201
|
Colombo M, Suorsa M, Rossi F, Ferrari R, Tadini L, Barbato R, Pesaresi P. Photosynthesis Control: An underrated short-term regulatory mechanism essential for plant viability. PLANT SIGNALING & BEHAVIOR 2016; 11:e1165382. [PMID: 27018523 PMCID: PMC4883964 DOI: 10.1080/15592324.2016.1165382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 05/22/2023]
Abstract
Regulation of photosynthetic electron transport provides efficient performance of oxygenic photosynthesis in plants. During the last 15 years, the molecular bases of various photosynthesis short-term regulatory processes have been elucidated, however the wild type-like phenotypes of mutants lacking of State Transitions, Non Photochemical Quenching, or Cyclic Electron Transport, when grown under constant light conditions, have also raised doubts about the acclimatory significance of these short-regulatory mechanisms on plant performance. Interestingly, recent studies performed by growing wild type and mutant plants under field conditions revealed a prominent role of State Transitions and Non Photochemical Quenching on plant fitness, with almost no effect on vegetative plant growth. Conversely, the analysis of plants lacking the regulation of electron transport by the cytochrome b6f complex, also known as Photosynthesis Control, revealed the fundamental role of this regulatory mechanism in the survival of young, developing seedlings under fluctuating light conditions.
Collapse
Affiliation(s)
- Monica Colombo
- a Centro Ricerca e Innovazione, Fondazione Edmund Mach , San Michele all'Adige , Italy
| | - Marjaana Suorsa
- b Molecular Plant Biology, Department of Biochemistry, University of Turku , Turku , Finland
| | - Fabio Rossi
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| | - Roberto Ferrari
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| | - Luca Tadini
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| | - Roberto Barbato
- d Dipartimento di Scienze dell'Ambiente e della Vita , Università del Piemonte Orientale , Alessandria , Italy
| | - Paolo Pesaresi
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| |
Collapse
|
202
|
Espinas NA, Kobayashi K, Sato Y, Mochizuki N, Takahashi K, Tanaka R, Masuda T. Allocation of Heme Is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:1326. [PMID: 27630653 PMCID: PMC5005420 DOI: 10.3389/fpls.2016.01326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/18/2016] [Indexed: 05/03/2023]
Abstract
Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1) and null (fc1-2) mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1) and null (fc2-2) mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.
Collapse
Affiliation(s)
- Nino A. Espinas
- Graduate School of Science, The University of TokyoTokyo, Japan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Yasushi Sato
- Graduate School of Science and Engineering, Ehime UniversityEhime, Japan
| | | | - Kaori Takahashi
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Tatsuru Masuda
- Graduate School of Science, The University of TokyoTokyo, Japan
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- *Correspondence: Tatsuru Masuda,
| |
Collapse
|
203
|
de la Rosa-Manzano E, Andrade JL, García-Mendoza E, Zotz G, Reyes-García C. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico. PLANTA 2015; 242:1425-1438. [PMID: 26303983 DOI: 10.1007/s00425-015-2383-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
Epiphytic orchids from dry forests of Yucatán show considerable photoprotective plasticity during the dry season, which depends on leaf morphology and host tree deciduousness. Nocturnal retention of antheraxanthin and zeaxanthin was detected for the first time in epiphytic orchids. In tropical dry forests, epiphytes experience dramatic changes in light intensity: photosynthetic photon flux density may be up to an order of magnitude higher in the dry season compared to the wet season. To address the seasonal changes of xanthophyll cycle (XC) pigments and photosynthesis that occur throughout the year, leaves of five epiphytic orchid species were studied during the early dry, dry and wet seasons in a deciduous and a semi-deciduous tropical forests at two vertical strata on the host trees (3.5 and 1.5 m height). Differences in XC pigment concentrations and photosynthesis (maximum quantum efficiency of photosystem II; F v/F m) were larger among seasons than between vertical strata in both forests. Antheraxanthin and zeaxanthin retention reflected the stressful conditions of the epiphytic microhabitat, and it is described here in epiphytes for the first time. During the dry season, both XC pigment concentrations and photosystem II heat dissipation of absorbed energy increased in orchids in the deciduous forest, while F v/F m and nocturnal acidification (ΔH(+)) decreased, clearly as a response to excessive light and drought. Concentrations of XC pigments were higher than those in orchids with similar leaf shape in semi-deciduous forest. There, only Encyclia nematocaulon and Lophiaris oerstedii showed somewhat reduced F v/F m. No changes in ΔH(+) and F v/F m were detected in Cohniella ascendens throughout the year. This species, which commonly grows in forests with less open canopies, showed leaf tilting that diminished light interception. Light conditions in the uppermost parts of the canopy probably limit the distribution of epiphytic orchids and the retention of zeaxanthin can help to cope with light and drought stress in these forests during the dry season.
Collapse
Affiliation(s)
- Edilia de la Rosa-Manzano
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A. C., Calle 43 Núm. 130, Colonia Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Av. División del Golfo Núm. 356, Colonia Libertad, 87091, Ciudad Victoria, Tamaulipas, Mexico
| | - José Luis Andrade
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A. C., Calle 43 Núm. 130, Colonia Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico.
| | - Ernesto García-Mendoza
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Gerhard Zotz
- Functional Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Box 2503, 26111, Oldenburg, Germany
| | - Casandra Reyes-García
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A. C., Calle 43 Núm. 130, Colonia Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| |
Collapse
|
204
|
Murchie EH, Ali A, Herman T. Photoprotection as a Trait for Rice Yield Improvement: Status and Prospects. RICE (NEW YORK, N.Y.) 2015; 8:31. [PMID: 26424004 PMCID: PMC4589542 DOI: 10.1186/s12284-015-0065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/19/2015] [Indexed: 05/25/2023]
Abstract
Solar radiation is essential for photosynthesis and global crop productivity but it is also variable in space and time, frequently being limiting or in excess of plant requirements depending on season, environment and microclimate. Photoprotective mechanisms at the chloroplast level help to avoid oxidative stress and photoinhibition, which is a light-induced reduction in photosynthetic quantum efficiency often caused by damage to photosystem II. There is convincing evidence that photoinhibition has a large impact on biomass production in crops and this may be especially high in rice, which is typically exposed to high tropical light levels. Thus far there has been little attention to photoinhibition as a target for improvement of crop yield. However, we now have sufficient evidence to examine avenues for alleviation of this particular stress and the physiological and genetic basis for improvement in rice and other crops. Here we examine this evidence and identify new areas for attention. In particular we discuss how photoprotective mechanisms must be optimised at both the molecular and the canopy level in order to coordinate with efficient photosynthetic regulation and realise an increased biomass and yield in rice.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| | - Asgar Ali
- School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Tiara Herman
- School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
205
|
Habibi G, Ajory N. The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. JOURNAL OF PLANT RESEARCH 2015; 128:987-994. [PMID: 26314352 DOI: 10.1007/s10265-015-0748-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/04/2015] [Indexed: 06/04/2023]
Abstract
Photosynthesis is a biological process most affected by water deficit. Plants have various photosynthetic mechanisms that are matched to specific climatic zones. We studied the photosynthetic plasticity of C3 plants at water deficit using ecotypes of Marrubium vulgare L. from high (2,200 m) and low (1,100 m) elevation sites in the Mishou-Dagh Mountains of Iran. Under experimental drought, high-altitude plants showed more tolerance to water stress based on most of the parameters studied as compared to the low-altitude plants. Increased tolerance in high-altitude plants was achieved by lower levels of daytime stomatal conductance (g s) and reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v /F m ) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). High-altitude plants exhibited higher water use efficiency (WUE) than that in low-altitude plants depending on the presence of thick leaves and the reduced daytime stomatal conductance. Additionally, we have studied the oscillation in H(+) content and diel gas exchange patterns to determine the occurrence of C3 or weak CAM (Crassulacean acid metabolism) in M. vulgare through 15 days drought stress. Under water-stressed conditions, low-altitude plants exhibited stomatal conductance and acid fluctuations characteristic of C3 photosynthesis, though high-altitude plants exhibited more pronounced increases in nocturnal acidity and phosphoenolpyruvate carboxylase (PEPC) activity, suggesting photosynthetic flexibility. These results indicated that the regulation of carotenoids, NPQ, stomatal conductance and diel patterns of CO2 exchange presented the larger differences among studied plants at different altitudes and seem to be the protecting mechanisms controlling the photosynthetic performance of M. vulgare plants under drought conditions.
