201
|
Harding SA, Xue LJ, Du L, Nyamdari B, Lindroth RL, Sykes R, Davis MF, Tsai CJ. Condensed tannin biosynthesis and polymerization synergistically condition carbon use, defense, sink strength and growth in Populus. TREE PHYSIOLOGY 2014; 34:1240-51. [PMID: 24336515 DOI: 10.1093/treephys/tpt097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The partitioning of carbon for growth, storage and constitutive chemical defenses is widely framed in terms of a hypothetical sink-source differential that varies with nutrient supply. According to this framework, phenolics accrual is passive and occurs in source leaves when normal sink growth is not sustainable due to a nutrient limitation. In assessing this framework, we present gene and metabolite evidence that condensed tannin (CT) accrual is strongest in sink leaves and sequesters carbon in a way that impinges upon foliar sink strength and upon phenolic glycoside (PG) accrual in Populus. The work was based on two Populus fremontii × angustifolia backcross lines with contrasting rates of CT accrual and growth, and equally large foliar PG reserves. However, foliar PG accrual was developmentally delayed in the high-CT, slow-growth line (SG), and nitrogen-limitation led to increased foliar PG accrual only in the low-CT, fast-growth line (FG). Metabolite profiling of developing leaves indicated comparatively carbon-limited amino acid metabolism, depletion of several Krebs cycle intermediates and reduced organ sink strength in SG. Gene profiling indicated that CT synthesis decreased as leaves expanded and PGs increased. A most striking finding was that the nitrogenous monoamine phenylethylamine accumulated only in leaves of SG plants. The potential negative impact of CT hyper-accumulation on foliar sink strength, as well as a mechanism for phenylethylamine involvement in CT polymerization in Populus are discussed. Starch accrual in source leaves and CT accrual in sink leaves of SG may both contribute to the maintenance of a slow-growth phenotype suited to survival in nutrient-poor habitats.
Collapse
Affiliation(s)
- Scott A Harding
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Lei Du
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA Present address: Unit of Computational Medicine, Department of Medicine, Karolinska Institute, Stockholm 17176, Sweden
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
202
|
Appelhagen I, Thiedig K, Nordholt N, Schmidt N, Huep G, Sagasser M, Weisshaar B. Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. PLANTA 2014; 240:955-70. [PMID: 24903359 DOI: 10.1007/s00425-014-2088-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/23/2014] [Indexed: 05/23/2023]
Abstract
We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10. Flavonoid biosynthesis is one of the best-studied secondary metabolite pathways in plants. In the model system Arabidopsis thaliana it leads to the synthesis of three phenolic compound classes: flavonol glycosides, anthocyanins and proanthocyanidins (PAs). PAs appear brown in their oxidised polymeric forms, and most A. thaliana mutants impaired in flavonoid accumulation were identified through screens for lack of this seed coat pigmentation. These mutants are referred to as transparent testa (tt) or tannin-deficient seed (tds). More than 20 mutants of these types have been published, probably representing most of the genes relevant for PA accumulation in A. thaliana. However, data about the genes involved in PA deposition or oxidation are still rather scarce. Also, for some of the known mutants it is unclear if they represent additional loci or if they are allelic to known genes. For the present study, we have performed a systematic phenotypic characterisation of almost all available tt and tds mutants and built a collection of mutants in the genetic background of the accession Columbia to minimise effects arising from ecotype variation. We have identified a novel tt6 allele from a forward genetic screen and demonstrated that tds3 is allelic to tt12 and tds5 to aha10.
Collapse
Affiliation(s)
- Ingo Appelhagen
- Department of Biology, Bielefeld University, Universitaetsstrasse 27, 33615, Bielefeld, Germany,
| | | | | | | | | | | | | |
Collapse
|
203
|
Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T, Hara-Nishimura I. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:410-23. [PMID: 25116949 DOI: 10.1111/tpj.12637] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi-enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non-exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter-mediated pathway and the vesicle trafficking-mediated pathway. No molecules involved in the vesicle trafficking-mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan-colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis-sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome-like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9-mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.
Collapse
Affiliation(s)
- Takuji Ichino
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Carletti G, Nervo G, Cattivelli L. Flavonoids and Melanins: a common strategy across two kingdoms. Int J Biol Sci 2014; 10:1159-70. [PMID: 25516714 PMCID: PMC4261200 DOI: 10.7150/ijbs.9672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022] Open
Abstract
Ultraviolet (UV) radiations alter a number of metabolic functions in vivant. They produce damages to lipids, nucleic acids and proteins, generating reactive oxygen species such as singlet oxygen (O2), hydroxyl radical (HO) and superoxide anion (O2-). Plants and animals, after their water emersion, have developed biochemical mechanisms to protect themselves from that environmental threat through a common strategy. Melanins in animals and flavonoids in plants are antioxidant pigments acting as free radical scavenging mechanisms. Both are phenol compounds constitutively synthesized and enhanced after exposure to UV rays, often conferring a red-brown-dark tissue pigmentation. Noteworthy, beside anti-oxidant scavenging activity, melanins and flavonoids have acquired secondary functions that, both in plants and animals, concern reproductions and fitness. Plants highly pigmented are more resistant to biotic and abiotic stresses. Darker wild vertebrates are generally more aggressive, sexually active and resistant to stress than lighter individuals. Flavonoids have been associated with signal attraction between flowers and insects and with plant-plant interaction. Melanin pigmentation has been proposed as trait in bird communication, acting as honest signals of quality. This review shows how the molecular mechanisms leading to tissue pigmentation have many functional analogies between plants and animals and how their origin lies in simpler organisms such as Cyanobacteria. Comparative studies between plant and animal kingdoms can reveal new insight of the antioxidant strategies in vivant.
Collapse
Affiliation(s)
- Giorgia Carletti
- 1. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Research Unit for Intensive Wood Production, Strada Frassineto 35, 15033 Casale Monferrato, AL, Italy
| | - Giuseppe Nervo
- 1. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Research Unit for Intensive Wood Production, Strada Frassineto 35, 15033 Casale Monferrato, AL, Italy
| | - Luigi Cattivelli
- 2. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Genomics Research Centre, via S Protaso 302, I-29107 Fiorenzuola d'Arda, PC, Italy
| |
Collapse
|
205
|
Ferraro K, Jin AL, Nguyen TD, Reinecke DM, Ozga JA, Ro DK. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds. BMC PLANT BIOLOGY 2014; 14:238. [PMID: 25928382 PMCID: PMC4175280 DOI: 10.1186/s12870-014-0238-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/02/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. RESULTS PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. CONCLUSION Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in development to be used as substrates for polymerization into PAs. Biochemically competent recombinant PsANR and PsLAR activities were consistent with the pea seed coat PA profile composed of both cis- and trans-flavan-3-ols. Since the expression of PsLAR in Arabidopsis did not alter the PA subunit profile (which is only comprised of cis-flavan-3-ols), it necessitates further investigation of in planta metabolic flux through PsLAR.
Collapse
Affiliation(s)
- Kiva Ferraro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| | - Alena L Jin
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Trinh-Don Nguyen
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| |
Collapse
|
206
|
Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, Tohge T, Ito T, Koyanagi M, Kitajima M, Takayama H, Saito K. A flavonoid 3-O-glucoside:2"-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:769-82. [PMID: 24916675 PMCID: PMC4282749 DOI: 10.1111/tpj.12580] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/25/2014] [Accepted: 06/03/2014] [Indexed: 05/17/2023]
Abstract
Flavonol 3-O-diglucosides with a 1→2 inter-glycosidic linkage are representative pollen-specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild-type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild-type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP-glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen-specific flavonol structure. Kaempferol and quercetin 3-O-glucosyl-(1→2)-glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild-type plants. Recombinant UGT79B6 protein converted kaempferol 3-O-glucoside to kaempferol 3-O-glucosyl-(1→2)-glucoside. UGT79B6 recognized 3-O-glucosylated/galactosylated anthocyanins/flavonols but not 3,5- or 3,7-diglycosylated flavonoids, and prefers UDP-glucose, indicating that UGT79B6 encodes flavonoid 3-O-glucoside:2″-O-glucosyltransferase. A UGT79B6-GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers.
