201
|
Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, Chen ZJ. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun 2015; 5:3050. [PMID: 24430011 DOI: 10.1038/ncomms4050] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/03/2013] [Indexed: 01/21/2023] Open
Abstract
Although polyploidy is common in plants and some animals, mechanisms for functional divergence between homoeologous genes are poorly understood. MYB2 gene promotes cotton fibre development and is functionally homologous to Arabidopsis GLABROUS1 (GL1) in trichome formation. The most widely cultivated cotton is an allotetraploid (Gossypium hirsutum, AADD) that contains GhMYB2A and GhMYB2D homoeologs. Here we show that GhMYB2D mRNA accumulates more than GhMYB2A during fibre initiation and is targeted by miR828 and miR858, generating trans-acting siRNAs (ta-siRNAs) in the TAS4 family. Overexpressing GhMYB2A but not GhMYB2D complements the gl1 phenotype. Mutating the miR828-binding site or replacing its downstream sequence in GhMYB2D abolishes ta-siRNA production and restores trichome development in gl1 mutants. Moreover, disrupting Dicer-like protein 4 or RDR6, the biogenesis genes for ta-siRNAs, in the gl1 GhMYB2D overexpressors restores trichome development. These data support a unique role for microRNAs in functional divergence between target homoeologous genes that are important for evolution and selection of morphological traits.
Collapse
Affiliation(s)
- Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Mingxiong Pang
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoli Shi
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Z Jeffrey Chen
- 1] Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712, USA [2] State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
202
|
|
203
|
Yang C, Gao Y, Gao S, Yu G, Xiong C, Chang J, Li H, Ye Z. Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco. BMC Genomics 2015; 16:868. [PMID: 26503424 PMCID: PMC4623907 DOI: 10.1186/s12864-015-2099-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Trichomes, developing from the epidermis of nearly all terrestrial plants, provide good structural resistance against insect herbivores and an excellent model for studying the molecular mechanisms underlying cell fate determination. Regulation of trichomes in Rosids has been well characterized. However, little is known about the cell proliferation molecular processes during multicellular trichome formation in Asterids. RESULTS In this study, we identified two point mutations in a novel allele (Wov) at Wo locus. Ectopic expression of Wov in tobacco and potato induces much more trichome formation than wild type. To gain new insights into the underlying mechanisms during the processes of these trichomes formation, we compared the gene expression profiles between Wov transgenic and wild-type tobacco by RNA-seq analysis. A total of 544 co-DEGs were detected between transgenic and wild-type tobacco. Functional assignments of the co-DEGs indicated that 33 reliable pathways are altered in transgenic tobacco plants. The most noticeable pathways are fatty acid metabolism, amino acid biosynthesis and metabolism, and plant hormone signal transduction. Results suggest that these enhanced processes are critical for the cell proliferation during multicellular trichome formation in transgenic plants. In addition, the transcriptional levels of homologues of trichome regulators in Rosids were not significantly changed, whereas homologues of genes (Wo and SlCycB2) in Asterids were significantly upregulated in Wov transgenic tobacco plants. CONCLUSIONS This study presents a global picture of the gene expression changes induced by Wov-gene in tobacco. And the results provided us new insight into the molecular processes controlling multicellular formation in tobacco. Furthermore, we inferred that trichomes in solanaceous species might share a common network.
Collapse
Affiliation(s)
- Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Yanna Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Gang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Jiang Chang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
204
|
Wang L, Zhu Y, Hu W, Zhang X, Cai C, Guo W. Comparative Transcriptomics Reveals Jasmonic Acid-Associated Metabolism Related to Cotton Fiber Initiation. PLoS One 2015; 10:e0129854. [PMID: 26079621 PMCID: PMC4469610 DOI: 10.1371/journal.pone.0129854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/13/2015] [Indexed: 11/21/2022] Open
Abstract
Analysis of mutants and gene expression patterns provides a powerful approach for investigating genes involved in key stages of plant fiber development. In this study, lintless-fuzzless XinWX and linted-fuzzless XinFLM with a single genetic locus difference for lint were used to identify differentially expressed genes. Scanning electron microscopy showed fiber initiation in XinFLM at 0 days post anthesis (DPA). Fiber transcriptional profiling of the lines at three initiation developmental stages (-1, 0, 1 DPA) was performed using an oligonucleotide microarray. Loop comparisons of the differentially expressed genes within and between the lines was carried out, and functional classification and enrichment analysis showed that gene expression patterns during fiber initiation were heavily associated with hormone metabolism, transcription factor regulation, lipid transport, and asparagine biosynthetic processes, as previously reported. Further, four members of the allene-oxide cyclase (AOC) family that function in jasmonate biosynthesis were parallel up-regulation in fiber initiation, especially at -1 DPA, compared to other tissues and organs in linted-fuzzed TM-1. Real time-quantitative PCR (RT-qPCR) analysis in different fiber mutant lines revealed that AOCs were up-regulated higher at -1 DPA in lintless-fuzzless than that in linted-fuzzless and linted-fuzzed materials, and transcription of the AOCs was increased under jasmonic acid (JA) treatment. Expression analysis of JA biosynthesis-associated genes between XinWX and XinFLM showed that they were up-regulated during fiber initiation in the fuzzless-lintless mutant. Taken together, jasmonic acid-associated metabolism was related to cotton fiber initiation. Parallel up-regulation of AOCs expression may be important for normal fiber initiation development, while overproduction of AOCs might disrupt normal fiber development.
Collapse
Affiliation(s)
- Liman Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youmin Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenjing Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xueying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
205
|
Liu GJ, Xiao GH, Liu NJ, Liu D, Chen PS, Qin YM, Zhu YX. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. MOLECULAR PLANT 2015; 8:911-921. [PMID: 25731673 DOI: 10.1016/j.molp.2015.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post-anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant species. The genes encoding fatty acid desaturases (Δ(15)GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exogenously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffective. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed GhΔ(15)FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth.
Collapse
Affiliation(s)
- Gao-Jun Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning-Jing Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dan Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pei-Shuang Chen
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yong-Mei Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Yu-Xian Zhu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
206
|
Shi G, Guo X, Guo J, Liu L, Hua J. Analyzing serial cDNA libraries revealed reactive oxygen species and gibberellins signaling pathways in the salt response of Upland cotton (Gossypium hirsutum L.). PLANT CELL REPORTS 2015; 34:1005-23. [PMID: 25700980 DOI: 10.1007/s00299-015-1761-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/22/2023]
Abstract
By comparing series full-length cDNA libraries stressed and control, the dynamic process of salt stress response in Upland cotton was studied, and reactive oxygen species and gibberellins signaling pathways were proposed. The Upland cotton is the most important fiber plant with highly salt tolerance. However, the molecular mechanism underlying salt tolerance in domesticated cotton was unclear. Here, seven full-length cDNA libraries were constructed for seedling roots of Upland cotton 'Zhong G 5' at 0, 3, 12 and 48 h after the treatment of control or 150 mM NaCl stress. About 3300 colonies in each library were selected robotically for 5'-end pyrosequencing, resulting in 20,358 expressed sequence tags (ESTs) totally. And 8516 uniESTs were then assembled, including 2914 contigs and 5602 singletons, and explored for Gene Ontology (GO) function. GO comparison between serial stress libraries and control reflected the growth regulation, stimulus response, signal transduction and biology regulation processes were conducted dynamically in response to salt stress. MYB, MYB-related, WRKY, bHLH, GRAS and ERF families of transcription factors were significantly enriched in the early response. 65 differentially expressed genes (DEGs), mainly associated with reactive oxygen species (ROS) scavenging, gibberellins (GAs) metabolism, signal transduction, transcription regulation, stress response and transmembrane transport, were identified and confirmed by quantitative real-time PCR. Overexpression of selected DEGs increased tolerance against salt stress in transgenic yeast. Results in this study supported that a ROS-GAs interacting signaling pathway of salt stress response was activated in Upland cotton. Our results provided valuable gene resources for further investigation of the molecular mechanism of salinity tolerance.
Collapse
Affiliation(s)
- Gongyao Shi
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China,
| | | | | | | | | |
Collapse
|
207
|
Yan Q, Liu HS, Yao D, Li X, Chen H, Dou Y, Wang Y, Pei Y, Xiao YH. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization. PLoS One 2015; 10:e0126558. [PMID: 25992947 PMCID: PMC4436304 DOI: 10.1371/journal.pone.0126558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/03/2015] [Indexed: 12/05/2022] Open
Abstract
Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus.
