201
|
Uga Y, Kitomi Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. RICE (NEW YORK, N.Y.) 2015; 8:8. [PMID: 25844113 PMCID: PMC4384719 DOI: 10.1186/s12284-015-0044-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/20/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Root growth angle (RGA) is an important trait that influences the ability of rice to avoid drought stress. DEEPER ROOTING 1 (DRO1), which is a major quantitative trait locus (QTL) for RGA, is responsible for the difference in RGA between the shallow-rooting cultivar IR64 and the deep-rooting cultivar Kinandang Patong. However, the RGA differences between these cultivars cannot be fully explained by DRO1. The objective of this study was to identify new QTLs for RGA explaining the difference in RGA between these cultivars. RESULTS By crossing IR64 (which has a non-functional allele of DRO1) with Kinandang Patong (which has a functional allele of DRO1), we developed 26 chromosome segment substitution lines (CSSLs) that carried a particular chromosome segment from Kinandang Patong in the IR64 genetic background. Using these CSSLs, we found only one chromosomal region that was related to RGA: on chromosome 9, which includes DRO1. Using an F2 population derived from a cross between Kinandang Patong and the Dro1-NIL (near isogenic line), which had a functional DRO1 allele in the IR64 genetic background, we identified a new QTL for RGA (DRO3) on the long arm of chromosome 7. CONCLUSIONS DRO3 may only affect RGA in plants with a functional DRO1 allele, suggesting that DRO3 is involved in the DRO1 genetic pathway.
Collapse
Affiliation(s)
- Yusaku Uga
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Yuka Kitomi
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Eiji Yamamoto
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- />(Present address) NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392 Japan
| | - Noriko Kanno
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Sawako Kawai
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Tatsumi Mizubayashi
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Shuichi Fukuoka
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
202
|
Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H. OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:148-58. [PMID: 25576000 DOI: 10.1016/j.plantsci.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
Plant response to iron deficiency is the most important feature for survival in Fe-limited soils. Several phytohormones, including auxin, are involved in iron uptake and homeostasis. However, the mechanisms behind how auxin participates in the iron deficiency response in rice are largely unknown. We found that OsARF16 was involved in the iron deficiency response and the induction of iron deficiency response genes. Most Fe-deficient symptoms could be partially restored in the osarf16 mutant, including dwarfism, photosynthesis decline, a reduction in iron content and root system architecture (RSA) regulation. OsARF16 expression was induced in the roots and shoots by Fe deprivation. Restoration of the phenotype could also be mimicked by 1-NOA, an auxin influx inhibitor. Furthermore, the qRT-PCR data indicated that the induction of Fe-deficiency response genes by iron deficiency was more compromised in the osarf16 mutant than in Nipponbare. In conclusion, osarf16, an auxin insensitive mutant, was involved in iron deficiency response in rice. Our results reveal a new biological function for OsARF16 and provide important information on how ARF-medicated auxin signaling affects iron signaling and the iron deficiency response. This work may help us to improve production or increased Fe nutrition of rice to iron deficiency by regulating auxin signaling.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
203
|
Chen YS, Lo SF, Sun PK, Lu CA, Ho THD, Yu SM. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:105-16. [PMID: 25200982 DOI: 10.1111/pbi.12241] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 05/20/2023]
Abstract
Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold. HVA1 was highly accumulated in root apical meristem (RAM) and lateral root primordia (LRP) after ABA/stress treatments, leading to enhanced root system expansion. Water-use efficiency (WUE) and biomass also increased in transgenic rice, likely due to the maintenance of normal cell functions and metabolic activities conferred by HVA1 which is capable of stabilizing proteins, under osmotic stress. HVA1 promotes lateral root (LR) initiation, elongation and emergence and primary root (PR) elongation via an auxin-dependent process, particularly by intensifying asymmetrical accumulation of auxin in LRP founder cells and RAM, even under ABA/stress-suppressive conditions. We demonstrate a successful application of an inducible promoter in regulating the spatial and temporal expression of HVA1 for improving root architecture and multiple stress tolerance without yield penalty.
Collapse
Affiliation(s)
- Yi-Shih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; Department of Life Sciences, National Central University, Jhongli City, Taiwan
| | | | | | | | | | | |
Collapse
|
204
|
Goron TL, Bhosekar VK, Shearer CR, Watts S, Raizada MN. Whole plant acclimation responses by finger millet to low nitrogen stress. FRONTIERS IN PLANT SCIENCE 2015; 6:652. [PMID: 26347768 PMCID: PMC4541148 DOI: 10.3389/fpls.2015.00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/06/2015] [Indexed: 05/05/2023]
Abstract
The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn), is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen (N), or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal species. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root, and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia, where it is reported that this crop can survive extreme environments.
Collapse
Affiliation(s)
| | | | | | | | - Manish N. Raizada
- *Correspondence: Manish N. Raizada, Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada,
| |
Collapse
|
205
|
Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y. Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:99-112. [PMID: 25324400 PMCID: PMC4265153 DOI: 10.1093/jxb/eru396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The indeterminate gametophyte1 (ig1) mutation was first characterized to modulate female gametophyte development in maize (Zea mays). However, the function of its rice orthologue, OsIG1, remains unknown. For this, we first analysed OsIG1 localization from differential tissues in rice. Real-time quantitative PCR (qRT-PCR) and histochemical staining results demonstrated that the expression signal of OsIG1 was strongly detected in young inflorescence, moderately in mature flower and weakly in leaf. Furthermore, RNA in situ hybridization analyses exhibited that OsIG1 was strongly expressed in inflorescence meristems, floral meristems, empty-glume- and floret- primordia, especially in the primordia of stamens and immature ovules, and the micropylar side of the mature ovary. In OsIG1-RNAi lines, wrinkled blade formation was accompanied by increased leaf inclination angle. Cross-section further showed that the number of bulliform cells located between the vasculatures was significantly increased, indicating that OsIG1 is involved in division and differentiation of bulliform cell and lateral growth during leaf development. OsIG1-RNAi suppression lines showed pleiotropic phenotypes, including degenerated palea, glume-like features and open hull. In addition, a single OsIG1-RNAi floret is characterized by frequently developing double ovules with abnormal embryo sac development. Additionally, down-regulation of OsIG1 differentially affected the expression of genes associated with the floral organ development including EG1, OsMADS6 and OsMADS1. Taken together, these results demonstrate that OsIG1 plays an essential role in the regulation of empty-glume identity, floral organ number control and female gametophyte development in rice.
Collapse
Affiliation(s)
- Jingrong Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Huang
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Han
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
206
|
Mironova VV, Omelyanchuk NA, Wiebe DS, Levitsky VG. Computational analysis of auxin responsive elements in the Arabidopsis thaliana L. genome. BMC Genomics 2014; 15 Suppl 12:S4. [PMID: 25563792 PMCID: PMC4331925 DOI: 10.1186/1471-2164-15-s12-s4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Auxin responsive elements (AuxRE) were found in upstream regions of target genes for ARFs (Auxin response factors). While Chip-seq data for most of ARFs are still unavailable, prediction of potential AuxRE is restricted by consensus models that detect too many false positive sites. Using sequence analysis of experimentally proven AuxREs, we revealed both an extended nucleotide context pattern for AuxRE itself and three distinct types of its coupling motifs (Y-patch, AuxRE-like, and ABRE-like), which together with AuxRE may form the composite elements. Computational analysis of the genome-wide distribution of the predicted AuxREs and their impact on auxin responsive gene expression allowed us to conclude that: (1) AuxREs are enriched around the transcription start site with the maximum density in 5'UTR; (2) AuxREs mediate auxin responsive up-regulation, not down-regulation. (3) Directly oriented single AuxREs and reverse multiple AuxREs are mostly associated with auxin responsiveness. In the composite AuxRE elements associated with auxin response, ABRE-like and Y-patch are 5'-flanking or overlapping AuxRE, whereas AuxRE-like motif is 3'-flanking. The specificity in location and orientation of the coupling elements suggests them as potential binding sites for ARFs partners.
