201
|
Yang C, Ma Y, Li J. The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5545-5556. [PMID: 27578842 DOI: 10.1093/jxb/erw319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
YABBY genes encode seed plant-specific transcription factors that play pivotal roles in diverse aspects of leaf, shoot, and flower development. Members of the YABBY gene family are primarily expressed in lateral organs in a polar manner and function to specify abaxial cell fate in dicotyledons, but this polar expression is not conserved in monocotyledons. The function of YABBY genes is therefore not well understood in monocotyledons. Here we show that overexpression of the rice (Oryza sativa L.) YABBY4 gene (OsYABBY4) leads to a semi-dwarf phenotype, abnormal development in the uppermost internode, an increased number of floral organs, and insensitivity to gibberellin (GA) treatment. We report on an important role for OsYABBY4 in negative control of the expression of a GA biosynthetic gene by binding to the promoter region of the gibberellin 20-oxidase 2 gene (GA20ox2), which is a direct target of SLR1 (the sole DELLA protein negatively controlling GA responses in rice). OsYABBY4 also suppresses the expression level of SLR1 and interacts with SLR1 protein. The interaction inhibits GA-dependent degradation of SLR1 and therefore leads to GA insensitivity. These data together suggest that OsYABBY4 serves as a DNA-binding intermediate protein for SLR1 and is associated with the GA signaling pathway regulating gene expression during plant growth and development.
Collapse
Affiliation(s)
- Chao Yang
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yamei Ma
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianxiong Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
202
|
Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat Commun 2016; 7:12768. [PMID: 27624486 PMCID: PMC5027291 DOI: 10.1038/ncomms12768] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/30/2016] [Indexed: 12/18/2022] Open
Abstract
The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. Crosstalk between gibberellic acid (GA) and abscisic acid (ABA) regulates seed germination. Here the authors show that NF-YC transcription factors can interact with the RGL2 DELLA protein to regulate expression of ABI5 and therefore modulate ABA- and GA-responsive gene expression.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Pengwei Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mingkun Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Tang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ling Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
203
|
Boccaccini A, Lorrai R, Ruta V, Frey A, Mercey-Boutet S, Marion-Poll A, Tarkowská D, Strnad M, Costantino P, Vittorioso P. The DAG1 transcription factor negatively regulates the seed-to-seedling transition in Arabidopsis acting on ABA and GA levels. BMC PLANT BIOLOGY 2016; 16:198. [PMID: 27613195 PMCID: PMC5016951 DOI: 10.1186/s12870-016-0890-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/04/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND In seeds, the transition from dormancy to germination is regulated by abscisic acid (ABA) and gibberellins (GAs), and involves chromatin remodelling. Particularly, the repressive mark H3K27 trimethylation (H3K27me3) has been shown to target many master regulators of this transition. DAG1 (DOF AFFECTING GERMINATION1), is a negative regulator of seed germination in Arabidopsis, and directly represses the GA biosynthetic gene GA3ox1 (gibberellin 3-β-dioxygenase 1). We set to investigate the role of DAG1 in seed dormancy and maturation with respect to epigenetic and hormonal control. RESULTS We show that DAG1 expression is controlled at the epigenetic level through the H3K27me3 mark during the seed-to-seedling transition, and that DAG1 directly represses also the ABA catabolic gene CYP707A2; consistently, the ABA level is lower while the GA level is higher in dag1 mutant seeds. Furthermore, both DAG1 expression and protein stability are controlled by GAs. CONCLUSIONS Our results point to DAG1 as a key player in the control of the developmental switch between seed dormancy and germination.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Lorrai
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Veronica Ruta
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anne Frey
- Institut Jean-Pierre Bourgin, UMR1318, INRA, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles, Cedex France
| | - Stephanie Mercey-Boutet
- Institut Jean-Pierre Bourgin, UMR1318, INRA, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles, Cedex France
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, UMR1318, INRA, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles, Cedex France
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Vittorioso
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
204
|
Fonouni-Farde C, Tan S, Baudin M, Brault M, Wen J, Mysore KS, Niebel A, Frugier F, Diet A. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nat Commun 2016; 7:12636. [PMID: 27586842 PMCID: PMC5025792 DOI: 10.1038/ncomms12636] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/19/2016] [Indexed: 12/23/2022] Open