Collapse
Affiliation(s)
- Ghader Habibi
- Department of Biology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran.
| | - Neda Ajory
- Department of Biology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| |
Collapse
|
206
|
Dutta S, Cruz JA, Jiao Y, Chen J, Kramer DM, Osteryoung KW. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:428-42. [PMID: 26332826 DOI: 10.1111/tpj.13009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/20/2015] [Indexed: 05/23/2023]
Abstract
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Jeffrey A Cruz
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Yuhua Jiao
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Jin Chen
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
- Department of Computer Sciences and Engineering, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - David M Kramer
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Katherine W Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| |
Collapse
|
207
|
Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. ANNALS OF BOTANY 2015; 116:555-69. [PMID: 26292995 PMCID: PMC4578005 DOI: 10.1093/aob/mcv122] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/13/2015] [Accepted: 06/08/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS The importance of the alternative oxidase (AOX) pathway, particularly AOX1A, in optimizing photosynthesis during de-etiolation, under elevated CO2, low temperature, high light or combined light and drought stress is well documented. In the present study, the role of AOX1A in optimizing photosynthesis was investigated when electron transport through the cytochrome c oxidase (COX) pathway was restricted at complex III. METHODS Leaf discs of wild-type (WT) and aox1a knock-out mutants of Arabidopsis thaliana were treated with antimycin A (AA) under growth-light conditions. To identify the impact of AOX1A deficiency in optimizing photosynthesis, respiratory O2 uptake and photosynthesis-related parameters were measured along with changes in redox couples, reactive oxygen species (ROS), lipid peroxidation and expression levels of genes related to respiration, the malate valve and the antioxidative system. KEY RESULTS In the absence of AA, aox1a knock-out mutants did not show any difference in physiological, biochemical or molecular parameters compared with WT. However, after AA treatment, aox1a plants showed a significant reduction in both respiratory O2 uptake and NaHCO3-dependent O2 evolution. Chlorophyll fluorescence and P700 studies revealed that in contrast to WT, aox1a knock-out plants were incapable of maintaining electron flow in the chloroplastic electron transport chain, and thereby inefficient heat dissipation (low non-photochemical quenching) was observed. Furthermore, aox1a mutants exhibited significant disturbances in cellular redox couples of NAD(P)H and ascorbate (Asc) and consequently accumulation of ROS and malondialdehyde (MDA) content. By contrast, WT plants showed a significant increase in transcript levels of CSD1, CAT1, sAPX, COX15 and AOX1A in contrast to aox1a mutants. CONCLUSIONS These results suggest that AOX1A plays a significant role in sustaining the chloroplastic redox state and energization to optimize photosynthesis by regulating cellular redox homeostasis and ROS generation when electron transport through the COX pathway is disturbed at complex III.
Collapse
Affiliation(s)
- Abhaypratap Vishwakarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Sarada Devi Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Jennifer Selinski
- Department of Plant Physiology, FB5, University of Osnabrück, 49069 Osnabrück, Germany and
| | - Renate Scheibe
- Department of Plant Physiology, FB5, University of Osnabrück, 49069 Osnabrück, Germany and
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
208
|
Gerotto C, Franchin C, Arrigoni G, Morosinotto T. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S. PLANT PHYSIOLOGY 2015; 168:1747-61. [PMID: 26069151 PMCID: PMC4528743 DOI: 10.1104/pp.15.00361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
Light is the primary energy source for photosynthetic organisms, but in excess, it can generate reactive oxygen species and lead to cell damage. Plants evolved multiple mechanisms to modulate light use efficiency depending on illumination intensity to thrive in a highly dynamic natural environment. One of the main mechanisms for protection from intense illumination is the dissipation of excess excitation energy as heat, a process called nonphotochemical quenching. In plants, nonphotochemical quenching induction depends on the generation of a pH gradient across thylakoid membranes and on the presence of a protein called PHOTOSYSTEM II SUBUNIT S (PSBS). Here, we generated Physcomitrella patens lines expressing histidine-tagged PSBS that were exploited to purify the native protein by affinity chromatography. The mild conditions used in the purification allowed copurifying PSBS with its interactors, which were identified by mass spectrometry analysis to be mainly photosystem II antenna proteins, such as LIGHT-HARVESTING COMPLEX B (LHCB). PSBS interaction with other proteins appears to be promiscuous and not exclusive, although the major proteins copurified with PSBS were components of the LHCII trimers (LHCB3 and LHCBM). These results provide evidence of a physical interaction between specific photosystem II light-harvesting complexes and PSBS in the thylakoids, suggesting that these subunits are major players in heat dissipation of excess energy.
Collapse
Affiliation(s)
- Caterina Gerotto
- Department of Biology (C.G., T.M.) and Department of Biomedical Sciences (C.F., G.A.), University of Padova, 35131 Padova, Italy; andProteomics Center of Padova University, 35129 Padova, Italy (C.F., G.A.)
| | - Cinzia Franchin
- Department of Biology (C.G., T.M.) and Department of Biomedical Sciences (C.F., G.A.), University of Padova, 35131 Padova, Italy; andProteomics Center of Padova University, 35129 Padova, Italy (C.F., G.A.)
| | - Giorgio Arrigoni
- Department of Biology (C.G., T.M.) and Department of Biomedical Sciences (C.F., G.A.), University of Padova, 35131 Padova, Italy; andProteomics Center of Padova University, 35129 Padova, Italy (C.F., G.A.)
| | - Tomas Morosinotto
- Department of Biology (C.G., T.M.) and Department of Biomedical Sciences (C.F., G.A.), University of Padova, 35131 Padova, Italy; andProteomics Center of Padova University, 35129 Padova, Italy (C.F., G.A.)
| |
Collapse
|
209
|
Velikova V, Müller C, Ghirardo A, Rock TM, Aichler M, Walch A, Schmitt-Kopplin P, Schnitzler JP. Knocking Down of Isoprene Emission Modifies the Lipid Matrix of Thylakoid Membranes and Influences the Chloroplast Ultrastructure in Poplar. PLANT PHYSIOLOGY 2015; 168:859-70. [PMID: 25975835 PMCID: PMC4741320 DOI: 10.1104/pp.15.00612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phospholipids, and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid in NE chloroplasts, was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects photosystem II photochemical efficiency. The low photosystem II photochemical efficiency in NE plants was negatively correlated with nonphotochemical quenching and the energy-dependent component of nonphotochemical quenching. Transmission electron microscopy revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained fewer grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in IE species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Constanze Müller
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Theresa Maria Rock
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michaela Aichler
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Axel Walch
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (V.V.); andResearch Unit Analytical BioGeoChemistry (C.M., T.M.R., P.S.-K.), Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology (V.V., A.G., J.-P.S.), and Research Unit Analytical Pathology (M.A., A.W.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
210
|
Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A 2015; 112:8529-36. [PMID: 26124102 DOI: 10.1073/pnas.1424031112] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The world's crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.
