201
|
López-Coria M, Sánchez-Nieto S. Trichoderma asperellum Induces Maize Seedling Growth by Activating the Plasma Membrane H +-ATPase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:797-806. [PMID: 27643387 DOI: 10.1094/mpmi-07-16-0138-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although Trichoderma spp. have beneficial effects on numerous plants, there is not enough knowledge about the mechanism by which they improves plant growth. In this study, we evaluated the participation of plasma membrane (PM) H+-ATPase, a key enzyme involved in promoting cell growth, in the elongation induced by T. asperellum and compared it with the effect of 10 μM indol acetic acid (IAA) because IAA promotes elongation and PM H+-ATPase activation. Two seed treatments were tested: biopriming and noncontact. In neither were the tissues colonized by T. asperellum; however, the seedlings were longer than the control seedlings, which also accumulated IAA and increased root acidification. An auxin transport inhibitor (2,3,5 triiodobenzoic acid) reduced the plant elongation induced by Trichoderma spp. T. asperellum seed treatment increased the PM H+-ATPase activity in plant roots and shoots. Additionally, the T. asperellum extracellular extract (TE) activated the PM H+-ATPase activity of microsomal fractions of control plants, although it contained 0.3 μM IAA. Furthermore, the mechanism of activation of PM H+-ATPase was different for IAA and TE; in the latter, the activation depends on the phosphorylation state of the enzyme, suggesting that, in addition to IAA, T. asperellum excretes other molecules that stimulate PM H+-ATPase to induce plant growth.
Collapse
Affiliation(s)
- M López-Coria
- 1 Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán. México 04510, D.F., México; and
| | - S Sánchez-Nieto
- 1 Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán. México 04510, D.F., México; and
| |
Collapse
|
202
|
Sanyal SK, Rao S, Mishra LK, Sharma M, Pandey GK. Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network. Enzymes 2016; 40:31-64. [PMID: 27776782 DOI: 10.1016/bs.enz.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At any given time and location, plants encounter a flood of environmental stimuli. Diverse signal transduction pathways sense these stimuli and generate a diverse array of responses. Calcium (Ca2+) is generated as a second messenger due to these stimuli and is responsible for transducing the signals downstream in the pathway. A large number of Ca2+ sensor-responder components are responsible for Ca2+ signaling in plants. The sensor-responder complexes calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) are pivotal players in Ca2+-mediated signaling. The CIPKs are the protein kinases and hence mediate signal transduction mainly by the process of protein phosphorylation. Elaborate studies conducted in Arabidopsis have shown the involvement of CBL-CIPK complexes in abiotic and biotic stresses, and nutrient deficiency. Additionally, studies in crop plants have also indicated their role in the similar responses. In this chapter, we review the current literature on the CBL and CIPK network, shedding light into the enzymatic property and mechanism of action of CBL-CIPK complexes. We also summarize various reports on the functional modulation of the downstream targets by the CBL-CIPK modules across all plant species.
Collapse
Affiliation(s)
- S K Sanyal
- University of Delhi South Campus, New Delhi, India
| | - S Rao
- University of Delhi South Campus, New Delhi, India
| | - L K Mishra
- University of Delhi South Campus, New Delhi, India
| | - M Sharma
- University of Delhi South Campus, New Delhi, India
| | - G K Pandey
- University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
203
|
Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Genes (Basel) 2016; 7:genes7090062. [PMID: 27618104 PMCID: PMC5042392 DOI: 10.3390/genes7090062] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) network is one of the vital regulatory mechanisms which decode calcium signals triggered by environmental stresses. Although the complicated regulation mechanisms and some novel functions of CBL-CIPK signaling network in plants need to be further elucidated, numerous advances have been made in its roles involved in the abiotic stresses. This review chiefly introduces the progresses about protein interaction, classification and expression pattern of different CBLs and CIPKs in Arabidopsis thaliana, summarizes the physiological roles of CBL-CIPK pathway while pointing out some new research ideas in the future, and finally presents some unique perspectives for the further study. The review might provide new insights into the functional characterization of CBL-CIPK pathway in Arabidopsis, and contribute to a deeper understanding of CBL-CIPK network in other plants or stresses.
Collapse
|
204
|
Castro PH, Couto D, Freitas S, Verde N, Macho AP, Huguet S, Botella MA, Ruiz-Albert J, Tavares RM, Bejarano ER, Azevedo H. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:143-59. [PMID: 27325215 DOI: 10.1007/s11103-016-0500-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Sumoylation is an essential post-translational regulator of plant development and the response to environmental stimuli. SUMO conjugation occurs via an E1-E2-E3 cascade, and can be removed by SUMO proteases (ULPs). ULPs are numerous and likely to function as sources of specificity within the pathway, yet most ULPs remain functionally unresolved. In this report we used loss-of-function reverse genetics and transcriptomics to functionally characterize Arabidopsis thaliana ULP1c and ULP1d SUMO proteases. GUS reporter assays implicated ULP1c/d in various developmental stages, and subsequent defects in growth and germination were uncovered using loss-of-function mutants. Microarray analysis evidenced not only a deregulation of genes involved in development, but also in genes controlled by various drought-associated transcriptional regulators. We demonstrated that ulp1c ulp1d displayed diminished in vitro root growth under low water potential and higher stomatal aperture, yet leaf transpirational water loss and whole drought tolerance were not significantly altered. Generation of a triple siz1 ulp1c ulp1d mutant suggests that ULP1c/d and the SUMO E3 ligase SIZ1 may display separate functions in development yet operate epistatically in response to water deficit. We provide experimental evidence that Arabidopsis ULP1c and ULP1d proteases act redundantly as positive regulators of growth, and operate mainly as isopeptidases downstream of SIZ1 in the control of water deficit responses.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Daniel Couto
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
| | - Sara Freitas
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno Verde
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alberto P Macho
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 201602, Shanghai, China
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, 91057, Evry Cedex, France
| | - Miguel Angel Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Molecular y Bioquímica, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Rui Manuel Tavares
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
205
|
Toda Y, Wang Y, Takahashi A, Kawai Y, Tada Y, Yamaji N, Feng Ma J, Ashikari M, Kinoshita T. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice. PLANT & CELL PHYSIOLOGY 2016; 57:1220-30. [PMID: 27048369 PMCID: PMC4904443 DOI: 10.1093/pcp/pcw070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/30/2016] [Indexed: 05/24/2023]
Abstract
The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species.