Abstract
Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris-Diderot, Univ Paris Sud, INRA, Univ Evry, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette 91190, France
| | - Sovanna Tan
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris-Diderot, Univ Paris Sud, INRA, Univ Evry, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette 91190, France
| | - Maël Baudin
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, CNRS, Castanet-Tolosan 31326, France
| | - Mathias Brault
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris-Diderot, Univ Paris Sud, INRA, Univ Evry, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette 91190, France
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, United States of America
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, United States of America
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, CNRS, Castanet-Tolosan 31326, France
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris-Diderot, Univ Paris Sud, INRA, Univ Evry, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette 91190, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris-Diderot, Univ Paris Sud, INRA, Univ Evry, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette 91190, France
| |
Collapse
|
205
|
Raineri J, Hartman MD, Chan RL, Iglesias AA, Ribichich KF. A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. PLANT CELL REPORTS 2016; 35:1875-90. [PMID: 27251125 DOI: 10.1007/s00299-016-2002-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 05/08/2023]
Abstract
The sunflower transcription factor HaWRKY10 stimulates reserves mobilization in Arabidopsis. Gene expression and enzymes activity assays indicated that lipolysis and gluconeogenesis were increased. Microarray results suggested a parallelism in sunflower. Germinating oilseeds converts stored lipids into sugars, and thereafter in metabolic energy that is used in seedling growth and establishment. During germination, the induced lipolysis linked to the glyoxylate pathway and gluconeogenesis produces sucrose, which is then transported to the embryo and driven through catabolic routes. Herein, we report that the sunflower transcription factor HaWRKY10 regulates carbon partitioning by reducing carbohydrate catabolism and increasing lipolysis and gluconeogenesis. HaWRKY10 was regulated by abscisic acid and gibberellins in the embryo leaves 48 h after seed imbibition and highly expressed during sunflower seed germination and seedling growth, concomitantly with lipid mobilization. Sunflower leaf disks overexpressing HaWRKY10 showed repressed expression of genes related to sucrose cleavage and glycolysis compared with controls. Moreover, HaWRKY10 constitutive expression in Arabidopsis seeds produced higher decrease in lipid reserves, whereas starch and sucrose were more preserved compared with wild type. Gene transcripts abundance and enzyme activities involved in stored lipid mobilization and gluconeogenesis increased more in transgenic than in wild type seeds 36 h after imbibition, whereas the negative regulator of lipid mobilization, ABI4, was repressed. Altogether, the results point out a functional parallelism between tissues and plant species, and reveal HaWRKY10 as a positive regulator of storage reserve mobilization in sunflower.
Collapse
Affiliation(s)
- Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Karina F Ribichich
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina.
| |
Collapse
|
206
|
Genome-Wide Identification, Evolutionary Analysis and Expression Profiles of LATERAL ORGAN BOUNDARIES DOMAIN Gene Family in Lotus japonicus and Medicago truncatula. PLoS One 2016; 11:e0161901. [PMID: 27560982 PMCID: PMC4999203 DOI: 10.1371/journal.pone.0161901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
The LATERAL ORGANBOUNDARIESDOMAIN (LBD) gene family has been well-studied in Arabidopsis and play crucial roles in the diverse growth and development processes including establishment and maintenance of boundary of developmental lateral organs. In this study we identified and characterized 38 LBD genes in Lotus japonicus (LjLBD) and 57 LBD genes in Medicago truncatula (MtLBD), both of which are model legume plants that have some specific development features absent in Arabidopsis. The phylogenetic relationships, their locations in the genome, genes structure and conserved motifs were examined. The results revealed that all LjLBD and MtLBD genes could be distinctly divided into two classes: Class I and II. The evolutionary analysis showed that Type I functional divergence with some significantly site-specific shifts may be the main force for the divergence between Class I and Class II. In addition, the expression patterns of LjLBD genes uncovered the diverse functions in plant development. Interestingly, we found that two LjLBD proteins that were highly expressed during compound leaf and pulvinus development, can interact via yeast two-hybrid assays. Taken together, our findings provide an evolutionary and genetic foundation in further understanding the molecular basis of LBD gene family in general, specifically in L. japonicus and M. truncatula.