Collapse
Affiliation(s)
- Keiko Yonekura-Sakakibara
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takayuki Tohge
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takuya Ito
- RIKEN Center for Sustainable Resource Science2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Misuzu Koyanagi
- Graduate School of Pharmaceutical Sciences, Chiba University1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hiromitsu Takayama
- Graduate School of Pharmaceutical Sciences, Chiba University1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- *For correspondence (e-mail )
| |
Collapse
|
207
|
Liu C, Jun JH, Dixon RA. MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in Medicago truncatula. PLANT PHYSIOLOGY 2014; 165:1424-1439. [PMID: 24948832 PMCID: PMC4119029 DOI: 10.1104/pp.114.241877] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the major MYB protein regulating proanthocyanidin (PA) biosynthesis is TT2, named for the transparent testa phenotype of tt2 mutant seeds that lack PAs in their coats. In contrast, the MYB5 transcription factor mainly regulates seed mucilage biosynthesis and trichome branching, with only a minor role in PA biosynthesis. We here characterize MYB5 and MYB14 (a TT2 homolog) in the model legume Medicago truncatula. Overexpression of MtMYB5 or MtMYB14 strongly induces PA accumulation in M. truncatula hairy roots, and both myb5 and myb14 mutants of M. truncatula exhibit darker seed coat color than wild-type plants, with myb5 also showing deficiency in mucilage biosynthesis. myb5 mutant seeds have a much stronger seed color phenotype than myb14. The myb5 and myb14 mutants accumulate, respectively, about 30% and 50% of the PA content of wild-type plants, and PA levels are reduced further in myb5 myb14 double mutants. Transcriptome analyses of overexpressing hairy roots and knockout mutants of MtMYB5 and MtMYB14 indicate that MtMYB5 regulates a broader set of genes than MtMYB14. Moreover, we demonstrate that MtMYB5 and MtMYB14 physically interact and synergistically activate the promoters of anthocyanidin reductase and leucoanthocyanidin reductase, the key structural genes leading to PA biosynthesis, in the presence of MtTT8 and MtWD40-1. Our results provide new insights into the complex regulation of PA and mucilage biosynthesis in M. truncatula.
Collapse
Affiliation(s)
- Chenggang Liu
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Ji Hyung Jun
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| |
Collapse
|
208
|
Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, Peña-Cortés H, Casaretto JA, González-Villanueva E, Ruiz-Lara S. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. PLANT CELL REPORTS 2014; 33:1147-59. [PMID: 24700246 DOI: 10.1007/s00299-014-1604-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 05/18/2023]
Abstract
VvMATE1 and VvMATE2 encode putative PA transporters expressed during seed development in grapevine. The subcellular localization of these MATE proteins suggests different routes for the intracellular transport of PAs. Proanthocyanidins (PAs), also called condensed tannins, protect plants against herbivores and are important quality components of many fruits. PAs biosynthesis is part of the flavonoid pathway that also produces anthocyanins and flavonols. In grape fruits, PAs are present in seeds and skin tissues. PAs are synthesized in the cytoplasm and accumulated into the vacuole and apoplast; however, little is known about the mechanisms involved in the transport of these compounds to such cellular compartments. A gene encoding a Multidrug And Toxic compound Extrusion (MATE) family protein suggested to transport anthocyanins-named VvMATE1-was used to identify a second gene of the MATE family, VvMATE2. Analysis of their deduced amino acid sequences and the phylogenetic relationship with other MATE-like proteins indicated that VvMATE1 and VvMATE2 encode putative PA transporters. Subcellular localization assays in Arabidopsis protoplasts transformed with VvMATE-GFP fusion constructs along with organelle-specific markers revealed that VvMATE1 is localized in the tonoplast whereas VvMATE2 is localized in the Golgi complex. Major expression of both genes occurs during the early stages of seed development concomitant with the accumulation of PAs. Both genes are poorly expressed in the skin of berries while VvMATE2 is also expressed in leaves. The presence of putative cis-acting elements in the promoters of VvMATE1 and VvMATE2 may explain the differential transcriptional regulation of these genes in grapevine. Altogether, these results suggest that these MATE proteins could mediate the transport and accumulation of PAs in grapevine through different routes and cellular compartments.
Collapse
Affiliation(s)
- Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | | | | | | | | | | |
Collapse
|
209
|
Xu W, Lepiniec L, Dubos C. New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28736. [PMID: 24721726 PMCID: PMC4091501 DOI: 10.4161/psb.28736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are secondary metabolites that play important roles throughout the plant life cycle and have potential human health beneficial properties. Flavonols, anthocyanins and proanthocyanidins (PAs or condensed tannins) are the three main class of flavonoids found in Arabidopsis thaliana. We have previously shown that PA biosynthesis (occurring exclusively in seeds) involves the transcriptional activity of four different ternary protein complexes composed of different R2R3-MYB and bHLH factors together with TRANSPARENT TESTA GLABRA 1 (TTG1), a WD repeat containing protein. We have also identified their direct targets, the late biosynthetic genes. In this study, we have further investigated the transcriptional capacity of the MBW complexes through transactivation assays in moss protoplast and overexpression in Arabidopsis siliques. Results provide new information for biotechnological engineering of PA biosynthesis, as well as new insights into the elucidation of the mechanisms that govern the interactions between MBW complexes and the DNA motifs they can target.
Collapse
Affiliation(s)
- Wenjia Xu
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Loïc Lepiniec
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Christian Dubos
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- Correspondence to: Christian Dubos,
| |
Collapse
|
210
|
Xu W, Lepiniec L, Dubos C. New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28736. [PMID: 24721726 PMCID: PMC4091501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 02/28/2024]
Abstract
Flavonoids are secondary metabolites that play important roles throughout the plant life cycle and have potential human health beneficial properties. Flavonols, anthocyanins and proanthocyanidins (PAs or condensed tannins) are the three main class of flavonoids found in Arabidopsis thaliana. We have previously shown that PA biosynthesis (occurring exclusively in seeds) involves the transcriptional activity of four different ternary protein complexes composed of different R2R3-MYB and bHLH factors together with TRANSPARENT TESTA GLABRA 1 (TTG1), a WD repeat containing protein. We have also identified their direct targets, the late biosynthetic genes. In this study, we have further investigated the transcriptional capacity of the MBW complexes through transactivation assays in moss protoplast and overexpression in Arabidopsis siliques. Results provide new information for biotechnological engineering of PA biosynthesis, as well as new insights into the elucidation of the mechanisms that govern the interactions between MBW complexes and the DNA motifs they can target.
