.
Collapse
Affiliation(s)
- Linda-Liisa Veromann-Jürgenson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
234
|
Ancient cell structural traits and photosynthesis in today’s environment. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1389-1392. [PMCID: PMC5444445 DOI: 10.1093/jxb/erx081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
235
|
Veselkin DV, Ivanova LA, Ivanov LA, Mikryukova MA, Bolshakov VN, Betekhtina AA. Rapid use of resources as a basis of the Heracleum sosnowskyi invasive syndrome. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 473:53-56. [PMID: 28508206 DOI: 10.1134/s0012496617020041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/07/2023]
Abstract
The functional properties of the invasive Heracleum sosnowskyi were compared with those of the native Heracleum sibiricum. The leaf and root traits, as well as those of a whole plant and of the mycorrhiza formation, were studied. H. sosnowskyi can fulfill the high-productivity potential only under the optimum availability of resources (especially water), while it is poorly adapted to maintain a high physiological activity under the unfavorable soil conditions. An important component of the H. sosnowskyi invasiveness is an ability to utilize rapidly resources in both the above- and underground areas at the optimum conditions.
Collapse
Affiliation(s)
- D V Veselkin
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| | - L A Ivanova
- Botanical Garden, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
| | - L A Ivanov
- Botanical Garden, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
| | | | - V N Bolshakov
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
| | | |
Collapse
|
236
|
Niinemets Ü, Berry JA, von Caemmerer S, Ort DR, Parry MAJ, Poorter H. Photosynthesis: ancient, essential, complex, diverse … and in need of improvement in a changing world. THE NEW PHYTOLOGIST 2017; 213:43-47. [PMID: 27891642 DOI: 10.1111/nph.14307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution of Washington, 260 Panama St, Stanford, CA, 94305, USA
| | - Susanne von Caemmerer
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Donald R Ort
- USDA Agricultural Research Service & Department of Plant Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| |
Collapse
|
237
|
Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT. A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2017; 130:181-192. [PMID: 27896464 PMCID: PMC6105216 DOI: 10.1007/s10265-016-0879-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
The physiological and anatomical responses of bryophytes to altered gravity conditions will provide crucial information for estimating how plant physiological traits have evolved to adapt to significant increases in the effects of gravity in land plant history. We quantified changes in plant growth and photosynthesis in the model plant of mosses, Physcomitrella patens, grown under a hypergravity environment for 25 days or 8 weeks using a custom-built centrifuge equipped with a lighting system. This is the first study to examine the response of bryophytes to hypergravity conditions. Canopy-based plant growth was significantly increased at 10×g, and was strongly affected by increases in plant numbers. Rhizoid lengths for individual gametophores were significantly increased at 10×g. Chloroplast diameters (major axis) and thicknesses (minor axis) in the leaves of P. patens were also increased at 10×g. The area-based photosynthesis rate of P. patens was also enhanced at 10×g. Increases in shoot numbers and chloroplast sizes may elevate the area-based photosynthesis rate under hypergravity conditions. We observed a decrease in leaf cell wall thickness under hypergravity conditions, which is in contrast to previous findings obtained using angiosperms. Since mosses including P. patens live in dense populations, an increase in canopy-based plant numbers may be effective to enhance the toughness of the population, and, thus, represents an effective adaptation strategy to a hypergravity environment for P. patens.