Collapse
Affiliation(s)
- Yosuke Toda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Yin Wang
- Institute for Advanced Research, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Akira Takahashi
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, 305-8602 Japan
| | - Yuya Kawai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Yasuomi Tada
- Center of Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Motoyuki Ashikari
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| |
Collapse
|
206
|
Zhao S, Jiang Y, Zhao Y, Huang S, Yuan M, Zhao Y, Guo Y. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor. THE PLANT CELL 2016; 28:1422-39. [PMID: 27268429 PMCID: PMC4944410 DOI: 10.1105/tpc.16.00078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/06/2016] [Indexed: 05/03/2023]
Abstract
The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxiu Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
207
|
Sun X, Sun M, Jia B, Qin Z, Yang K, Chen C, Yu Q, Zhu Y. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:514-529. [PMID: 27121031 DOI: 10.1111/tpj.13187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Zhiwei Qin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Kejun Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chao Chen
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Qingyue Yu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| |
Collapse
|
208
|
Tian Q, Zhang X, Yang A, Wang T, Zhang WH. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:70-79. [PMID: 26993237 DOI: 10.1016/j.plantsci.2016.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Iron deficiency is one of the major limiting factors affecting quality and production of crops in calcareous soils. Numerous signaling molecules and transcription factors have been demonstrated to play a regulatory role in adaptation of plants to iron deficiency. However, the mechanisms underlying the iron deficiency-induced physiological processes remain to be fully dissected. Here, we demonstrated that the protein kinase CIPK23 was involved in iron acquisition. Lesion of CIPK23 rendered Arabidopsis mutants hypersensitive to iron deficiency, as evidenced by stronger chlorosis in young leaves and lower iron concentration than wild-type plants under iron-deficient conditions by down-regulating ferric chelate reductase activity. We found that iron deficiency evoked an increase in cytosolic Ca(2+) concentration and the elevated Ca(2+) would bind to CBL1/CBL9, leading to activation of CIPK23. These novel findings highlight the involvement of calcium-dependent CBL-CIPK23 complexes in the regulation of iron acquisition. Moreover, mutation of CIPK23 led to changes in contents of mineral elements, suggesting that CBL-CIPK23 complexes could be as "nutritional sensors" to sense and regulate the mineral homeostasis in Arabisopsis.
Collapse
Affiliation(s)
- Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
209
|
Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S. Rapid, Long-Distance Electrical and Calcium Signaling in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:287-307. [PMID: 27023742 DOI: 10.1146/annurev-arplant-043015-112130] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant.
Collapse
Affiliation(s)
- Won-Gyu Choi
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Richard Hilleary
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Sarah J Swanson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Su-Hwa Kim
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| |
Collapse
|
210
|
Li Z, Zhang Y, Xu Y, Zhang X, Peng Y, Ma X, Huang L, Yan Y. Physiological and iTRAQ-Based Proteomic Analyses Reveal the Function of Spermidine on Improving Drought Tolerance in White Clover. J Proteome Res 2016; 15:1563-79. [PMID: 27030016 DOI: 10.1021/acs.jproteome.6b00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endogenous spermidine interacting with phytohormones may be involved in the regulation of differentially expressed proteins (DEPs) associated with drought tolerance in white clover. Plants treated with or without spermidine (50 μM) were subjected to 20% PEG 6000 nutrient solution to induce drought stress (50% leaf-relative water content). The results showed that increased endogenous spermidine induced by exogenous spermidine altered endogenous phytohormones in association with improved drought tolerance, as demonstrated by the delay in water-deficit development, improved photosynthesis and water use efficiency, and lower oxidative damage. As compared to untreated plants, Spd-treated plants maintained a higher abundance of DEPs under drought stress involved in (1) protein biosynthesis (ribosomal and chaperone proteins); (2) amino acids synthesis; (3) the carbon and energy metabolism; (4) antioxidant and stress defense (ascorbate peroxidase, glutathione peroxidase, and dehydrins); and (5) GA and ABA signaling pathways (gibberellin receptor GID1, ABA-responsive protein 17, and ABA stress ripening protein). Thus, the findings of proteome could explain the Spd-induced physiological effects associated with drought tolerance. The analysis of functional protein-protein networks further proved that the alteration of endogenous spermidine and phytohormones induced the interaction among ribosome, photosynthesis, carbon metabolism, and amino acid biosynthesis. These differences could contribute to improved drought tolerance.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yi Xu
- Department of Plant Biology and Pathology, Rutgers University , 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yanhong Yan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| |
Collapse
|
211
|
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology. MOLECULAR PLANT 2016; 9:323-337. [PMID: 26584714 DOI: 10.1016/j.molp.2015.11.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 05/21/2023]
Abstract
The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase.
Collapse
Affiliation(s)
- Janus Falhof
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark.
| |
Collapse
|
212
|
Kleist TJ, Luan S. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment. PLANT, CELL & ENVIRONMENT 2016; 39:467-481. [PMID: 26139029 DOI: 10.1111/pce.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses.
Collapse
Affiliation(s)
- Thomas J Kleist
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| | - Sheng Luan
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| |
Collapse
|
213
|
Velasquez SM, Barbez E, Kleine-Vehn J, Estevez JM. Auxin and Cellular Elongation. PLANT PHYSIOLOGY 2016; 170:1206-15. [PMID: 26787325 PMCID: PMC4775141 DOI: 10.1104/pp.15.01863] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 05/04/2023]
Abstract
Auxin is a crucial growth regulator in plants. However, a comprehensive understanding of how auxin induces cell expansion is perplexing, because auxin acts in a concentration- and cell type-dependent manner. Consequently, it is desirable to focus on certain cell types to exemplify the underlying growth mechanisms. On the other hand, plant tissues display supracellular growth (beyond the level of single cells); hence, other cell types might compromise the growth of a certain tissue. Tip-growing cells do not display neighbor-induced growth constraints and, therefore, are a valuable source of information for growth-controlling mechanisms. Here, we focus on auxin-induced cellular elongation in root hairs, exposing a mechanistic view of plant growth regulation. We highlight a complex interplay between auxin metabolism and transport, steering root hair development in response to internal and external triggers. Auxin signaling modules and downstream cascades of transcription factors define a developmental program that appears rate limiting for cellular growth. With this knowledge in mind, the root hair cell is a very suitable model system in which to dissect cellular effectors required for cellular expansion.