Collapse
Affiliation(s)
- Wenjia Xu
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Loïc Lepiniec
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Christian Dubos
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| |
Collapse
|
211
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1210] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
212
|
Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. THE NEW PHYTOLOGIST 2014; 202:132-144. [PMID: 24299194 DOI: 10.1111/nph.12620] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/03/2013] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, proanthocyanidins (PAs) accumulate in the innermost cell layer of the seed coat (i.e. endothelium, chalaza and micropyle). The expression of the biosynthetic genes involved relies on the transcriptional activity of R2R3-MYB and basic helix-loop-helix (bHLH) proteins which form ternary complexes ('MBW') with TRANSPARENT TESTA GLABRA1 (TTG1) (WD repeat protein). The identification of the direct targets and the determination of the nature and spatio-temporal activity of these MBW complexes are essential steps towards a comprehensive understanding of the transcriptional mechanisms that control flavonoid biosynthesis. In this study, various molecular, genetic and biochemical approaches were used. Here, we have demonstrated that, of the 12 studied genes of the pathway, only dihydroflavonol-4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), BANYULS (BAN), TRANSPARENT TESTA 19 (TT19), TT12 and H(+) -ATPase isoform 10 (AHA10) are direct targets of the MBW complexes. Interestingly, although the TT2-TT8-TTG1 complex plays the major role in developing seeds, three additional MBW complexes (i.e. MYB5-TT8-TTG1, TT2-EGL3-TTG1 and TT2-GL3-TTG1) were also shown to be involved, in a tissue-specific manner. Finally, a minimal promoter was identified for each of the target genes of the MBW complexes. Altogether, by answering fundamental questions and by demonstrating or invalidating previously made hypotheses, this study provides a new and comprehensive view of the transcriptional regulatory mechanisms controlling PA and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Wenjia Xu
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Damaris Grain
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Sophie Bobet
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - José Le Gourrierec
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Johanne Thévenin
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Zsolt Kelemen
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Loïc Lepiniec
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Christian Dubos
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| |
Collapse
|
213
|
Chaturvedi N, Singh SK, Shukla AK, Lal RK, Gupta MM, Dwivedi UN, Shasany AK. Latex-less opium poppy: cause for less latex and reduced peduncle strength. PHYSIOLOGIA PLANTARUM 2014; 150:436-445. [PMID: 24033330 DOI: 10.1111/ppl.12086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/28/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
A genotype 'Sujata' developed earlier at CSIR-CIMAP from its parent 'Sampada' is considered to be the latex-less variety of Papaver somniferum. These two genotypes are contrasting in terms of latex and stem strength. Earlier we have carried out microarray analysis to identify differentially expressing genes from the capsules of the two genotypes. In this study, the peduncles of the two genotypes were compared for the anatomy revealing less number of laticifers in the cortex and vascular bundles. One of the important cell wall-related genes (for laccase) from the microarray analysis showing significantly higher expression in 'Sampada' capsule was taken up for further characterization in the peduncle here. It was functionally characterized through transient overexpression and RNAi suppression in 'Sujata' and 'Sampada'. The increase in acid insoluble lignin and total lignin in overexpressed tissue of 'Sujata', and comparable decrease in suppressed tissue of 'Sampada', along with corresponding increase and decrease in the transcript abundance of laccase confirm the involvement of laccase in lignin biosynthesis. Negligible transcript in phloem compared to the xylem tissue localized its expression in xylem tissue. This demonstrates the involvement of P. somniferum laccase in lignin biosynthesis of xylem, providing strength to the peduncle/stem and preventing lodging.
Collapse
Affiliation(s)
- Nidarshana Chaturvedi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | | | | | | | | | | | | |
Collapse
|
214
|
David LC, Dechorgnat J, Berquin P, Routaboul JM, Debeaujon I, Daniel-Vedele F, Ferrario-Méry S. Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affinity nitrate transporter NRT2.7. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:885-93. [PMID: 24532452 PMCID: PMC3924729 DOI: 10.1093/jxb/ert481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
NRT2.7 is a seed-specific high-affinity nitrate transporter controlling nitrate content in Arabidopsis mature seeds. The objective of this work was to analyse further the consequences of the nrt2.7 mutation for the seed metabolism. This work describes a new phenotype for the nrt2.7-2 mutant allele in the Wassilewskija accession, which exhibited a distinctive pale-brown seed coat that is usually associated with a defect in flavonoid oxidation. Indeed, this phenotype resembled those of tt10 mutant seeds defective in the laccase-like enzyme TT10/LAC15, which is involved in the oxidative polymerization of flavonoids such as the proantocyanidins (PAs) (i.e. epicatechin monomers and PA oligomers) and flavonol glycosides. nrt2.7-2 and tt10-2 mutant seeds displayed the same higher accumulation of PAs, but were partially distinct, since flavonol glycoside accumulation was not affected in the nrt2.7-2 seeds. Moreover, measurement of in situ laccase activity excluded a possibility of the nrt2.7-2 mutation affecting the TT10 enzymic activity at the early stage of seed development. Functional complementation of the nrt2.7-2 mutant by overexpression of a full-length NRT2.7 cDNA clearly demonstrated the link between the nrt2.7 mutation and the PA phenotype. However, the PA-related phenotype of nrt2.7-2 seeds was not strictly correlated to the nitrate content of seeds. No correlation was observed when nitrate was lowered in seeds due to limited nitrate nutrition of plants or to lower nitrate storage capacity in leaves of clca mutants deficient in the vacuolar anionic channel CLCa. All together, the results highlight a hitherto-unknown function of NRT2.7 in PA accumulation/oxidation.
Collapse
Affiliation(s)
- Laure C. David
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
- * These authors contributed equally to this manuscript
| | - Julie Dechorgnat
- University of Adelaide, School of Agriculture Food and Wine, PRC, 2B Hartley Grove, Urrbrae, SA 5064, Australia
- * These authors contributed equally to this manuscript
| | - Patrick Berquin
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
| | - Jean Marc Routaboul
- Genomic and Biotechnology of Fruit, UMR 990 INRA/INP-ENSAT, 24, Chemin de Borderouge-Auzeville CS 52627, F-31326 Castanet-Tolosan cedex, France
| | - Isabelle Debeaujon
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
| | - Françoise Daniel-Vedele
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
| | - Sylvie Ferrario-Méry
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA-AgroParisTech, Centre de Versailles-Grignon, Route de St-Cyr (RD10), F-78026 Versailles cedex, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
215
|
Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet 2013; 9:e1003862. [PMID: 24339783 PMCID: PMC3854695 DOI: 10.1371/journal.pgen.1003862] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/22/2013] [Indexed: 12/18/2022] Open
Abstract
Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. In most cells nuclear genes are present in two copies, with one maternal and one paternal allele. Usually, the two alleles share the same fate regarding their activity, with both copies being active or both being silent. An exception to this rule are genes that are regulated by genomic imprinting, where only one allele is expressed and the other one remains silent depending on the parent it was inherited from. The two alleles are equal in terms of their DNA sequence but carry different epigenetic marks distinguishing them. Genomic imprinting evolved independently in mammals and flowering plants. In mammals, genes regulated by genomic imprinting are expressed in a wide range of tissues including the embryo and the placenta. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a nutritive tissue in the seed with a function similar to that of the mammalian placenta. Here, we describe that some genes are also regulated by genomic imprinting in the embryo of the model plant Arabidopsis thaliana. An epigenetic silencing complex, the Polycomb Repressive Complex 2 (PRC2), partly regulates genomic imprinting in the embryo. Interestingly, embryonic imprints seem to be erased during late embryo or early seedling development.
Collapse
|
216
|
Liu Y, Shi Z, Maximova S, Payne MJ, Guiltinan MJ. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase. BMC PLANT BIOLOGY 2013; 13:202. [PMID: 24308601 PMCID: PMC4233638 DOI: 10.1186/1471-2229-13-202] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/29/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. RESULTS To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. CONCLUSION Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.
Collapse
Affiliation(s)
- Yi Liu
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Present address: Cellular & Molecular Pharmacology, Mission Bay Campus, Genentech Hall, University of California, San Francisco, N582/Box 2280, 600 16th Street, San Francisco, CA 94158, USA
| | - Zi Shi
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siela Maximova
- Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA 16802, USA
| | - Mark J Payne
- Hershey Center for Health and Nutrition, The Hershey Company, 1025 Reese Ave, Hershey, PA 17033, USA
| | - Mark J Guiltinan
- Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA 16802, USA
| |
Collapse
|
217
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:21-34. [PMID: 23473981 DOI: 10.1016/j.plaphy.2013.02.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
218
|
Peroxidase as the major protein constituent in areca nut and identification of its natural substrates. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:412851. [PMID: 24250715 PMCID: PMC3821912 DOI: 10.1155/2013/412851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 01/17/2023]
Abstract
Numerous reports illustrate the diverse effects of chewing the areca nut, most of which are harmful and have been shown to be associated with oral cancer. Nearly all of the studies are focused on the extract and/or low molecular weight ingredients in the areca nut. The purpose of this report is to identify the major protein component in the areca nut. After ammonium sulfate fractionation, the concentrated areca nut extract is subjected to DEAE-cellulose chromatography. A colored protein is eluted at low NaCl concentration and the apparently homogeneous eluent represents the major protein component compared to the areca nut extract. The colored protein shares partial sequence identity with the royal palm tree peroxidase and its peroxidase activity is confirmed using an established assay. In the study, the natural substrates of areca nut peroxidase are identified as catechin, epicatechin, and procyanidin B1. The two former substrates are similarly oxidized to form a 576 Da product with concomitant removal of four hydrogen atoms. Interestingly, oxidation of procyanidin B1 occurs only in the presence of catechin or epicatechin and an additional product with an 864 Da molecular mass. In addition, procyanidin B1 is identified as a peroxidase substrate for the first time.