Collapse
Affiliation(s)
- Qian Yan
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Hou-Sheng Liu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Dan Yao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Xin Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Han Chen
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yang Dou
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yi Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yan Pei
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yue-Hua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
- * E-mail:
| |
Collapse
|
208
|
Cao X. Whole genome sequencing of cotton--a new chapter in cotton genomics. SCIENCE CHINA-LIFE SCIENCES 2015; 58:515-6. [PMID: 25929972 DOI: 10.1007/s11427-015-4862-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/25/2022]
Affiliation(s)
- XiaoFeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China,
| |
Collapse
|
209
|
Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS One 2015; 10:e0125046. [PMID: 25927364 PMCID: PMC4415818 DOI: 10.1371/journal.pone.0125046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta.
Collapse
|
210
|
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy RG, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu JZ, Zhu Y, Yu S. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 2015; 33:524-30. [PMID: 25893780 DOI: 10.1038/nbt.3208] [Citation(s) in RCA: 694] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/15/2015] [Indexed: 12/27/2022]
Abstract
Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.
Collapse
Affiliation(s)
- Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Cairui Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guanghui Xiao
- 1] State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. [2] Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Changsong Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Russell J Kohel
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, USA
| | - Zhiying Ma
- Key Laboratory for Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Gai Huang
- 1] State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. [2] Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Richard G Percy
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, USA
| | - Kun Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Weihua Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shoujun Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | | | | | - Xingfen Wang
- Key Laboratory for Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding, China
| | | | | | | | | | | | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - John Z Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, USA
| | - Yuxian Zhu
- 1] State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. [2] Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
211
|
Shi C, Qi C, Ren H, Huang A, Hei S, She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:280-301. [PMID: 25754244 DOI: 10.1111/tpj.12815] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/14/2015] [Accepted: 02/23/2015] [Indexed: 05/07/2023]
Abstract
Brassinosteroids (BRs) are essential for plant growth and development; however, whether and how they promote stomatal closure is not fully clear. In this study, we report that 24-epibrassinolide (EBR), a bioactive BR, induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering a signal transduction pathway including ethylene synthesis, the activation of Gα protein, and hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) production. EBR initiated a marked rise in ethylene, H(2)O(2) and NO levels, necessary for stomatal closure in the wild type. These effects were abolished in mutant bri1-301, and EBR failed to close the stomata of gpa1 mutants. Next, we found that both ethylene and Gα mediate the inductive effects of EBR on H(2)O(2) and NO production. EBR-triggered H(2)O(2) and NO accumulation were canceled in the etr1 and gpa1 mutants, but were strengthened in the eto1-1 mutant and the cGα line (constitutively overexpressing the G protein α-subunit AtGPA1). Exogenously applied H(2)O(2) or sodium nitroprusside (SNP) rescued the defects of etr1-3 and gpa1 or etr1 and gpa1 mutants in EBR-induced stomatal closure, whereas the stomata of eto1-1/AtrbohF and cGα/AtrbohF or eto1-1/nia1-2 and cGα/nia1-2 constructs had an analogous response to H(2)O(2) or SNP as those of AtrbohF or Nia1-2 mutants. Moreover, we provided evidence that Gα plays an important role in the responses of guard cells to ethylene. Gα activator CTX largely restored the lesion of the etr1-3 mutant, but ethylene precursor ACC failed to rescue the defects of gpa1 mutants in EBR-induced stomatal closure. Lastly, we demonstrated that Gα-activated H(2)O(2) production is required for NO synthesis. EBR failed to induce NO synthesis in mutant AtrbohF, but it led to H(2)O(2) production in mutant Nia1-2. Exogenously applied SNP rescued the defect of AtrbohF in EBR-induced stomatal closure, but H(2)O(2) did not reverse the lesion of EBR-induced stomatal closure in Nia1-2. Together, our results strongly suggest a signaling pathway in which EBR induces ethylene synthesis, thereby activating Gα, and then promotes AtrbohF-dependent H(2)O(2) production and subsequent Nia1-catalyzed NO accumulation, and finally closes stomata.
Collapse
Affiliation(s)
- Chenyu Shi
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; School of Chemistry and Bioengineering, Hechi University, Yizhou, 546300, China
| | | | | | | | | | | |
Collapse
|
212
|
Bellaloui N, Stetina SR, Turley RB. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:137. [PMID: 25852704 PMCID: PMC4365723 DOI: 10.3389/fpls.2015.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/20/2015] [Indexed: 05/14/2023]
Abstract
Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determines the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a 2-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed.
Collapse
Affiliation(s)
- Nacer Bellaloui
- Crop Genetics Research Unit, Plant Physiology, United States Department of Agriculture, Agricultural Research ServiceStoneville, MS, USA
| | | | | |
Collapse
|
213
|
Zheng M, Meng Y, Yang C, Zhou Z, Wang Y, Chen B. Protein expression changes during cotton fiber elongation in response to drought stress and recovery. Proteomics 2015; 14:1776-95. [PMID: 24889071 DOI: 10.1002/pmic.201300123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/17/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022]
Abstract
An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.
Collapse
Affiliation(s)
- Mi Zheng
- College of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
214
|
Yao Y, Zhang B, Dong CJ, Du Y, Jiang L, Liu JY. Comparative proteomic and biochemical analyses reveal different molecular events occurring in the process of fiber initiation between wild-type allotetraploid cotton and its fuzzless-lintless mutant. PLoS One 2015; 10:e0117049. [PMID: 25700002 PMCID: PMC4336136 DOI: 10.1371/journal.pone.0117049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/17/2014] [Indexed: 01/22/2023] Open
Abstract
To explore lint fiber initiation-related proteins in allotetraploid cotton (Gossypium hirsutum L.), a comparative proteomic analysis was performed between wild-type cotton (Xu-142) and its fuzzless-lintless mutant (Xu-142-fl) at five developmental time points for lint fiber initiation from -3 to +3 days post-anthesis (dpa). Using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS) analyses, 91 differentially accumulated protein (DAP) species that are related to fiber initiation were successfully identified, of which 58 preferentially accumulated in the wild-type and 33 species in the fl mutant. These DAPs are involved in various cellular and metabolic processes, mainly including important energy/carbohydrate metabolism, redox homeostasis, amino acid and fatty acid biosynthesis, protein quality control, cytoskeleton dynamics, and anthocyanidin metabolism. Further physiological and biochemical experiments revealed dynamic changes in the carbohydrate flux and H2O2 levels in the cotton fiber initiation process. Compared with those in the fl mutant, the contents of glucose and fructose in wild-type ovules sharply increased after anthesis with a relatively higher rate of amino acid biosynthesis. The relative sugar starvation and lower rate of amino acid biosynthesis in the fl mutant ovules may impede the carbohydrate/energy supply and cell wall synthesis, which is consistent with the proteomic results. However, the H2O2 burst was only observed in the wild-type ovules on the day of anthesis. Cotton boll injection experiments in combination with electron microscope observation collectively indicated that H2O2 burst, which is negatively regulated by ascorbate peroxidases (APx), plays an important role in the fiber initiation process. Taken together, our study demonstrates a putative network of DAP species related to fiber initiation in cotton ovules and provides a foundation for future studies on the specific functions of these proteins in fiber development.
Collapse
Affiliation(s)
- Yuan Yao
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chun-Juan Dong
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Du
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Jiang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
215
|
Lin M, Pang C, Fan S, Song M, Wei H, Yu S. Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. BMC PLANT BIOLOGY 2015; 15:43. [PMID: 25849479 PMCID: PMC4342795 DOI: 10.1186/s12870-015-0433-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/20/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Leaf senescence is an important developmental programmed degeneration process that dramatically affects crop quality and yield. The regulation of senescence is highly complex. Although senescence regulatory genes have been well characterized in model species such as Arabidopsis and rice, there is little information on the control of this process in cotton. Here, the senescence process in cotton (Gossypium hirsutum L.) leaves was investigated over a time course including young leaf, mature leaf and leaf samples from different senescence stages using RNA-Seq. RESULTS Of 24,846 genes detected by mapping the tags to Gossypium genomes, 3,624 genes were identified as differentially expressed during leaf senescence. There was some overlap between the genes identified here and senescence-associated genes previously identified in other species. Most of the genes related to photosynthesis, chlorophyll metabolism and carbon fixation were downregulated; whereas those for plant hormone signal transduction were upregulated. Quantitative real-time PCR was used to evaluate the results of RNA-Seq for gene expression profiles. Furthermore, 519 differentially expressed transcription factors were identified, notably WRKY, bHLH and C3H. In addition, 960 genes involved in the metabolism and regulation of eight hormones were identified, of which many genes involved in the abscisic acid, brassinosteroid, jasmonic acid, salicylic acid and ethylene pathways were upregulated, indicating that these hormone-related genes might play crucial roles in cotton leaf development and senescence. However, most auxin, cytokinin and gibberellin pathway-related genes were downregulated, suggesting that these three hormones may act as negative regulators of senescence. CONCLUSIONS This is the first high-resolution, multiple time-course, genome-wide comprehensive analysis of gene expression in cotton. These data are the most comprehensive dataset currently available for cotton leaf senescence, and will serve as a useful resource for unraveling the functions of many specific genes involved in cotton leaf development and senescence.