Collapse
|
207
|
Mai CD, Phung NTP, To HTM, Gonin M, Hoang GT, Nguyen KL, Do VN, Courtois B, Gantet P. Genes controlling root development in rice. RICE (NEW YORK, N.Y.) 2014; 7:30. [PMID: 26224559 PMCID: PMC4884052 DOI: 10.1186/s12284-014-0030-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/30/2014] [Indexed: 05/20/2023]
Abstract
In this review, we report on the recent developments made using both genetics and functional genomics approaches in the discovery of genes controlling root development in rice. QTL detection in classical biparental mapping populations initially enabled the identification of a very large number of large chromosomal segments carrying root genes. Two segments with large effects have been positionally cloned, allowing the identification of two major genes. One of these genes conferred a tolerance to low phosphate content in soil, while the other conferred a tolerance to drought by controlling root gravitropism, resulting in root system expansion deep in the soil. Findings based on the higher-resolution QTL detection offered by the development of association mapping are discussed. In parallel with genetics approaches, efforts have been made to screen mutant libraries for lines presenting alterations in root development, allowing for the identification of several genes that control different steps of root development, such as crown root and lateral root initiation and emergence, meristem patterning, and the control of root growth. Some of these genes are closely phylogenetically related to Arabidopsis genes involved in the control of lateral root initiation. This close relationship stresses the conservation among plant species of an auxin responsive core gene regulatory network involved in the control of post-embryonic root initiation. In addition, we report on several genetic regulatory pathways that have been described only in rice. The complementarities and the expected convergence of the direct and reverse genetic approaches used to decipher the genetic determinants of root development in rice are discussed in regards to the high diversity characterizing this species and to the adaptations of rice root system architecture to different edaphic environments.
Collapse
Affiliation(s)
- Chung D Mai
- />Agricultural Genetic Institute, LMI RICE, Hanoi, Vietnam
- />University of Science and Technology of Hanoi, LMI RICE, Hanoi, Vietnam
| | - Nhung TP Phung
- />Agricultural Genetic Institute, LMI RICE, Hanoi, Vietnam
- />IRD, UMR DIADE, LMI RICE, Hanoi, Vietnam
- />CIRAD, UMR AGAP, Montpellier, France
| | - Huong TM To
- />University of Science and Technology of Hanoi, LMI RICE, Hanoi, Vietnam
| | | | - Giang T Hoang
- />Agricultural Genetic Institute, LMI RICE, Hanoi, Vietnam
- />University of Science and Technology of Hanoi, LMI RICE, Hanoi, Vietnam
| | - Khanh L Nguyen
- />University of Science and Technology of Hanoi, LMI RICE, Hanoi, Vietnam
- />IRD, UMR DIADE, LMI RICE, Hanoi, Vietnam
| | - Vinh N Do
- />Agricultural Genetic Institute, LMI RICE, Hanoi, Vietnam
| | | | - Pascal Gantet
- />University of Science and Technology of Hanoi, LMI RICE, Hanoi, Vietnam
- />IRD, UMR DIADE, LMI RICE, Hanoi, Vietnam
- />Université Montpellier 2, UMR DIADE, Montpellier, France
| |
Collapse
|
208
|
Shen C, Yue R, Yang Y, Zhang L, Sun T, Tie S, Wang H. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.). PLoS One 2014; 9:e112906. [PMID: 25386911 PMCID: PMC4227850 DOI: 10.1371/journal.pone.0112906] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plant responses to phytohormone stimuli are the most important biological features for plants to survive in a complex environment. Cytokinin regulates growth and nutrient homeostasis, such as the phosphate (Pi) starvation response and Pi uptake in plants. However, the mechanisms underlying how cytokinin participates in Pi uptake and Pi signaling are largely unknown. In this study, we found that OsARF16 is required for the cytokinin response and is involved in the negative regulation of Pi uptake and Pi signaling by cytokinin. PRINCIPAL FINDINGS The mutant osarf16 showed an obvious resistance to exogenous cytokinin treatment and the expression level of the OsARF16 gene was considerably up-regulated by cytokinin. Cytokinin (6-BA) application suppressed Pi uptake and the Pi starvation response in wild-type Nipponbare (NIP) and all these responses were compromised in the osarf16 mutant. Our data showed that cytokinin inhibits the transport of Pi from the roots to the shoots and that OsARF16 is involved in this process. The Pi content in the osarf16 mutant was much higher than in NIP under 6-BA treatment. The expressions of PHOSPHATE TRANSPORTER1 (PHT1) genes, phosphate (Pi) starvation-induced (PSI) genes and purple PAPase genes were higher in the osarf16 mutant than in NIP under cytokinin treatment. CONCLUSION Our results revealed a new biological function for OsARF16 in the cytokinin-mediated inhibition of Pi uptake and Pi signaling in rice.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail: (CS); (ST); (HW)
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, United States of America
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuanggui Tie
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- * E-mail: (CS); (ST); (HW)
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail: (CS); (ST); (HW)
| |
Collapse
|
209
|
Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Wells DM, Bennett MJ. Branching out in roots: uncovering form, function, and regulation. PLANT PHYSIOLOGY 2014; 166:538-50. [PMID: 25136060 PMCID: PMC4213086 DOI: 10.1104/pp.114.245423] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/12/2013] [Indexed: 05/18/2023]
Abstract
Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research.
Collapse
Affiliation(s)
- Jonathan A Atkinson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Amanda Rasmussen
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Richard Traini
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Craig Sturrock
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Sacha J Mooney
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| |
Collapse
|
210
|
Kong X, Zhang M, Xu X, Li X, Li C, Ding Z. System analysis of microRNAs in the development and aluminium stress responses of the maize root system. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1108-21. [PMID: 24985700 DOI: 10.1111/pbi.12218] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes through mRNA cleavage or translational inhibition. miRNA is known to play an important role in the root development and environmental responses in both the Arabidopsis and rice. However, little information is available to form a complete view of miRNAs in the development of the maize root system and Al stress responses in maize. Four sRNA libraries were generated and sequenced from the early developmental stage of primary roots (PRY), the later developmental stage of maize primary roots (PRO), seminal roots (SR) and crown roots (CR). Through integrative analysis, we identified 278 miRNAs (246 conserved and 32 novel ones) and found that the expression patterns of miRNAs differed dramatically in different maize roots. The potential targets of the identified conserved and novel miRNAs were also predicted. In addition, our data showed that CR is more resistant to Al stress compared with PR and SR, and the differentially expressed miRNAs are likely to play significant roles in different roots in response to environmental stress such as Al stress. Here, we demonstrate that the expression patterns of miRNAs are highly diversified in different maize roots. The differentially expressed miRNAs are correlated with both the development and environmental responses in the maize root. This study not only improves our knowledge about the roles of miRNAs in maize root development but also reveals the potential role of miRNAs in the environmental responses of different maize roots.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
211
|
Wang L, Chu H, Li Z, Wang J, Li J, Qiao Y, Fu Y, Mou T, Chen C, Xu J. Origin and development of the root cap in rice. PLANT PHYSIOLOGY 2014; 166:603-13. [PMID: 24958716 PMCID: PMC4213092 DOI: 10.1104/pp.114.240929] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The tip of the root is covered by a thimble-shaped root cap that is the site of perception and transduction for many environmental stimuli. Until now, little was known about how the root cap of rice (Oryza sativa) develops and functions to regulate the adaptive behavior of the root. To address this, we examined the formation of the rice root cap during embryogenesis and characterized the anatomy and structure of the rice radicle root cap. We further investigated the role of the quiescent center in the de novo origin of the root cap. At the molecular level, we found that shoot-derived auxin was absolutely needed to trigger root cap regeneration when the quiescent center was removed. Our time-course analysis of transcriptomic dynamics during the early phases of root cap regeneration indicated that changes in auxin signaling and appropriate levels of cytokinin are critical for root cap regeneration after the removal of the root cap. Moreover, we identified 152 genes that produce root cap-specific transcripts in the rice root tip. These findings together offer, to our knowledge, new mechanistic insights into the cellular and molecular events inherent in the formation and development of the root cap in rice and provide a basis for future research on the developmental and physiological function of the root cap of monocot crops.