Collapse
|
207
|
Martín-Rodríguez JA, Huertas R, Ho-Plágaro T, Ocampo JA, Turečková V, Tarkowská D, Ludwig-Müller J, García-Garrido JM. Gibberellin-Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:1273. [PMID: 27602046 PMCID: PMC4993810 DOI: 10.3389/fpls.2016.01273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/10/2016] [Indexed: 05/20/2023]
Abstract
Plant hormones have become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in arbuscular mycorrhizal (AM) symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots.
Collapse
Affiliation(s)
- José A. Martín-Rodríguez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, GranadaSpain
| | - Raúl Huertas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, GranadaSpain
| | - Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, GranadaSpain
| | - Juan A. Ocampo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, GranadaSpain
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i., Palacký University, OlomoucCzech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i., Palacký University, OlomoucCzech Republic
| | | | - José M. García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, GranadaSpain
| |
Collapse
|
208
|
Zhou X, Zhang ZL, Park J, Tyler L, Yusuke J, Qiu K, Nam EA, Lumba S, Desveaux D, McCourt P, Kamiya Y, Sun TP. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling. PLANT PHYSIOLOGY 2016; 171:2760-70. [PMID: 27255484 PMCID: PMC4972265 DOI: 10.1104/pp.16.00154] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/30/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Zhong-Lin Zhang
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Ludmila Tyler
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Jikumaru Yusuke
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Kai Qiu
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Edward A Nam
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Shelley Lumba
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Darrell Desveaux
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Peter McCourt
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Yuji Kamiya
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27705 (X.Z., Z.-L.Z., L.T., J.P., E.A.N., T.-p.S.); RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan (J.Y., Y.K.); Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3B2, Canada (S.L., D.D., P.M.); Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario M5S 3B2, Canada (D.D.); andState Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (K.Q.)
| |
Collapse
|
209
|
Li M, An F, Li W, Ma M, Feng Y, Zhang X, Guo H. DELLA proteins interact with FLC to repress flowering transition. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:642-55. [PMID: 26584710 DOI: 10.1111/jipb.12451] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/17/2015] [Indexed: 05/04/2023]
Abstract
Flowering is a highly orchestrated and extremely critical process in a plant's life cycle. Previous study has demonstrated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) integrate the gibberellic acid (GA) signaling pathway and vernalization pathway in regulating flowering time, but detailed molecular mechanisms remain largely unclear. In GA signaling pathway, DELLA proteins are a group of master transcriptional regulators, while in vernalization pathway FLOWERING LOCUS C (FLC) is a core transcriptional repressor that down-regulates the expression of SOC1 and FT. Here, we report that DELLA proteins interact with FLC in vitro and in vivo, and the LHRI domains of DELLAs and the C-terminus of MADS domain of FLC are required for these interactions. Phenotypic and gene expression analysis showed that mutation of FLC reduces while over-expression of FLC enhances the GA response in the flowering process. Further, DELLA-FLC interactions promote the repression ability of FLC on its target genes. In summary, these findings report that the interaction between MADS box transcription factor FLC and GRAS domain regulator DELLAs may integrate various signaling inputs in flowering time control, and shed new light on the regulatory mechanism both for FLC and DELLAs in regulating gene expression.
Collapse
Affiliation(s)
- Mingzhe Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fengying An
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wenyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mengdi Ma
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ying Feng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
210
|
Choi JW, Lim J. Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation. Mol Cells 2016; 39:524-9. [PMID: 27306644 PMCID: PMC4959016 DOI: 10.14348/molcells.2016.0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.
Collapse
Affiliation(s)
- Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
211
|
Mapping transcription factor interactome networks using HaloTag protein arrays. Proc Natl Acad Sci U S A 2016; 113:E4238-47. [PMID: 27357687 DOI: 10.1073/pnas.1603229113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.
Collapse
|
212
|
Yu Y, Wang N, Hu R, Xiang F. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. SPRINGERPLUS 2016; 5:920. [PMID: 27386364 PMCID: PMC4927560 DOI: 10.1186/s40064-016-2647-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/22/2016] [Indexed: 01/23/2023]
Abstract
Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance.