Collapse
Affiliation(s)
- Min Lin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455112 China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455112 China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455112 China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455112 China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455112 China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455112 China
| |
Collapse
|
216
|
The homeodomain-containing transcription factor, GhHOX3, is a key regulator of cotton fiber elongation. SCIENCE CHINA-LIFE SCIENCES 2015; 58:309-10. [DOI: 10.1007/s11427-015-4813-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
217
|
Kebede H, Payton P, Pham HTM, Allen RD, Wright RJ. Toward Coalescing Gene Expression and Function with QTLs of Water-Deficit Stress in Cotton. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2015; 2015:892716. [PMID: 26167172 PMCID: PMC4488579 DOI: 10.1155/2015/892716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 05/08/2023]
Abstract
Cotton exhibits moderately high vegetative tolerance to water-deficit stress but lint production is restricted by the available rainfed and irrigation capacity. We have described the impact of water-deficit stress on the genetic and metabolic control of fiber quality and production. Here we examine the association of tentative consensus sequences (TCs) derived from various cotton tissues under irrigated and water-limited conditions with stress-responsive QTLs. Three thousand sixteen mapped sequence-tagged-sites were used as anchored targets to examine sequence homology with 15,784 TCs to test the hypothesis that putative stress-responsive genes will map within QTLs associated with stress-related phenotypic variation more frequently than with other genomic regions not associated with these QTLs. Approximately 1,906 of 15,784 TCs were mapped to the consensus map. About 35% of the annotated TCs that mapped within QTL regions were genes involved in an abiotic stress response. By comparison, only 14.5% of the annotated TCs mapped outside these QTLs were classified as abiotic stress genes. A simple binomial probability calculation of this degree of bias being observed if QTL and non-QTL regions are equally likely to contain stress genes was P (x ≥ 85) = 7.99 × 10(-15). These results suggest that the QTL regions have a higher propensity to contain stress genes.
Collapse
Affiliation(s)
- Hirut Kebede
- USDA-ARS Crop Genetics Research Unit, Stoneville, MS 38776, USA
| | - Paxton Payton
- USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
| | - Hanh Thi My Pham
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Randy D. Allen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 73401, USA
| | - Robert J. Wright
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- *Robert J. Wright:
| |
Collapse
|
218
|
Zhao J, Bai W, Zeng Q, Song S, Zhang M, Li X, Hou L, Xiao Y, Luo M, Li D, Luo X, Pei Y. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:60. [PMID: 25653571 PMCID: PMC4309883 DOI: 10.1007/s11032-015-0232-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/29/2014] [Indexed: 05/03/2023]
Abstract
Cotton is the leading natural fiber crop in the world. Cotton seeds are also an important oil and protein source. However, enhancement of fiber abundance usually leads to a smaller seed. Thus, it has become a challenge for cotton breeding to concurrently increase fiber yield and seed yield. To improve cotton yield, we elevated the endogenous cytokinin level in transgenic cotton by constitutive suppression of cytokinin dehydrogenase (CKX), a key negative regulator controlling endogenous cytokinin in plants. The slightly and moderately suppressed transgenic cotton plants showed normal growth and development, while the severely suppressed plants exhibited a typical cytokinin-overproduction alteration. The suppression of CKX led to an enhancement of endogenous cytokinins in transgenic cotton plants. Total cytokinins in moderately suppressed lines, CR-3 and CR-6, increased by 20.4 and 55.5 % respectively, and that in the severely suppressed line (CR-13) increased by 134.2 % compared to the wild type. The moderately suppressed lines showed a delay in leaf senescence, higher photosynthesis, more fruiting branches and bolls, and bigger seed size. Field trials showed that seed yield and lint yield of the moderately suppressed CR-6 line increased by 15.4 and 20.0 %, respectively. Meanwhile, the enhanced cytokinin level in transgenic cottons did not show significant influence on fiber qualities. Our data demonstrated that CKX is a promising gene for crop yield improvement.
Collapse
Affiliation(s)
- Juan Zhao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Wenqin Bai
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Qiwei Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Shuiqing Song
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Ming Luo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Demou Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Xiaoying Luo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400716 People’s Republic of China
| |
Collapse
|
219
|
Lü G, Zhang W, Wang J, Xiao Y, Zhao J, Zhao J, Sun Y, Zhang C, Wang J, Lin R, Liu H, Zhang F, Wen H. Application of a cDNA microarray for profiling the gene expression of Echinococcus granulosus protoscoleces treated with albendazole and artemisinin. Mol Biochem Parasitol 2014; 198:59-65. [PMID: 25555682 DOI: 10.1016/j.molbiopara.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/01/2022]
Abstract
Cystic echinoccocosis (CE) is a neglected zoonosis that is caused by the dog-tapeworm Echinococcus granulosus. The disease is endemic worldwide. There is an urgent need for searching effective drug for the treatment of the disease. In this study, we sequenced a cDNA library constructed using RNA isolated from oncospheres, protoscoleces, cyst membrane and adult worms of E. granulosus. A total of 9065 non-redundant or unique sequences were obtained and spotted on chips as uniEST probes to profile the gene expression in protoscoleces of E. granulosus treated with the anthelmintic drugs albendazole and artemisinin, respectively. The results showed that 7 genes were up-regulated and 38 genes were down-regulated in the protoscoleces treated with albendazole. Gene analysis showed that these genes are responsible for energy metabolism, cell cycle and assembly of cell structure. We also identified 100 genes up-regulated and 6 genes down-regulated in the protoscoleces treated with artemisinin. These genes play roles in the transduction of environmental signals, and metabolism. Albendazole appeared its drug efficacy in damaging cell structure, while artemisinin was observed to increase the formation of the heterochromatin in protoscolex cells. Our results highlight the utility of using cDNA microarray methods to detect gene expression profiles of E. granulosus and, in particular, to understand the pharmacologic mechanism of anti-echinococcosis drugs.
Collapse
Affiliation(s)
- Guodong Lü
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, No. 14 Shengli Road, Urumqi, Xinjiang, PR China; Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Wenbao Zhang
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Jianhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Yunfeng Xiao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Jun Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Jianqin Zhao
- National Engineering Research Center for Beijing Biochip Technology, No. 18 Life Science Parkway, Beijing, PR China
| | - Yimin Sun
- National Engineering Research Center for Beijing Biochip Technology, No. 18 Life Science Parkway, Beijing, PR China
| | - Chuanshan Zhang
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Junhua Wang
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Hui Liu
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, No. 14 Shengli Road, Urumqi, Xinjiang, PR China
| | - Hao Wen
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang, PR China.
| |
Collapse
|
220
|
Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 2014; 5:5519. [PMID: 25413731 PMCID: PMC4263147 DOI: 10.1038/ncomms6519] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022] Open
Abstract
Cotton fibres are unusually long, single-celled epidermal seed trichomes and a model for plant cell growth, but little is known about the regulation of fibre cell elongation. Here we report that a homeodomain-leucine zipper (HD-ZIP) transcription factor, GhHOX3, controls cotton fibre elongation. GhHOX3 genes are localized to the 12th homoeologous chromosome set of allotetraploid cotton cultivars, associated with quantitative trait loci (QTLs) for fibre length. Silencing of GhHOX3 greatly reduces (>80%) fibre length, whereas its overexpression leads to longer fibre. Combined transcriptomic and biochemical analyses identify target genes of GhHOX3 that also contain the L1-box cis-element, including two cell wall loosening protein genes GhRDL1 and GhEXPA1. GhHOX3 interacts with GhHD1, another homeodomain protein, resulting in enhanced transcriptional activity, and with cotton DELLA, GhSLR1, repressor of the growth hormone gibberellin (GA). GhSLR1 interferes with the GhHOX3–GhHD1 interaction and represses target gene transcription. Our results uncover a novel mechanism whereby a homeodomain protein transduces GA signal to promote fibre cell elongation. Cotton fibre is the most important renewable material for textiles, with a huge economic output. Here the authors show that a homeodomain-leucine zipper transcription factor, GhHOX3, transduces a gibberellin signal that in turn promotes fibre cell elongation.