Collapse
Affiliation(s)
- Silvia Melina Velasquez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BWE, Argentina (S.M.V., J.M.E.); andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria (E.B., J.K.-V.)
| | - Elke Barbez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BWE, Argentina (S.M.V., J.M.E.); andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria (E.B., J.K.-V.)
| | - Jürgen Kleine-Vehn
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BWE, Argentina (S.M.V., J.M.E.); andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria (E.B., J.K.-V.)
| | - José M Estevez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BWE, Argentina (S.M.V., J.M.E.); andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria (E.B., J.K.-V.)
| |
Collapse
|
214
|
Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1015-31. [PMID: 26507891 DOI: 10.1093/jxb/erv465] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Igor Pottosin
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, México
| |
Collapse
|
215
|
Hu DG, Ma QJ, Sun CH, Sun MH, You CX, Hao YJ. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. PHYSIOLOGIA PLANTARUM 2016; 156:201-214. [PMID: 26096498 DOI: 10.1111/ppl.12354] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Soil salinity hinders the growth of most higher plants and becomes a gradually increasing threat to the agricultural production of such crops as the woody plant apple. In this study, a calcineurin B-like protein (CBL)-interacting protein kinase, MdCIPK24-LIKE1 (named as MdSOS2L1), was identified. Quantitative real-time polymerase chain reaction (qRT-PCR) assay revealed that the expression of MdSOS2L1 was upregulated by CaCl2 . Yeast two-hybrid (Y2H) assay and transiently transgenic analysis demonstrated that the MdSOS2L1 protein kinase physically interacted with MdCBL1, MdCBL4 and MdCBL10 proteins to increase salt tolerance in apple. Furthermore, iTRAQ proteome combined with liquid chromatography-tandem mass spectrometry (LC/MS) analysis found that several proteins, which are involved in reactive oxygen species (ROS) scavenging, procyanidin biosynthesis and malate metabolism, were induced in MdSOS2L1-overexpressing apple plants. Subsequent studies have shown that MdSOS2L1 increased antioxidant metabolites such as procyanidin and malate to improve salt tolerance in apple and tomato. In summary, our studies provide a mechanism in which SOS2L1 enhances the salt stress tolerance in apple and tomato.
Collapse
Affiliation(s)
- Da-Gang Hu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Qi-Jun Ma
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Mei-Hong Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| |
Collapse
|
216
|
Wang X, Chang L, Tong Z, Wang D, Yin Q, Wang D, Jin X, Yang Q, Wang L, Sun Y, Huang Q, Guo A, Peng M. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization. Sci Rep 2016; 6:19643. [PMID: 26791570 PMCID: PMC4726164 DOI: 10.1038/srep19643] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Lili Chang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Zheng Tong
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dongyang Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Qi Yin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Liming Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
217
|
Haruta M, Gray WM, Sussman MR. Regulation of the plasma membrane proton pump (H(+)-ATPase) by phosphorylation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:68-75. [PMID: 26476298 PMCID: PMC4679459 DOI: 10.1016/j.pbi.2015.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/04/2023]
Abstract
In plants and fungi, energetics at the plasma membrane is provided by a large protonmotive force (PMF) generated by the family of P-type ATPases specialized for proton transport (commonly called PM H(+)-ATPases or, in Arabidopsis, AHAs for Arabidopsis H(+)-ATPases). Studies have demonstrated that this 100-kDa protein is essential for plant growth and development. Posttranslational modifications of the H(+)-ATPase play crucial roles in its regulation. Phosphorylation of several Thr and Ser residues within the carboxy terminal regulatory domain composed of ∼100 amino acids change in response to environmental stimuli, endogenous hormones, and nutrient conditions. Recently developed mass spectrometric technologies provide a means to carefully quantify these changes in H(+)-ATPase phosphorylation at the different sites. These chemical modifications can then be genetically tested in planta by complementing the loss-of-function aha mutants with phosphomimetic mutations. Interestingly, recent data suggest that phosphatase-mediated changes in PM H(+)-ATPase phosphorylation are important in mediating auxin-regulated growth. Thus, as with another hormone (abscisic acid), dephosphorylation by phosphatases, rather than kinase mediated phosphorylation, may be an important focal point for regulation during plant signal transduction. Although interactions with other proteins have also been implicated in ATPase regulation, the very hydrophobic nature and high concentration of this polytopic protein presents special challenges in evaluating the biological significance of these interactions. Only by combining biochemical and genetic experiments can we attempt to meet these challenges to understand the essential molecular details by which this protein functions in planta.
Collapse
Affiliation(s)
- Miyoshi Haruta
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States
| | - William M Gray
- Department of Plant Biology, University of Minnesota, United States
| | - Michael R Sussman
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States.
| |
Collapse
|
218
|
Sanyal SK, Pandey A, Pandey GK. The CBL-CIPK signaling module in plants: a mechanistic perspective. PHYSIOLOGIA PLANTARUM 2015; 155:89-108. [PMID: 25953089 DOI: 10.1111/ppl.12344] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 05/21/2023]
Abstract
In a given environment, plants are constantly exposed to multitudes of stimuli. These stimuli are sensed and transduced to generate a diverse array of responses by several signal transduction pathways. Calcium (Ca2+ ) signaling is one such important pathway involved in transducing a large number of stimuli or signals in both animals and plants. Ca2+ engages a plethora of decoders to mediate signaling in plants. Among these groups of decoders, the sensor responder complex of calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) play a very significant role in transducing these signals. The signal transduction mechanism in most cases is phosphorylation events, but some structural role for the pair has also come to light recently. In this review, we discuss the structural nature of the sensor-responder duo; their mechanism of substrate phosphorylation and also their structural role in modulating targets. Moreover, the mechanism of complex formation and mechanistic role of protein phosphatases with CBL-CIPK module has been mentioned. A comparison of CBL-CIPK with other decoders of Ca2+ signaling in plants also signifies the relatedness and diversity in signaling pathways. Further an attempt has been made to compare this aspect of Ca2+ signaling pathways in different plant species to develop a holistic understanding of conservation of stimulus-response-coupling mediated by this Ca2+ -CBL-CIPK module.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
219
|
Manik SMN, Shi S, Mao J, Dong L, Su Y, Wang Q, Liu H. The Calcium Sensor CBL-CIPK Is Involved in Plant's Response to Abiotic Stresses. Int J Genomics 2015; 2015:493191. [PMID: 26495279 PMCID: PMC4606401 DOI: 10.1155/2015/493191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/03/2015] [Indexed: 12/02/2022] Open
Abstract
Abiotic stress halts the physiological and developmental process of plant. During stress condition, CBL-CIPK complex is identified as a primary element of calcium sensor to perceive environmental signals. Recent studies established that this complex regulates downstream targets like ion channels and transporters in adverse stages conditions. Crosstalks between the CBL-CIPK complex and different abiotic stresses can extend our research area, which can improve and increase the production of genetically modified crops in response to abiotic stresses. How this complex links with environmental signals and creates adjustable circumstances under unfavorable conditions is now one of the burning issues. Diverse studies are already underway to delineate this signalling mechanism underlying different interactions. Therefore, up to date experimental results should be concisely published, thus paving the way for further research. The present review will concisely recapitulate the recent and ongoing research progress of positive ions (Mg(2+), Na(+), and K(+)), negative ions (NO3 (-), PO4 (-)), and hormonal signalling, which are evolving from accumulating results of analyses of CBL and CIPK loss- or gain-of-function experiments in different species along with some progress and perspectives of our works. In a word, this review will give one step forward direction for more functional studies in this area.