Collapse
Affiliation(s)
- Yanchong Yu
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
- />Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 Shandong China
| | - Nan Wang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| | - Ruibo Hu
- />Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road No. 189, Qingdao, 266101 Shandong China
| | - Fengning Xiang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| |
Collapse
|
213
|
Abstract
Gibberellins (GAs) are phytohormones that regulate growth and development. DELLA proteins repress GA responses. GA binding to its receptor triggers a series of events that culminate in the destruction of DELLA proteins by the 26S proteasome, which removes the repression of GA signalling. DELLA proteins are transcription co-activators that induce the expression of genes which encode products that inhibit GA responses. In addition to repressing GA responses, DELLA proteins influence the activity of other signalling pathways and serve as a central hub from which other pathways influence GA signalling. In this role, DELLA proteins bind to and inhibit proteins, including transcription factors that act in the signalling pathways of other hormones and light. The binding of these proteins to DELLA proteins also inhibits DELLA activity. GA signalling is subject to homoeostatic regulation through GA-induced repression of GA biosynthesis gene expression, and increased production of the GA receptor and enzymes that catabolize bioactive GAs. This review also discusses the nature of mutant DELLA alleles that are used to produce high-yielding 'Green Revolution' cereal varieties, and highlights important gaps in our knowledge of GA signalling.
Collapse
|
214
|
Abstract
Hormones are chemical substances that can affect many cellular and developmental processes at low concentrations. Plant hormones co-ordinate growth and development at almost all stages of the plant's life cycle by integrating endogenous signals and environmental cues. Much debate in hormone biology revolves around specificity and redundancy of hormone signalling. Genetic and molecular studies have shown that these small molecules can affect a given process through a signalling pathway that is specific for each hormone. However, classical physiological and genetic studies have also demonstrated that the same biological process can be regulated by many hormones through independent pathways (co-regulation) or shared pathways (cross-talk or cross-regulation). Interactions between hormone pathways are spatiotemporally controlled and thus can vary depending on the stage of development or the organ being considered. In this chapter we discuss interactions between abscisic acid, gibberellic acid and ethylene in the regulation of seed germination as an example of hormone cross-talk. We also consider hormone interactions in response to environmental signals, in particular light and temperature. We focus our discussion on the model plant Arabidopsis thaliana.
Collapse
|
215
|
DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun 2016; 7:11868. [PMID: 27282989 PMCID: PMC4906400 DOI: 10.1038/ncomms11868] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/06/2016] [Indexed: 12/25/2022] Open
Abstract
Light and gibberellins (GAs) antagonistically regulate hypocotyl elongation in plants. It has been demonstrated that DELLAs, which are negative regulators of GA signalling, inhibit phytochrome-interacting factors 3 and 4 (PIF3 and PIF4) by sequestering their DNA-recognition domains. However, it is unclear whether there are other mechanisms of regulatory crosstalk between DELLAs and PIFs. Here, we demonstrate that DELLAs negatively regulate the abundance of four PIF proteins through the ubiquitin–proteasome system. Reduction of PIF3 protein abundance by DELLAs correlates closely with reduced hypocotyl elongation. Both sequestration and degradation of PIF3 by DELLAs contribute to a reduction in PIF3 binding to its target genes. Thus, we show that promotion of PIF degradation by DELLAs is required to coordinate light and GA signals, and the dual regulation of transcription factors by DELLAs by both sequestration and degradation may be a general mechanism. Gibberellins (GA) negatively regulate light-mediated suppression of hypocotyl elongation in plants. Here, Li et al. show that GA-mediated destabilization of DELLA proteins promotes accumulation of the light-regulated PIF transcription factors thus contributing to the crosstalk between light and GA signalling.
Collapse
|
216
|
Lee SA, Jang S, Yoon EK, Heo JO, Chang KS, Choi JW, Dhar S, Kim G, Choe JE, Heo JB, Kwon C, Ko JH, Hwang YS, Lim J. Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue. MOLECULAR PLANT 2016; 9:870-84. [PMID: 26970019 DOI: 10.1016/j.molp.2016.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 05/21/2023]
Abstract
In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root.