Collapse
|
221
|
Gong W, He S, Tian J, Sun J, Pan Z, Jia Y, Sun G, Du X. Comparison of the transcriptome between two cotton lines of different fiber color and quality. PLoS One 2014; 9:e112966. [PMID: 25401744 PMCID: PMC4234635 DOI: 10.1371/journal.pone.0112966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/16/2014] [Indexed: 01/27/2023] Open
Abstract
To understand the mechanism of fiber development and pigmentation formation, the mRNAs of two cotton lines were sequenced: line Z128 (light brown fiber) was a selected mutant from line Z263 (dark brown fiber). The primary walls of the fiber cell in both Z263 and Z128 contain pigments; more pigments were laid in the lumen of the fiber cell in Z263 compared with that in Z128. However, Z263 contained less cellulose than Z128. A total of 71,895 unigenes were generated: 13,278 (20.26%) unigenes were defined as differentially expressed genes (DEGs) by comparing the library of Z128 with that of Z263; 5,345 (8.16%) unigenes were up-regulated and 7,933 (12.10%) unigenes were down-regulated. qRT-PCR and comparative transcriptional analysis demonstrated that the pigmentation formation in brown cotton fiber was possibly the consequence of an interaction between oxidized tannins and glycosylated anthocyanins. Furthermore, our results showed the pigmentation related genes not only regulated the fiber color but also influenced the fiber quality at the fiber elongation stage (10 DPA). The highly expressed flavonoid gene in the fiber elongation stage could be related to the fiber quality. DEGs analyses also revealed that transcript levels of some fiber development genes (Ca2+/CaM, reactive oxygen, ethylene and sucrose phosphate synthase) varied dramatically between these two cotton lines.
Collapse
Affiliation(s)
- Wenfang Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiahuan Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junling Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Department of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- * E-mail:
| |
Collapse
|
222
|
Wang XC, Li Q, Jin X, Xiao GH, Liu GJ, Liu NJ, Qin YM. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. J Proteomics 2014; 114:16-27. [PMID: 25449837 DOI: 10.1016/j.jprot.2014.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 01/30/2023]
Abstract
UNLABELLED An iTRAQ-based proteomics of ovules from the upland cotton species Gossypium hirsutum and its fuzzless-lintless mutant was performed, and finally 2729 proteins that preferentially accumulated at anthesis in wild-type ovules were identified. We confirmed that the gene expression levels of 2005 among these proteins also increased by performing an RNA sequencing transcriptomics. Expression of proteins involved in carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism was significantly enhanced in wild-type ovules. Quantitative real-time PCR verified the increased expression of 26 genes involved in these processes. Cotton 3-hydroxyacyl-CoA dehydratase (GhPAS2) catalyzing the third reaction of very long-chain fatty acid (VLCFA) biosynthesis, accumulated at anthesis in wild-type ovules. Heterogeneous expression of GhPAS2 restored viability to the Saccharomyces cerevisiae haploid psh1-deletion strain deficient in PAS2 activity. Application of VLCFA biosynthesis inhibitor acetochlor (2-chloro-N-[ethoxymethyl]-N-[2-ethyl-6-methyl-phenyl]-acetamide; ACE) and gibberellic acid to the unfertilized cotton ovules significantly suppressed fiber cell protrusion. In this study, the profiling of gene expression at both transcriptome and proteome levels provides new insights into cotton fiber cell initiation. BIOLOGICAL SIGNIFICANCE Cotton fiber initiation determines the ultimate number of fibers per ovule, thereby determining fiber yield. In total, 2729 proteins were preferentially accumulated in wild-type ovules at anthesis. The most up-regulated proteins were assigned to carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism. In consistence with these findings, we characterized GhPAS2 gene coding for the enzyme that catalyzes VLCFA production. VLCFA biosynthesis inhibitor, acetochlor, was shown to significantly suppress fiber initiation. This study provides a genome-scale transcriptomic and proteomic characterization of fiber initial cells, laying a solid basis for further investigation of the molecular processes governing fiber cell development.
Collapse
Affiliation(s)
- Xu-Chu Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qin Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Gao-Jun Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Nin-Jing Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yong-Mei Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
223
|
Zhang H, Yang Y, Wang C, Liu M, Li H, Fu Y, Wang Y, Nie Y, Liu X, Ji W. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics 2014; 15:898. [PMID: 25318379 PMCID: PMC4201691 DOI: 10.1186/1471-2164-15-898] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022] Open
Abstract
Background Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Similar mechanisms and gene transcripts are assumed to be involved in the host defense response because both pathogens are biotrophic fungi. The main objective of our study was to identify co-regulated mRNAs that show a change in expression pattern after inoculation with Pst or Bgt, and to identify mRNAs specific to the fungal stress response. Results The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR 31 was compared with that of the same line inoculated with Bgt race E09 at 1, 2, and 3 days post-inoculation. Infection by Pst and Bgt affected transcription of 23.8% of all T. aestivum genes. Infection by Bgt triggered a more robust alteration in gene expression in N9134 compared with the response to Pst infection. An array of overlapping gene clusters with distinctive expression patterns provided insight into the regulatory differences in the responses to Bgt and Pst infection. The differentially expressed genes were grouped into seven enriched Kyoto Encyclopedia of Genes and Genomes pathways in Bgt-infected leaves and four pathways in Pst-infected leaves, while only two pathways overlapped. In the plant–pathogen interaction pathway, N9134 activated a higher number of genes and pathways in response to Bgt infection than in response to Pst invasion. Genomic analysis revealed that the wheat genome shared some microbial genetic fragments, which were specifically induced in response to Bgt and Pst infection. Conclusions Taken together, our findings indicate that the responses of wheat N9134 to infection by Bgt and Pst shows differences in the pathways and genes activated. The mass sequence data for wheat–fungus interaction generated in this study provides a powerful platform for future functional and molecular research on wheat–fungus interactions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-898) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, Shaanxi 712100, China.
| |
Collapse
|
224
|
Fang L, Tian R, Li X, Chen J, Wang S, Wang P, Zhang T. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments. BMC Genomics 2014; 15:838. [PMID: 25273845 PMCID: PMC4190578 DOI: 10.1186/1471-2164-15-838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/24/2014] [Indexed: 12/24/2022] Open
Abstract
Background Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). Results A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. Conclusions This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell elongation and will facilitate further research aimed at understanding the mechanisms underlying cotton fiber elongation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-838) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
225
|
Hao J, Chen S, Tu L, Hu H, Zhang X. GhH2A12, a replication-dependent histone H2A gene from Gossypium hirsutum, is negatively involved in the development of cotton fiber cells. PLANT CELL REPORTS 2014; 33:1711-1721. [PMID: 25001001 DOI: 10.1007/s00299-014-1649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
GhH2A12 was preferentially expressed at the initiation and early elongation stage of cotton fiber development, and overexpression of GhH2A12 caused retardation of fiber initiation and produced shorter fibers. Histone H2A is a component of eukaryotic chromatin whose function has not been studied in cotton. We have isolated an H2A gene encoding 156 amino acids, named GhH2A12. Like other plant histone H2As, GhH2A12 contains a typical SPKK motif in the carboxy-terminal and a plant-unique peptide-binding A/T-rich DNA region, and it was localized to the nucleus. GhH2A12 was preferentially expressed at the initiation and early elongation stage of cotton fiber, from 0 to 5 days post anthesis and the transcript level declined rapidly when the fiber entered the fast elongation stage, suggesting that GhH2A12 was involved in fiber differentiation. Therefore, GhH2A12 overexpression and RNAi transgenic cotton lines were developed via Agrobacterium tumefaciens-mediated transformation. Overexpression of GhH2A12 caused retardation of fiber initiation and produced shorter fibers and lower lint percentages. Moreover, the overexpressors showed negative effects on seedling growth, and the leaf emergence was delayed compared to wild type. However, no significant change in the GhH2A12 suppression line was observed. Coupled with retardation of fiber initiation, upregulation of GhH2A12 downregulated the expression of genes involved in cell-cycle performance. These results suggest that GhH2A12 might regulate fiber differentiation via regulating the cell cycle-related genes.