Collapse
Affiliation(s)
- S. M. Nuruzzaman Manik
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao 266101, China
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sujuan Shi
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao 266101, China
- Qingdao Agricultural University, Qingdao 266109, China
| | - Jingjing Mao
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao 266101, China
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianhong Dong
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao 266101, China
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Su
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao 266101, China
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao 266101, China
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of CAAS, Ministry of Agriculture, Qingdao 266101, China
| |
Collapse
|
220
|
Ok SH, Cho JH, Oh SI, Choi MN, Ma JY, Shin JS, Kim KN. Calcineurin B-like 3 calcium sensor associates with and inhibits 5'-methylthioadenosine nucleosidase 2 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:228-40. [PMID: 26259190 DOI: 10.1016/j.plantsci.2015.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 05/04/2023]
Abstract
Calcineurin B-like (CBL) proteins constitute a unique family of calcium sensor relays in plants. It is well known that CBLs detect the calcium signals elicited by a variety of abiotic stresses and relay the information to a group of serine/threonine protein kinases called CBL-interacting protein kinases (CIPKs). In this study, we found that a few CBL members can also target another group of enzymes 5'-methylthioadenosine nucleosidases (MTANs), which are encoded by two genes in Arabidopsis, AtMTAN1 and AtMTAN2. In the yeast two-hybrid system, AtMTAN1 interacted with multiple CBL members such as CBL2, CBL3 and CBL6, whereas AtMTAN2 associated exclusively with CBL3. We further demonstrated that the CBL3-AtMTAN2 association occurs in a calcium-dependent manner, which results in a significant decrease in the enzyme activity of the AtMTAN2 protein. Taken together, these results clearly indicate that the CBL family can target at least two distinct groups of enzymes (CIPKs and MTANs), conferring an additional level of complexity on the CBL-mediated signaling networks. In addition, our finding also provides a novel molecular mechanism by which calcium signals are transduced to alter metabolite profiles in plants.
Collapse
Affiliation(s)
- Sung Han Ok
- Department of Molecular Biology, PERI, Sejong University, Seoul 143-747, Republic of Korea
| | - Joo Hyuk Cho
- Department of Molecular Biology, PERI, Sejong University, Seoul 143-747, Republic of Korea
| | - Seung-Ick Oh
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Mi Na Choi
- Department of Molecular Biology, PERI, Sejong University, Seoul 143-747, Republic of Korea
| | - Jae-Yeon Ma
- Department of Molecular Biology, PERI, Sejong University, Seoul 143-747, Republic of Korea
| | - Jeong-Sheop Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Kyung-Nam Kim
- Department of Molecular Biology, PERI, Sejong University, Seoul 143-747, Republic of Korea.
| |
Collapse
|
221
|
Szymanski WG, Zauber H, Erban A, Gorka M, Wu XN, Schulze WX. Cytoskeletal Components Define Protein Location to Membrane Microdomains. Mol Cell Proteomics 2015; 14:2493-509. [PMID: 26091700 PMCID: PMC4563731 DOI: 10.1074/mcp.m114.046904] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases.
Collapse
Affiliation(s)
- Witold G Szymanski
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Henrik Zauber
- §Max-Delbrück Center of Molecular Medicine, Robert-Rössle-Straβe 10, 13092 Berlin, Germany
| | - Alexander Erban
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Michal Gorka
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Xu Na Wu
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Waltraud X Schulze
- ¶University of Hohenheim, Department of Plant Systems Biology, 70593 Stuttgart, Germany
| |
Collapse
|
222
|
Nguyen TT, Volkening JD, Rose CM, Venkateshwaran M, Westphall MS, Coon JJ, Ané JM, Sussman MR. Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots. FEBS Lett 2015; 589:2186-93. [PMID: 26188545 PMCID: PMC5991090 DOI: 10.1016/j.febslet.2015.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
In plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells.
Collapse
Affiliation(s)
- Thao T Nguyen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jeremy D Volkening
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Christopher M Rose
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Muthusubramanian Venkateshwaran
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States; School of Agriculture, University of Wisconsin-Platteville, Platteville, WI 53818, United States
| | - Michael S Westphall
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
223
|
Li J, Xu HH, Liu WC, Zhang XW, Lu YT. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation. PLANT PHYSIOLOGY 2015; 168:1777-91. [PMID: 26109425 PMCID: PMC4528753 DOI: 10.1104/pp.15.00523] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/23/2015] [Indexed: 05/03/2023]
Abstract
Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Heng-Hao Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Xiao-Wei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| |
Collapse
|
224
|
Jia F, Wang C, Huang J, Yang G, Wu C, Zheng C. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4683-97. [PMID: 26041321 PMCID: PMC4507775 DOI: 10.1093/jxb/erv245] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Skp1-Cullin-F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na(+) homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na(+) accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis.
Collapse
Affiliation(s)
- Fengjuan Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chunyan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| |
Collapse
|
225
|
Siemieniuk A, Karcz W. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells. AOB PLANTS 2015; 7:plv070. [PMID: 26134122 PMCID: PMC4543891 DOI: 10.1093/aobpla/plv070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/18/2015] [Indexed: 05/26/2023]
Abstract
The role of potassium (K(+)) and calcium (Ca(2+)) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K(+) and Ca(2+) ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea mays) coleoptiles. Membrane potentials of coleoptile parenchymal cells, incubated in media containing IAA, FC and different concentrations of K(+) and Ca(2+), were also determined. Growth experiments have shown that in the absence of K(+) in the incubation medium, both endogenous and IAA- or FC-induced growth were significantly inhibited by 0.1 and 1 mM Ca(2+), respectively, while in the presence of 1 mM K(+) they were inhibited only by 1 mM Ca(2+). At 10 mM K(+), endogenous growth and growth induced by either IAA or FC did not depend on Ca(2+) concentration. TEA-Cl, a potassium channel blocker, added 1 h before IAA or FC, caused a reduction of growth by 59 or 45 %, respectively. In contrast to TEA-Cl, verapamil, the Ca(2+) channel blocker, did not affect IAA- and FC-induced growth. It was also found that in parenchymal cells of maize coleoptile segments, membrane potential (Em) was strongly affected by the medium K(+), independently of Ca(2+). However, lack of Ca(2+) in the incubation medium significantly reduced the IAA- and FC-induced membrane potential hyperpolarization. TEA-Cl applied to the control medium in the same way as in growth experiments caused Em hyperpolarization synergistic with hyperpolarization produced by IAA or FC. Verapamil did not change either the Em of parenchymal cells incubated in the control medium or the IAA- and FC-induced membrane hyperpolarization. The data presented here have been discussed considering the role of K(+) uptake channels in regulation of plant cell growth.