Collapse
Affiliation(s)
- Kaori Takemura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyuki Kamachi
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Atsushi Kume
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Ichirou Karahara
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Yuko T Hanba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
238
|
Huang W, Tong YG, Yu GY, Yang WX. The Sclerophyllous Eucalyptus camaldulensis and Herbaceous Nicotiana tabacum Have Different Mechanisms to Maintain High Rates of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1769. [PMID: 27933083 PMCID: PMC5121285 DOI: 10.3389/fpls.2016.01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
It is believed that high levels of mesophyll conductance (gm) largely contribute to the high rates of photosynthesis in herbaceous C3 plants. However, some sclerophyllous C3 plants that display low levels of gm have high rates of photosynthesis, and the underlying mechanisms responsible for high photosynthetic rates in sclerophyllous C3 plants are unclear. In the present study, we examined photosynthetic characteristics in two high-photosynthesis plants (the sclerophyllous Eucalyptus camaldulensis and the herbaceous Nicotiana tabacum) using measurements of gas exchange and chlorophyll fluorescence. Under saturating light intensities, both species had similar rates of CO2 assimilation at 400 μmol mol-1 CO2 (A400). However, E. camaldulensis exhibited significantly lower gm and chloroplast CO2 concentration (Cc) than N. tabacum. A quantitative analysis revealed that, in E. camaldulensis, the gm limitation was the most constraining factor for photosynthesis. By comparison, in N. tabacum, the biochemical limitation was the strongest, followed by gm and gs limitations. In conjunction with a lower Cc, E. camaldulensis up-regulated the capacities of photorespiratory pathway and alternative electron flow. Furthermore, the rate of alternative electron flow was positively correlated with the rates of photorespiration and ATP supply from other flexible mechanisms, suggesting the important roles of photorespiratory pathway, and alternative electron flow in sustaining high rate of photosynthesis in E. camaldulensis. These results highlight the different mechanisms used to maintain high rates of photosynthesis in the sclerophyllous E. camaldulensis and the herbaceous N. tabacum.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMengla, China
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - You-Gui Tong
- Forestry Bureau of Dongchuan CountyKunming, China
| | - Guo-Yun Yu
- Forestry Bureau of Dongchuan CountyKunming, China
| | | |
Collapse
|
239
|
Lu Z, Lu J, Pan Y, Lu P, Li X, Cong R, Ren T. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. PLANT, CELL & ENVIRONMENT 2016; 39:2428-2439. [PMID: 27423139 DOI: 10.1111/pce.12795] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 05/22/2023]
Abstract
Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (gm ) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining gm have been quantified; however, anatomical variabilities related to low gm under K starvation remain imperfectly known. A one-dimensional model was used to quantify anatomical controls of the entire CO2 diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down-regulated gm . The mesophyll conductance limitation contributed to more than one-half of A decline. The decreased internal air space in K-starved leaves was associated with the increase of gas-phase resistance. Potassium deficiency reduced liquid-phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (Sc /S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of gm variations, ascribing to an altered Sc /S. These results emphasize the important role of K on the regulation of gm by enhancing Sc /S and reducing cytoplasm resistance.
Collapse
Affiliation(s)
- Zhifeng Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghui Pan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Piaopiao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokun Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rihuan Cong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
240
|
Berghuijs HNC, Yin X, Ho QT, Driever SM, Retta MA, Nicolaï BM, Struik PC. Mesophyll conductance and reaction-diffusion models for CO 2 transport in C 3 leaves; needs, opportunities and challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:62-75. [PMID: 27717479 DOI: 10.1016/j.plantsci.2016.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 05/24/2023]
Abstract
One way to increase potential crop yield could be increasing mesophyll conductance gm. This variable determines the difference between the CO2 partial pressure in the intercellular air spaces (Ci) and that near Rubisco (Cc). Various methods can determine gm from gas exchange measurements, often combined with measurements of chlorophyll fluorescence or carbon isotope discrimination. gm lumps all biochemical and physical factors that cause the difference between Cc and Ci. gm appears to vary with Ci. This variability indicates that gm does not satisfy the physical definition of a conductance according to Fick's first law and is thus an apparent parameter. Uncertainty about the mechanisms that determine gm can be limited to some extent by using analytical models that partition gm into separate conductances. Such models are still only capable of describing the CO2 diffusion pathway to a limited extent, as they make implicit assumptions about the position of mitochondria in the cells, which affect the re-assimilation of (photo)respired CO2. Alternatively, reaction-diffusion models may be used. Rather than quantifying gm, these models explicitly account for factors that affect the efficiency of CO2 transport in the mesophyll. These models provide a better mechanistic description of the CO2 diffusion pathways than mesophyll conductance models. Therefore, we argue that reaction-diffusion models should be used as an alternative to mesophyll conductance models, in case the aim of such a study is to identify traits that can be improved to increase gm.
Collapse
Affiliation(s)
- Herman N C Berghuijs
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Q Tri Ho
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges A Retta
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Bart M Nicolaï
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
241
|
Chatterjee J, Dionora J, Elmido-Mabilangan A, Wanchana S, Thakur V, Bandyopadhyay A, Brar DS, Quick WP. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy. PLoS One 2016; 11:e0164532. [PMID: 27792743 PMCID: PMC5085062 DOI: 10.1371/journal.pone.0164532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.
Collapse
Affiliation(s)
- Jolly Chatterjee
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Jacqueline Dionora
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Abigail Elmido-Mabilangan
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Samart Wanchana
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Vivek Thakur
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Anindya Bandyopadhyay
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Darshan S. Brar
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - William Paul Quick
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
242
|
Wu A, Song Y, van Oosterom EJ, Hammer GL. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1518. [PMID: 27790232 PMCID: PMC5061851 DOI: 10.3389/fpls.2016.01518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/26/2016] [Indexed: 05/18/2023]
Abstract
The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.