Collapse
Affiliation(s)
- Juan Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | | | |
Collapse
|
226
|
Liu N, Tu L, Tang W, Gao W, Lindsey K, Zhang X. Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:331-44. [PMID: 25131375 DOI: 10.1111/tpj.12636] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 05/03/2023]
Abstract
microRNAs (miRNAs) are 20-24 nucleotide non-coding small RNAs that play important roles in plant development. The stages of cotton fiber development include initiation, elongation, secondary wall thickening (SWT) and maturation. We constructed seven fiber RNA libraries representing the initiation, elongation and SWT stages. In total, 47 conserved miRNA families and seven candidate miRNAs were profiled using small RNA sequencing. Northern blotting and real-time polymerase chain reaction (PCR) analyses revealed the dynamic expression of miRNAs during fiber development. In addition, 140 targets of 30 conserved miRNAs and 38 targets of five candidate miRNAs were identified through degradome sequencing. Analysis of correlated expression between miRNAs and their targets demonstrated that specific miRNAs suppressed the expression of transcription factors, SBP and MYB, a leucine-rich receptor-like protein kinase, a pectate lyase, α-tubulin, a UDP-glucuronic acid decarboxylase and cytochrome C oxidase subunit 1 to affect fiber development. Histochemical analyses detected the biological activity of miRNA156/157 in ovule and fiber development. Suppressing miRNA156/157 function resulted in the reduction of mature fiber length, illustrating that miRNA156/157 plays an essential role in fiber elongation.
Collapse
Affiliation(s)
- Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | | | | | | | | |
Collapse
|
227
|
Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Mol Genet Genomics 2014; 290:151-71. [DOI: 10.1007/s00438-014-0904-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
228
|
Han J, Tan J, Tu L, Zhang X. A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:861-871. [PMID: 24666593 DOI: 10.1111/pbi.12187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Cotton fibres, the single-celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine-α (PSK-α) is a novel peptide hormone in plants that is involved in regulating cell proliferation and elongation. However, its potential applications in crop genetic improvement have not been evaluated. In this study, we describe how exogenous PSK-α application promotes cotton fibre cell elongation in vitro. Chlorate, an effective inhibitor of peptide sulfation, suppressed fibre elongation in ovule culture. Exogenously applied PSK-α partly restored the chlorate-induced suppression. A putative PSK gene (GhPSK) was cloned from Gossypium hirsutum. Expression pattern analysis revealed that GhPSK is preferentially expressed in rapidly elongating fibre cells (5-20 days postanthesis). Overexpression of GhPSK in cotton increased the endogenous PSK-α level and promoted cotton fibre cell elongation, resulting in longer and finer fibres. Further results from electrophysiological and physiological analyses suggest that GhPSK affects fibre development through regulation of K(+) efflux. Digital gene expression (DGE) profile analysis of GhPSK overexpression lines indicates that PSK signalling may regulate the respiratory electron-transport chain and reactive oxygen species to affect cotton fibre development. These results imply that peptide hormones are involved in cotton fibre growth and suggest a new strategy for the biotechnological improvement of cotton fibre quality.
Collapse
Affiliation(s)
- Jie Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
229
|
Guan X, Song Q, Chen ZJ. Polyploidy and small RNA regulation of cotton fiber development. TRENDS IN PLANT SCIENCE 2014; 19:516-28. [PMID: 24866591 DOI: 10.1016/j.tplants.2014.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/21/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
Cotton is not only the most important source of renewal textile fibers, but also an excellent model for studying cell fate determination and polyploidy effects on gene expression and evolution of domestication traits. The combination of A and D-progenitor genomes into allotetraploid cotton induces intergenomic interactions and epigenetic effects, leading to the unequal expression of homoeologous genes. Small RNAs regulate the expression of transcription and signaling factors related to cellular growth, development and adaptation. An example is miRNA-mediated preferential degradation of homoeologous mRNAs encoding MYB-domain transcription factors that are required for the initiation of leaf trichomes in Arabidopsis and of seed fibers in cotton. This example of coevolution between small RNAs and their homoeologous targets could shape morphological traits such as fibers during the selection and domestication of polyploid crops.
Collapse
Affiliation(s)
- Xueying Guan
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Qingxin Song
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
230
|
Zhu W, Chen X, Li H, Zhu F, Hong Y, Varshney RK, Liang X. Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. PLANT MOLECULAR BIOLOGY 2014; 85:395-409. [PMID: 24793121 PMCID: PMC4152868 DOI: 10.1007/s11103-014-0193-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 04/11/2014] [Indexed: 05/17/2023]
Abstract
The peanut is a special plant for its aerial flowering but subterranean fructification. The failure of peg penetration into the soil leads to form aerial pod and finally seed abortion. However, the mechanism of seed abortion during aerial pod development remains obscure. Here, a comparative transcriptome analysis between aerial and subterranean pods at different developmental stages was produced using a customized NimbleGen microarray representing 36,158 unigenes. By comparing 4 consecutive time-points, totally 6,203 differentially expressed genes, 4,732 stage-specific expressed genes and 2,401 specific expressed genes only in aerial or subterranean pods were identified in this study. Functional annotation showed their mainly involvement in biosynthesis, metabolism, transcription regulation, transporting, stress response, photosynthesis, signal transduction, cell division, apoptosis, embryonic development, hormone response and light signaling, etc. Emphasis was focused on hormone response, cell apoptosis, embryonic development and light signaling relative genes. These genes might function as potential candidates to provide insights into seed abortion during aerial pod development. Ten candidate genes were validated by Real-time RT-PCR. Additionally, consistent with up-regulation of auxin response relative genes in aerial pods, endogenous IAA content was also significantly increased by HPLC analysis. This study will further provide new molecular insight that auxin and auxin response genes potentially contribute to peanut seed and pod development.
Collapse
Affiliation(s)
- Wei Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Fanghe Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| |
Collapse
|
231
|
Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. THE NEW PHYTOLOGIST 2014; 203:437-448. [PMID: 24786710 DOI: 10.1111/nph.12824] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/22/2014] [Indexed: 05/19/2023]
Abstract
Cotton (Gossypium hirsutum) is the major source of natural textile fibers. Brassinosteroids (BRs) play crucial roles in regulating fiber development. The molecular mechanisms of BRs in regulating fiber elongation, however, are poorly understood. pagoda1 (pag1) was identified via an activation tagging genetic screen and characterized by genome walking and brassinolide (BL) supplementation. RNA-Seq analysis was employed to elucidate the mechanisms of PAG1 in regulating fiber development. pag1 exhibited dwarfism and reduced fiber length due to significant inhibition of cell elongation and expansion. BL treatment rescued its growth and fiber elongation. PAG1 encodes a homolog of Arabidopsis CYP734A1 that inactivates BRs via C-26 hydroxylation. RNA-Seq analyses showed that the constitutive expression of PAG1 downregulated the expression of genes involved in very-long-chain fatty acids (VLCFA) biosynthesis, ethylene-mediated signaling, response to cadmium, cell wall development, cytoskeleton organization and cell growth. Our results demonstrate that PAG1 plays crucial roles in regulating fiber development via controlling the level of endogenous bioactive BRs, which may affect ethylene signaling cascade by mediating VLCFA. Therefore, BR may be a critical regulator of fiber elongation, a role which may in turn be linked to effects on VLCFA biosynthesis, ethylene and cadmium signaling, cell wall- and cytoskeleton-related gene expression.