Collapse
|
219
|
Webb KJ, Cookson A, Allison G, Sullivan ML, Winters AL. Gene expression patterns, localization, and substrates of polyphenol oxidase in red clover ( Trifolium pratense L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7421-30. [PMID: 23790148 DOI: 10.1021/jf401122d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Polyphenol oxidase (PPO) genes and their corresponding enzyme activities occur in many plants; natural PPO substrates and enzyme/substrate localization are less well characterized. Leaf and root PPO activities in Arabidopsis and five legumes were compared with those of high-PPO red clover ( Trifolium pratense L.). Red clover PPO enzyme activity decreased leaves > stem > nodules > peduncle = petiole > embryo; PPO1 and PPO4 genes were expressed early in leaf emergence, whereas PPO4 and PPO5 predominated in mature leaves. PPO1 was expressed in embryos and nodules. PPO substrates, phaselic acid and clovamide, were detected in leaves, and clovamide was detected in nodules. Phaselic acid and clovamide, along with caffeic and chlorogenic acids, were suitable substrates for PPO1, PPO4, and PPO5 genes expressed in alfalfa ( Medicago sativa L.) leaves. PPO enzyme presence and activity were colocalized in leaves and nodules by cytochemistry. Substrates and PPO activity were localized in developing squashed cell layer of nodules, suggesting PPO may have a developmental role in nodules.
Collapse
Affiliation(s)
- K Judith Webb
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University , Gogerddan, Aberystwyth, Ceredigion SY23 3EE, Wales, U.K
| | | | | | | | | |
Collapse
|
220
|
Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A. Plant flavonoids--biosynthesis, transport and involvement in stress responses. Int J Mol Sci 2013; 14:14950-73. [PMID: 23867610 PMCID: PMC3742282 DOI: 10.3390/ijms140714950] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport. The involvement of a glutathione S-transferase (GST) gene has also been inferred. Recently, a putative flavonoid carrier, similar to mammalian bilitranslocase (BTL), has been identified in both grape berry skin and pulp. In skin the pattern of BTL expression increases from véraison to harvest, while in the pulp its expression reaches the maximum at the early ripening stage. Moreover, the presence of BTL in vascular bundles suggests its participation in long distance transport of flavonoids. In addition, the presence of a vesicular trafficking in plants responsible for flavonoid transport is discussed. Finally, the involvement of flavonoids in the response to stress is described.
Collapse
Affiliation(s)
- Elisa Petrussa
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Enrico Braidot
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Marco Zancani
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Carlo Peresson
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Alberto Bertolini
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Sonia Patui
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| | - Angelo Vianello
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, Udine I-33100, Italy; E-Mails: (E.P.); (E.B.); (M.Z.); (C.P.); (A.B.); (S.P.)
| |
Collapse
|
221
|
Wang Y, Chantreau M, Sibout R, Hawkins S. Plant cell wall lignification and monolignol metabolism. FRONTIERS IN PLANT SCIENCE 2013; 4:220. [PMID: 23847630 PMCID: PMC3705174 DOI: 10.3389/fpls.2013.00220] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Plants are built of various specialized cell types that differ in their cell wall composition and structure. The cell walls of certain tissues (xylem, sclerenchyma) are characterized by the presence of the heterogeneous lignin polymer that plays an essential role in their physiology. This phenolic polymer is composed of different monomeric units - the monolignols - that are linked together by several covalent bonds. Numerous studies have shown that monolignol biosynthesis and polymerization to form lignin are tightly controlled in different cell types and tissues. However, our understanding of the genetic control of monolignol transport and polymerization remains incomplete, despite some recent promising results. This situation is made more complex since we know that monolignols or related compounds are sometimes produced in non-lignified tissues. In this review, we focus on some key steps of monolignol metabolism including polymerization, transport, and compartmentation. As well as being of fundamental interest, the quantity of lignin and its nature are also known to have a negative effect on the industrial processing of plant lignocellulose biomass. A more complete view of monolignol metabolism and the relationship that exists between lignin and other monolignol-derived compounds thereby appears essential if we wish to improve biomass quality.
Collapse
Affiliation(s)
- Yin Wang
- Unite Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Saclay Plant SciencesVersailles, France
| | - Maxime Chantreau
- Lille 1 UMR 1281, UniversitéLille Nord de FranceVilleneuve d’Ascq, France
- Unite Mixte de Recherche 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Institut National de la Recherche AgronomiqueVilleneuve d’Ascq, France
| | - Richard Sibout
- Unite Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Saclay Plant SciencesVersailles, France
| | - Simon Hawkins
- Lille 1 UMR 1281, UniversitéLille Nord de FranceVilleneuve d’Ascq, France
- Unite Mixte de Recherche 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Institut National de la Recherche AgronomiqueVilleneuve d’Ascq, France
| |
Collapse
|
222
|
Pang Y, Cheng X, Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. PLANTA 2013; 238:139-54. [PMID: 23592226 DOI: 10.1007/s00425-013-1879-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 05/13/2023]
Abstract
In the first reaction specific for proanthocyanidin (PA) biosynthesis in Arabidopsis thaliana and Medicago truncatula, anthocyanidin reductase (ANR) converts cyanidin to (-)-epicatechin. The glucosyltransferase UGT72L1 catalyzes formation of epicatechin 3'-O-glucoside (E3'OG), the preferred substrate for MATE transporters implicated in PA biosynthesis in both species. The mechanism of PA polymerization is still unclear, but may involve the laccase-like polyphenol oxidase TRANSPARENT TESTA 10 (TT10). We have employed a combination of cell biological, biochemical and genetic approaches to evaluate this PA pathway model. The promoter regions of UGT72L1 and MtANR share common cis-acting elements and direct overlapping, but partially distinct, expression patterns. UGT72L1 and MtANR are localized in the cytosol, whereas TT10 is localized to the vacuole. Over-expression of UGT72L1 in M. truncatula hairy roots results in increased accumulation of PA-like compounds, and loss of function of UGT72L1 partially reduces epicatechin, E3'OG and extractable PA levels in M. truncatula seeds. Expression of UGT72L1 in A. thaliana leads to a massive increase in E3'OG in immature seed, but reduced levels of extractable PAs. However, when UGT72L1 was expressed in the Arabidopsis tt10 mutant, extractable PA levels increased and seed coat browning was delayed. Our results suggest that glycosylation of epicatechin is important for both PA precursor transport and assembly, but that additional redundant pathways may exist.
Collapse
Affiliation(s)
- Yongzhen Pang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2885-98. [PMID: 23698630 PMCID: PMC3697950 DOI: 10.1093/jxb/ert148] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography-mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
- *These authors contributed equally to this work
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Min Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Junxing Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Huafang Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Tang Zhanglin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
224
|
Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C. The inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:989-1002. [PMID: 23551421 DOI: 10.1111/tpj.12185] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 05/18/2023]
Abstract
Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, two dominant genes lead to non-glaucous phenotypes: Inhibitor of wax 1 (Iw1) and Iw2. The molecular mechanisms and the exact extent (beyond visual assessment) by which these genes affect the composition and quantity of cuticular wax is unclear. To describe the Iw1 locus we used a genetic approach with detailed biochemical characterization of wax compounds. Using synteny and a large number of F2 gametes, Iw1 was fine-mapped to a sub-cM genetic interval on wheat chromosome arm 2BS, which includes a single collinear gene from the corresponding Brachypodium and rice physical maps. The major components of flag leaf and peduncle cuticular waxes included primary alcohols, β-diketones and n-alkanes. Small amounts of C19-C27 alkyl and methylalkylresorcinols that have not previously been described in wheat waxes were identified. Using six pairs of BC2 F3 near-isogenic lines, we show that Iw1 inhibits the formation of β- and hydroxy-β-diketones in the peduncle and flag leaf blade cuticles. This inhibitory effect is independent of genetic background or tissue, and is accompanied by minor but consistent increases in n-alkanes and C24 primary alcohols. No differences were found in cuticle thickness and carbon isotope discrimination in near-isogenic lines differing at Iw1.