Collapse
|
211
|
Schlau-Cohen GS. Principles of light harvesting from single photosynthetic complexes. Interface Focus 2015; 5:20140088. [PMID: 26052423 DOI: 10.1098/rsfs.2014.0088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate.
Collapse
Affiliation(s)
- G S Schlau-Cohen
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue, 6-225, Cambridge, MA 02139 , USA
| |
Collapse
|
212
|
Long SP, Marshall-Colon A, Zhu XG. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 2015; 161:56-66. [PMID: 25815985 DOI: 10.1016/j.cell.2015.03.019] [Citation(s) in RCA: 513] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 10/23/2022]
Abstract
Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented.
Collapse
Affiliation(s)
- Stephen P Long
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
| | - Amy Marshall-Colon
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Xin-Guang Zhu
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, PRC; State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, PRC
| |
Collapse
|
213
|
Seth JR, Wangikar PP. Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery. Biotechnol Bioeng 2015; 112:1281-96. [PMID: 25899427 DOI: 10.1002/bit.25619] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 11/10/2022]
Abstract
Aquacultures of microalgae are frontrunners for photosynthetic capture of CO2 from flue gases. Expedient implementation mandates coupling of microalgal CO2 capture with synthesis of fuels and organic products, so as to derive value from biomass. An integrated biorefinery complex houses a biomass growth and harvesting area and a refining zone for conversion to product(s) and separation to desired purity levels. As growth and downstream options require energy and incur loss of carbon, put together, the loop must be energy positive, carbon negative, or add substantial value. Feasibility studies can, thus, aid the choice from among the rapidly evolving technological options, many of which are still in the early phases of development. We summarize basic engineering calculations for the key steps of a biorefining loop where flue gases from a thermal power station are captured using microalgal biomass along with subsequent options for conversion to fuel or value added products. An assimilation of findings from recent laboratory and pilot-scale experiments and life cycle analysis (LCA) studies is presented as carbon and energy yields for growth and harvesting of microalgal biomass and downstream options. Of the biorefining options, conversion to the widely studied biofuel, ethanol, and manufacture of the platform chemical, succinic acid are presented. Both processes yield specific products and do not demand high-energy input but entail 60-70% carbon loss through fermentative respiration. Thermochemical conversions, on the other hand, have smaller carbon and energy losses but yield a mixture of products.
Collapse
Affiliation(s)
- Jyoti R Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India. .,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, India. .,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
214
|
Retkute R, Smith-Unna SE, Smith RW, Burgess AJ, Jensen OE, Johnson GN, Preston SP, Murchie EH. Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2437-47. [PMID: 25788730 PMCID: PMC4629418 DOI: 10.1093/jxb/erv055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved complex mechanisms to balance the efficient use of absorbed light energy in photosynthesis with the capacity to use that energy in assimilation, so avoiding potential damage from excess light. This is particularly important under natural light, which can vary according to weather, solar movement and canopy movement. Photosynthetic acclimation is the means by which plants alter their leaf composition and structure over time to enhance photosynthetic efficiency and productivity. However there is no empirical or theoretical basis for understanding how leaves track historic light levels to determine acclimation status, or whether they do this accurately. We hypothesized that in fluctuating light (varying in both intensity and frequency), the light-response characteristics of a leaf should adjust (dynamically acclimate) to maximize daily carbon gain. Using a framework of mathematical modelling based on light-response curves, we have analysed carbon-gain dynamics under various light patterns. The objective was to develop new tools to quantify the precision with which photosynthesis acclimates according to the environment in which plants exist and to test this tool on existing data. We found an inverse relationship between the optimal maximum photosynthetic capacity and the frequency of low to high light transitions. Using experimental data from the literature we were able to show that the observed patterns for acclimation were consistent with a strategy towards maximizing daily carbon gain. Refinement of the model will further determine the precision of acclimation.
Collapse
Affiliation(s)
- Renata Retkute
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Stephanie E Smith-Unna
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Robert W Smith
- Systems and Synthetic Biology, Wageningen UR, Building 316, Dreijenplein 10, 6703HB Wageningen, Netherlands
| | - Alexandra J Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Preston
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| |
Collapse
|
215
|
van Oort B, van Grondelle R, van Stokkum IHM. A Hidden State in Light-Harvesting Complex II Revealed By Multipulse Spectroscopy. J Phys Chem B 2015; 119:5184-93. [PMID: 25815531 PMCID: PMC4500649 DOI: 10.1021/acs.jpcb.5b01335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Indexed: 11/28/2022]
Abstract
Light-harvesting complex II (LHCII) is pivotal both for collecting solar radiation for photosynthesis, and for protection against photodamage under high light intensities (via a process called nonphotochemical quenching, NPQ). Aggregation of LHCII is associated with fluorescence quenching, and is used as an in vitro model system of NPQ. However, there is no agreement on the nature of the quencher and on the validity of aggregation as a model system. Here, we use ultrafast multipulse spectroscopy to populate a quenched state in unquenched (unaggregated) LHCII. The state shows characteristic features of lutein and chlorophyll, suggesting that it is an excitonically coupled state between these two compounds. This state decays in approximately 10 ps, making it a strong competitor for photodamage and photochemical quenching. It is observed in trimeric and monomeric LHCII, upon re-excitation with pulses of different wavelengths and duration. We propose that this state is always present, but is scarcely populated under low light intensities. Under high light intensities it may become more accessible, e.g. by conformational changes, and then form a quenching channel. The same state may be the cause of fluorescence blinking observed in single-molecule spectroscopy of LHCII trimers, where a small subpopulation is in an energetically higher state where the pathway to the quencher opens up.
Collapse
Affiliation(s)
- Bart van Oort
- Department
of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Institute
for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department
of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Institute
for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department
of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Institute
for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
216
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
217
|
van Rooijen R, Aarts MGM, Harbinson J. Natural genetic variation for acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1412-29. [PMID: 25670817 PMCID: PMC4378148 DOI: 10.1104/pp.114.252239] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/09/2015] [Indexed: 05/20/2023]
Abstract
Plants are known to be able to acclimate their photosynthesis to the level of irradiance. Here, we present the analysis of natural genetic variation for photosynthetic light use efficiency (ΦPSII) in response to five light environments among 12 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions. We measured the acclimation of ΦPSII to constant growth irradiances of four different levels (100, 200, 400, and 600 µmol m(-2) s(-1)) by imaging chlorophyll fluorescence after 24 d of growth and compared these results with acclimation of ΦPSII to a step-wise change in irradiance where the growth irradiance was increased from 100 to 600 µmol m(-2) s(-1) after 24 d of growth. Genotypic variation for ΦPSII is shown by calculating heritability for the short-term ΦPSII response to different irradiance levels as well as for the relation of ΦPSII measured at light saturation (a measure of photosynthetic capacity) to growth irradiance level and for the kinetics of the response to a step-wise increase in irradiance from 100 to 600 µmol m(-2) s(-1). A genome-wide association study for ΦPSII measured 1 h after a step-wise increase in irradiance identified several new candidate genes controlling this trait. In conclusion, the different photosynthetic responses to a changing light environment displayed by different Arabidopsis accessions are due to genetic differences, and we have identified candidate genes for the photosynthetic response to an irradiance change. The genetic variation for photosynthetic acclimation to irradiance found in this study will allow future identification and analysis of the causal genes for the regulation of ΦPSII in plants.