Collapse
Affiliation(s)
- Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kwang Suk Chang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Choe
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae Bok Heo
- Department of Molecular Biotechnology, Dong-A University, Busan 49201, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
217
|
Zentella R, Hu J, Hsieh WP, Matsumoto PA, Dawdy A, Barnhill B, Oldenhof H, Hartweck LM, Maitra S, Thomas SG, Cockrell S, Boyce M, Shabanowitz J, Hunt DF, Olszewski NE, Sun TP. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev 2016; 30:164-76. [PMID: 26773002 PMCID: PMC4719307 DOI: 10.1101/gad.270587.115] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Zentella et al. show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors—PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)—that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein–protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors—PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)—that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.
Collapse
Affiliation(s)
- Rodolfo Zentella
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Wen-Ping Hsieh
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Peter A Matsumoto
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Andrew Dawdy
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Benjamin Barnhill
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Harriëtte Oldenhof
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Lynn M Hartweck
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Sushmit Maitra
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Stephen G Thomas
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Shelley Cockrell
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA; Department of Pathology, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Neil E Olszewski
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
218
|
Song H, Wang P, Lin JY, Zhao C, Bi Y, Wang X. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut. FRONTIERS IN PLANT SCIENCE 2016; 7:534. [PMID: 27200012 PMCID: PMC4845656 DOI: 10.3389/fpls.2016.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/04/2016] [Indexed: 05/18/2023]
Abstract
WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.
Collapse
Affiliation(s)
- Hui Song
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Pengfei Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Jer-Young Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Yuping Bi
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| |
Collapse
|
219
|
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC PLANT BIOLOGY 2016; 16:86. [PMID: 27079791 PMCID: PMC4831116 DOI: 10.1186/s12870-016-0771-y] [Citation(s) in RCA: 1003] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/06/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. RESULTS Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. CONCLUSIONS The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk mechanisms among various hormones in coordinating growth under stress will be an important theme in the field of abiotic stress research. Such efforts will help to reveal important points of genetic control that can be useful to engineer stress tolerant crops.
Collapse
Affiliation(s)
- Vivek Verma
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
- />Present address: School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Pratibha Ravindran
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| | - Prakash P. Kumar
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| |
Collapse
|
220
|
Unterholzner SJ, Rozhon W, Poppenberger B. Reply: Interaction between Brassinosteroids and Gibberellins: Synthesis or Signaling? In Arabidopsis, Both! THE PLANT CELL 2016. [PMID: 27006486 DOI: 10.1105/tpc.16.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Simon J Unterholzner
- Biotechnology of Horticultural CropsTUM School of Life Sciences WeihenstephanTechnische Universität MünchenD-85354 Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural CropsTUM School of Life Sciences WeihenstephanTechnische Universität MünchenD-85354 Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural CropsTUM School of Life Sciences WeihenstephanTechnische Universität MünchenD-85354 Freising, Germany
| |
Collapse
|
221
|
Unterholzner SJ, Rozhon W, Poppenberger B. Reply: Interaction between Brassinosteroids and Gibberellins: Synthesis or Signaling? In Arabidopsis, Both! THE PLANT CELL 2016; 28:836-9. [PMID: 27006486 PMCID: PMC4863389 DOI: 10.1105/tpc.16.00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 05/23/2023]
Affiliation(s)
- Simon J Unterholzner
- Biotechnology of Horticultural CropsTUM School of Life Sciences WeihenstephanTechnische Universität MünchenD-85354 Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural CropsTUM School of Life Sciences WeihenstephanTechnische Universität MünchenD-85354 Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural CropsTUM School of Life Sciences WeihenstephanTechnische Universität MünchenD-85354 Freising, Germany
| |
Collapse
|
222
|
Liu B, Liu X, Yang S, Chen C, Xue S, Cai Y, Wang D, Yin S, Gai X, Ren H. Silencing of the gibberellin receptor homolog, CsGID1a, affects locule formation in cucumber (Cucumis sativus) fruit. THE NEW PHYTOLOGIST 2016; 210:551-63. [PMID: 26701170 DOI: 10.1111/nph.13801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 05/09/2023]
Abstract
Gibberellins are phytohormones with many roles, including the regulation of fruit development. However, little is known about the relationship between GA perception and fleshy fruit ontogeny, and particularly locule formation. We characterized the expression of cucumber (Cucumis sativus) GA receptor gene (CsGID1a) using quantitative real-time PCR, in situ hybridization and a promoter::β-glucuronidase (GUS) assay. CsGID1a-RNAi cucumber fruits were observed by dissecting microscope, scanning electron microscopy and transmission electron microscopy. Finally, genome-wide gene expression in young fruits from a control and the RNAi line was compared using a digital gene expression (DGE) analysis approach. The expression pattern of CsGID1a was found to be closely correlated with fruit locule formation, and silencing CsGID1a in cucumber resulted in fruits with abnormal carpels and locules. Overexpression of CsGID1a in the Arabidopsis thaliana double mutant (gid1a gid1c) resulted in 'cucumber locule-like' fruits. The DGE analysis suggested that expression of genes related to auxin synthesis and transport, as well as the cell cycle, was altered in CsGID1a-RNAi fruits, a result that was supported by comparing the auxin content and cellular structures of the control and transgenic fruits. This study demonstrates a previously uncharacterized GA signaling pathway that is essential for cucumber fruit locule formation.