Collapse
Affiliation(s)
- Agnieszka Siemieniuk
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Silesia, Poland
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Silesia, Poland
| |
Collapse
|
226
|
Młodzińska E, Kłobus G, Christensen MD, Fuglsang AT. The plasma membrane H(+) -ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. PHYSIOLOGIA PLANTARUM 2015; 154:270-82. [PMID: 25382626 DOI: 10.1111/ppl.12305] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/19/2014] [Indexed: 05/21/2023]
Abstract
In this study the role of the plasma membrane (PM) H(+) -ATPase for growth and development of roots as response to nitrogen starvation is studied. It is known that root development differs dependent on the availability of different mineral nutrients. It includes processes such as initiation of lateral root primordia, root elongation and increase of the root biomass. However, the signal transduction mechanisms, which enable roots to sense changes in different mineral environments and match their growth and development patterns to actual conditions in the soil, are still unknown. Most recent comments have focused on one of the essential macroelements, namely nitrogen, and its role in the modification of the root architecture of Arabidopsis thaliana. As yet, not all elements of the signal transduction pathway leading to the perception of the nitrate stimulus, and hence to anatomical changes of the root, which allow for adaptation to variable ion concentrations in the soil, are known. Our data demonstrate that primary and lateral root length were shorter and lower in aha2 mutant lines compared with wild-type plants in response to a variable nitrogen source. This suggests that the PM proton pump AHA2 (Arabidopsis plasma membrane H(+) -ATPase isoform 2) is important for root growth and development during different nitrogen regimes. This is possible by controlling the pH homeostasis in the root during growth and development as shown by pH biosensors.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, 50-328, Poland
| | - Grażyna Kłobus
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, 50-328, Poland
| | - Monica Daugbjerg Christensen
- PUMPkin - Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Thoe Fuglsang
- PUMPkin - Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
227
|
Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J, Xu H, Guo A, Zhao H, Zhao Y, Cao C, Yang Y, Schumaker KS, Guo Y, Xie CG. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE5. PLANT PHYSIOLOGY 2015; 168:659-76. [PMID: 25858916 PMCID: PMC4453773 DOI: 10.1104/pp.114.255455] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/04/2015] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-related protein kinase3-type protein kinase, SOS2-like protein kinase5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, abscisic acid-insensitive5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-like calcium binding proteins) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Xiaona Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hongmei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yuguo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yili Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Wenbo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yunxia Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feifei Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feiyi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Mengyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Jingjiang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Aiguang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Huixian Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Cuiling Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yongqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Karen S Schumaker
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Chang Gen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| |
Collapse
|
228
|
Kulik A, Noirot E, Grandperret V, Bourque S, Fromentin J, Salloignon P, Truntzer C, Dobrowolska G, Simon-Plas F, Wendehenne D. Interplays between nitric oxide and reactive oxygen species in cryptogein signalling. PLANT, CELL & ENVIRONMENT 2015; 38:331-48. [PMID: 24506708 DOI: 10.1111/pce.12295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/20/2014] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways.
Collapse
Affiliation(s)
- Anna Kulik
- INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Planes MD, Niñoles R, Rubio L, Bissoli G, Bueso E, García-Sánchez MJ, Alejandro S, Gonzalez-Guzmán M, Hedrich R, Rodriguez PL, Fernández JA, Serrano R. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:813-25. [PMID: 25371509 PMCID: PMC4321545 DOI: 10.1093/jxb/eru442] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for H(+) efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit H(+) efflux (H(+)-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H(+)-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (H(+) efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to K(+) efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the H(+)-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of H(+)-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of H(+)-ATPase while the guard-cell kinase SnRK2.6/OST1 did not.
Collapse
Affiliation(s)
- María D Planes
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Lourdes Rubio
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - María J García-Sánchez
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Santiago Alejandro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Miguel Gonzalez-Guzmán
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Rainer Hedrich
- Institute for Plant Physiology and Biophysics, University Würzburg, Julis-von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - José A Fernández
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| |
Collapse
|
230
|
Costa JM, Monnet F, Jannaud D, Leonhardt N, Ksas B, Reiter IM, Pantin F, Genty B. Open All Night Long: the dark side of stomatal control. PLANT PHYSIOLOGY 2015; 167:289-94. [PMID: 25527716 PMCID: PMC4326751 DOI: 10.1104/pp.114.253369] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 05/20/2023]
Abstract
Isolation of Arabidopsis mutants that maintain stomata open all night long credits the existence of dedicated regulators for stomatal closure in darkness.
Collapse
Affiliation(s)
- J Miguel Costa
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Fabien Monnet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Dorothée Jannaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Nathalie Leonhardt
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Brigitte Ksas
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Ilja M Reiter
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Florent Pantin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Bernard Genty
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| |
Collapse
|
231
|
Abstract
Plant kinases are one of the largest protein families in Arabidopsis. There are almost 600 membrane-located receptor kinases and almost 400 soluble kinases with distinct functions in signal transduction. In this minireview we discuss phylogeny and functional context of prominent members from major protein kinase subfamilies in plants.
Collapse
Affiliation(s)
- Monika Zulawski
- Max Planck Institute of molecular Plant Physiology, 14470, Potsdam, Germany
| | | |
Collapse
|
232
|
Guo M, Wang R, Wang J, Hua K, Wang Y, Liu X, Yao S. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice. PLoS One 2014; 9:e112515. [PMID: 25473841 PMCID: PMC4256374 DOI: 10.1371/journal.pone.0112515] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress.
Collapse
Affiliation(s)
- Mingxin Guo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruci Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Hua
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
233
|
Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J, Thuesen KH, Ytting CK, Oehlenschlæger CB, Mahmood K, Sondergaard TE, Shabala S, Palmgren MG. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:951-64. [PMID: 25267325 DOI: 10.1111/tpj.12680] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/22/2023]
Abstract
Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.