Collapse
Affiliation(s)
- Likai Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Huangwei Chu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Zhiyong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Juan Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Jintao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Yang Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Yanru Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Chunli Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| | - Jian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (L.W., J.L., Y.Q., Y.F., T.M., C.C.); andDepartment of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore (H.C., Z.L., J.W., J.X.)
| |
Collapse
|
212
|
Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A 2014; 111:11557-62. [PMID: 25049419 DOI: 10.1073/pnas.1408960111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.
Collapse
|
213
|
Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C. CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. PLANT PHYSIOLOGY 2014; 165:1035-1046. [PMID: 24808099 PMCID: PMC4081320 DOI: 10.1104/pp.114.238584] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/03/2014] [Indexed: 05/17/2023]
Abstract
Crown roots constitute the majority of the rice (Oryza sativa) root system and play an important role in rice growth and development. However, the molecular mechanism of crown root formation in rice is not well understood. Here, we characterized a rice dominant mutant, root enhancer1 (ren1-D), which was observed to exhibit a more robust root system, increased crown root number, and reduced plant height. Molecular and genetic analyses revealed that these phenotypes are caused by the activation of a cytokinin oxidase/dehydrogenase (CKX) family gene, OsCKX4. Subcellular localization demonstrated that OsCKX4 is a cytosolic isoform of CKX. OsCKX4 is predominantly expressed in leaf blades and roots. It is the dominant CKX, preferentially expressed in the shoot base where crown root primordia are produced, underlining its role in root initiation. OsCKX4 is induced by exogenous auxin and cytokinin in the roots. Furthermore, one-hybrid assays revealed that OsCKX4 is a direct binding target of both the auxin response factor OsARF25 and the cytokinin response regulators OsRR2 and OsRR3. Overexpression and RNA interference of OsCKX4 confirmed that OsCKX4 plays a positive role in crown root formation. Moreover, expression analysis revealed a significant alteration in the expression of auxin-related genes in the ren1-D mutants, indicating that the OsCKX4 mediates crown root development by integrating the interaction between cytokinin and auxin. Transgenic plants harboring OsCKX4 under the control of the root-specific promoter RCc3 displayed enhanced root development without affecting their shoot parts, suggesting that this strategy could be a powerful tool in rice root engineering.
Collapse
Affiliation(s)
- Shaopei Gao
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Jun Fang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Fan Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Wei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Xiaohong Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Jinfang Chu
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Baodong Cai
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Yuqi Feng
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Chengcai Chu
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| |
Collapse
|
214
|
Kumar B, Abdel-Ghani AH, Pace J, Reyes-Matamoros J, Hochholdinger F, Lübberstedt T. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:9-19. [PMID: 24908501 DOI: 10.1016/j.plantsci.2014.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 05/26/2023]
Abstract
Several genes involved in maize root development have been isolated. Identification of SNPs associated with root traits would enable the selection of maize lines with better root architecture that might help to improve N uptake, and consequently plant growth particularly under N deficient conditions. In the present study, an association study (AS) panel consisting of 74 maize inbred lines was screened for seedling root traits in 6, 10, and 14-day-old seedlings. Allele re-sequencing of candidate root genes Rtcl, Rth3, Rum1, and Rul1 was also carried out in the same AS panel lines. All four candidate genes displayed different levels of nucleotide diversity, haplotype diversity and linkage disequilibrium. Gene based association analyses were carried out between individual polymorphisms in candidate genes, and root traits measured in 6, 10, and 14-day-old maize seedlings. Association analyses revealed several polymorphisms within the Rtcl, Rth3, Rum1, and Rul1 genes associated with seedling root traits. Several nucleotide polymorphisms in Rtcl, Rth3, Rum1, and Rul1 were significantly (P<0.05) associated with seedling root traits in maize suggesting that all four tested genes are involved in the maize root development. Thus considerable allelic variation present in these root genes can be exploited for improving maize root characteristics.
Collapse
Affiliation(s)
- Bharath Kumar
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011, USA.
| | - Adel H Abdel-Ghani
- Department of Plant Production, Faculty of Agriculture, Mu'tah University, P.O. Box 7, Karak, Jordan.
| | - Jordon Pace
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011, USA.
| | | | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Chair for Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Thomas Lübberstedt
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
215
|
Li R, Han Y, Lv P, Du R, Liu G. Molecular mapping of the brace root traits in sorghum (Sorghum bicolor L. Moench). BREEDING SCIENCE 2014; 64:193-8. [PMID: 24987306 PMCID: PMC4065327 DOI: 10.1270/jsbbs.64.193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/16/2014] [Indexed: 05/23/2023]
Abstract
The presence and morphology of plant brace roots are important root architecture traits. Brace roots contribute significantly to effective anchorage and water and nutrient uptake during late growth and development, and more importantly, have a substantial influence on grain yield under soil flooding or water limited conditions. However, little is known about the genetic mechanisms that underlie brace root traits. In this study, quantitative trait loci (QTLs) for presence of brace roots from the sorghum landrace "Sansui" were mapped and associated molecular markers were identified. A linkage map was constructed with 109 assigned simple sequence repeat markers using a F2 mapping population derived from the cross Sansui/Jiliang 2. Two QTLs associated with presence of brace roots were localized on chromosomes 6 and 7. The major QTL on chromosome 7 between markers Dsenhsbm7 and Xcup 70 explained about 52.5% of the phenotypic variation, and the minor QTL on chromosome 6 was flanked by Xtxp127 and Xtxp6 and accounted for 7.0% of phenotypic variation. These results will provide information for the improvement of sorghum root architecture associated with brace roots.