Collapse
Affiliation(s)
- Bin Liu
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Sen Yang
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Chunhua Chen
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Shudan Xue
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Yanling Cai
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Dandan Wang
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Shuai Yin
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Xinshuang Gai
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
223
|
Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2277-84. [PMID: 26873978 PMCID: PMC4809285 DOI: 10.1093/jxb/erw028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.
Collapse
Affiliation(s)
- Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alison D Gilday
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Steven D Penfield
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
224
|
Zhu Z, Ding Y, Zhao J, Nie Y, Zhang Y, Sheng J, Tang X. Effects of Postharvest Gibberellic Acid Treatment on Chilling Tolerance in Cold-Stored Tomato (Solanum lycopersicum L.) Fruit. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1712-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
225
|
Yamaguchi I, Nakajima M, Park SH. Trails to the gibberellin receptor, GIBBERELLIN INSENSITIVE DWARF1. Biosci Biotechnol Biochem 2016; 80:1029-36. [PMID: 26927225 DOI: 10.1080/09168451.2016.1148575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The researches on the identification of gibberellin receptor are reviewed from the early attempts in 1960s to the identification of GIBBERELLIN INSENSITIVE DWARF1 (GID1) as the receptor in 2005. Unpublished data of the gibberellin-binding protein in the seedlings of adzuki bean (Vigna angularis) are also included, suggesting that the active principle of the gibberellin-binding protein was a GID1 homolog.
Collapse
Affiliation(s)
- Isomaro Yamaguchi
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Masatoshi Nakajima
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Seung-Hyun Park
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
226
|
Identification and characterization of Lateral Organ Boundaries Domain genes in mulberry, Morus notabilis. Meta Gene 2016; 8:44-50. [PMID: 27014591 PMCID: PMC4792858 DOI: 10.1016/j.mgene.2014.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 11/29/2022] Open
Abstract
Genes from the plant specific Lateral Organ Boundaries Domain (LBD) family encode transcriptional regulators that have a variety of functions in various physiological and developmental processes. In the present study, 31 LBD genes were identified in the mulberry genome. The genome features of all MnLBD genes and phylogenetic studies with Arabidopsis LBD protein sequences, accompanied by the expression analysis of each of the Morus LBD genes provide insights into the functional prediction of mulberry LBDs. The genome-wide surveys of the current mulberry genome have resulted in the identification of catalogs of MnLBD genes that may function in the development of leaf, root, and secondary metabolism in Morus sp. We identified and characterized 31 LBD genes in Morus. We analyzed the expression and phylogeny relationship with Arabidopsis of the Morus LBD genes for function prediction. Morus LBD genes might implicate in variety of functions especially in lateral organ development and secondary metabolism.
Collapse
|
227
|
Gong X, Flores-Vergara MA, Hong JH, Chu H, Lim J, Franks RG, Liu Z, Xu J. SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root. PLANT PHYSIOLOGY 2016; 170:1675-83. [PMID: 26818732 PMCID: PMC4775121 DOI: 10.1104/pp.15.01501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/22/2016] [Indexed: 05/18/2023]
Abstract
A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.