Collapse
Affiliation(s)
- Anja T Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc Natl Acad Sci U S A 2014; 111:E4532-41. [PMID: 25288725 DOI: 10.1073/pnas.1407610111] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells have developed specific protective molecular machinery against environmental stresses. The family of CBL-interacting protein kinases (CIPK) and their interacting activators, the calcium sensors calcineurin B-like (CBLs), work together to decode calcium signals elicited by stress situations. The molecular basis of biological activation of CIPKs relies on the calcium-dependent interaction of a self-inhibitory NAF motif with a particular CBL, the phosphorylation of the activation loop by upstream kinases, and the subsequent phosphorylation of the CBL by the CIPK. We present the crystal structures of the NAF-truncated and pseudophosphorylated kinase domains of CIPK23 and CIPK24/SOS2. In addition, we provide biochemical data showing that although CIPK23 is intrinsically inactive and requires an external stimulation, CIPK24/SOS2 displays basal activity. This data correlates well with the observed conformation of the respective activation loops: Although the loop of CIPK23 is folded into a well-ordered structure that blocks the active site access to substrates, the loop of CIPK24/SOS2 protrudes out of the active site and allows catalysis. These structures together with biochemical and biophysical data show that CIPK kinase activity necessarily requires the coordinated releases of the activation loop from the active site and of the NAF motif from the nucleotide-binding site. Taken all together, we postulate the basis for a conserved calcium-dependent NAF-mediated regulation of CIPKs and a variable regulation by upstream kinases.
Collapse
|
235
|
Zhang XH, Li B, Hu YG, Chen L, Min DH. The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Int J Mol Sci 2014; 15:16196-210. [PMID: 25222556 PMCID: PMC4200794 DOI: 10.3390/ijms150916196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
The vacuolar type H+-ATPase (V-type H+-ATPase) plays important roles in establishing an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this paper, a putative E subunit of the V-type H+-ATPase gene, W36 was isolated from stress-induced wheat de novo transcriptome sequencing combining with 5'-RACE and RT-PCR methods. The full-length of W36 gene was 1097 bp, which contained a 681 bp open reading frame (ORF) and encoded 227 amino acids. Southern blot analysis indicated that W36 was a single-copy gene. The quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of W36 could be upregulated by drought, cold, salt, and exogenous ABA treatment. A subcellular localization assay showed that the W36 protein accumulated in the cytoplasm. Isolation of the W36 promoter revealed some cis-acting elements responding to abiotic stresses. Transgenic Arabidopsis plants overexpressing W36 were enhanced salt and mannitol tolerance. These results indicate that W36 is involved in the plant response to osmotic stress.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Bo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
236
|
Cabot C, Sibole JV, Barceló J, Poschenrieder C. Lessons from crop plants struggling with salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:2-13. [PMID: 25113445 DOI: 10.1016/j.plantsci.2014.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/28/2014] [Accepted: 04/21/2014] [Indexed: 05/25/2023]
Abstract
Salinity is a persistent problem, causing important losses in irrigated agriculture. According to global climate change prediction models, salinity is expected to expand in the near future. Although intensive studies have been conducted on the mechanisms by which plants cope with saline conditions, the multi-component nature of salt stress tolerance has rendered most plant breeding efforts to improve the plant's response to salinity unsuccessful. This occurs despite the extensive genetic diversity shown by higher plants for salt tolerance and the similar mechanisms found in salt-sensitive and salt-tolerant genotypes in response to the presence of excess of salts in the growth media. On the other hand, there is an urge to increase crop yield to the maximum to cope with the growing world population demands for food and fuel. Here, we examine some major elements and signaling mechanisms involved in the plant's response to salinity following the pathway of salt-footprints from the soil environment to leaf. Some of the possible contrasting determinants for a better-balanced resource allocation between salt tolerance and plant growth and yield are considered.
Collapse
Affiliation(s)
- Catalina Cabot
- Departament de Biologia, Universitat de les Illes Balears, 07122 Palma, Illes Balears, Spain.
| | - John V Sibole
- Departament de Biologia, Universitat de les Illes Balears, 07122 Palma, Illes Balears, Spain
| | - Juan Barceló
- Lab. Fisiologia Vegetal, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | |
Collapse
|
237
|
Morgan SH, Maity PJ, Geilfus CM, Lindberg S, Mühling KH. Leaf ion homeostasis and plasma membrane H(+)-ATPase activity in Vicia faba change after extra calcium and potassium supply under salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:244-53. [PMID: 25010036 DOI: 10.1016/j.plaphy.2014.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/17/2014] [Indexed: 05/15/2023]
Abstract
Salt stress in plants impacts apoplastic ion activities and cytosolic ionic homeostasis. The ameliorating effects exerted by calcium or potassium on compartmentation of ions in leaves under salinity are not fully understood. To clarify how calcium or potassium supply could ameliorate ion homeostasis and ATPase activities under salinity, 5 mM CaSO4 or 10 mM K2SO4 were added with, or without, 100 mM NaCl for 7 d and 21 d to Vicia faba grown in hydroponics. The apoplastic pH was detected with Oregon Green dextran dye in intact second-uppermost leaves by microscopy-based ratio imaging. The cytosolic Ca(2+), Na(+), K(+) activities and pH were detected in protoplasts loaded with the acetoxy methyl-esters of Fura-2, SBFI, PBFI and BCECF, respectively, using epi-fluorescence microscopy. Furthermore, total Ca(2+), Na(+), K(+) concentrations and growth parameters were investigated. The ATPase hydrolyzing activity increased with time, but decreased after long salinity treatment. The activity largely increased in calcium-treated plants, but was depressed in potassium-treated plants after 7 d. The calcium supply increased Vmax, and the ATPase activity increased with salinity in a non-competitive way for 7 d and 21 d. The potassium supply instead decreased activity competitively with Na(+), after 21 d of salinity, with different effects on Km and Vmax. The confirmed higher ATPase activity was related with apoplast acidification, cytosol alkalinization and low cytosolic [Na(+)], and thus, might be an explanation why extra calcium improved shoot and leaf growth.
Collapse
Affiliation(s)
- Sherif H Morgan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Institute of Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118 Kiel, Germany; Plant Physiology Section, Plant Botany Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt.
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118 Kiel, Germany.
| | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Karl Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118 Kiel, Germany.
| |
Collapse
|
238
|
Pertl-Obermeyer H, Schulze WX, Obermeyer G. In vivo cross-linking combined with mass spectrometry analysis reveals receptor-like kinases and Ca2+ signalling proteins as putative interaction partners of pollen plasma membrane H+ ATPases. J Proteomics 2014; 108:17-29. [DOI: 10.1016/j.jprot.2014.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
239
|
Yu Y, Huang W, Chen H, Wu G, Yuan H, Song X, Kang Q, Zhao D, Jiang W, Liu Y, Wu J, Cheng L, Yao Y, Guan F. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene 2014; 549:113-22. [PMID: 25058012 DOI: 10.1016/j.gene.2014.07.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 01/04/2023]
Abstract
The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress.