Collapse
Affiliation(s)
- Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaojie Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhixia Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wu Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chuanliang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuyuan Qian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Changfeng Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
232
|
Rozhon W, Wang W, Berthiller F, Mayerhofer J, Chen T, Petutschnig E, Sieberer T, Poppenberger B, Jonak C. Bikinin-like inhibitors targeting GSK3/Shaggy-like kinases: characterisation of novel compounds and elucidation of their catabolism in planta. BMC PLANT BIOLOGY 2014; 14:172. [PMID: 24947596 PMCID: PMC4078015 DOI: 10.1186/1471-2229-14-172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/17/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant GSK-3/Shaggy-like kinases are key players in brassinosteroid (BR) signalling which impact on plant development and participate in response to wounding, pathogens and salt stress. Bikinin was previously identified in a chemical genetics screen as an inhibitor targeting these kinases. To dissect the structural elements crucial for inhibition of GSK-3/Shaggy-like kinases by bikinin and to isolate more potent compounds we synthesised a number of related substances and tested their inhibitory activity in vitro and in vivo using Arabidopsis thaliana. RESULTS A pyridine ring with an amido succinic acid residue in position 2 and a halogen in position 5 were crucial for inhibitory activity. The compound with an iodine substituent in position 5, denoted iodobikinin, was most active in inhibiting BIN2 activity in vitro and efficiently induced brassinosteroid-like responses in vivo. Its methyl ester, methyliodobikinin, showed improved cell permeability, making it highly potent in vivo although it had lower activity in vitro. HPLC analysis revealed that the methyl residue was rapidly cleaved off in planta liberating active iodobikinin. In addition, we provide evidence that iodobikinin and bikinin are inactivated in planta by conjugation with glutamic acid or malic acid and that the latter process is catalysed by the malate transferase SNG1. CONCLUSION Brassinosteroids participate in regulation of many aspects of plant development and in responses to environmental cues. Thus compounds modulating their action are valuable tools to study such processes and may be an interesting opportunity to modify plant growth and performance in horticulture and agronomy. Here we report the development of bikinin derivatives with increased potency that can activate BR signalling and mimic BR action. Methyliodobikinin was 3.4 times more active in vivo than bikinin. The main reason for the superior activity of methyliodobikinin, the most potent compound, is its enhanced plant tissue permeability. Inactivation of bikinin and its derivatives in planta involves SNG1, which constitutes a novel pathway for modification of xenobiotic compounds.
Collapse
Affiliation(s)
- Wilfried Rozhon
- GMI-Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna 1030, Austria
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, Freising 85354, Germany
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna 1030, Austria
| | - Wuyan Wang
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, Freising 85354, Germany
- Present address: Plant Biochemistry, ETH Zürich, Universitätsstr. 2, Zürich 8092, Switzerland
| | - Franz Berthiller
- Center for Analytical Chemistry, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, Tulln 3430, Austria
| | - Juliane Mayerhofer
- GMI-Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Tingting Chen
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, Freising 85354, Germany
| | - Elena Petutschnig
- GMI-Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna 1030, Austria
- Present address: Albrecht-von-Haller-Institute of Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen 37077, Germany
| | - Tobias Sieberer
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna 1030, Austria
- Department of Plant Sciences, Research Unit Plant Growth Regulation, Technische Universität München, Liesel-Beckmann-Straße 1, Freising-Weihenstephan 85354, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, Freising 85354, Germany
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna 1030, Austria
| | - Claudia Jonak
- GMI-Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| |
Collapse
|
233
|
Ma Q, Wu M, Pei W, Li H, Li X, Zhang J, Yu J, Yu S. Quantitative phosphoproteomic profiling of fiber differentiation and initiation in a fiberless mutant of cotton. BMC Genomics 2014; 15:466. [PMID: 24923550 PMCID: PMC4070576 DOI: 10.1186/1471-2164-15-466] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022] Open
Abstract
Background The cotton (Gossypium spp.) fiber cell is an important unicellular model for studying cell differentiation. There is evidence suggesting that phosphorylation is a critical post-translational modification involved in regulation of a wide range of cell activities. Nevertheless, the sites of phosphorylation in G. hirsutum and their regulatory roles in fiber cell initiation are largely unknown. In this study, we employed a mass spectrometry-based phosphoproteomics to conduct a global and site-specific phosphoproteome profiling between ovules of a fuzzless-lintless (fl) Upland cotton (G. hirsutum) mutant and its isogenic parental wild type (WT) at -3 and 0 days post-anthesis (DPA). Results A total of 830 phosphopeptides and 1,592 phosphorylation sites from 619 phosphoproteins were identified by iTRAQ (isobaric tags for relative and absolute quantitation). Of these, 76 phosphoproteins and 1,100 phosphorylation sites were identified for the first time after searching the P3DB public database using the BLAST program. Among the detected phosphopeptides, 69 were differentially expressed between the fl mutant and its WT in ovules at -3 and 0 DPA. An analysis using the Motif-X program uncovered 19 phosphorylation motifs, 8 of which were unique to cotton. A further metabolic pathway analysis revealed that the differentially phosphorylated proteins were involved in signal transduction, protein modification, carbohydrate metabolic processes, and cell cycle and cell proliferation. Conclusions Our phosphoproteomics-based research provides the first global overview of phosphorylation during cotton fiber initiation, and also offers a helpful dataset for elucidation of signaling networks in fiber development of G. hirsutum. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-466) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiwen Yu
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | | |
Collapse
|
234
|
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 2014; 46:567-72. [DOI: 10.1038/ng.2987] [Citation(s) in RCA: 634] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 04/24/2014] [Indexed: 01/05/2023]
|
235
|
Li Q, Xiao G, Zhu YX. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns. MOLECULAR PLANT 2014; 7:829-40. [PMID: 24398628 DOI: 10.1093/mp/sst175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alternative splicing (AS) is a vital genetic mechanism that enhances the diversity of eukaryotic transcriptomes. Here, we generated 8.3 Gb high-quality RNA-sequencing data from cotton (Gossypium raimondii) and performed a systematic, comparative analysis of AS events. We mapped 85% of the RNA-sequencing data onto the reference genome and identified 154368 splice junctions with 16437 as events in 10197 genes. Intron retention constituted the majority (40%) of all AS events in G. raimondii. Comparison across 11 eukaryote species showed that intron retention is the most common AS type in higher plants. Although transposable elements (TEs) were found in only 2.9% of all G. raimondii introns, they are present in 43% of the retained introns, suggesting that TE-insertion may be an important mechanism for intron retention during AS. The majority of the TE insertions are concentrated 0-40 nt upstream of the 3'-splice site, substantially altering the distribution of branch points from preferred positions and reducing the efficiency of intron splicing by decreasing RNA secondary structure flexibility. Our data suggest that TE-insertion-induced changes in branch point-site distribution are important for intron retention-type AS. Our findings may help explain the vast differences in intron-retention frequencies between vertebrates and higher plants.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
236
|
Fang L, Tian R, Chen J, Wang S, Li X, Wang P, Zhang T. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS One 2014; 9:e94642. [PMID: 24762562 PMCID: PMC3998979 DOI: 10.1371/journal.pone.0094642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.
Collapse
Affiliation(s)
- Lei Fang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Ruiping Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Sen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Xinghe Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
237
|
Zhou Y, Li BY, Li M, Li XJ, Zhang ZT, Li Y, Li XB. A MADS-box gene is specifically expressed in fibers of cotton (Gossypium hirsutum) and influences plant growth of transgenic Arabidopsis in a GA-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:70-9. [PMID: 24374505 DOI: 10.1016/j.plaphy.2013.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/06/2013] [Indexed: 05/02/2023]
Abstract
In this study, a cDNA, GhMADS14, encoding a typical MADS-box protein with 223 amino acids was isolated from a cotton cDNA library. Fluorescent microscopy indicated that the GhMADS14 protein was localized in the cell nucleus. GhMADS14 was specifically expressed in the elongating fibers, and its expression was gradually enhanced at early stages of fiber elongation and reached its peak in 9-10 DPA fibers. Overexpression of GhMADS14 in Arabidopsis hindered plant growth. Measurement and statistical analysis revealed that hypocotyl length of GhMADS14 transgenic seedlings was significantly reduced, and the height of the mature transgenic plants was remarkably less than that of the wild type. Furthermore, expression of GA 20-oxidase (AtGA20ox1 and AtGA20ox2) and GA 3-oxidase (AtGA3ox1 and AtGA3ox2) genes was remarkably reduced, whereas AtGA2ox1 and AtGA2ox8 were dramatically up-regulated in the transgenic plants, compared with the wild type. These results suggested that overexpression of GhMADS14 in Arabidopsis may alter expression levels of the genes related to GA biosynthetic and metabolic pathways, resulting in the reduction of endogenous GA amounts in cells. As a result, the transgenic plants grew slowly and display a GA-deficient phenotype.