Collapse
|
225
|
Jeon JR, Chang YS. Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications. Trends Biotechnol 2013; 31:335-41. [DOI: 10.1016/j.tibtech.2013.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/01/2022]
|
226
|
Chen G, Deng W, Peng F, Truksa M, Singer S, Snyder CL, Mietkiewska E, Weselake RJ. Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:663-77. [PMID: 23425240 DOI: 10.1111/tpj.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 05/14/2023]
Abstract
The transcription factor TRANSPARENT TESTA 16 (TT16) plays an important role in endothelial cell specification and proanthocyanidin (PA) accumulation. However, its precise regulatory function with regard to the expression of endothelial-associated genes in developing seeds, and especially in the PA-producing inner integument, remains largely unknown. Therefore, we endeavored to characterize four TT16 homologs from the allotetraploid oil crop species Brassica napus, and systematically explore their regulatory function in endothelial development. Our results indicated that all four BnTT16 genes were predominantly expressed in the early stages of seed development, but at distinct levels, and encoded functional proteins. Bntt16 RNA interference lines exhibited abnormal endothelial development and decreased PA content, while PA polymerization was not affected. In addition to the previously reported function of TT16 in the transcriptional regulation of anthocyanidin reductase (ANR) and dihydroflavonol reductase (TT3), we also determined that BnTT16 proteins played a significant role in the transcriptional regulation of five other genes involved in the PA biosynthetic pathway (P < 0.01). Moreover, we identified two genes involved in inner integument development that were strongly regulated by the BnTT16 proteins (TT2 and δ-vacuolar processing enzyme). These results will better our understanding of the precise role of TT16 in endothelial development in Brassicaceae species, and could potentially be used for the future improvement of oilseed crops.
Collapse
Affiliation(s)
- Guanqun Chen
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Tavares S, Vesentini D, Fernandes JC, Ferreira RB, Laureano O, Ricardo-Da-Silva JM, Amâncio S. Vitis vinifera secondary metabolism as affected by sulfate depletion: diagnosis through phenylpropanoid pathway genes and metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:118-26. [PMID: 23500714 DOI: 10.1016/j.plaphy.2013.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/31/2013] [Indexed: 05/23/2023]
Abstract
Grapevine (Vitis vinifera L.) is rich in phenylpropanoid compounds, namely flavonoids and stilbenes which, present in most tissues, are described as antioxidants and known to accumulate in response to biotic and abiotic stress. Grapevine is then a choice model for studying the interplay between the phenylpropanoid pathway and nutrient deficiency. Here we report the response to sulfur deficiency (-S) of flavonoids and stilbenes biosynthetic pathways in chlorophyll tissues (plantlets) and cell culture. Anthocyanins and trans-resveratrol accumulated in plantlets and trans-resveratrol glucoside in cell cultures in response to sulfur deficiency, while a significant decrease in chlorophyll was observed in -S plantlets. The up-regulation of chalcone synthase gene and the downstream flavonoid biosynthesis genes dihydroflavonol reductase and anthocyanidin synthase matched the accumulation of anthocyanins in -S V. vinifera plantlets. The mRNA level of stilbene synthase gene(s) was correlated tightly with the increase in trans-resveratrol and trans-resveratrol glucoside levels, respectively in -S plantlets and cell cultures. As a whole, the present study unveil that V. vinifera under sulfur deficiency allocates resources to the phenylpropanoid pathway, probably consecutive to inhibition of protein synthesis, which can be advantageous to resist against oxidative stress symptoms evoked by -S conditions.
Collapse
Affiliation(s)
- Sílvia Tavares
- CBAA/DRAT, Instituto Superior de Agronomia, UTL, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
228
|
Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS One 2013; 8:e61247. [PMID: 23613820 PMCID: PMC3632561 DOI: 10.1371/journal.pone.0061247] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/06/2013] [Indexed: 11/29/2022] Open
Abstract
Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus.
Collapse
|
229
|
Cesarino I, Araújo P, Sampaio Mayer JL, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1769-81. [PMID: 23418623 DOI: 10.1093/jxb/ert045] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lignin is a complex phenolic heteropolymer deposited in the secondarily thickened walls of specialized plant cells to provide strength for plants to stand upright and hydrophobicity to conducting cells for long-distance water transport. Although essential for plant growth and development, lignin is the major plant cell-wall component responsible for biomass recalcitrance to industrial processing. Peroxidases and laccases are generally thought to be responsible for lignin polymerization, but, given their broad substrate specificities and large gene families, specific isoforms involved in lignification are difficult to identify. This study used a combination of co-expression analysis, tissue/cell-type-specific expression analysis, and genetic complementation to correlate a sugarcane laccase gene, SofLAC, to the lignification process. A co-expression network constructed from 37 cDNA libraries showed that SofLAC was coordinately expressed with several phenylpropanoid biosynthesis genes. Tissue-specific expression analysis by quantitative RT-PCR showed that SofLAC was expressed preferentially in young internodes and that expression levels decrease with stem maturity. Cell-type-specific expression analysis by in situ hybridization demonstrated the localization of SofLAC mRNA in lignifying cell types, mainly in inner and outer portions of sclerenchymatic bundle sheaths. To investigate whether SofLAC is able to oxidize monolignols during lignification, the Arabidopsis lac17 mutant, which has reduced lignin levels, was complemented by expressing SofLAC under the control of the Arabidopsis AtLAC17 promoter. The expression of SofLAC restored the lignin content but not the lignin composition in complemented lac17 mutant lines. Taken together, these results suggest that SofLAC participates in lignification in sugarcane.
Collapse
Affiliation(s)
- Igor Cesarino
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970 Campinas, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Chen Z, Wang C, Chen J, Li X. Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. J Am Chem Soc 2013; 135:4179-82. [PMID: 23470166 DOI: 10.1021/ja311374b] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green luminescent, monodisperse, smooth, porous and hollow spheres were simply prepared by Cu(2+) and temperature mediated oxidative coupling assembly of green tea polyphenols in water. These polymeric tea polyphenol spheres are GSH responsive, acid resistant but alkali-responsive, ideally used as platform for controlled delivery of functional guests.
Collapse
Affiliation(s)
- Zhenhua Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | | | | | | |
Collapse
|
231
|
Pang Y, Abeysinghe ISB, He J, He X, Huhman D, Mewan KM, Sumner LW, Yun J, Dixon RA. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. PLANT PHYSIOLOGY 2013; 161:1103-16. [PMID: 23288883 PMCID: PMC3585583 DOI: 10.1104/pp.112.212050] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/29/2012] [Indexed: 05/18/2023]
Abstract
Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (-)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (-)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols.
Collapse
Affiliation(s)
| | - I. Sarath B. Abeysinghe
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Ji He
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Xianzhi He
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - David Huhman
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - K. Mudith Mewan
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Lloyd W. Sumner
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | - Jianfei Yun
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (Y.P., J.H., X.H., D.H., L.W.S., J.Y., R.A.D.); and
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka (I.S.B.A., K.M.M.)
| | | |
Collapse
|
232
|
Verma P, Kaur H, Petla BP, Rao V, Saxena SC, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. PLANT PHYSIOLOGY 2013; 161:1141-57. [PMID: 23284083 PMCID: PMC3585586 DOI: 10.1104/pp.112.206243] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/01/2013] [Indexed: 05/02/2023]
Abstract
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.
Collapse
Affiliation(s)
- Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh C. Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
233
|
Yu CY. Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species. J Appl Genet 2013; 54:135-45. [PMID: 23329015 DOI: 10.1007/s13353-012-0132-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/11/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Yellow seed is a desirable characteristic for the breeding of oilseed Brassica crops, but the manifestation of seed coat color is very intricate due to the involvement of various pigments, the main components of which are flavonols, proanthocyanidin (condensed tannin), and maybe some other phenolic relatives, like lignin and melanin. The focus of this review is to examine the genetics mechanism regarding the biosynthesis and regulation of these pigments in the seed coat of oilseed Brassica. This knowledge came largely from recent researches on the molecular mechanism of TRANSPARENT TESTA (tt) and similar mutations in the ancestry model plant of Brassica, Arabidopsis. Some key enzymes in the flavonoid (flavonols and proanthocyanidin) biosynthetic pathway have been characterized in tt mutants. Some orthologs to these TRANSPARENT TESTA genes have also been cloned in Brassica species. However, it is suggested that some alterative metabolism pathways, including lignin and melanin, might also be involved in seed color manifestation. Polyphenol oxidases, such as laccase, tyrosinase, or even peroxidase, participate in the oxidation step in proanthocyanidin, lignin, and melanin biosynthesis. Moreover, some researches also suggested that melanic pigment in black-seeded Brassica was several fold higher than in yellow-seeded Brassica. Although more experiments are required to evaluate the importance of lignin and melanin in seed coat browning, the current results suggest that the flavonols and proanthocyanidin are not the only roles affecting seed color.