Collapse
Affiliation(s)
- Xue Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Miguel A Flores-Vergara
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Jing Han Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Huangwei Chu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Jun Lim
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Robert G Franks
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Zhongchi Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Jian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| |
Collapse
|
228
|
Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. NATURE PLANTS 2016; 2:16013. [PMID: 27249348 DOI: 10.1038/nplants.2016.13] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/21/2016] [Indexed: 05/02/2023]
|
229
|
Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:348-61. [PMID: 26708041 DOI: 10.1111/tpj.13109] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 05/02/2023]
Abstract
Abscisic acid (ABA) and gibberellins (GAs) are plant hormones which antagonistically mediate numerous physiological processes, and their optimal balance is essential for normal plant development. However, the molecular mechanism underlying ABA and GA antagonism still needs to be determined. Here, we report that ABA-INSENSITIVE 4 (ABI4) is a central factor in GA/ABA homeostasis and antagonism in post-germination stages. ABI4 overexpression in Arabidopsis (OE-ABI4) leads to developmental defects including a decrease in plant height and poor seed production. The transcription of a key ABA biosynthetic gene, NCED6, and of a key GA catabolic gene, GA2ox7, is significantly enhanced by ABI4 overexpression. ABI4 activates NCED6 and GA2ox7 transcription by directly binding to the promoters, and genetic analysis revealed that mutation in these two genes partially rescues the dwarf phenotype of ABI4 overexpressing plants. Consistently, ABI4 overexpressing seedlings have a lower GA/ABA ratio than the wild type. We further show that ABA induces GA2ox7 transcription while GA represses NCED6 expression in an ABI4-dependent manner; and that ABA stabilizes the ABI4 protein whereas GA promotes its degradation. Taken together, these results suggest that ABA and GA antagonize each other by oppositely acting on ABI4 transcript and protein levels.
Collapse
Affiliation(s)
- Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruijun Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huawei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengfei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanli Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengfu Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Giovanna Serino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University, Rome, 00185, Italy
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
230
|
Davière JM, Achard P. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. MOLECULAR PLANT 2016; 9:10-20. [PMID: 26415696 DOI: 10.1016/j.molp.2015.09.011] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 05/20/2023]
Abstract
Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways.
Collapse
Affiliation(s)
- Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, associé avec l'Université de Strasbourg, 12, rue Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, associé avec l'Université de Strasbourg, 12, rue Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
231
|
Tanabe S, Onodera H, Hara N, Ishii-Minami N, Day B, Fujisawa Y, Hagio T, Toki S, Shibuya N, Nishizawa Y, Minami E. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23. Biosci Biotechnol Biochem 2016; 80:145-51. [DOI: 10.1080/09168451.2015.1075866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
We show that a rice GRAS family protein, CIGR2, is a bonafide transcriptional activator, and through this function, targets the B-type heat shock protein-encoding gene OsHsf23 (Os09g0456800). CIGR2 (Os07g0583600) is an N-acetylchitooligosaccharide elicitor-responsive gene whose activity, through the direct transcriptional control of OsHsf23, is required for mediating hypersensitive cell death activation during pathogen infection. RNAi lines of CIGR2 and OsHsf23 similarly exhibited the higher level of granulation in the epidermal cells of leaf sheath inoculated with an avirulent isolate of rice blast fungus. Interestingly, we did not observe altered levels of resistance, suggesting that CIGR2 suppresses excessive cell death in the incompatible interaction with blast fungus via activation of OsHsf23.
Collapse
Affiliation(s)
- Shigeru Tanabe
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Haruko Onodera
- Agronomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Naho Hara
- Agronomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Naoko Ishii-Minami
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Brad Day
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yukiko Fujisawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Takashi Hagio
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Seiichi Toki
- Agronomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoko Nishizawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Eiichi Minami
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| |
Collapse
|
232
|
Song H, Wang P, Hou L, Zhao S, Zhao C, Xia H, Li P, Zhang Y, Bian X, Wang X. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean. FRONTIERS IN PLANT SCIENCE 2016; 7:9. [PMID: 26870047 PMCID: PMC4740950 DOI: 10.3389/fpls.2016.00009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/07/2016] [Indexed: 05/19/2023]
Abstract
WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment.