Collapse
Affiliation(s)
- Ying Yu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Wengong Huang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongyu Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangwen Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongmei Yuan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Xixia Song
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Qinghua Kang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Dongsheng Zhao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Weidong Jiang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yan Liu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Jianzhong Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yubo Yao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Fengzhi Guan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China.
| |
Collapse
|
240
|
Lumba S, Toh S, Handfield LF, Swan M, Liu R, Youn JY, Cutler SR, Subramaniam R, Provart N, Moses A, Desveaux D, McCourt P. A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Dev Cell 2014; 29:360-72. [PMID: 24823379 DOI: 10.1016/j.devcel.2014.04.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022]
Abstract
The sesquiterpenoid abscisic acid (ABA) mediates an assortment of responses across a variety of kingdoms including both higher plants and animals. In plants, where most is known, a linear core ABA signaling pathway has been identified. However, the complexity of ABA-dependent gene expression suggests that ABA functions through an intricate network. Here, using systems biology approaches that focused on genes transcriptionally regulated by ABA, we defined an ABA signaling network of over 500 interactions among 138 proteins. This map greatly expanded ABA core signaling but was still manageable for systematic analysis. For example, functional analysis was used to identify an ABA module centered on two sucrose nonfermenting (SNF)-like kinases. We also used coexpression analysis of interacting partners within the network to uncover dynamic subnetwork structures in response to different abiotic stresses. This comprehensive ABA resource allows for application of approaches to understanding ABA functions in higher plants.
Collapse
Affiliation(s)
- Shelley Lumba
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Shigeo Toh
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | | | - Michael Swan
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Raymond Liu
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Ji-Young Youn
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sean R Cutler
- Botany and Plant Sciences, Chemistry Genomics Building, University of California, Riverside, Riverside, CA 92521, USA
| | | | - Nicholas Provart
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Alan Moses
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Darrell Desveaux
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Peter McCourt
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
241
|
Shabala S, Pottosin I. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. PHYSIOLOGIA PLANTARUM 2014; 151:257-79. [PMID: 24506225 DOI: 10.1111/ppl.12165] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/15/2013] [Accepted: 01/13/2014] [Indexed: 05/18/2023]
Abstract
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tas, 7001, Australia
| | | |
Collapse
|
242
|
Kollist H, Nuhkat M, Roelfsema MRG. Closing gaps: linking elements that control stomatal movement. THE NEW PHYTOLOGIST 2014; 203:44-62. [PMID: 24800691 DOI: 10.1111/nph.12832] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/27/2014] [Indexed: 05/18/2023]
Abstract
Stomata are an attractive experimental system in plant biology, because the responses of guard cells to environmental signals can be directly linked to changes in the aperture of stomatal pores. In this review, the mechanics of stomatal movement are discussed in relation to ion transport in guard cells. Emphasis is placed on the ion pumps, transporters, and channels in the plasma membrane, as well as in the vacuolar membrane. The biophysical properties of transport proteins for H(+), K(+), Ca(2+), and anions are discussed and related to their function in guard cells during stomatal movements. Guard cell signaling pathways for ABA, CO2, ozone, microbe-associated molecular patterns (MAMPs) and blue light are presented. Special attention is given to the regulation of the slow anion channel (SLAC) and SLAC homolog (SLAH)-type anion channels by the ABA signalosome. Over the last decade, several knowledge gaps in the regulation of ion transport in guard cells have been closed. The current state of knowledge is an excellent starting point for tackling important open questions concerning stress tolerance in plants.
Collapse
Affiliation(s)
- Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | | | | |
Collapse
|
243
|
Light-induced stomatal opening is affected by the guard cell protein kinase APK1b. PLoS One 2014; 9:e97161. [PMID: 24828466 PMCID: PMC4020820 DOI: 10.1371/journal.pone.0097161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/15/2014] [Indexed: 11/24/2022] Open
Abstract
Guard cells allow land plants to survive under restricted or fluctuating water availability. They control the exchange of gases between the external environment and the interior of the plant by regulating the aperture of stomatal pores in response to environmental stimuli such as light intensity, and are important regulators of plant productivity. Their turgor driven movements are under the control of a signalling network that is not yet fully characterised. A reporter gene fusion confirmed that the Arabidopsis APK1b protein kinase gene is predominantly expressed in guard cells. Infrared gas analysis and stomatal aperture measurements indicated that plants lacking APK1b are impaired in their ability to open their stomata on exposure to light, but retain the ability to adjust their stomatal apertures in response to darkness, abscisic acid or lack of carbon dioxide. Stomatal opening was not specifically impaired in response to either red or blue light as both of these stimuli caused some increase in stomatal conductance. Consistent with the reduction in maximum stomatal conductance, the relative water content of plants lacking APK1b was significantly increased under both well-watered and drought conditions. We conclude that APK1b is required for full stomatal opening in the light but is not required for stomatal closure.
Collapse
|
244
|
Lang V, Pertl-Obermeyer H, Safiarian MJ, Obermeyer G. Pump up the volume - a central role for the plasma membrane H(+) pump in pollen germination and tube growth. PROTOPLASMA 2014; 251:477-88. [PMID: 24097309 DOI: 10.1007/s00709-013-0555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 05/10/2023]
Abstract
The plasma membrane H(+) ATPase is a member of the P-ATPase family transporting H(+) from the cytosol to the extracellular space and thus energizing the plasma membrane for the uptake of ions and nutrients. As a housekeeping gene, this protein can be detected in almost every plant cell including the exclusive expression of specific isoforms in pollen grains and tubes where its activity is a prerequisite for successful germination and growth of pollen tubes. This review summarizes the current knowledge on pollen PM H(+) ATPases and hypothesizes a central role for pollen-specific isoforms of this protein in tube growth. External as well as cytosolic signals from signal transduction and metabolic pathways are integrated by the PM H(+) ATPase and directly translated to tube growth rates, allocating the PM H(+) ATPase to an essential node in the signalling network of pollen tubes in their race to the ovule.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
245
|
Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, Sussman MR, Overvoorde PJ, Gray WM. SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis. THE PLANT CELL 2014; 26:2129-2142. [PMID: 24858935 PMCID: PMC4079373 DOI: 10.1105/tpc.114.126037] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 05/18/2023]
Abstract
The plant hormone auxin promotes cell expansion. Forty years ago, the acid growth theory was proposed, whereby auxin promotes proton efflux to acidify the apoplast and facilitate the uptake of solutes and water to drive plant cell expansion. However, the underlying molecular and genetic bases of this process remain unclear. We have previously shown that the SAUR19-24 subfamily of auxin-induced SMALL AUXIN UP-RNA (SAUR) genes promotes cell expansion. Here, we demonstrate that SAUR proteins provide a mechanistic link between auxin and plasma membrane H+-ATPases (PM H+-ATPases) in Arabidopsis thaliana. Plants overexpressing stabilized SAUR19 fusion proteins exhibit increased PM H+-ATPase activity, and the increased growth phenotypes conferred by SAUR19 overexpression are dependent upon normal PM H+-ATPase function. We find that SAUR19 stimulates PM H+-ATPase activity by promoting phosphorylation of the C-terminal autoinhibitory domain. Additionally, we identify a regulatory mechanism by which SAUR19 modulates PM H+-ATPase phosphorylation status. SAUR19 as well as additional SAUR proteins interact with the PP2C-D subfamily of type 2C protein phosphatases. We demonstrate that these phosphatases are inhibited upon SAUR binding, act antagonistically to SAURs in vivo, can physically interact with PM H+-ATPases, and negatively regulate PM H+-ATPase activity. Our findings provide a molecular framework for elucidating auxin-mediated control of plant cell expansion.