Collapse
Affiliation(s)
- Cheng-Yu Yu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
234
|
Hu Q, Luo C, Zhang Q, Luo Z. Isolation and characterization of a laccase gene potentially involved in proanthocyanidin polymerization in Oriental persimmon (Diospyros kaki Thunb.) fruit. Mol Biol Rep 2012; 40:2809-20. [PMID: 23224657 DOI: 10.1007/s11033-012-2296-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 11/19/2012] [Indexed: 11/27/2022]
Abstract
Proanthocyanidins (PAs, condensed tannins) are important health-promoting phytochemicals that are abundant in many plants. Oriental persimmon (Diospyros kaki Thunb.) is an excellent source of PAs because of its unique ability to accumulate large quantities of these compounds in its young fruit. There are two different spontaneous mutant phenotypes of oriental persimmons which lose their astringent taste naturally on the tree; while plants without these mutations remain rich in soluble PAs until the fruit fully ripened. The mutations are referred to as pollination-constant non-astringent genotypes named J-PCNA and C-PCNA, and are from Japan and China respectively. In this work we speculated that the loss of astringency in C-PCNA fruit is due to the soluble PAs transferred into insoluble upon polymerization, which was quite different from that of the J-PCNA. A DkLAC1 gene was isolated by the homology-based clone method. The predicted protein product of this gene showed that the DkLAC1 is a plant laccase which is phylogenetically related to the known enzyme AtLAC15 involved in the polymerization of PAs. Expression patterns of PAs biosynthetic genes associated with soluble PAs contents in three types of Oriental persimmons. Expression levels of DkLAC1 in C-PCNA type plants were linked with the reduction of soluble PAs in the flesh of the fruit. In addition the cis-elements in the DkLAC1 promoter regions indicated that the gene might also be regulated by the DkMYB4 as is seen with other well-known structural genes in Oriental persimmon. We conclude that DkLAC1 is potentially involved in PA polymerization in C-PCNA during normal ripening in C-PCNA persimmon.
Collapse
Affiliation(s)
- Qianni Hu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Shizishan, Wuhan 430070, China.
| | | | | | | |
Collapse
|
235
|
Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One 2012; 7:e44145. [PMID: 22984469 PMCID: PMC3439492 DOI: 10.1371/journal.pone.0044145] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022] Open
Abstract
Yellow seed is a desirable quality trait of the Brassica oilseed species. Previously, several seed coat color genes have been mapped in the Brassica species, but the molecular mechanism is still unknown. In the present investigation, map-based cloning method was used to identify a seed coat color gene, located on A9 in B. rapa. Blast analysis with the Arabidopsis genome showed that there were 22 Arabidopsis genes in this region including at4g09820 to at4g10620. Functional complementation test exhibited a phenotype reversion in the Arabidopsis thaliana tt8-1 mutant and yellow-seeded plant. These results suggested that the candidate gene was a homolog of TRANSPARENT TESTA8 (TT8) locus. BrTT8 regulated the accumulation of proanthocyanidins (PAs) in the seed coat. Sequence analysis of two alleles revealed a large insertion of a new class of transposable elements, Helitron in yellow sarson. In addition, no mRNA expression of BrTT8 was detected in the yellow-seeded line. It indicated that the natural transposon might have caused the loss in function of BrTT8. BrTT8 encodes a basic/helix-loop-helix (bHLH) protein that shares a high degree of similarity with other bHLH proteins in the Brassica. Further expression analysis also revealed that BrTT8 was involved in controlling the late biosynthetic genes (LBGs) of the flavonoid pathway. Our present findings provided with further studies could assist in understanding the molecular mechanism involved in seed coat color formation in Brassica species, which is an important oil yielding quality trait.
Collapse
Affiliation(s)
- Xia Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Li Chen
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, P.R. China
| | - Meiyan Hong
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yan Zhang
- Vegetable Research Institute, Guangdong Academy of Agriculture Sciences, Guangdong, P.R. China
| | - Feng Zu
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Science, Kunming, P.R. China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
236
|
Schmidt A, Li C, Jones AD, Pichersky E. Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites. PLANTA 2012; 236:839-849. [PMID: 22711283 DOI: 10.1007/s00425-012-1676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
The glandular trichomes of the wild tomato species Solanum habrochaites accumulate the polymethylated flavonol aglycones, 3,7,3'-O-methyl myricetin, 3,7,3',5'-O-methyl myricetin, and 3,7,3',4',5'-O-methyl myricetin. Partially methylated flavonol aglycones and partially methylated flavonol glycones containing a methyl group at the 3 position have been previously reported from a variety of plants. The 3-O-methyltransferase (3-OMT) activity has been previously partially purified from plants, but a gene transcript encoding an enzyme capable of methylating flavonols at the 3 position has not yet been identified, nor have been such proteins purified and characterized. We previously identified two gene transcripts expressed in the glandular trichomes of S. habrochaites and showed that they encode enzymes capable of methylating myricetin at the 3' and 5' and the 7 and 4' positions, respectively. Here we report the identification of gene transcripts expressed in S. lycopersicum (cultivated tomato) and in S. habrochaites glandular trichomes that encode enzymes capable of methylating myricetin, and its partially methylated derivatives exclusively at the 3 position. The S. habrochaites gene transcript is preferentially expressed in the glandular trichomes and it encodes a protein with high similarity to the S. habrochaites, 3'/5' O-methyltransferase which is also present in glandular trichomes. Phylogenic analysis suggests that the 3-OMT activity has probably evolved from an ancestral 3'/5' methyltransferase activity. The discovery and characterization of 3-OMT provides a more complete picture of the series of reactions leading to highly methylated myricetin compounds in S. habrochaites glandular trichomes.
Collapse
Affiliation(s)
- Adam Schmidt
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|
237
|
Kim KW, Moinuddin SGA, Atwell KM, Costa MA, Davin LB, Lewis NG. Opposite stereoselectivities of dirigent proteins in Arabidopsis and schizandra species. J Biol Chem 2012; 287:33957-72. [PMID: 22854967 DOI: 10.1074/jbc.m112.387423] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How stereoselective monolignol-derived phenoxy radical-radical coupling reactions are differentially biochemically orchestrated in planta, whereby for example they afford (+)- and (-)-pinoresinols, respectively, is both a fascinating mechanistic and evolutionary question. In earlier work, biochemical control of (+)-pinoresinol formation had been established to be engendered by a (+)-pinoresinol-forming dirigent protein in Forsythia intermedia, whereas the presence of a (-)-pinoresinol-forming dirigent protein was indirectly deduced based on the enantiospecificity of downstream pinoresinol reductases (AtPrRs) in Arabidopsis thaliana root tissue. In this study of 16 putative dirigent protein homologs in Arabidopsis, AtDIR6, AtDIR10, and AtDIR13 were established to be root-specific using a β-glucuronidase reporter gene strategy. Of these three, in vitro analyses established that only recombinant AtDIR6 was a (-)-pinoresinol-forming dirigent protein, whose physiological role was further confirmed using overexpression and RNAi strategies in vivo. Interestingly, its closest homolog, AtDIR5, was also established to be a (-)-pinoresinol-forming dirigent protein based on in vitro biochemical analyses. Both of these were compared in terms of properties with a (+)-pinoresinol-forming dirigent protein from Schizandra chinensis. In this context, sequence analyses, site-directed mutagenesis, and region swapping resulted in identification of putative substrate binding sites/regions and candidate residues controlling distinct stereoselectivities of coupling modes.