Collapse
Affiliation(s)
- Ronggai Li
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences,
Shijiazhuang 050031,
China
- School of Biological Sciences, University of Aberdeen,
Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ,
UK
| | - Yucui Han
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences,
Shijiazhuang 050031,
China
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences,
Shijiazhuang 050031,
China
| | - Ruiheng Du
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences,
Shijiazhuang 050031,
China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences,
Shijiazhuang 050031,
China
- Corresponding author (e-mail: )
| |
Collapse
|
216
|
Zou Y, Liu X, Wang Q, Chen Y, Liu C, Qiu Y, Zhang W. OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta Gen Subj 2014; 1840:1676-85. [DOI: 10.1016/j.bbagen.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
|
217
|
Pacurar DI, Perrone I, Bellini C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. PHYSIOLOGIA PLANTARUM 2014; 151:83-96. [PMID: 24547793 DOI: 10.1111/ppl.12171] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 05/20/2023]
Abstract
Vegetative propagation of economically important woody, horticultural and agricultural species rely on an efficient adventitious root (AR) formation. The formation of ARs is a complex genetic trait regulated by the interaction of environmental and endogenous factors among which the phytohormone auxin plays an essential role. This article summarizes the current knowledge related to the intricate network through which auxin controls adventitious rooting. How auxin and recently identified auxin-related compounds affect AR formation in different plant species is discussed. Particular attention is addressed to illustrate how auxin has a central role in the hormone cross-talk leading to AR development. In parallel, we describe the molecular players involved in the control of auxin homeostasis, transport and signaling, for a better understanding of the auxin action during adventitious rooting.
Collapse
Affiliation(s)
- Daniel Ioan Pacurar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| | | | | |
Collapse
|
218
|
Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. PLANT & CELL PHYSIOLOGY 2014; 55:897-912. [PMID: 24486766 DOI: 10.1093/pcp/pcu023] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The organ size of flowering plants is determined by two post-embryonic developmental events: cell proliferation and cell expansion. In this study, we identified a new rice loss-of-function mutant, small organ size1 (smos1), that decreases the final size of various organs due to decreased cell size and abnormal microtubule orientation. SMOS1 encodes an unusual APETALA2 (AP2)-type transcription factor with an imperfect AP2 domain, and its product belongs to the basal AINTEGUMENTA (ANT) lineage, including WRINKLED1 (WRI1) and ADAP. SMOS1 expression was induced by exogenous auxin treatment, and the auxin response element (AuxRE) of the SMOS1 promoter acts as a cis-motif through interaction with auxin response factor (ARF). Furthermore, a functional fluorophore-tagged SMOS1 was localized to the nucleus, supporting the role of SMOS1 as a transcriptional regulator for organ size control. Microarray analysis showed that the smos1 mutation represses expression of several genes involved in microtubule-based movement and DNA replication. Among the down-regulated genes, we demonstrated by gel-shift and chromatin immunoprecipitation (ChIP) experiments that OsPHI-1, which is involved in cell expansion, is a target of SMOS1. SMOS1 homologs in early-diverged land plants partially rescued the smos1 phenotype of rice. We propose that SMOS1 acts as an auxin-dependent regulator for cell expansion during organ size control, and that its function is conserved among land plants.
Collapse
Affiliation(s)
- Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
219
|
Pacurar DI, Pacurar ML, Bussell JD, Schwambach J, Pop TI, Kowalczyk M, Gutierrez L, Cavel E, Chaabouni S, Ljung K, Fett-Neto AG, Pamfil D, Bellini C. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1605-18. [PMID: 24596172 PMCID: PMC3967091 DOI: 10.1093/jxb/eru026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.
Collapse
Affiliation(s)
- Daniel Ioan Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
- * These authors contributed equally to this manuscript
| | - Monica Lacramioara Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- * These authors contributed equally to this manuscript
| | - John Desmond Bussell
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - Joseli Schwambach
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Centro de Biotecnologia, Laboratório de Fisiologia Vegetal, Universidade Federal do Rio Grande do Sul, 9500, CP15005, CEP 91501–970, Porto Alegre, RS, Brazil
- Present address: Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, CEP 95070–560, Caxias do Sul, RS, Brazil
| | - Tiberia Ioana Pop
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Université de Picardie Jules Verne, CRRBM & BIOPI EA3900, 80039 Amiens, France
| | - Emilie Cavel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Salma Chaabouni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Arthur Germano Fett-Neto
- Centro de Biotecnologia, Laboratório de Fisiologia Vegetal, Universidade Federal do Rio Grande do Sul, 9500, CP15005, CEP 91501–970, Porto Alegre, RS, Brazil
| | - Doru Pamfil
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech 78026 Versailles Cedex, France
- To whom correspondence should be addressed. E-mail: and
| |
Collapse
|
220
|
Xia J, Yamaji N, Che J, Shen RF, Ma JF. Normal root elongation requires arginine produced by argininosuccinate lyase in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:215-226. [PMID: 24528386 DOI: 10.1111/tpj.12476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
Plant roots play an important role in the uptake of water and nutrients, structural support and environmental sensing, but the molecular mechanisms involved in root development are poorly understood in rice (Oryza sativa), which is characterized by a dense fibrous root system. Here we report a rice mutant (red1 for root elongation defect 1) with short roots. Morphological and physiological analyses showed that the mutant had a shorter length from the quiescent center (QC) to the starting point of the elongation zone but a similar cell size and number of lateral and crown roots compared with the wild type. Furthermore, the mutant had similar radial structure and nutrient uptake patterns to the wild type. Map-based cloning revealed that the mutant phenotype was caused by a point mutation of a gene encoding an argininosuccinate lyase (ASL), catalyzing the last step of arginine biosynthesis. The OsASL1 gene has two distinct transcripts, OsASL1.1 and OsASL1.2, which result from different transcription start sites, but only OsASL1.1 was able to complement the mutant phenotype. OsASL1.1 was expressed in both the roots and shoots. The protein encoded by OsASL1.1 showed ASL activity in yeast. OsALS1.1 was localized to the plastid. The short root of the mutant was rescued by exogenous addition of arginine, but not by other amino acids. These results indicate that arginine produced by ASL is required for normal root elongation in rice.
Collapse
Affiliation(s)
- Jixing Xia
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | | | | | | | | |
Collapse
|
221
|
Pereira ALA, Carazzolle MF, Abe VY, de Oliveira MLP, Domingues MN, Silva JC, Cernadas RA, Benedetti CE. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genomics 2014; 15:157. [PMID: 24564253 PMCID: PMC4028880 DOI: 10.1186/1471-2164-15-157] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/18/2014] [Indexed: 11/25/2022] Open
Abstract
Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Celso E Benedetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, R, Giuseppe Máximo Scolfaro 10000, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
222
|
Ni J, Zhu Z, Wang G, Shen Y, Zhang Y, Wu P. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions. PLoS One 2014; 9:e85358. [PMID: 24454849 PMCID: PMC3893212 DOI: 10.1371/journal.pone.0085358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022] Open
Abstract
The Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV) that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W) residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S). The mutated OsARF(WS)s can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WS)s in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.