Collapse
Affiliation(s)
- Angela K Spartz
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Hong Ren
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Mee Yeon Park
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Kristin N Grandt
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Sang Ho Lee
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| | - Michael R Sussman
- Biotechnology Center and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paul J Overvoorde
- Department of Biology, Macalester College, St. Paul, Minnesota 55105
| | - William M Gray
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
246
|
Hayashi Y, Takahashi K, Inoue SI, Kinoshita T. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H(+)-ATPase in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:845-53. [PMID: 24492258 DOI: 10.1093/pcp/pcu028] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plasma membrane H(+)-ATPase is thought to mediate hypocotyl elongation, which is induced by the phytohormone auxin through the phosphorylation of the penultimate threonine of H(+)-ATPase. However, regulation of the H(+)-ATPase during hypocotyl elongation by other signals has not been elucidated. Hypocotyl elongation in etiolated seedlings of Arabidopsis thaliana was suppressed by the H(+)-ATPase inhibitors vanadate and erythrosine B, and was significantly reduced in aha2-5, which is a knockout mutant of the major H(+)-ATPase isoform in etiolated seedlings. Application of the phytohormone ABA to etiolated seedlings suppressed hypocotyl elongation within 30 min at the half-inhibitory concentration (4.2 µM), and induced dephosphorylation of the penultimate threonine of H(+)-ATPase without affecting the amount of H(+)-ATPase. Interestingly, an ABA-insensitive mutant, abi1-1, did not show ABA inhibition of hypocotyl elongation or ABA-induced dephosphorylation of H(+)-ATPase. This indicates that ABI1, which is an early ABA signaling component through the ABA receptor PYR/PYL/RCARs (pyrabactin resistance/pyrabactin resistance 1-like/regulatory component of ABA receptor), is involved in these responses. In addition, we found that the fungal toxin fusiccocin (FC), an H(+)-ATPase activator, induced hypocotyl elongation and phosphorylation of the penultimate threonine of H(+)-ATPase, and that FC-induced hypocotyl elongation and phosphorylation of H(+)-ATPase were significantly suppressed by ABA. Taken together, these results indicate that ABA has an antagonistic effect on hypocotyl elongation through, at least in part, dephosphorylation of H(+)-ATPase in etiolated seedlings.
Collapse
Affiliation(s)
- Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | | | | | | |
Collapse
|
247
|
Lin H, Du W, Yang Y, Schumaker KS, Guo Y. A calcium-independent activation of the Arabidopsis SOS2-like protein kinase24 by its interacting SOS3-like calcium binding protein1. PLANT PHYSIOLOGY 2014; 164:2197-206. [PMID: 24521877 PMCID: PMC3982772 DOI: 10.1104/pp.113.232272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The salt stress-induced SALT-OVERLY-SENSITIVE (SOS) pathway in Arabidopsis (Arabidopsis thaliana) involves the perception of a calcium signal by the SOS3 and SOS3-like CALCIUM-BINDING PROTEIN8 (SCaBP8) calcium sensors, which then interact with and activate the SOS2 protein kinase, forming a complex at the plasma membrane that activates the SOS1 Na⁺/H⁺ exchanger. It has recently been reported that phosphorylation of SCaBP proteins by SOS2-like protein kinases (PKSs) stabilizes the interaction between the two proteins as part of a regulatory mechanism that was thought to be common to all SCaBP and PKS proteins. Here, we report the calcium-independent activation of PKS24 by SCaBP1 and show that activation is dependent on interaction of PKS24 with the C-terminal tail of SCaBP1. However, unlike what has been found for other PKS-SCaBP pairs, multiple amino acids in SCaBP1 are phosphorylated by PKS24, and this phosphorylation is dependent on the interaction of the proteins through the PKS24 FISL motif and on the efficient activation of PKS24 by the C-terminal tail of SCaBP1. In addition, we show that Thr-211 and Thr-212, which are not common phosphorylation sites in the conserved PFPF motif found in most SCaBP proteins, are important for this activation. Finally, we also found that SCaBP1-regulated PKS24 kinase activity is important for inactivating the Arabidopsis plasma membrane proton-translocating adenosine triphosphatase. Together, these results suggest the existence of a novel SCaBP-PKS regulatory mechanism in plants.
Collapse
|
248
|
Vialaret J, Di Pietro M, Hem S, Maurel C, Rossignol M, Santoni V. Phosphorylation dynamics of membrane proteins fromArabidopsisroots submitted to salt stress. Proteomics 2014; 14:1058-70. [DOI: 10.1002/pmic.201300443] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/19/2013] [Accepted: 01/20/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Jérôme Vialaret
- Laboratoire de Protéomique Fonctionnelle; Institut National de la Recherche Agronomique, Unité de Recherche 1199; Montpellier France
| | - Magali Di Pietro
- Biochimie et Physiologie Moléculaire des Plantes; Unité Mixte de Recherche 5004; Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386; Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II; Montpellier France
| | - Sonia Hem
- Laboratoire de Protéomique Fonctionnelle; Institut National de la Recherche Agronomique, Unité de Recherche 1199; Montpellier France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes; Unité Mixte de Recherche 5004; Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386; Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II; Montpellier France
| | - Michel Rossignol
- Laboratoire de Protéomique Fonctionnelle; Institut National de la Recherche Agronomique, Unité de Recherche 1199; Montpellier France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes; Unité Mixte de Recherche 5004; Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386; Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II; Montpellier France
| |
Collapse
|
249
|
Ivanov R, Brumbarova T, Blum A, Jantke AM, Fink-Straube C, Bauer P. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1. THE PLANT CELL 2014; 26:1294-307. [PMID: 24596241 PMCID: PMC4001385 DOI: 10.1105/tpc.113.116244] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 05/18/2023]
Abstract
Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery.
Collapse
Affiliation(s)
- Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
- Address correspondence to
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Ailisa Blum
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Anna-Maria Jantke
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
250
|
Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proc Natl Acad Sci U S A 2014; 111:2830-5. [PMID: 24497510 DOI: 10.1073/pnas.1320457111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.
Collapse
|