Collapse
Affiliation(s)
- Alex Wu
- Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The University of QueenslandBrisbane, QLD, Australia
| | - Youhong Song
- Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The University of QueenslandBrisbane, QLD, Australia
| | - Erik J. van Oosterom
- Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The University of QueenslandBrisbane, QLD, Australia
| | - Graeme L. Hammer
- Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
243
|
Velikova V, Brunetti C, Tattini M, Doneva D, Ahrar M, Tsonev T, Stefanova M, Ganeva T, Gori A, Ferrini F, Varotto C, Loreto F. Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism. PLANT, CELL & ENVIRONMENT 2016; 39:2185-97. [PMID: 27351898 DOI: 10.1111/pce.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 05/26/2023]
Abstract
Physiological, biochemical and morpho-anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast-growing Arundo donax, which also is a strong isoprene emitter, and the slow-growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H. macra. In drought-stressed plants, photosynthesis was similarly inhibited in both species, but substantially recovered only in A. donax after rewatering. Decline of photochemical and biochemical parameters, increased concentration of CO2 inside leaves, and impairment of chloroplast ultrastructure were only observed in H. macra indicating damage of photosynthetic machinery under drought. It is suggested that volatile and non-volatile isoprenoids produced by A. donax efficiently preserve the chloroplasts from transient drought damage, while H. macra invests on phenylpropanoids that are less efficient in preserving photosynthesis but likely offer better antioxidant protection under prolonged stress.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy.
| | - Cecilia Brunetti
- Trees and Timber Institute, The National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, 50019, Florence, Italy
| | - Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Mastaneh Ahrar
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
- Institute of Ecology, University of Innsbruck, Austria
| | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | | | - Tsveta Ganeva
- Faculty of Biology, Sofia University, 1113, Sofia, Bulgaria
| | - Antonella Gori
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Ferrini
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), 00185, Rome, Italy
| |
Collapse
|
244
|
Procházková D, Jan S, Abd‐Allah EF, Ahmad P. Water stress in grapevine (
Vitis vinifera
L.). WATER STRESS AND CROP PLANTS 2016:412-421. [DOI: 10.1002/9781119054450.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
245
|
Kitajima K, Wright SJ, Westbrook JW. Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus 2016; 6:20150100. [PMID: 27274796 PMCID: PMC4843619 DOI: 10.1098/rsfs.2015.0100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Leaves as the main photosynthetic organ of plants must be well protected against various hazards to achieve their optimal lifespans. Yet, within-species variation and the material basis of leaf strength have been explored for very few species. Here, we present a large dataset of leaf fracture toughness from a species-rich humid tropical forest on Barro Colorado Island, Panama, reporting both among- and within-species variation in relation to light environment (sun-lit canopy versus shaded understorey) and ontogeny (seedlings versus adults). In this dataset encompassing 281 free-standing woody species and 428 species-light combinations, lamina fracture toughness varied ca 10 times. A central objective of our study was to identify generalizable patterns in the structural and material basis for interspecific variation in leaf lamina fracture toughness. The leaf lamina is a heterogeneous structure in which strong materials in cell walls, such as cellulose and lignin, contribute disproportionately to fracture toughness. We found significant increases in leaf fracture toughness from shade to sun and from seedling leaves to adult leaves. Both within and across species, leaf fracture toughness increased with total bulk density (dry biomass per unit volume) and cellulose mass concentration, but decreased with mass concentrations of lignin and hemicelluose. These bivariate relationships shift between light environments, but leaf cellulose density (cellulose mass per unit leaf volume) exhibits a common relationship with lamina fracture toughness between light environments and through ontogeny. Hence, leaf cellulose density is probably a universal predictor of leaf fracture toughness.