Collapse
Affiliation(s)
- Ying Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bing-Ying Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mo Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao-Jie Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ze-Ting Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
238
|
Nigam D, Kavita P, Tripathi RK, Ranjan A, Goel R, Asif M, Shukla A, Singh G, Rana D, Sawant SV. Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:204-218. [PMID: 24119257 DOI: 10.1111/pbi.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Understanding the contribution of genetic background in fibre quality traits is important for the development of future cotton varieties with superior fibre quality. We used Affymetrix microarray (Santa Clara, CA) and Roche 454 GSFLX (Branford, CT) for comparative transcriptome analysis between two superior and three inferior genotypes at six fibre developmental stages. Microarray-based analysis of variance (ANOVA) for 89 microarrays encompassing five contrasting genotypes and six developmental stages suggests that the stages of the fibre development have a more pronounced effect on the differentially expressed genes (DEGs) than the genetic background of genotypes. Superior genotypes showed enriched activity of cell wall enzymes, such as pectin methyl esterase, at early elongation stage, enriched metabolic activities such as lipid, amino acid and ribosomal protein subunits at peak elongation, and prolonged combinatorial regulation of brassinosteroid and auxin at later stages. Our efforts on transcriptome sequencing were focused on changes in gene expression at 25 DPA. Transcriptome sequencing resulted in the generation of 475 658 and 429 408 high-quality reads from superior and inferior genotypes, respectively. A total of 24 609 novel transcripts were identified manually for Gossypium hirsutum with no hits in NCBI 'nr' database. Gene ontology analyses showed that the genes for ribosome biogenesis, protein transport and fatty acid biosynthesis were over-represented in superior genotype, whereas salt stress, abscisic acid stimuli and water deprivation leading to the increased proteolytic activity were more pronounced in inferior genotype.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Wang C, Lv Y, Xu W, Zhang T, Guo W. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics 2014; 15:94. [PMID: 24483163 PMCID: PMC3925256 DOI: 10.1186/1471-2164-15-94] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immature fiber (im) mutant of Gossypium hirsutum L. is a special cotton fiber mutant with non-fluffy fibers. It has low dry weight and fineness of fibers due to developmental defects in fiber secondary cell wall (SCW). RESULTS We compared the cellulose content in fibers, thickness of fiber cell wall and fiber transcriptional profiling during SCW development in im mutant and its near-isogenic wild-type line (NIL) TM-1. The im mutant had lower cellulose content and thinner cell walls than TM-1 at same fiber developmental stage. During 25 ~ 35 day post-anthesis (DPA), sucrose content, an important carbon source for cellulose synthesis, was also significantly lower in im mutant than in TM-1. Comparative analysis of fiber transcriptional profiling from 13 ~ 25 DPA indicated that the largest transcriptional variations between the two lines occurred at the onset of SCW development. TM-1 began SCW biosynthesis approximately at 16 DPA, whereas the same fiber developmental program in im mutant was delayed until 19 DPA, suggesting an asynchronous fiber developmental program between TM-1 and im mutant. Functional classification and enrichment analysis of differentially expressed genes (DEGs) between the two NILs indicated that genes associated with biological processes related to cellulose synthesis, secondary cell wall biogenesis, cell wall thickening and sucrose metabolism, respectively, were significantly up-regulated in TM-1. Twelve genes related to carbohydrate metabolism were validated by quantitative reverse transcription PCR (qRT-PCR) and confirmed a temporal difference at the earlier transition and SCW biosynthesis stages of fiber development between TM-1 and im mutant. CONCLUSIONS We propose that Im is an important regulatory gene influencing temporal differences in expression of genes related to fiber SCW biosynthesis. This study lays a foundation for cloning the Im gene, elucidating molecular mechanism of fiber SCW development and further genetic manipulation for the improvement of fiber fineness and maturity.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wentin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
240
|
Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS One 2014; 9:e86344. [PMID: 24466041 PMCID: PMC3897678 DOI: 10.1371/journal.pone.0086344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/10/2013] [Indexed: 02/02/2023] Open
Abstract
Brown cotton fiber is the major raw material for colored cotton industry. Previous studies have showed that the brown pigments in cotton fiber belong to proanthocyanidins (PAs). To clarify the details of PA biosynthesis pathway in brown cotton fiber, gene expression profiles in developing brown and white fibers were compared via digital gene expression profiling and qRT-PCR. Compared to white cotton fiber, all steps from phenylalanine to PA monomers (flavan-3-ols) were significantly up-regulated in brown fiber. Liquid chromatography mass spectrometry analyses showed that most of free flavan-3-ols in brown fiber were in 2, 3-trans form (gallocatechin and catechin), and the main units of polymeric PAs were trihydroxylated on B ring. Consistent with monomeric composition, the transcript levels of flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase in cotton fiber were much higher than their competing enzymes acting on the same substrates (dihydroflavonol 4-reductase and anthocyanidin synthase, respectively). Taken together, our data revealed a detailed PA biosynthesis pathway wholly activated in brown cotton fiber, and demonstrated that flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase represented the primary flow of PA biosynthesis in cotton fiber.
Collapse
|
241
|
Zhou GF, Liu YZ, Sheng O, Wei QJ, Yang CQ, Peng SA. Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray. FRONTIERS IN PLANT SCIENCE 2014; 5:795. [PMID: 25674093 PMCID: PMC4309116 DOI: 10.3389/fpls.2014.00795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/21/2014] [Indexed: 05/18/2023]
Abstract
Boron (B) deficiency has seriously negative effect on citrus production. Carrizo citrange (CC) has been reported as a B-deficiency tolerant rootstock. However, the molecular mechanism of its B-deficiency tolerance remained not well-explored. To understand the molecular basis of citrus rootstock to B-deficiency, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potential important or novel genes responsive to B-deficiency. Firstly four SSH libraries were constructed for the root tissue of two citrus rootstocks CC and Trifoliate orange (TO) to compare B-deficiency treated and non-treated plants. Then 7680 clones from these SSH libraries were used to construct a cDNA array and microarray analysis was carried out to verify the expression changes of these clones upon B-deficiency treatment at various time points compared to the corresponding controls. A total of 139 unigenes that were differentially expressed upon B-deficiency stress either in CC or TO were identified from microarray analysis, some of these genes have not previously been reported to be associated with B-deficiency stress. In this work, several genes involved in cell wall metabolism and transmembrane transport were identified to be highly regulated under B-deficiency stress, and a total of 23 metabolic pathways were affected by B-deficiency, especially the lignin biosynthesis pathway, nitrogen metabolism, and glycolytic pathway. All these results indicated that CC was more tolerant than TO to B-deficiency stress. The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus.
Collapse
Affiliation(s)
- Gao-Feng Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural UniversityWuhan, China
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal UniversityGanzhou, China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural UniversityWuhan, China
| | - Ou Sheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural UniversityWuhan, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Qing-Jiang Wei
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural UniversityWuhan, China
- College of Agricultural, Jiangxi Agricultural UniversityNanchang, China
| | - Cheng-Quan Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural UniversityWuhan, China
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Shu-Ang Peng, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Shizishan Street 1#, Wuhan 430070, China e-mail:
| |
Collapse
|
242
|
Bellaloui N, Turley RB. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:516. [PMID: 24416037 PMCID: PMC3874854 DOI: 10.3389/fpls.2013.00516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/02/2013] [Indexed: 05/27/2023]
Abstract
There is no information available on the effect of fuzzless seed trait on cottonseed nutrient composition (minerals, N, S, protein, and oil) under drought stress. The objective of this research was to investigate the effect of the fuzzless seed trait on cottonseed nutrients using five sets of near-isogenic lines (NILs). Each set consists of two lines that share the same genetic background, but differ in seed fuzziness (fuzzy, F; fuzzless, N). The near isogenic lines will enable us to compare the effect of the trait without confounding the genotypic background effects. We hypothesized that since the fuzzless trait involved in fiber initiation development, and was reported to be involved in biochemical, molecular, and genetic processes, this trait may also alter cottonseed nutrient composition. Results showed that NIL sets accumulated different levels of minerals in seeds and leaves, and the fuzzless trait (N) in most of the lines altered seed and leaf mineral accumulations when compared with fuzzy lines (F) or the control line. For example, K, P, Mg, Cu, and Na concentrations in seeds were higher in MD N and STV N than in their equivalent MD F and STV F lines. Leaf concentrations of Ca, K, Mg, S, B, Cu, and Fe in MD N lines were higher than MD F line. Lower levels of nutrients in seeds and leaves were observed under water stress conditions, especially Ca, Mg, N, and B in seeds.Generally and with few exceptions, seed protein was higher in fuzzy lines than in fuzzless lines; however, seed oil was higher in fuzzless lines than in fuzzy lines. Our research demonstrated that fuzzless trait altered the composition and level of nutrients in seed and leaves in well watered and water stressed plants. Differences in protein and oil between fuzzy and fuzzless seeds may indicate alteration in nitrogen and carbon fixation and metabolism. The differential accumulation of seed nutrients in this germplasm could be used by cotton breeders to select for higher cottonseed quality.