Collapse
Affiliation(s)
- Roxanne van Rooijen
- Laboratory of Genetics (R.v.R., M.G.M.A.) and Horticulture and Product Physiology (J.H.), Wageningen University, 6708 PB Wageningen, The Netherlands; andBioSolar Cells, 6700 AB Wageningen, The Netherlands (R.v.R., J.H.)
| | - Mark G M Aarts
- Laboratory of Genetics (R.v.R., M.G.M.A.) and Horticulture and Product Physiology (J.H.), Wageningen University, 6708 PB Wageningen, The Netherlands; andBioSolar Cells, 6700 AB Wageningen, The Netherlands (R.v.R., J.H.)
| | - Jeremy Harbinson
- Laboratory of Genetics (R.v.R., M.G.M.A.) and Horticulture and Product Physiology (J.H.), Wageningen University, 6708 PB Wageningen, The Netherlands; andBioSolar Cells, 6700 AB Wageningen, The Netherlands (R.v.R., J.H.)
| |
Collapse
|
218
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | | |
Collapse
|
219
|
Biogenesis of light harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:861-71. [PMID: 25687893 DOI: 10.1016/j.bbabio.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 11/20/2022]
Abstract
The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
220
|
Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. PHYSIOLOGIA PLANTARUM 2015; 153:284-98. [PMID: 24962705 DOI: 10.1111/ppl.12245] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 05/03/2023]
Abstract
The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.
Collapse
Affiliation(s)
- Dew Kumari Sharma
- Department of Plant and Environmental Sciences, Section of Plant and Soil Science, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
221
|
Du JJ, Zhan CY, Lu Y, Cui HR, Wang XY. The conservative cysteines in transmembrane domain of AtVKOR/LTO1 are critical for photosynthetic growth and photosystem II activity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:238. [PMID: 25941528 PMCID: PMC4400859 DOI: 10.3389/fpls.2015.00238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/25/2015] [Indexed: 05/20/2023]
Abstract
Thylakoid protein vitamin K epoxide reductase (AtVKOR/LTO1) is involved in oxidoreduction. The deficiency of this compound causes pleiotropic defects in Arabidopsis thaliana, such as severely stunted growth, smaller sized leaves, and delay of flowering. Transgenic complementation of wild-type AtVKOR (VKORWT) to vkor mutant lines ultimately demonstrates that the phenotype changes are due to this gene. However, whether AtVKOR functions in Arabidopsis through its protein oxidoreduction is unknown. To further study the redox-active sites of AtVKOR in vivo, a series of plasmids containing cysteine-mutant VKORs were constructed and transformed into vkor deficient lines. Compared with transgenic AtVKORWT plants, the size of the transgenic plants with a single conservative cysteine mutation (VKORC109A, VKORC116A, VKORC195A, and VKORC198A) were smaller, and two double-cysteine mutations (VKORC109AC116A and VKORC195AC198A) showed significantly stunted growth, similar with the vkor mutant line. However, mutations of two non-conservative cysteines (VKORC46A and VKORC230A) displayed little obvious changes in the phenotypes of Arabidopsis. Consistently, the maximum and actual efficiency of photosystem II (PSII) in double-cysteine mutation plants decreased significantly to the level similar to that of the vkor mutant line both under normal growth light and high light. A significantly decreased amount of D1 protein and increased accumulation of reactive oxygen species were observed in two double-cysteine mutations under high light. All of the results above indicated that the conservative cysteines in transmembrane domains were the functional sites of AtVKOR in Arabidopsis and that the oxidoreductase activities of AtVKOR were directly related to the autotrophic photosynthetic growth and PSII activity of Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Yun Wang
- *Correspondence: Xiao-Yun Wang, State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street 61, Tai´an, Shandong 271018, China
| |
Collapse
|
222
|
Zulfugarov IS, Tovuu A, Eu YJ, Dogsom B, Poudyal RS, Nath K, Hall M, Banerjee M, Yoon UC, Moon YH, An G, Jansson S, Lee CH. Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC PLANT BIOLOGY 2014; 14:242. [PMID: 25342550 PMCID: PMC4219129 DOI: 10.1186/s12870-014-0242-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/08/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND PsbS is a 22-kDa Photosystem (PS) II protein involved in non-photochemical quenching (NPQ) of chlorophyll fluorescence. Rice (Oryza sativa L.) has two PsbS genes, PsbS1 and PsbS2. However, only inactivation of PsbS1, through a knockout (PsbS1-KO) or in RNAi transgenic plants, results in plants deficient in qE, the energy-dependent component of NPQ. RESULTS In studies presented here, under fluctuating high light, growth of young seedlings lacking PsbS is retarded, and PSII in detached leaves of the mutants is more sensitive to photoinhibitory illumination compared with the wild type. Using both histochemical and fluorescent probes, we determined the levels of reactive oxygen species, including singlet oxygen, superoxide, and hydrogen peroxide, in leaves and thylakoids. The PsbS-deficient plants generated more superoxide and hydrogen peroxide in their chloroplasts. PSII complexes isolated from them produced more superoxide compared with the wild type, and PSII-driven superoxide production was higher in the mutants. However, we could not observe such differences either in isolated PSI complexes or through PSI-driven electron transport. Time-course experiments using isolated thylakoids showed that superoxide production was the initial event, and that production of hydrogen peroxide proceeded from that. CONCLUSION These results indicate that at least some of the photoprotection provided by PsbS and qE is mediated by preventing production of superoxide released from PSII under conditions of excess excitation energy.
Collapse
Affiliation(s)
- Ismayil S Zulfugarov
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
- />Department of Biology, North-Eastern Federal University, 58 Belinsky Str, Yakutsk, 677-027 Republic of Sakha (Yakutia) Russian Federation
- />Institute of Botany, Azerbaijan National Academy of Sciences, Patamdar Shosse 40, Baku, AZ 1073 Azerbaijan
| | - Altanzaya Tovuu
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
- />Department of Biology, Mongolian State University of Agriculture, Zaisan, Ulaanbaatar, 17024 Mongolia
| | - Young-Jae Eu
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Bolormaa Dogsom
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Roshan Sharma Poudyal
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Krishna Nath
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Michael Hall
- />Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, SE-901 87 Sweden
| | - Mainak Banerjee
- />Department of Chemistry, Pusan National University, Jangjeon-dong, Keumjung-gu, Busan, 609-735 Korea
| | - Ung Chan Yoon
- />Department of Chemistry, Pusan National University, Jangjeon-dong, Keumjung-gu, Busan, 609-735 Korea
| | - Yong-Hwan Moon
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Gynheung An
- />Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Korea
| | - Stefan Jansson
- />Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, SE-901 87 Sweden
| | - Choon-Hwan Lee
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| |
Collapse
|
223
|
Gao S, Zheng Z, Gu W, Xie X, Huan L, Pan G, Wang G. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta). PHYSIOLOGIA PLANTARUM 2014; 152:380-8. [PMID: 24628656 DOI: 10.1111/ppl.12188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/07/2014] [Indexed: 05/12/2023]
Abstract
The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | |
Collapse
|
224
|
Sherman-Broyles S, Bombarely A, Powell AF, Doyle JL, Egan AN, Coate JE, Doyle JJ. The wild side of a major crop: soybean's perennial cousins from Down Under. AMERICAN JOURNAL OF BOTANY 2014; 101:1651-65. [PMID: 25326613 DOI: 10.3732/ajb.1400121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The accumulation of over 30 years of basic research on the biology, genetic variation, and evolution of the wild perennial relatives of soybean (Glycine max) provides a foundation to improve cultivated soybean. The cultivated soybean and its wild progenitor, G. soja, have a center of origin in eastern Asia and are the only two species in the annual subgenus Soja. Systematic and evolutionary studies of the ca. 30 perennial species of subgenus Glycine, native to Australia, have benefited from the availability of the G. max genomic sequence. The perennial species harbor many traits of interest to soybean breeders, among them resistance to major soybean pathogens such as cyst nematode and leaf rust. New species in the Australian subgenus continue to be described, due to the collection of new material and to insights gleaned through systematic studies of accessions in germplasm collections. Ongoing studies in perennial species focus on genomic regions that contain genes for key traits relevant to soybean breeding. These comparisons also include the homoeologous regions that are the result of polyploidy in the common ancestor of all Glycine species. Subgenus Glycine includes a complex of recently formed allopolyploids that are the focus of studies aimed at elucidating genomic, transcriptomic, physiological, taxonomic, morphological, developmental, and ecological processes related to polyploid evolution. Here we review what has been learned over the past 30 years and outline ongoing work on photosynthesis, nitrogen fixation, and floral biology, much of it drawing on new technologies and resources.