Collapse
Affiliation(s)
- Jun Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| | - Zhenxing Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
- Agricultural Crops Molecular Improving Lab, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Gaohang Wang
- Agricultural Crops Molecular Improving Lab, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yanxia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanyan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
223
|
Li S, Zhou B, Peng X, Kuang Q, Huang X, Yao J, Du B, Sun MX. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. THE NEW PHYTOLOGIST 2014; 201:66-79. [PMID: 24020752 DOI: 10.1111/nph.12472] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/30/2013] [Indexed: 05/06/2023]
Abstract
Polycomb group (PcG) proteins are gene repressors that help to maintain cellular identity during development via chromatin remodeling. Fertilization-independent endosperm (FIE), a member of the PcG complex, operates extensively in plant development, but its role in rice has not been fully investigated to date. We report the isolation and characterization of a PcG member in rice, which was designated OsFIE2 for Oryza sativa Fertilization-Independent Endosperm 2. OsFIE2 is a single-copy gene in the rice genome and shows a universal expression pattern. The OsFIE2 RNAi lines displayed pleiotropic phenotypes in vegetative and reproductive organ generation. In unfertilized lines, endosperm formation could be triggered without embryo formation, which indicates that FIE is indeed involved in the suppression of autonomous endosperm development in rice. Furthermore, lateral root generation was promoted early in the roots of OsFIE2 RNAi lines, whereas the primary root was premature and highly differentiated. As the root tip stem cell differentiated, QHB, the gene required for stem cell maintenance in the quiescent center, was down-regulated. Our data suggest that the OsFIE2-PcG complex is vital for rice reproduction and endosperm formation. Its role in stem cell maintenance suggests that the gene is functionally conserved in plants as well as animals.
Collapse
Affiliation(s)
- Shisheng Li
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, 430072, China
- Laboratory of Brassicaceae, Wuhan Institute of Vegetable Science, Wuhan, 430345, China
| | - Bing Zhou
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Quan Kuang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Xiaolong Huang
- College of Life Science, Huazhong Agriculture University, Wuhan, 430070, China
| | - Jialing Yao
- College of Life Science, Huazhong Agriculture University, Wuhan, 430070, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
224
|
Bellini C, Pacurar DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:639-66. [PMID: 24555710 DOI: 10.1146/annurev-arplant-050213-035645] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.
Collapse
Affiliation(s)
- Catherine Bellini
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE90187 Umeå, Sweden; , ,
| | | | | |
Collapse
|
225
|
Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5395-409. [PMID: 24259455 DOI: 10.1093/jxb/ert369] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of MtCEP1, a member of the CEP (C-terminally encoded peptide) signaling peptide family, was examined in Medicago truncatula root development. MtCEP1 was expressed in root tips, vascular tissue, and young lateral organs, and was up-regulated by low nitrogen levels and, independently, by elevated CO2. Overexpressing MtCEP1 or applying MtCEP1 peptide to roots elicited developmental phenotypes: inhibition of lateral root formation, enhancement of nodulation, and the induction of periodic circumferential root swellings, which arose from cortical, epidermal, and pericycle cell divisions and featured an additional cortical cell layer. MtCEP peptide addition to other legume species induced similar phenotypes. The enhancement of nodulation by MtCEP1 is partially tolerant to high nitrate, which normally strongly suppresses nodulation. These nodules develop faster, are larger, and fix more nitrogen in the absence and presence of inhibiting nitrate levels. At 25mM nitrate, nodules formed on pre-existing swelling sites induced by MtCEP1 overexpression. RNA interference-mediated silencing of several MtCEP genes revealed a negative correlation between transcript levels of MtCEP1 and MtCEP2 with the number of lateral roots. MtCEP1 peptide-dependent phenotypes were abolished or attenuated by altering or deleting key residues in its 15 amino acid domain. RNA-Seq analysis revealed that 89 and 116 genes were significantly up- and down-regulated, respectively, by MtCEP1 overexpression, including transcription factors WRKY, bZIP, ERF, and MYB, homologues of LOB29, SUPERROOT2, and BABY BOOM. Taken together, the data suggest that the MtCEP1 peptide modulates lateral root and nodule development in M. truncatula.
Collapse
MESH Headings
- Carbon Dioxide/metabolism
- Gene Expression Regulation, Plant
- Genes, Reporter
- Medicago truncatula/cytology
- Medicago truncatula/genetics
- Medicago truncatula/growth & development
- Medicago truncatula/physiology
- Nitrogen/metabolism
- Nitrogen Fixation
- Peptides/genetics
- Peptides/pharmacology
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Root Nodulation
- Plant Roots/cytology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/physiology
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- RNA Interference
- RNA, Plant/chemistry
- RNA, Plant/genetics
- Root Nodules, Plant/cytology
- Root Nodules, Plant/genetics
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/physiology
- Sequence Analysis, RNA
- Signal Transduction
- Sinorhizobium meliloti/physiology
- Symbiosis
Collapse
Affiliation(s)
- Nijat Imin
- Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
226
|
Uga Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S. A major QTL controlling deep rooting on rice chromosome 4. Sci Rep 2013; 3:3040. [PMID: 24154623 PMCID: PMC3807109 DOI: 10.1038/srep03040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/09/2013] [Indexed: 11/24/2022] Open
Abstract
Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for the ratio of deep rooting (RDR) in three F2 mapping populations derived from crosses between each of three shallow-rooting varieties (‘ARC5955', ‘Pinulupot1', and ‘Tupa729') and a deep-rooting variety, ‘Kinandang Patong'. In total, we detected five RDR QTLs on chromosomes 2, 4, and 6. In all three populations, QTLs on chromosome 4 were found to be located at similar positions; they explained from 32.0% to 56.6% of the total RDR phenotypic variance. This suggests that one or more key genetic factors controlling the root growth angle in rice is located in this region of chromosome 4.
Collapse
Affiliation(s)
- Yusaku Uga
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
227
|
Yoo SC, Cho SH, Paek NC. Rice WUSCHEL-related homeobox 3A (OsWOX3A) modulates auxin-transport gene expression in lateral root and root hair development. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25929. [PMID: 24002214 PMCID: PMC4091085 DOI: 10.4161/psb.25929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Coordinated regulation of the many genes controlling leaf, flower, and root development determines the phenotypes of plants; this regulation requires exquisite control of many transcription factors, including the WUSCHEL-related homeobox (WOX) family. We recently reported that rice (Oryza sativa) WUSCHEL-related homeobox 3A (OsWOX3A) plays important roles in organ development, including lateral-axis outgrowth and vasculature patterning in leaves, lemma and palea morphogenesis in spikelets, and the numbers of tillers and lateral roots. OsWOX3A is encoded by NARROW LEAF2 (NAL2) and NAL3, a pair of duplicated genes. In this study, further analysis of nal2 nal3 (hereafter nal2/3) double mutants revealed that, in addition to its role in lateral root development, OsWOX3A also acts in the control of root hair formation. Based on this new finding, we describe a possible mechanism by which OsWOX3A regulation of auxin transport genes acts in root development.
Collapse
|
228
|
Lee HW, Kim J. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response. PLANT & CELL PHYSIOLOGY 2013; 54:1600-11. [PMID: 23872272 DOI: 10.1093/pcp/pct105] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.