Collapse
Affiliation(s)
- Kye-Won Kim
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | | | |
Collapse
|
238
|
Routaboul JM, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3749-64. [PMID: 22442426 PMCID: PMC3388840 DOI: 10.1093/jxb/ers067] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) analysis was performed on the two segregating populations. Twenty-two flavonoid QTLs were detected that accounted for 11-64% of the observed trait variations, only one QTL being common to both RIL sets. Sixteen of these QTLs were confirmed and coarsely mapped using heterogeneous inbred families (HIFs). Three genes, namely TRANSPARENT TESTA (TT)7, TT15, and MYB12, were proposed to underlie their variations since the corresponding mutants and QTLs displayed similar specific flavonoid changes. Interestingly, most loci did not co-localize with any gene known to be involved in flavonoid metabolism. This latter result shows that novel functions have yet to be characterized and paves the way for their isolation.
Collapse
|
239
|
Liu L, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon RJ. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1573-86. [PMID: 22350089 DOI: 10.1007/s00122-012-1811-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 01/31/2012] [Indexed: 05/05/2023]
Abstract
Seed coat phenolic compounds represent important antinutritive fibre components that cause a considerable reduction in value of seed meals from oilseed rape (Brassica napus). The nutritionally most important fibre compound is acid detergent lignin (ADL), to which a significant contribution is made by phenylpropanoid-derived lignin precursors. In this study, we used bulked-segregant analysis in a population of recombinant inbred lines (RILs) from a cross of the Chinese oilseed rape lines GH06 (yellow seed, low ADL) and P174 (black seed, high ADL) to identify markers with tight linkage to a major quantitative trait locus (QTL) for seed ADL content. Fine mapping of the QTL was performed in a backcross population comprising 872 BC(1)F(2) plants from a cross of an F(7) RIL from the above-mentioned population, which was heterozygous for this major QTL and P174. A 3:1 phenotypic segregation for seed ADL content indicated that a single, dominant, major locus causes a substantial reduction in ADL. This locus was successively narrowed to 0.75 cM using in silico markers derived from a homologous Brassica rapa sequence contig spanning the QTL. Subsequently, we located a B. rapa orthologue of the key lignin biosynthesis gene CINNAMOYL CO-A REDUCTASE 1 (CCR1) only 600 kbp (0.75 cM) upstream of the nearest linked marker. Sequencing of PCR amplicons, covering the full-length coding sequences of Bna.CCR1 homologues, revealed a locus in P174 whose sequence corresponds to the Brassica oleracea wild-type allele from chromosome C8. In GH06, however, this allele is replaced by a homologue derived from chromosome A9 that contains a loss-of-function frameshift mutation in exon 1. Genetic and physical map data infer that this loss-of-function allele has replaced a functional Bna.CCR1 locus on chromosome C8 in GH06 by homoeologous non-reciprocal translocation.
Collapse
Affiliation(s)
- Liezhao Liu
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Liu CJ. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. MOLECULAR PLANT 2012; 5:304-17. [PMID: 22307199 DOI: 10.1093/mp/ssr121] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant lignification is a tightly regulated complex cellular process that occurs via three sequential steps: the synthesis of monolignols within the cytosol; the transport of monomeric precursors across plasma membrane; and the oxidative polymerization of monolignols to form lignin macromolecules within the cell wall. Although we have a reasonable understanding of monolignol biosynthesis, many aspects of lignin assembly remain elusive. These include the precursors' transport and oxidation, and the initiation of lignin polymerization. This review describes our current knowledge of the molecular mechanisms underlying monolignol transport and oxidation, discusses the intriguing yet least-understood aspects of lignin assembly, and highlights the technologies potentially aiding in clarifying the enigma of plant lignification.
Collapse
Affiliation(s)
- Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
241
|
Tomková L, Kučera L, Vaculová K, Milotová J. Characterization and mapping of a putative laccase-like multicopper oxidase gene in the barley (Hordeum vulgare L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:77-85. [PMID: 22195580 DOI: 10.1016/j.plantsci.2011.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
Laccases constitute a multi-gene family of multi-copper glycoproteins. The barley laccase-like multicopper oxidase (LMCO) gene structure, the DNA sequence polymorphism and putative protein have not yet been described. As part of the study of LMCO in cereals, we have characterized the genomic structure of the putative LMCO gene HvLac1 from the barley variety 'Morex' and mapped HvLac1 on chromosome 4H. The genomic sequence of the HvLac1 gene is 2646 bp long and covers 100% of the coding region. It contains four exons and three introns. In this study, we have described the HvLac1 gene nucleotide polymorphisms (In/Del) in 134 barley varieties. Initial characterization of the barley and rice LMCO and the phylogeny analysis indicate that a monocot LMCO family is composed of five members. There are two high pI isoforms of putative HvLac1 protein derived from two in frame translation start codons with 602aa or 592aa residues. Isoforms differ in their predicted subcellular localization and both isoforms are characterized on C-terminus by the presence of the KDEL-like motif, which contributes to the accumulation of soluble proteins in the endoplasmic reticulum. Our results suggest that this unique feature of HvLac1 could be important for their role in physiological processes.
Collapse
Affiliation(s)
- Lenka Tomková
- Crop Research Institute, Drnovská 507, 161 06 Praha 6, Ruzyně, Czech Republic.
| | | | | | | |
Collapse
|
242
|
Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. THE PLANT CELL 2012; 24:738-61. [PMID: 22374396 PMCID: PMC3315244 DOI: 10.1105/tpc.111.090431] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 05/18/2023]
Abstract
The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research.
Collapse
Affiliation(s)
- María Bernal
- Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095-1606
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Vasantika Singh
- Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Grandon T. Wilson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Arne Grande
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Huijun Yang
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Sheel C. Dodani
- Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720-1460
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095-1606
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Peter Huijser
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Erin L. Connolly
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Sabeeha S. Merchant
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany
- Address correspondence to
| |
Collapse
|
243
|
Franceschi P, Dong Y, Strupat K, Vrhovsek U, Mattivi F. Combining intensity correlation analysis and MALDI imaging to study the distribution of flavonols and dihydrochalcones in Golden Delicious apples. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1123-33. [PMID: 22121202 DOI: 10.1093/jxb/err327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mass spectrometry-based imaging techniques applied to small molecules complement the growing research field of metabolomics and can be used to interpret many important biological processes occurring in plants. In untargeted imaging applications, chemical identification is a critical step since it cannot take advantage of separative techniques applied to neutral molecules (e.g. liquid chromatography). The use of high resolution spectrometers is of great help, but fragmentation experiments are often necessary. In many cases, the information on ion fragmentation is embedded in the data sets, because analytes break up during ionization, but the extraction of this information is not easy considering the complexity of the imaging data files. Here an approach is proposed for applying conventional untargeted MALDI (matrix-assisted laser desorption ionization) profiling and advanced data analysis to perform imaging of metabolites in apple tissues. The pipeline, based on intensity correlation analysis, is used to extract fragmentation information from untargeted, high resolution, wide range mass spectra and to reconstruct compound-specific images which can be used for interpretation purposes. The proposed approach was used to investigate the distribution of glycosylated flavonols and dihydrochalcones in Golden Delicious apples. The results indicate that the method is effective, showing a high potential for ascertaining detailed metabolite localization.
Collapse
Affiliation(s)
- Pietro Franceschi
- Fondazione E. Mach-Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all'Adige (TN), Italy.
| | | | | | | | | |
Collapse
|
244
|
De Paola D, Cattonaro F, Pignone D, Sonnante G. The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics 2012; 13:41. [PMID: 22272770 PMCID: PMC3285030 DOI: 10.1186/1471-2164-13-41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 01/24/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant microRNAs (miRNAs) are involved in post-transcriptional regulatory mechanisms of several processes, including the response to biotic and abiotic stress, often contributing to the adaptive response of the plant to adverse conditions. In addition to conserved miRNAs, found in a wide range of plant species a number of novel species-specific miRNAs, displaying lower levels of expression can be found. Due to low abundance, non conserved miRNAs are difficult to identify and isolate using conventional approaches. Conversely, deep-sequencing of small RNA (sRNA) libraries can detect even poorly expressed miRNAs.No miRNAs from globe artichoke have been described to date. We analyzed the miRNAome from artichoke by deep sequencing four sRNA libraries obtained from NaCl stressed and control leaves and roots. RESULTS Conserved and novel miRNAs were discovered using accepted criteria. The expression level of selected miRNAs was monitored by quantitative real-time PCR. Targets were predicted and validated for their cleavage site. A total of 122 artichoke miRNAs were identified, 98 (25 families) of which were conserved with other plant species, and 24 were novel. Some miRNAs were differentially expressed according to tissue or condition, magnitude of variation after salt stress being more pronounced in roots. Target function was predicted by comparison to Arabidopsis proteins; the 43 targets (23 for novel miRNAs) identified included transcription factors and other genes, most of which involved in the response to various stresses. An unusual cleaved transcript was detected for miR393 target, transport inhibitor response 1. CONCLUSIONS The miRNAome from artichoke, including novel miRNAs, was unveiled, providing useful information on the expression in different organs and conditions. New target genes were identified. We suggest that the generation of secondary short-interfering RNAs from miR393 target can be a general rule in the plant kingdom.