Collapse
Affiliation(s)
| | | | - Adrian F Powell
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Jane L Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Ashley N Egan
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington D.C. 20013-7012 USA
| | - Jeremy E Coate
- Reed College, Department of Biology, 3203 SE Woodstock Blvd., Portland, Oregon 97202 USA
| | - Jeff J Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| |
Collapse
|
225
|
Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories. J Biotechnol 2014; 201:28-42. [PMID: 25160918 DOI: 10.1016/j.jbiotec.2014.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
Microalgae represent promising organisms for the sustainable production of commodities, chemicals or fuels. Future use of such systems, however, requires increased productivity of microalgal mass cultures in order to reach an economic viability for microalgae-based production schemes. The efficiency of sunlight-to-biomass conversion that can be observed in bulk cultures is generally far lower (35-80%) than the theoretical maximum, because energy losses occur at multiple steps during the light-driven conversion of carbon dioxide to organic carbon. The light-harvesting system is a major source of energy losses and thus a prime target for strain engineering. Truncation of the light-harvesting antenna in the algal model organism Chlamydomonas reinhardtii was shown to be an effective way of increasing culture productivity at least under saturating light conditions. Furthermore engineering of the Calvin-Benson cycle or the creation of photorespiratory bypasses in A. thaliana proved to be successful in terms of achieving higher biomass productivities. An efficient generation of novel microalgal strains with improved sunlight conversion efficiencies by targeted engineering in the future will require an expanded molecular toolkit. In the meantime random mutagenesis coupled to high-throughput screening for desired phenotypes can be used to provide engineered microalgae.
Collapse
|
226
|
Eppel A, Shaked R, Eshel G, Barak S, Rachmilevitch S. Low induction of non-photochemical quenching and high photochemical efficiency in the annual desert plant Anastatica hierochuntica. PHYSIOLOGIA PLANTARUM 2014; 151:544-58. [PMID: 24372077 DOI: 10.1111/ppl.12146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 05/15/2023]
Abstract
Non-photochemical quenching (NPQ) plays a major role in photoprotection. Anastatica hierochuntica is an annual desert plant found in hot deserts. We compared A. hierochuntica to three other different species: Arabidopsis thaliana, Eutrema salsugineum and Helianthus annuus, which have different NPQ and photosynthetic capacities. Anastatica hierochuntica plants had very different induction kinetics of NPQ and, to a lesser extent, of photosystem II electron transport rate (PSII ETR), in comparison to all other plants species in the experiments. The major components of the unusual photosynthetic and photoprotective response in A. hierochuntica were: (1) Low NPQ at the beginning of the light period, at various light intensities and CO2 concentrations. The described low NPQ cannot be explained by low leaf absorbance or by low energy distribution to PSII, but was related to the de-epoxidation state of xanthophylls. (2) Relatively high PSII ETR at various CO2 concentrations in correlation with low NPQ. PSII ETR responded positively to the increase of CO2 concentrations. At low CO2 concentrations PSII ETR was mostly O2 dependent. At moderate and high CO2 concentrations the high PSII ETR in A. hierochuntica was accompanied by relatively high CO2 assimilation rates. We suggest that A. hierochuntica have an uncommon NPQ and PSII ETR response. These responses in A. hierochuntica might represent an adaptation to the short growing season of an annual desert plant.
Collapse
Affiliation(s)
- Amir Eppel
- The Albert Katz School for Desert Studies, The Jacob Blaustein Institute for Desert for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion university of the Negev, Beersheba, Israel
| | | | | | | | | |
Collapse
|
227
|
Cocaliadis MF, Fernández-Muñoz R, Pons C, Orzaez D, Granell A. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4589-98. [PMID: 24723405 DOI: 10.1093/jxb/eru165] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening.
Collapse
Affiliation(s)
- Maria Florencia Cocaliadis
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Ingeniero Fausto Elio s/n E-46022 Valencia, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, E-29750 Algarrobo-Costa (Málaga), Spain
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Ingeniero Fausto Elio s/n E-46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Ingeniero Fausto Elio s/n E-46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Ingeniero Fausto Elio s/n E-46022 Valencia, Spain
| |
Collapse
|
228
|
Janssen PJD, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G. Photosynthesis at the forefront of a sustainable life. Front Chem 2014; 2:36. [PMID: 24971306 PMCID: PMC4054791 DOI: 10.3389/fchem.2014.00036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/25/2014] [Indexed: 11/13/2022] Open
Abstract
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
Collapse
Affiliation(s)
- Paul J. D. Janssen
- Molecular and Cellular Biology - Unit of Microbiology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK•CENMol, Belgium
| | - Maya D. Lambreva
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Nicolas Plumeré
- Center for Electrochemical Sciences-CES, Ruhr-Universität BochumBochum, Germany
| | - Cecilia Bartolucci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Katia Buonasera
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Raoul N. Frese
- Division of Physics and Astronomy, Department of Biophysics, VU University AmsterdamAmsterdam, Netherlands
| | | | - Giuseppina Rea
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| |
Collapse
|
229
|
Darwish M, Lopez-Lauri F, El Maataoui M, Urban L, Sallanon H. Pretreatment with alternation of light/dark periods improves the tolerance of tobacco (Nicotiana tabacum) to clomazone herbicide. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 134:49-56. [PMID: 24792474 DOI: 10.1016/j.jphotobiol.2014.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
Abstract
This work analyses the effects of alternation of light/dark periods pretreatment (AL) in tobacco plantlets (Nicotiana tabacum L. cv.Virginie vk51) growing in solution with low concentration of the clomazone herbicide. The experimentation has been carried out by exposing the plantlets to successive and regulated periods of light (16min light/8min dark cycles, PAR 50μmolm(-2)s(-1)) for three days. The photosynthesis efficiency was determined by mean of the chlorophyll fluorescence and JIP-test. The AL pretreatment improved the clomazone tolerance; this has been observed by the increase in the leaf area of the plant, the maximal photochemical quantum efficiency of PSII (Fv/Fm), the actual PSII efficiency (ФPSII), the performance index (PIabs), the electron flux beyond Quinone A (1-VJ), and also by the diminution of the energy dissipating into heat (DI0/RC). Furthermore, AL pretreatment led to low accumulation of hydrogen peroxide (H2O2) which proves that the scavenging enzymatic system have been activated before clomazone treatment. In the plantlets pretreated with AL, with regard to the ascorbate content, some of antioxidant enzyme whose function is associated with it have continued to scavenge reactive oxygen species (ROS) induced by clomazone, such as ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR). So, the observed photooxidative damages induced by clomazone herbicide were noticeably reduced.