Collapse
Affiliation(s)
- Han Woo Lee
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | | |
Collapse
|
229
|
Schmidt R, Schippers JHM, Mieulet D, Obata T, Fernie AR, Guiderdoni E, Mueller-Roeber B. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:258-73. [PMID: 23855375 DOI: 10.1111/tpj.12286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 05/20/2023]
Abstract
Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Straße 24-25, Haus 20, 14476, Potsdam, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
230
|
Muthreich N, Majer C, Beatty M, Paschold A, Schützenmeister A, Fu Y, Malik WA, Schnable PS, Piepho HP, Sakai H, Hochholdinger F. Comparative transcriptome profiling of maize coleoptilar nodes during shoot-borne root initiation. PLANT PHYSIOLOGY 2013; 163:419-30. [PMID: 23843603 PMCID: PMC3762660 DOI: 10.1104/pp.113.221481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/09/2013] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) develops an extensive shoot-borne root system to secure water and nutrient uptake and to provide anchorage in the soil. In this study, early coleoptilar node (first shoot node) development was subjected to a detailed morphological and histological analysis. Subsequently, microarray profiling via hybridization of oligonucleotide microarrays representing transcripts of 31,355 unique maize genes at three early stages of coleoptilar node development was performed. These pairwise comparisons of wild-type versus mutant rootless concerning crown and seminal roots (rtcs) coleoptilar nodes that do not initiate shoot-borne roots revealed 828 unique transcripts that displayed RTCS-dependent expression. A stage-specific functional analysis revealed overrepresentation of "cell wall," "stress," and "development"-related transcripts among the differentially expressed genes. Differential expression of a subset of 15 of 828 genes identified by these microarray experiments was independently confirmed by quantitative real-time-polymerase chain reaction. In silico promoter analyses revealed that 100 differentially expressed genes contained at least one LATERAL ORGAN BOUNDARIES domain (LBD) motif within 1 kb upstream of the ATG start codon. Electrophoretic mobility shift assay experiments demonstrated RTCS binding for four of these promoter sequences, supporting the notion that differentially accumulated genes containing LBD motifs are likely direct downstream targets of RTCS.
Collapse
|
231
|
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 2013. [PMID: 23913002 DOI: 10.1038/ng2725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
Collapse
Affiliation(s)
- Yusaku Uga
- National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Chen J, Zhang HQ, Hu LB, Shi ZQ. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide. CHEMOSPHERE 2013; 93:283-293. [PMID: 23726011 DOI: 10.1016/j.chemosphere.2013.04.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/20/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Irrigation with cyanobacterial-blooming water containing microcystin-LR (MC-LR) poses threat to the growth of agricultural plants. Large amounts of rice (Oryza sativa) field in the middle part of China has been irrigating with cyanobacterial-blooming water. Nevertheless, the mechanism of MC-LR-induced phytotoxicity in the root of monocot rice remains unclear. In the present study, we demonstrate that MC-LR stress significantly inhibits the growth of rice root by impacting the morphogenesis rice crown root. MC-LR treatment results in the decrease in IAA (indole-3-acetic acid) concentration as well as the expression of CRL1 and WOX11 in rice roots. The application of NAA (1-naphthylacetic acid), an IAA homologue, is able to attenuate the inhibitory effect of MC-LR on rice root development. MC-LR treatment significantly inhibits OsNia1-dependent NO generation in rice roots. The application of NO donor SNP (sodium nitroprusside) is able to partially reverse the inhibitory effects of MC-LR on the growth of rice root and the expression of CRL1 and WOX11 by enhancing endogenous NO level in rice roots. The application of NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] eliminates the effects of SNP. Treatment with NAA stimulates the generation of endogenous NO in MC-LR-treated rice roots. Treatment with NO scavenger cPTIO abolishes the ameliorated effect of NAA on MC-LR-induced growth inhibition of rice root. Treatment with SNP enhanced IAA concentration in MC-LR-treated rice roots. Altogether, our data suggest that NO acts both downstream and upstream of auxin in regulating rice root morphogenesis under MC-LR stress.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | | | | |
Collapse
|
233
|
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 2013; 45:1097-102. [PMID: 23913002 DOI: 10.1038/ng.2725] [Citation(s) in RCA: 710] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/15/2013] [Indexed: 01/27/2023]
Abstract
The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
Collapse
Affiliation(s)
- Yusaku Uga
- National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X. Post-embryonic root organogenesis in cereals: branching out from model plants. TRENDS IN PLANT SCIENCE 2013; 18:459-67. [PMID: 23727199 DOI: 10.1016/j.tplants.2013.04.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 05/07/2023]
Abstract
The root architecture of higher plants is amazingly diverse. In this review, we compare the lateral root developmental programme in cereals and Arabidopsis thaliana. In cereals, cells in the endodermis are recruited to form the new root cap and overlying cortical cells divide to facilitate the emergence of the lateral root primordium. The TIR1/ABF2 auxin receptors and the AUX/IAA, ARF, and LBD transcriptional regulatory proteins are conserved in cereals and Arabidopsis. Several elements of this regulatory network are common to lateral and crown roots in cereals. Also, the ground meristem from which crown roots differentiate shows similarities with the root pericycle. Studies in cereals promise to give complementary insights into the mechanisms regulating the development of post-embryonic roots in plants.
Collapse
Affiliation(s)
- Beata Orman-Ligeza
- Université catholique de Louvain, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
235
|
Li MJ, Yang YH, Chen XJ, Wang FQ, Lin WX, Yi YJ, Zeng L, Yang SY, Zhang ZY. Transcriptome/degradome-wide identification of R. glutinosa miRNAs and their targets: the role of miRNA activity in the replanting disease. PLoS One 2013; 8:e68531. [PMID: 23861915 PMCID: PMC3702588 DOI: 10.1371/journal.pone.0068531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022] Open
Abstract
Rehmannia glutinosa, a traditional Chinese medicine herb, is unable to grow normally in a soil where the same species has recently been cultivated. The biological basis of this so called "replanting disease" is unknown, but it may involve the action of microRNAs (miRNAs), which are known to be important regulators of plant growth and development. High throughput Solexa/Illumina sequencing was used to generate a transcript library of the R. glutinosa transcriptome and degradome in order to identify possible miRNAs and their targets implicated in the replanting disease. A total of 87,665 unigenes and 589 miRNA families (17 of which have not been identified in plants to date) was identified from the libraries made from a first year (FP) and a second year (SP) crop. A comparison between the FP and SP miRNAs showed that the abundance of eight of the novel and 295 of the known miRNA families differed between the FP and SP plants. Sequencing of the degradome sampled from FP and SP plants led to the identification of 165 transcript targets of 85 of the differentially abundant miRNA families. The interaction of some of these miRNAs with their target(s) is likely to form an important part of the molecular basis of the replanting disease of R. glutinosa.
Collapse
Affiliation(s)
- Ming Jie Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yan Hui Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Xin Jian Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Feng Qing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Xiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Shuo Ye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Zhong Yi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
236
|
Sukumar P, Maloney GS, Muday GK. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1392-405. [PMID: 23677937 PMCID: PMC3707546 DOI: 10.1104/pp.113.217174] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/03/2013] [Indexed: 05/18/2023]
Abstract
Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedlings in which adventitious root initiation was induced by excising roots from low-light-grown hypocotyls. Inhibition of auxin transport from the shoot apex abolishes adventitious root formation under these conditions. Root excision was accompanied by a rapid increase in radioactive indole-3-acetic acid (IAA) transport and its accumulation in the hypocotyl above the point of excision where adventitious roots emerge. Local increases in auxin-responsive gene expression were also observed above the site of excision using three auxin-responsive reporters. These changes in auxin accumulation preceded cell division events, monitored by a cyclin B1 reporter (pCYCB1;1:GUS), and adventitious root initiation. We examined excision-induced adventitious root formation in auxin influx and efflux mutants, including auxin insensitive1, pin-formed1 (pin1), pin2, pin3, and pin7, with the most profound reductions observed in ATP-binding cassette B19 (ABCB19). An ABCB19 overexpression line forms more adventitious roots than the wild type in intact seedlings. Examination of transcriptional and translational fusions between ABCB19 and green fluorescent protein indicates that excision locally induced the accumulation of ABCB19 transcript and protein that is temporally and spatially linked to local IAA accumulation leading to adventitious root formation. These experiments are consistent with localized synthesis of ABCB19 protein after hypocotyl excision leads to enhanced IAA transport and local IAA accumulation driving adventitious root formation.