Collapse
Affiliation(s)
- Domenico De Paola
- Institute of Plant Genetics (IGV), National Research Council (CNR), Via Amendola 165/A, 70126 Bari - Italy
| | | | | | | |
Collapse
|
245
|
Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, Gesell A, Abrams SR, Kennedy JA, Constabel CP. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. PLANT PHYSIOLOGY 2012; 158:200-24. [PMID: 22086422 PMCID: PMC3252089 DOI: 10.1104/pp.111.180950] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/25/2011] [Indexed: 05/19/2023]
Abstract
Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.
Collapse
|
246
|
Shetty SM, Chandrashekar A, Venkatesh YP. Eggplant polyphenol oxidase multigene family: cloning, phylogeny, expression analyses and immunolocalization in response to wounding. PHYTOCHEMISTRY 2011; 72:2275-87. [PMID: 21945722 DOI: 10.1016/j.phytochem.2011.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/14/2011] [Accepted: 08/31/2011] [Indexed: 05/20/2023]
Abstract
Though polyphenol oxidase (PPO) genes from tomato and potato have been extensively studied, information about PPO genes in eggplant (Solanum melongena) is lacking. The main objective of this study is to understand the structural and functional aspects of eggplant PPO genes. Six eggplant PPO genes (SmePPO1-6) cloned by RACE and genome walking were found to be intronless and correspond to eight eggplant unigenes. Comprehensive sequence analyses indicated that the eggplant PPO genes exhibit considerable variation in the transit peptide regions, copper-binding domains and UTRs, and fall into two distinct structural classes. Further, PPO gene members appear to exist in clusters on eggplant chromosome 8 as seen in the case of tomato and potato PPOs. During normal growth and development, SmePPO1 and 2 are expressed in roots, whereas the transcript levels of all the eggplant PPO genes vary considerably in leaves, flowers and fruits. SmePPO1 was expressed in Escherichia coli as a GST fusion protein, and immunoblot using rabbit polyclonal antiserum to GST-SmePPO1 detected a major protein band (~70 kDa) and a minor band (~67 kDa) in eggplant fruit extract. Tissue printing indicated the predominant presence of PPO in the exocarp and the areas surrounding the seeds in the mesocarp of eggplant fruits. Immunolocalization of PPOs in eggplant infested with shoot-and-fruit borer revealed localization of the PPO at the site of infection in tender shoots and fruits, and further inside the mature tissues. The upregulation of eggplant PPO gene transcripts following mechanical injury shows that all the genes except SmePPO2 are induced in the fruit over 6h. On the contrary, the transcripts of SmePPO2 and PPO3 are not detectable in the stem, and expression seems to be prominent over a 2h period for SmePPO1 and SmePPO4-6. Our results show that eggplant PPO genes are structurally different, and are differentially expressed in various tissues of eggplant indicating their functional diversity.
Collapse
Affiliation(s)
- Santoshkumar M Shetty
- Department of Biochemistry & Nutrition, Central Food Technological Research Institute (a CSIR Laboratory), Mysore, Karnataka, India
| | | | | |
Collapse
|
247
|
Jouni FJ, Abdolmaleki P, Ghanati F. Oxidative stress in broad bean (Vicia faba L.) induced by static magnetic field under natural radioactivity. Mutat Res 2011; 741:116-21. [PMID: 22108253 DOI: 10.1016/j.mrgentox.2011.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/26/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
The investigation was performed to evaluate the influence of the static magnetic field on oxidative stress in Vicia faba cultivated in soil from high background natural radioactivity in Iran. Soil samples were collected from Ramsar, Iran where the annual radiation absorbed dose from background radiation is substantially higher than 20 mSv/year. The soil samples were then divided into 2 separate groups including high and low natural radioactivity. The plants were continuously exposed to static magnetic field of 15 mT for 8 days, each 8h/day. The results showed that in the plants cultivated in soils with high background natural radioactivity and low background natural radioactivity the activity of antioxidant enzymes as well as flavonoid content were lower than those of the control. Treatment of plants with static magnetic field showed similar results in terms of lowering of antioxidant defense system and increase of peroxidation of membrane lipids. Accumulation of ROS also resulted in chromosomal aberration and DNA damage. This phenomenon was more pronounced when a combination of natural radiation and treatment with static magnetic field was applied. The results suggest that exposure to static magnetic field causes accumulation of reactive oxygen species in V. faba and natural radioactivity of soil exaggerates oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Javani Jouni
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares Univ., POB: 14115-154, Tehran, Iran
| | | | | |
Collapse
|
248
|
Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM. A map of local adaptation in Arabidopsis thaliana. Science 2011; 334:86-9. [PMID: 21980109 DOI: 10.1126/science.1209271] [Citation(s) in RCA: 478] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.
Collapse
Affiliation(s)
- A Fournier-Level
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
249
|
Khalafi L, Rafiee M, Sedaghat S. Effect of inclusion complex on nitrous acid reaction with flavonoids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 81:661-665. [PMID: 21782497 DOI: 10.1016/j.saa.2011.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/18/2011] [Accepted: 06/26/2011] [Indexed: 05/31/2023]
Abstract
The kinetic of the nitrous acid reactions with quercetin and catechin has been studied using spectrophotometric method in aqueous solution. The results show that these antioxidants participate in oxidation reactions with nitrous acid which is derived from protonation of nitrite ion in mild acidic conditions. Corresponding o-quinones as relatively stable products were detected by spectrophotometric techniques. pH dependence of the reactions has been examined and the rate constants of reactions were obtained by non-linear fitting of kinetic profiles. The effect of β-cyclodextrin on the oxidation pathway was another object of this study. It is shown that β-cyclodextrin has an inhibitory effect on the oxidation reaction. The rate constants of oxidation reactions for complexed forms and their stability constants were obtained based on changes in the reaction rates as a function of β-cyclodextrin concentration.
Collapse
Affiliation(s)
- Lida Khalafi
- Department of Chemistry, Faculty of Science, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran.
| | | | | |
Collapse
|
250
|
Ono NN, Britton MT, Fass JN, Nicolet CM, Lin D, Tian L. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery(F). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:800-813. [PMID: 21910825 DOI: 10.1111/j.1744-7909.2011.01073.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pomegranate fruit peel is rich in bioactive plant natural products, such as hydrolyzable tannins and anthocyanins. Despite their documented roles in human nutrition and fruit quality, genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain. Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform. Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp). Candidate genes for hydrolyzable tannin, anthocyanin, flavonoid, terpenoid and fatty acid biosynthesis and/or regulation were identified. Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts. In addition, 115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers. The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate. This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis, identifying genes controlling important agronomic traits, and discovering molecular markers in non-model specialty crop species.
Collapse
Affiliation(s)
- Nadia Nicole Ono
- Department of Plant Sciences, University of California, Davis, CA 95616, USAGenome Center, University of California, Davis, CA 95616, USA
| | - Monica Therese Britton
- Department of Plant Sciences, University of California, Davis, CA 95616, USAGenome Center, University of California, Davis, CA 95616, USA
| | - Joseph Nathaniel Fass
- Department of Plant Sciences, University of California, Davis, CA 95616, USAGenome Center, University of California, Davis, CA 95616, USA
| | - Charles Meyer Nicolet
- Department of Plant Sciences, University of California, Davis, CA 95616, USAGenome Center, University of California, Davis, CA 95616, USA
| | - Dawei Lin
- Department of Plant Sciences, University of California, Davis, CA 95616, USAGenome Center, University of California, Davis, CA 95616, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA 95616, USAGenome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|