Collapse
Affiliation(s)
- Majd Darwish
- EA 4279, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des pays de Vaucluse, 301, rue Baruch de Spinoza, BP 21239, 84916 Avignon cedex 9, France.
| | - Félicie Lopez-Lauri
- EA 4279, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des pays de Vaucluse, 301, rue Baruch de Spinoza, BP 21239, 84916 Avignon cedex 9, France
| | - Mohamed El Maataoui
- EA 4279, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des pays de Vaucluse, 301, rue Baruch de Spinoza, BP 21239, 84916 Avignon cedex 9, France
| | - Laurent Urban
- EA 4279, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des pays de Vaucluse, 301, rue Baruch de Spinoza, BP 21239, 84916 Avignon cedex 9, France
| | - Huguette Sallanon
- EA 4279, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des pays de Vaucluse, 301, rue Baruch de Spinoza, BP 21239, 84916 Avignon cedex 9, France
| |
Collapse
|
230
|
Wang B, Du Q, Yang X, Zhang D. Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC PLANT BIOLOGY 2014; 14:81. [PMID: 24673936 PMCID: PMC3986721 DOI: 10.1186/1471-2229-14-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/17/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. RESULTS Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. CONCLUSIONS This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.
Collapse
Affiliation(s)
- Bowen Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
231
|
Flood PJ, Yin L, Herdean A, Harbinson J, Aarts MGM, Spetea C. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130499. [PMID: 24591726 DOI: 10.1098/rstb.2013.0499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University, , Wageningen 6708 PB, The Netherlands
| | | | | | | | | | | |
Collapse
|
232
|
Jajoo A, Mekala NR, Tongra T, Tiwari A, Grieco M, Tikkanen M, Aro EM. Low pH-induced regulation of excitation energy between the two photosystems. FEBS Lett 2014; 588:970-4. [PMID: 24530686 DOI: 10.1016/j.febslet.2014.01.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 11/18/2022]
Abstract
Earlier studies have proposed that low pH causes state transitions in spinach thylakoid membranes. Several Arabidopsis mutants (stn7 incapable in phosphorylation of LHC II, stn8 incapable in phosphorylation of PSII core proteins, stn7 stn8 double mutant and npq4 lacking PsbS and hence qE) were used to investigate the mechanisms involved in low pH induced changes in the thylakoid membrane. We propose that protonation of PsbS at low pH is involved in enhancing energy spillover to PS I.
Collapse
Affiliation(s)
- Anjana Jajoo
- School of Life Science, Devi Ahilya University, Indore, M.P., India.
| | - Nageswara Rao Mekala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Teena Tongra
- School of Life Science, Devi Ahilya University, Indore, M.P., India
| | - Arjun Tiwari
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Michele Grieco
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikko Tikkanen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
233
|
Lawson T, Davey PA, Yates SA, Bechtold U, Baeshen M, Baeshen N, Mutwakil MZ, Sabir J, Baker NR, Mullineaux PM. C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. THE NEW PHYTOLOGIST 2014; 201:862-873. [PMID: 24164092 DOI: 10.1111/nph.12559] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 05/10/2023]
Abstract
The C3 plant Rhazya stricta is native to arid desert environment zones, where it experiences daily extremes of heat, light intensity (PAR) and high vapour pressure deficit (VPD). We measured the photosynthetic parameters in R. stricta in its native environment to assess the mechanisms that permit it to survive in these extreme conditions. Infrared gas exchange analysis examined diel changes in assimilation (A), stomatal conductance (gs ) and transpiration (E) on mature leaves of R. stricta. A/ci analysis was used to determine the effect of temperature on carboxylation capacity (Vc,max ) and the light- and CO2 -saturated rate of photosynthesis (Amax ). Combined chlorophyll fluorescence and gas exchange light response curve analysis at ambient and low oxygen showed that both carboxylation and oxygenation of Rubisco acted as the major sinks for the end products of electron transport. Physiological analysis in conjunction with gene expression analysis suggested that there are two isoforms of Rubisco activase which may provide an explanation for the ability of R. stricta to maintain Rubisco function at high temperatures. The potential to exploit this ability to cope with extreme temperatures is discussed in the context of future crop improvement.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Phillip A Davey
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Steven A Yates
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Mohammed Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| | - Nabih Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohammed Z Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| | - Jamal Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| | - Neil R Baker
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | | |
Collapse
|
234
|
Bender D, Diaz-Pulido G, Dove S. The impact of CO2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. JOURNAL OF PHYCOLOGY 2014; 50:203-215. [PMID: 26988019 DOI: 10.1111/jpy.12153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/10/2013] [Indexed: 06/05/2023]
Abstract
Future coral reefs are expected to be subject to higher pCO2 and temperature due to anthropogenic greenhouse gas emissions. Such global stressors are often paired with local stressors thereby potentially modifying the response of organisms. Benthic macroalgae are strong competitors to corals and are assumed to do well under future conditions. The present study aimed to assess the impact of past and future CO2 emission scenarios as well as nutrient enrichment on the growth, productivity, pigment, and tissue nutrient content of the common tropical brown alga Chnoospora implexa. Two experiments were conducted to assess the differential impacts of the manipulated conditions in winter and spring. Chnoospora implexa's growth rate averaged over winter and spring declined with increasing pCO2 and temperature. Furthermore, nutrient enrichment did not affect growth. Highest growth was observed under spring pre-industrial (PI) conditions, while slightly reduced growth was observed under winter A1FI ("business-as-usual") scenarios. Productivity was not a good proxy for growth, as net O2 flux increased under A1FI conditions. Nutrient enrichment, whilst not affecting growth, led to luxury nutrient uptake that was greater in winter than in spring. The findings suggest that in contrast with previous work, C. implexa is not likely to show enhanced growth under future conditions in isolation or in conjunction with nutrient enrichment. Instead, the results suggest that greatest growth rates for this species appear to be a feature of the PI past, with A1FI winter conditions leading to potential decreases in the abundance of this species from present day levels.
Collapse
Affiliation(s)
- Dorothea Bender
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Guillermo Diaz-Pulido
- Griffith School of Environment & Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, Australia
| | - Sophie Dove
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
235
|
The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:68-75. [DOI: 10.1016/j.jphotobiol.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
|
236
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|
237
|
Curtis T, Halford NG. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. THE ANNALS OF APPLIED BIOLOGY 2014; 164:354-372. [PMID: 25540461 PMCID: PMC4240735 DOI: 10.1111/aab.12108] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
Current wheat yield and consumption is considered in the context of the historical development of wheat, from early domestication through to modern plant breeding, the Green Revolution and wheat's place as one of the world's most productive and important crops in the 21st Century. The need for further improvement in the yield potential of wheat in order to meet current and impending challenges is discussed, including rising consumption and the demand for grain for fuel as well as food. Research on the complex genetics underlying wheat yield is described, including the identification of quantitative trait loci and individual genes, and the prospects of biotechnology playing a role in wheat improvement in the future are discussed. The challenge of preparing wheat to meet the problems of drought, high temperature and increasing carbon dioxide concentration that are anticipated to come about as a result of climate change is also reviewed. Wheat yield must be increased while not compromising food safety, and the emerging problem of processing contaminants is reviewed, focussing in particular on acrylamide, a contaminant that forms from free asparagine and reducing sugars during high temperature cooking and processing. Wheat breeders are strongly encouraged to consider the contaminant issue when breeding for yield.