Collapse
|
237
|
Eyles RP, Williams PH, Ohms SJ, Weiller GF, Ogilvie HA, Djordjevic MA, Imin N. microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula. PLANTA 2013; 238:91-105. [PMID: 23572382 DOI: 10.1007/s00425-013-1871-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/08/2013] [Indexed: 05/18/2023]
Abstract
Plant root architecture is regulated by the initiation and modulation of cell division in regions containing pluripotent stem cells known as meristems. In roots, meristems are formed early in embryogenesis, in the case of the root apical meristem (RAM), and during organogenesis at the site of lateral root or, in legumes, nodule formation. Root meristems can also be generated in vitro from leaf explants cultures supplemented with auxin. microRNAs (miRNAs) have emerged as regulators of many key biological functions in plants including root development. To identify key miRNAs involved in root meristem formation in Medicago truncatula, we used deep sequencing to compare miRNA populations. Comparisons were made between: (1) the root tip (RT), containing the RAM and the elongation zone (EZ) tissue and (2) root forming callus (RFC) and non-root forming callus (NRFC). We identified 83 previously reported miRNAs, 24 new to M. truncatula, in 44 families. For the first time in M. truncatula, members of conserved miRNA families miR165, miR181 and miR397 were found. Bioinformatic analysis identified 38 potential novel miRNAs. Selected miRNAs and targets were validated using Taqman miRNA assays and 5' RACE. Many miRNAs were differentially expressed between tissues, particularly RFC and NRFC. Target prediction revealed a number of miRNAs to target genes previously shown to be differentially expressed between RT and EZ or RFC and NRFC and important in root development. Additionally, we predict the miRNA/target relationships for miR397 and miR160 to be conserved in M. truncatula. Amongst the predictions, were AUXIN RESPONSE FACTOR 10, targeted by miR160 and a LACCASE-like gene, targeted by miR397, both are miRNA/target pairings conserved in other species.
Collapse
Affiliation(s)
- Rodney P Eyles
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
238
|
Husakova E, Hochholdinger F, Soukup A. Lateral root development in the maize (Zea mays) lateral rootless1 mutant. ANNALS OF BOTANY 2013; 112:417-28. [PMID: 23456690 PMCID: PMC3698386 DOI: 10.1093/aob/mct043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. METHODS Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. KEY RESULTS The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. CONCLUSIONS The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.
Collapse
Affiliation(s)
- Eva Husakova
- Department of Experimental Plant Biology, Charles University in Prague, Vinicna 5, Prague, Czech Republic
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, University of Bonn, Friedrich-Ebert-Allee 144, Bonn, Germany
| | - Ales Soukup
- Department of Experimental Plant Biology, Charles University in Prague, Vinicna 5, Prague, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
239
|
Pacheco-Villalobos D, Sankar M, Ljung K, Hardtke CS. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PLoS Genet 2013; 9:e1003564. [PMID: 23840182 PMCID: PMC3688705 DOI: 10.1371/journal.pgen.1003564] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium) TAR2-LIKE gene (BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2lhypo). Counterintuitive however, Bdtar2lhypo mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2lhypo root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. The plant hormone auxin is pivotal for root system development. For instance, its local biosynthesis is essential for root formation and growth in the dicotyledon model Arabidopsis. Thus, increasing interference with auxin biosynthesis results in increasingly shorter roots, partly because of reduced cell elongation. In this study, we isolated a hypomorphic mutant in an auxin biosynthesis pathway enzyme in the monocotyledon model Brachypodium. Counterintuitive, this mutant displays a dramatically longer seminal root, because mature cells are thinner, more elongated and therefore more anisotropic than in wild type. Interestingly, this phenotype can be mimicked in wild type by pharmacological interference with production of a key auxin biosynthesis intermediate, but also by interference with the biosynthesis of another plant hormone, ethylene. The latter controls auxin biosynthesis in Arabidopsis roots. Surprisingly however, auxin levels in the Brachypodium mutant are elevated rather than reduced, because of a simultaneous up-regulation of the second, rate-limiting step of the pathway. Ethylene normally represses this second step, suggesting an inverted regulatory relation between the two hormones as compared to Arabidopsis. Our results point to a complex homeostatic crosstalk between auxin and ethylene in Brachypodium roots, which is fundamentally different from Arabidopsis and might be conserved in other monocotyledons.
Collapse
Affiliation(s)
| | - Martial Sankar
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
240
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013; 4:186. [PMID: 23785372 PMCID: PMC3685011 DOI: 10.3389/fpls.2013.00186] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
241
|
Sauter M. Root responses to flooding. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:282-6. [PMID: 23608517 DOI: 10.1016/j.pbi.2013.03.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 05/04/2023]
Abstract
Soil water-logging and submergence pose a severe threat to plants. Roots are most prone to flooding and the first to suffer from oxygen shortage. Roots are vital for plant function, however, and maintenance of a functional root system upon flooding is essential. Flooding-resistant plants possess a number of adaptations that help maintain oxygen supply to the root. Plants are also capable of initiating organogenesis to replace their original root system with adventitious roots if oxygen supply becomes impossible. This review summarizes current findings on root development and de novo root genesis in response to flooding.
Collapse
Affiliation(s)
- Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel University, Am Botanischen Garten 5, 24118 Kiel, Germany.
| |
Collapse
|
242
|
Sanan-Mishra N, Varanasi SPRM, Mukherjee SK. Micro-regulators of auxin action. PLANT CELL REPORTS 2013; 32:733-40. [PMID: 23543387 DOI: 10.1007/s00299-013-1425-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
microRNAs (miRs) are 21- to 24-nucleotide-long RNA molecules that are mainly involved in regulating the gene expression at the post-transcriptional levels. They are present in a variety of organisms from algae to plants and play an important role in gene regulation. The identification of several diverging and converging functions of miRs indicates that they play versatile roles in regulating plant development including differentiation, organ development, phase change, signalling, disease resistance and response to environmental stresses. This article provides a concise update on the plant miR functions and their targets in the auxin pathway with focus on the interactions between miRs and auxin signalling to intricately regulate the plant responses.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | |
Collapse
|
243
|
Sun X, Feng Z, Meng L, Zhu J, Geitmann A. Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. PLANTA 2013; 237:1367-78. [PMID: 23397191 DOI: 10.1007/s00425-013-1844-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/09/2013] [Indexed: 05/18/2023]
Abstract
The ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (ASL/LBD) genes encode plant-specific nuclear proteins containing the conserved domain AS2/LOB. In this study, the function of a member of the Arabidopsis thaliana AS2/LOB gene family, ASL11/LBD15, was investigated. The results show that ASL11/LBD15 is expressed in the meristems of shoot apex, root apex, organ boundaries, and developing seeds. Overexpression of ASL11/LBD15 resulted in aberrant arrangements in the tunica cell layers of the shoot apical meristem (SAM). Two-week-old transgenic plants developed needle-like leaves in addition to regular leaves, while 6-week-old transformants displayed clustered cauline leaves suggesting altered SAM development. qRT-PCR analysis revealed that the WUSCHEL (WUS) transcript level was strongly up-regulated in plants overexpressing ASL11/LBD15 compared with the wild-type plants. Furthermore, inducible ASL11/LBD15 ectopic expression activated ectopic expression of WUS and affected the differentiation of leaf epidermal cells. Therefore, our results suggest that ASL11/LBD15 affects cellular differentiation in the SAM and regulates WUS expression.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | | | | | | | | |
Collapse
|
244
|
Chen C, Chen H, Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX. Genetic and physiological analysis of a novel type of interspecific hybrid weakness in rice. MOLECULAR PLANT 2013; 6:716-28. [PMID: 23220941 DOI: 10.1093/mp/sss146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hybrid weakness is an important reproductive barrier that hinders genetic exchange between different species at the post-zygotic stage. However, our understanding of the molecular mechanisms underlying hybrid weakness is limited. In this study, we report discovery of a novel interspecific hybrid weakness in a rice chromosome segment substitution line (CSSL) library derived from a cross between the indica variety Teqing (Oryza sativa) and common wild rice (O. rufipogon). The dominant Hybrid weakness i1 (Hwi1) gene from wild rice is genetically incompatible with Teqing and induced a set of weakness symptoms, including growth suppression, yield decrease, impaired nutrient absorption, and the retardation of crown root initiation. Phytohormone treatment showed that salicylic acid (SA) could restore the height of plants expressing hybrid weakness, while other phytohormones appear to have little effect. Fine mapping indicated that Hwi1 is located in a tandem leucine-rich repeat receptor-like kinase (LRR-RLK) gene cluster. Within the 13.2-kb candidate region on the short arm of chromosome 11, there are two annotated LRR-RLK genes, LOC_Os11g07230 and LOC_Os11g07240. The Teqing allele of LOC_Os11g07230 and the wild rice allele of LOC_Os11g07240 encode predicted functional proteins. Based on the genetic inheritance of hybrid weakness, LOC_Os11g07240 is implicated as the candidate gene for Hwi1. Functional analysis of Hwi1 will expand our knowledge of the regulation of hybrid weakness in rice.