Collapse
Affiliation(s)
- Kaoru Kitajima
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Biology, University of Florida, Gainesville, FL, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| | | | | |
Collapse
|
246
|
Bellasio C, Beerling DJ, Griffiths H. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. PLANT, CELL & ENVIRONMENT 2016; 39:1180-97. [PMID: 25923517 DOI: 10.1111/pce.12560] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 05/23/2023]
Abstract
Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
247
|
DiMario RJ, Quebedeaux JC, Longstreth DJ, Dassanayake M, Hartman MM, Moroney JV. The Cytoplasmic Carbonic Anhydrases βCA2 and βCA4 Are Required for Optimal Plant Growth at Low CO2. PLANT PHYSIOLOGY 2016; 171:280-93. [PMID: 26993617 PMCID: PMC4854698 DOI: 10.1104/pp.15.01990] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 05/23/2023]
Abstract
Carbonic anhydrases (CAs) are zinc metalloenzymes that interconvert CO2 and HCO3 (-) In plants, both α- and β-type CAs are present. We hypothesize that cytoplasmic βCAs are required to modulate inorganic carbon forms needed in leaf cells for carbon-requiring reactions such as photosynthesis and amino acid biosynthesis. In this report, we present evidence that βCA2 and βCA4 are the two most abundant cytoplasmic CAs in Arabidopsis (Arabidopsis thaliana) leaves. Previously, βCA4 was reported to be localized to the plasma membrane, but here, we show that two forms of βCA4 are expressed in a tissue-specific manner and that the two proteins encoded by βCA4 localize to two different regions of the cell. Comparing transfer DNA knockout lines with wild-type plants, there was no reduction in the growth rates of the single mutants, βca2 and βca4 However, the growth rate of the double mutant, βca2βca4, was reduced significantly when grown at 200 μL L(-1) CO2 The reduction in growth of the double mutant was not linked to a reduction in photosynthetic rate. The amino acid content of leaves from the double mutant showed marked reduction in aspartate when compared with the wild type and the single mutants. This suggests the cytoplasmic CAs play an important but not previously appreciated role in amino acid biosynthesis.
Collapse
Affiliation(s)
- Robert J DiMario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808
| | - Jennifer C Quebedeaux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808
| | - David J Longstreth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808
| | - Monica M Hartman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808
| |
Collapse
|
248
|
Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. PLANT, CELL & ENVIRONMENT 2016; 39:965-82. [PMID: 26297108 DOI: 10.1111/pce.12622] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 07/09/2015] [Accepted: 07/26/2015] [Indexed: 05/20/2023]
Abstract
Water limitation is a major global constraint for plant productivity that is likely to be exacerbated by climate change. Hence, improving plant water use efficiency (WUE) has become a major goal for the near future. At the leaf level, WUE is the ratio between photosynthesis and transpiration. Maintaining high photosynthesis under water stress, while improving WUE requires either increasing mesophyll conductance (gm ) and/or improving the biochemical capacity for CO2 assimilation-in which Rubisco properties play a key role, especially in C3 plants at current atmospheric CO2 . The goals of the present analysis are: (1) to summarize the evidence that improving gm and/or Rubisco can result in increased WUE; (2) to review the degree of success of early attempts to genetically manipulate gm or Rubisco; (3) to analyse how gm , gsw and the Rubisco's maximum velocity (Vcmax ) co-vary across different plant species in well-watered and drought-stressed conditions; (4) to examine how these variations cause differences in WUE and what is the overall extent of variation in individual determinants of WUE; and finally, (5) to use simulation analysis to provide a theoretical framework for the possible control of WUE by gm and Rubisco catalytic constants vis-à-vis gsw under water limitations.
Collapse
Affiliation(s)
- J Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - A Díaz-Espejo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012, Sevilla, Spain
| | - M A Conesa
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - R E Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, 5110566, Valdivia, Chile
| | - C Douthe
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - J Gago
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
- Applied Plant and Soil Biology, Faculty of Biology, University of Vigo, 36310, Vigo, Spain
| | - A Gallé
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Zwijnaarde, Belgium
| | - J Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - H Medrano
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - M Ribas-Carbo
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - M Tomàs
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - Ü Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
249
|
Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, Brunetti C, Centritto M. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. PHYSIOLOGIA PLANTARUM 2016; 157:54-68. [PMID: 26537749 DOI: 10.1111/ppl.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted.
Collapse
Affiliation(s)
- Alessio Fini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 7, I-00185, Roma, Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Cristiana Giordano
- Centro di Microscopie Elettroniche "Laura Bonzi", Istituto dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Cecilia Brunetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
250
|
Nunes-Nesi A, Nascimento VDL, de Oliveira Silva FM, Zsögön A, Araújo WL, Sulpice R. Natural genetic variation for morphological and molecular determinants of plant growth and yield. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2989-3001. [PMID: 27012286 DOI: 10.1093/jxb/erw124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Vitor de Laia Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franklin Magnum de Oliveira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Galway, Ireland
| |
Collapse
|