Collapse
Affiliation(s)
- T Curtis
- Plant Biology and Crop Science Department, Rothamsted ResearchHarpenden, Hertfordshirex, UK
| | - N G Halford
- Plant Biology and Crop Science Department, Rothamsted ResearchHarpenden, Hertfordshirex, UK
| |
Collapse
|
238
|
Tikkanen M, Aro EM. Integrative regulatory network of plant thylakoid energy transduction. TRENDS IN PLANT SCIENCE 2014; 19:10-7. [PMID: 24120261 DOI: 10.1016/j.tplants.2013.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/02/2013] [Accepted: 09/13/2013] [Indexed: 05/03/2023]
Abstract
Highly flexible regulation of photosynthetic light reactions in plant chloroplasts is a prerequisite to provide sufficient energy flow to downstream metabolism and plant growth, to protect light reactions against photodamage, and to ensure controlled cellular signaling from the chloroplast to the nucleus. Such comprehensive regulation occurs via the control of excitation energy transfer to and between the two photosystems (PSII and PSI), of the electrochemical gradient across the thylakoid membrane (ΔpH), and of electron transfer from PSII to PSI electron acceptors. In this opinion article, we propose that these regulatory mechanisms, functioning at different levels of photosynthetic energy conversion, might be interconnected and describe how the concomitant and integrated function of these mechanisms might enable plants to acclimate to a full array of environmental changes.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
239
|
Murchie EH, Harbinson J. Non-Photochemical Fluorescence Quenching Across Scales: From Chloroplasts to Plants to Communities. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
240
|
Abstract
Photosynthetic organisms are continuously subjected to changes in light quantity and quality, and must adjust their photosynthetic machinery so that it maintains optimal performance under limiting light and minimizes photodamage under excess light. To achieve this goal, these organisms use two main strategies in which light-harvesting complex II (LHCII), the light-harvesting system of photosystem II (PSII), plays a key role both for the collection of light energy and for photoprotection. The first is energy-dependent nonphotochemical quenching, whereby the high-light-induced proton gradient across the thylakoid membrane triggers a process in which excess excitation energy is harmlessly dissipated as heat. The second involves a redistribution of the mobile LHCII between the two photosystems in response to changes in the redox poise of the electron transport chain sensed through a signaling chain. These two processes strongly diminish the production of damaging reactive oxygen species, but photodamage of PSII is unavoidable, and it is repaired efficiently.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
241
|
Gerotto C, Morosinotto T. Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae. PHYSIOLOGIA PLANTARUM 2013; 149:583-98. [PMID: 23663155 DOI: 10.1111/ppl.12070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 05/20/2023]
Abstract
Light is the energy source for photosynthetic organisms but, if absorbed in excess, it can drive to the formation of reactive oxygen species and photoinhibition. One major mechanism to avoid oxidative damage in plants and algae is the dissipation of excess excitation energy as heat, called non-photochemical quenching (NPQ). Eukaryotic algae and plants, however, rely on two different proteins for NPQ activation, the former mainly depending on LHCSR (Lhc-like protein Stress Related; previously called Li818, Light Induced protein 818), whereas in the latter the major role is played by a distinct protein, PSBS (photosystem II subunit S). In the moss Physcomitrella patens, which diverged from vascular plants early after land colonization, both these proteins were found to be present and active in inducing NPQ, suggesting that during plants evolution both mechanisms co-existed. In order to investigate in more detail NPQ adaptation toward land colonization, we analyzed Streptophyte algae, the latest organisms to diverge from the land plants ancestors. Among them we found evidence of a PSBS-dependent NPQ in species belonging to Charales, Coleochaetales and Zygnematales, the latest groups to diverge from land plants ancestors. On the contrary earlier diverging algae, as Mesostigmatales and Klebsormidiales, likely rely on LHCSR for their NPQ activation. Presented evidence thus suggests that PSBS-dependent NPQ, although possibly present in some Chlorophyta, was stably acquired in the Cambrian period about 500 million years ago, before late Streptophyte algae diverged from plants ancestors.
Collapse
Affiliation(s)
- Caterina Gerotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| |
Collapse
|
242
|
Höhner R, Barth J, Magneschi L, Jaeger D, Niehues A, Bald T, Grossman A, Fufezan C, Hippler M. The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics. Mol Cell Proteomics 2013; 12:2774-90. [PMID: 23820728 PMCID: PMC3790290 DOI: 10.1074/mcp.m113.029991] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Indexed: 11/06/2022] Open
Abstract
Iron is a crucial cofactor in numerous redox-active proteins operating in bioenergetic pathways including respiration and photosynthesis. Cellular iron management is essential to sustain sufficient energy production and minimize oxidative stress. To produce energy for cell growth, the green alga Chlamydomonas reinhardtii possesses the metabolic flexibility to use light and/or carbon sources such as acetate. To investigate the interplay between the iron-deficiency response and growth requirements under distinct trophic conditions, we took a quantitative proteomics approach coupled to innovative hierarchical clustering using different "distance-linkage combinations" and random noise injection. Protein co-expression analyses of the combined data sets revealed insights into cellular responses governing acclimation to iron deprivation and regulation associated with photosynthesis dependent growth. Photoautotrophic growth requirements as well as the iron deficiency induced specific metabolic enzymes and stress related proteins, and yet differences in the set of induced enzymes, proteases, and redox-related polypeptides were evident, implying the establishment of distinct response networks under the different conditions. Moreover, our data clearly support the notion that the iron deficiency response includes a hierarchy for iron allocation within organelles in C. reinhardtii. Importantly, deletion of a bifunctional alcohol and acetaldehyde dehydrogenase (ADH1), which is induced under low iron based on the proteomic data, attenuates the remodeling of the photosynthetic machinery in response to iron deficiency, and at the same time stimulates expression of stress-related proteins such as NDA2, LHCSR3, and PGRL1. This finding provides evidence that the coordinated regulation of bioenergetics pathways and iron deficiency response is sensitive to the cellular and chloroplast metabolic and/or redox status, consistent with systems approach data.
Collapse
Affiliation(s)
- Ricarda Höhner
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Johannes Barth
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Leonardo Magneschi
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Daniel Jaeger
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Anna Niehues
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Till Bald
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Arthur Grossman
- §Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Christian Fufezan
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Michael Hippler
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| |
Collapse
|
243
|
Murchie EH, Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3983-98. [PMID: 23913954 DOI: 10.1093/jxb/ert208] [Citation(s) in RCA: 861] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity and is a commonly used technique in plant physiology. The sensitivity of PSII activity to abiotic and biotic factors has made this a key technique not only for understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental change. This, along with low cost and ease of collecting data, has resulted in the appearance of a large array of instrument types for measurement and calculated parameters which can be bewildering for the new user. Moreover, its accessibility can lead to misuse and misinterpretation when the underlying photosynthetic processes are not fully appreciated. This review is timely because it sits at a point of renewed interest in chlorophyll fluorescence where fast measurements of photosynthetic performance are now required for crop improvement purposes. Here we help the researcher make choices in terms of protocols using the equipment and expertise available, especially for field measurements. We start with a basic overview of the principles of fluorescence analysis and provide advice on best practice for taking pulse amplitude-modulated measurements. We also discuss a number of emerging techniques for contemporary crop and ecology research, where we see continual development and application of analytical techniques to meet the new challenges that have arisen in recent years. We end the review by briefly discussing the emerging area of monitoring fluorescence, chlorophyll fluorescence imaging, field phenotyping, and remote sensing of crops for yield and biomass enhancement.