Collapse
Affiliation(s)
- Chen Chen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research Shanghai, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
245
|
Shen C, Wang S, Zhang S, Xu Y, Qian Q, Qi Y, Jiang DA. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2013; 36:607-20. [PMID: 22913536 DOI: 10.1111/pce.12001] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant responses to auxin and phosphate (Pi) starvation are closely linked. However, the underlying mechanisms connecting auxin to phosphate starvation (-Pi) responses are largely unclear. Here, we show that OsARF16, an auxin response factor, functions in both auxin and -Pi responses in rice (Oryza sativa L.). The knockout of OsARF16 led to primary roots (PR), lateral roots (LR) and root hair losing sensitivity to auxin and -Pi response. OsARF16 expression and OsARF16::GUS staining in PR and LR of rice Nipponbare (NIP) were induced by indole acetic acid and -Pi treatments. In -Pi conditions, the shoot biomass of osarf16 was slightly reduced, and neither root growth nor iron content was induced, indicating that the knockout of OsARF16 led to loss of response to Pi deficiency in rice. Six phosphate starvation-induced genes (PSIs) were less induced by -Pi in osarf16 and these trends were similar to a knockdown mutant of OsPHR2 or AtPHR1, which was a key regulator under -Pi. These data first reveal the biological function of OsARF16, provide novel evidence of a linkage between auxin and -Pi responses and facilitate the development of new strategies for the efficient utilization of Pi in rice.
Collapse
Affiliation(s)
- Chenjia Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
246
|
Wang X, Zhang S, Su L, Liu X, Hao Y. A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11. PLoS One 2013; 8:e57044. [PMID: 23468909 PMCID: PMC3585328 DOI: 10.1371/journal.pone.0057044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.
Collapse
Affiliation(s)
- Xiaofei Wang
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shizhong Zhang
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ling Su
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xin Liu
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yujin Hao
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- * E-mail:
| |
Collapse
|
247
|
Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:676-88. [PMID: 23146214 DOI: 10.1111/tpj.12071] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 05/03/2023]
Abstract
The phytohormones auxins and brassinosteroids are both essential regulators of physiological and developmental processes, and it has been suggested that they act inter-dependently and synergistically. In rice (Oryza sativa), auxin co-application improves the brassinosteroid response in the rice lamina inclination bioassay. Here, we showed that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor. Auxin treatment increased expression of the rice brassinosteroid receptor gene OsBRI1. The promoter of OsBRI1 contains an auxin-response element (AuxRE) that is targeted by auxin-response factor (ARF) transcription factors. An AuxRE mutation abolished the induction of OsBRI1 expression by auxins, and OsBRI1 expression was down-regulated in an arf mutant. The AuxRE motif in the OsBRI1 promoter, and thus the transient up-regulation of OsBRI1 expression caused by treatment with indole-3-acetic acid, is essential for the indole-3-acetic acid-induced increase in sensitivity to brassinosteroids. These findings demonstrate that some ARFs control the degree of brassinosteroid perception required for normal growth and development in rice. Although multi-level interactions between auxins and brassinosteroids have previously been reported, our findings suggest a mechanism by which auxins control cellular sensitivity to brassinosteroids, and further support the notion that interactions between auxins and brassinosteroids are extensive and complex.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | | | | | | | | |
Collapse
|
248
|
Abstract
Monocot cereals develop a complex root system comprising embryonic roots at an early seedling stage and postembryonic roots which make up the fibrous root system of adult crops. In the model cereals maize, rice, and barley a number of mutants affecting root development have been identified in the past and a subset of the affected genes have been recently cloned and functionally characterized. The present review summarizes genetic and molecular data of cereal root mutants impaired in the elongation or initiation of embryonic and postembryonic roots and the elongation of root hairs for which the affected genes have been recently cloned.
Collapse
Affiliation(s)
- Caroline Marcon
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
249
|
Du H, Liu H, Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. FRONTIERS IN PLANT SCIENCE 2013; 4:397. [PMID: 24130566 PMCID: PMC3793129 DOI: 10.3389/fpls.2013.00397] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/18/2013] [Indexed: 04/14/2023]
Abstract
Abiotic stresses such as drought, salinity, and adverse temperatures are major limiting factors for plant growth and reproduction. Plant responses to these stresses are coordinated by arrays of regulatory networks including the induction of endogenous abscisic acid (ABA), a well documented phytohormone for stress responses. However, whether or how these abiotic stresses affect the endogenous biosynthesis or metabolism of other phytohormones remains largely unknown. Here, we report the changes of endogenous indole-3-acetic acid (IAA) and jasmonic acid (JA) levels and expression of genes related to the biosynthesis or signaling of these hormones in rice under various abiotic stress conditions. The IAA content was decreased after drought stress, but it was significantly increased under cold and heat stresses. And the auxin-regulated gravitropism of root tip was inhibited by cold stress. Many genes involved in the IAA biosynthesis and signaling were changed in transcript level under these stresses, and the changes were essentially in agreement with the change of endogenous IAA level. Interestingly, the endogenous JA content was increased markedly under drought and cold stresses, but it was reduced by heat stress. Accordingly, many genes involved in JA biosynthesis and signaling were induced by drought and cold treatment but these genes were significantly suppressed by heat stress. We concluded that endogenous levels of IAA and JA were differentially regulated by abiotic stresses in rice, implying diverse roles of these hormones in stress responses.
Collapse
Affiliation(s)
| | | | - Lizhong Xiong
- *Correspondence: Lizhong Xiong, National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Shizishan Street 01, Wuhan 430070, China e-mail:
| |
Collapse
|
250
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|