Collapse
Affiliation(s)
- Nacer Bellaloui
- *Correspondence: Nacer Bellaloui, Crop Genetics Research Unit, Plant Physiology, United States Department of Agriculture-Agricultural Research Service, 141 ExperimentStation Road, Stoneville, MS 38776, USA e-mail:
| | | |
Collapse
|
243
|
Huang Y, Liu X, Tang K, Zuo K. Functional analysis of the seed coat-specific gene GbMYB2 from cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:16-22. [PMID: 24036393 DOI: 10.1016/j.plaphy.2013.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/08/2013] [Indexed: 05/28/2023]
Abstract
MYB transcription factors are essential for cotton fiber development. We isolated the R2R3-MYB gene GbMYB2 from Gossypium barbadense. RNA in situ hybridization analysis showed that GbMYB2 is mainly expressed in the outer integuments of cotton ovules and in elongating fibers. GbMYB2 expression increased throughout fiber initiation and during the elongation stage. The expression level of GbMYB2 was higher in the Gossypium hirsutum cultivar Xu142 than in the Xu142 (fl) mutant. Overexpression of GbMYB2 in Arabidopsis caused thicker leaf trichomes and longer roots to develop due to the activation of trichome development-related genes such as GL2. These results indicate that GbMYB2 is an R2R3-MYB gene that is involved in fiber development.
Collapse
Affiliation(s)
- Yiqun Huang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
244
|
Li HF, Chen XP, Zhu FH, Liu HY, Hong YB, Liang XQ. Transcriptome profiling of peanut (Arachis hypogaea) gynophores in gravitropic response. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1249-1260. [PMID: 32481192 DOI: 10.1071/fp13075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/18/2013] [Indexed: 06/11/2023]
Abstract
Peanut (Arachis hypogaea L.) produces flowers aerially, but the fruit develops underground. This process is mediated by the gynophore, which always grows vertically downwards. The genetic basis underlying gravitropic bending of gynophores is not well understood. To identify genes related to gynophore gravitropism, gene expression profiles of gynophores cultured in vitro with tip pointing upward (gravitropic stimulation sample) and downward (control) at both 6 and 12h were compared through a high-density peanut microarray. After gravitropic stimulation, there were 174 differentially expressed genes, including 91 upregulated and 83 downregulated genes at 6h, and 491 differentially expressed genes including 129 upregulated and 362 downregulated genes at 12h. The differentially expressed genes identified were assigned to 24 functional categories. Twenty pathways including carbon fixation, aminoacyl-tRNA biosynthesis, pentose phosphate pathway, starch and sucrose metabolism were identified. The quantitative real-time PCR analysis was performed for validation of microarray results. Our study paves the way to better understand the molecular mechanisms underlying the peanut gynophore gravitropism.
Collapse
Affiliation(s)
- Hai-Fen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiao-Ping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fang-He Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hai-Yan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yan-Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuan-Qiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
245
|
Zhang G, Qi J, Xu J, Niu X, Zhang Y, Tao A, Zhang L, Fang P, Lin L. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.). Biochem Biophys Res Commun 2013; 442:153-8. [DOI: 10.1016/j.bbrc.2013.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
|
246
|
Identification and functional analysis of miRNAs in developing kernels of a viviparous mutant in maize. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
247
|
Ding M, Jiang Y, Cao Y, Lin L, He S, Zhou W, Rong J. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development. Gene 2013; 535:273-85. [PMID: 24279997 DOI: 10.1016/j.gene.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/02/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
Abstract
Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.
Collapse
Affiliation(s)
- Mingquan Ding
- School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, China
| | - Yurong Jiang
- School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, China
| | - Yuefen Cao
- School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, China
| | - Lifeng Lin
- Nanosphere Inc., 4088 Commercial Drive, Northbrook, IL 60062, USA
| | - Shae He
- School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, China
| | - Wei Zhou
- School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, China
| | - Junkang Rong
- School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, China.
| |
Collapse
|
248
|
Peng Z, Zhang C, Zhang Y, Hu T, Mu S, Li X, Gao J. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS One 2013; 8:e78944. [PMID: 24244391 PMCID: PMC3820679 DOI: 10.1371/journal.pone.0078944] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 01/23/2023] Open
Abstract
Background The moso bamboo, a large woody bamboo with the highest ecological, economic, and cultural value of all bamboos, has one of the highest growth speeds in the world. Genetic research into moso bamboo has been scarce, partly because of the lack of previous genomic resources. In the present study, for the first time, we performed de novo transcriptome sequencing and mapped to the moso bamboo genomic resources (reference genome and genes) to produce a comprehensive dataset for the fast growing shoots of moso bamboo. Results The fast growing shoots mixed with six different heights and culms after leaf expansion of moso bamboo transcriptome were sequenced using the Illumina HiSeq™ 2000 sequencing platform, respectively. More than 80 million reads including 65,045,670 and 68,431,884 clean reads were produced in the two libraries. More than 81% of the reads were matched to the reference genome, and nearly 50% of the reads were matched to the reference genes. The genes with log 2 ratio > 2 or < −2 (P<0.001) were characterized as the most differentially expressed genes. 6,076 up-regulated and 4,613 down-regulated genes were classified into functional categories. Candidate genes which mainly involved transcript factors, plant hormones, cell cycle regulation, cell wall metabolism and cell morphogenesis genes were further analyzed and they may form a network that regulates the fast growth of moso bamboo shoots. Conclusion Firstly, our data provides the most comprehensive transcriptomic resource for moso bamboo to date. Candidate genes have been identified and they are potentially involved in the growth and development of moso bamboo. The results give a better insight into the mechanisms of moso bamboo shoots rapid growth and provide gene resources for improving plant growth.
Collapse
Affiliation(s)
- Zhenhua Peng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Chunling Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Ying Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Tao Hu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
249
|
Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 2013; 8:e80218. [PMID: 24224045 PMCID: PMC3818253 DOI: 10.1371/journal.pone.0080218] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/28/2013] [Indexed: 12/15/2022] Open
Abstract
Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1 μM ABA), cold (4°C), drought (200 mM mannitol), salinity (200 mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple abiotic or even biotic stresses, in cotton. These candidate genes will be worthy of functional study under diverse stresses.
Collapse
Affiliation(s)
- Ya-Na Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WCY); (DQS)
| | - Meng-Bin Ruan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li-Li Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Hong Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WCY); (DQS)
| |
Collapse
|
250
|
Luo J, Ma N, Pei H, Chen J, Li J, Gao J. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5075-84. [PMID: 24014864 PMCID: PMC3830487 DOI: 10.1093/jxb/ert296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene plays an important role in organ growth. In Arabidopsis, ethylene can inhibit root elongation by stabilizing DELLA proteins. In previous work, it was found that ethylene suppressed cell expansion in rose petals, and five unisequences of DELLA genes are induced by ethylene. However, the mechanism of transcriptional regulation of DELLA genes by ethylene is still not clear. The results showed that the expression of RhGAI1 was induced in both ethylene-treated and ETR gene-silenced rose petals, and the promoter activity of RhGAI1 was strongly induced by RhEIN3-3 in Arabidopsis protoplasts. What is more, RhEIN3-3 could bind to the promoter of RhGAI1 directly in an electrophoretic mobility shift assay (EMSA). Cell expansion was suppressed in RhGAI1-Δ17-overexpressed Arabidopsis petals and promoted in RhGAI1-silenced rose petals. Moreover, in RhGAI1-silenced petals, the expression of nine cell expansion-related genes was clearly changed, and RhGAI1 can bind to the promoter of RhCesA2 in an EMSA. These results suggested that RhGAI1 was regulated by ethylene at the transcriptional level, and RhGAI1 was a direct target of RhEIN3-3. Also, RhGAI1 was shown to be involved in cell expansion partially through regulating the expression of cell expansion-related genes. Furthermore, RhCesA2 was a direct target of RhGAI1. This work uncovers the transcriptional regulation of RhGAI1 by ethylene and provides a better understanding of how ethylene regulates petal expansion in roses.
Collapse
Affiliation(s)
| | | | | | | | | | - Junping Gao
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|