Collapse
Affiliation(s)
- E H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, Sutton Bonington LE12 5RD, UK
| | | |
Collapse
|
244
|
Xie X, Gao S, Gu W, Pan G, Wang G. Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta). PLoS One 2013; 8:e72929. [PMID: 24039824 PMCID: PMC3764160 DOI: 10.1371/journal.pone.0072929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/15/2013] [Indexed: 12/04/2022] Open
Abstract
For plants and algae, exposure to high light levels is deleterious to their photosynthetic machineries. It also can accelerate water evaporation and thus potentially lead to drought stress. Most photosynthetic organisms protect themselves against high light caused photodamages by xanthophyll cycle-dependent thermal energy dissipation. It is generally accepted that high light activates xanthophyll cycle. However, the relationship between xanthophyll cycle and drought stress remains ambiguous. Herein, Ulva pertusa (Chlorophyta), a representative perennial intertidal macro-algae species with high drought-tolerant capabilities and simple structures, was used to investigate the operation of xanthophyll cycle during desiccation in air. The results indicate that desiccation under dim light induced accumulation of antheraxanthin (Ax) and zeaxanthin (Zx) at the expense of violaxanthin (Vx). This accumulation could be arrested by dithiothreitol completely and by uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) partially, implying the participation of Vx de-epoxidase in conversion of Vx to Ax and Zx. Treatment with inhibitors of electron transport along thylakoid membrane, e.g. DCMU, PG and DBMIB, did not significantly arrest desiccation-induced accumulation of Ax and Zx. We propose that for U. pertusa, besides excess light, desiccation itself could also induce accumulation of Ax and Zx. This accumulation could proceed without electron transport along thylakoid membrane, and is possibly resulting from the reduction of thylakoid lumen volume during desiccation. Considering the pleiotropic effects of Ax and Zx, accumulated Ax and Zx may function in protecting thylakoid membrane and enhancing thermal quenching during emersion in air.
Collapse
Affiliation(s)
- Xiujun Xie
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shan Gao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Gu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Pan
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
245
|
Acclimation to UV radiation and antioxidative defence in the endemic Antarctic brown macroalga Desmarestia anceps along a depth gradient. Polar Biol 2013. [DOI: 10.1007/s00300-013-1397-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
246
|
Kobayashi K, Sasaki D, Noguchi K, Fujinuma D, Komatsu H, Kobayashi M, Sato M, Toyooka K, Sugimoto K, Niyogi KK, Wada H, Masuda T. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors. PLANT & CELL PHYSIOLOGY 2013; 54:1365-77. [PMID: 23749810 PMCID: PMC3730084 DOI: 10.1093/pcp/pct086] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 05/20/2023]
Abstract
In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Daichi Sasaki
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Ko Noguchi
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Daiki Fujinuma
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Hirohisa Komatsu
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Masami Kobayashi
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Hajime Wada
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
- *Corresponding author: E-mail, ; Fax, +81-3-5454-4321
| |
Collapse
|
247
|
Evans JR. Improving photosynthesis. PLANT PHYSIOLOGY 2013; 162:1780-93. [PMID: 23812345 PMCID: PMC3729760 DOI: 10.1104/pp.113.219006] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/26/2013] [Indexed: 05/18/2023]
Abstract
Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO₂, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO₂ around Rubisco or by modifying the kinetic properties of Rubisco. The C₄ photosynthetic pathway is a CO₂-concentrating mechanism that generally enables C₄ plants to achieve greater efficiency in their use of light, nitrogen, and water than C₃ plants. To capitalize on these advantages, attempts have been made to engineer the C₄ pathway into C₃ rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO₂ leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging.
Collapse
Affiliation(s)
- John R Evans
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| |
Collapse
|
248
|
Ye ZP, Suggett DJ, Robakowski P, Kang HJ. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. THE NEW PHYTOLOGIST 2013; 199:110-120. [PMID: 23521402 DOI: 10.1111/nph.12242] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
A new mechanistic model of the photosynthesis-light response is developed based on photosynthetic electron transport via photosystem II (PSII) to specifically describe light-harvesting characteristics and associated biophysical parameters of photosynthetic pigment molecules. This model parameterizes 'core' characteristics not only of the light response but also of difficult to measure physical parameters of photosynthetic pigment molecules in plants. Application of the model to two C3 and two C4 species grown under the same conditions demonstrated that the model reproduced extremely well (r(2) > 0.992) the light response trends of both electron transport and CO2 uptake. In all cases, the effective absorption cross-section of photosynthetic pigment molecules decreased with increasing light intensity, demonstrating novel operation of a key mechanism for plants to avoid high light damage. In parameterizing these previously difficult to measure characteristics of light harvesting in higher plants, the model provides a new means to understand the mechanistic processes underpinning variability of CO2 uptake, for example, photosynthetic down-regulation or reversible photoinhibition induced by high light and photoprotection. However, an important next step is validating this parameterization, possibly through application to less structurally complex organisms such as single-celled algae.
Collapse
Affiliation(s)
- Zi-Piao Ye
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - David J Suggett
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Piotr Robakowski
- Department of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71E St., 60-625, Poznan, Poland
| | - Hua-Jing Kang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Landscape Architecture, Wenzhou Vocational & Technical College, Wenzhou, 325006, Zhejiang, China
| |
Collapse
|
249
|
Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:307-14. [PMID: 23583332 DOI: 10.1016/j.pbi.2013.03.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 05/17/2023]
Abstract
All photosynthetic organisms need to regulate light harvesting for photoprotection. Three types of flexible non-photochemical quenching (NPQ) mechanisms have been characterized in oxygenic photosynthetic cyanobacteria, algae, and plants: OCP-, LHCSR-, and PSBS-dependent NPQ. OCP-dependent NPQ likely evolved first, to quench excess excitation in the phycobilisome (PB) antenna of cyanobacteria. During evolution of eukaryotic algae, PBs were lost in the green and secondary red plastid lineages, while three-helix light-harvesting complex (LHC) antenna proteins diversified, including LHCSR proteins that function in dissipating excess energy rather than light harvesting. PSBS, an independently evolved member of the LHC protein superfamily, seems to have appeared exclusively in the green lineage, acquired a function as a pH sensor that turns on NPQ, and eventually replaced LHCSR in vascular plants.
Collapse
Affiliation(s)
- Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
250
|
Martins N, Osório ML, Gonçalves S, Osório J, Romano A. Differences in Al tolerance between Plantago algarbiensis and P. almogravensis reflect their ability to respond to oxidative stress. Biometals 2013; 26:427-37. [PMID: 23563731 DOI: 10.1007/s10534-013-9625-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 03/28/2013] [Indexed: 11/30/2022]
Abstract
We evaluated the impact of low pH and aluminum (Al) on the leaves and roots of Plantago almogravensis Franco and Plantago algarbiensis Samp., focusing on energy partitioning in photosystem II, H₂O₂ levels, lipid peroxidation, electrolyte leakage (EL), protein oxidation, total soluble protein content and antioxidant enzyme activities. In both species, Al triggered more changes in oxidative metabolism than low pH alone, particularly in the roots. We found that Al increased the levels of H₂O₂ in P. algarbiensis roots, but reduced the levels of H₂O₂ in P. almogravensis leaves and roots. Neither low pH nor Al affected the spatial heterogeneity of chlorophyll fluorescence, the maximum photochemical efficiency of PSII (Fv/Fm), the actual quantum efficiency of PSII (ϕPSII) or the quantum yields of regulated (ϕNPQ) and nonregulated (ϕNO) energy dissipation, and there was no significant change in total soluble protein content and EL. In P. algarbiensis, Al increased the carbonyl content and the activities of superoxide dismutase (SOD) and catalase (CAT) in the roots, and also CAT, ascorbate peroxidase and guaiacol peroxidase activities in the leaves. In P. almogravensis, Al reduced the level of malondialdehyde in the roots as well as SOD activity in the leaves and roots. We found that P. almogravensis plantlets could manage the oxidative stress caused by low pH and Al, whereas the P. algarbiensis antioxidant system was unable to suppress Al toxicity completely, leading to the accumulation of H₂O₂ and consequential protein oxidation in the roots.
Collapse
Affiliation(s)
- Neusa Martins
- IBB/CGB, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005-139, Faro, Portugal
| | | | | | | | | |
Collapse
|