Collapse
|
233
|
Grimplet J, Agudelo-Romero P, Teixeira RT, Martinez-Zapater JM, Fortes AM. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:353. [PMID: 27065316 PMCID: PMC4811876 DOI: 10.3389/fpls.2016.00353] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 05/18/2023]
Abstract
GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja)Logroño, Spain
| | | | - Rita T. Teixeira
- Faculdade de Ciências de Lisboa, BioISI, Universidade de LisboaLisboa, Portugal
| | - Jose M. Martinez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja)Logroño, Spain
| | - Ana M. Fortes
- Faculdade de Ciências de Lisboa, BioISI, Universidade de LisboaLisboa, Portugal
- Instituto de Tecnologia de Química Biológica, Biotecnologia de Células VegetaisOeiras, Portugal
- *Correspondence: Ana M. Fortes
| |
Collapse
|
234
|
Zhang Y, Lan H, Shao Q, Wang R, Chen H, Tang H, Zhang H, Huang J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:315-26. [PMID: 26512055 DOI: 10.1093/jxb/erv464] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice.
Collapse
Affiliation(s)
- Ye Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxia Lan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaolin Shao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
235
|
Yan F, Hu G, Ren Z, Deng W, Li Z. Ectopic expression a tomato KNOX Gene Tkn4 affects the formation and the differentiation of meristems and vasculature. PLANT MOLECULAR BIOLOGY 2015; 89:589-605. [PMID: 26456092 DOI: 10.1007/s11103-015-0387-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/26/2015] [Indexed: 05/21/2023]
Abstract
The KNOTTED-LIKE HOMEODOMAIN genes are involved in maintenance of the shoot apical meristem which produces the whole above-ground body of vascular plants. In this report, a tomato homolog gene, named as Tkn4 (a nucleus targeted transcription factor) was identified and characterized. By performing RT-PCR, the transcript level of Tkn4 was separately found in stem, root, stamen, stigma, fruit and sepal but hardly visible in the leaf. Besides, Tkn4 was induced by a series of plant hormones. Overexpression of Tkn4 gene in tomato resulted in dwarf phenotype and strongly repressed the formation of shoot apical meristem, lateral meristem and cambiums in transgenic lines. The transgenic lines had wrinkled leaves and anatomic analysis showed that there was no obvious palisade tissues in the leaves and the layer of cells changed in vascular tissue (xylem and phloem). To explore the regulation network of Tkn4, RNA-sequencing was performed in overexpression lines and wild type plants, by which many genes related to the synthesis and the signal transduction of cytokinin, auxin, gibberellin, ethylene, abscisic acid, and tracheary element differentiation or extracellular matrix synthesis were significantly regulated. Taken together, our results demonstrate that Tkn4 plays important roles in regulating the biosynthesis and signal transduction of diverse plant hormones, and the formation and differentiation of meristems and vasculature in tomato.
Collapse
Affiliation(s)
- Fang Yan
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guojian Hu
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Zhenxin Ren
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Wei Deng
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Zhengguo Li
- Genetic Engineering Research Center, School of Life Sciences, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
236
|
Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Hüner NPA. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. PHOTOSYNTHESIS RESEARCH 2015; 126:221-35. [PMID: 25823797 DOI: 10.1007/s11120-015-0125-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 05/03/2023]
Abstract
Plants subjected to abiotic stresses such as extreme high and low temperatures, drought or salinity, often exhibit decreased vegetative growth and reduced reproductive capabilities. This is often associated with decreased photosynthesis via an increase in photoinhibition, and accompanied by rapid changes in endogenous levels of stress-related hormones such as abscisic acid (ABA), salicylic acid (SA) and ethylene. However, certain plant species and/or genotypes exhibit greater tolerance to abiotic stress because they are capable of accumulating endogenous levels of the zwitterionic osmolyte-glycinebetaine (GB). The accumulation of GB via natural production, exogenous application or genetic engineering, enhances plant osmoregulation and thus increases abiotic stress tolerance. The final steps of GB biosynthesis occur in chloroplasts where GB has been shown to play a key role in increasing the protection of soluble stromal and lumenal enzymes, lipids and proteins, of the photosynthetic apparatus. In addition, we suggest that the stress-induced GB biosynthesis pathway may well serve as an additional or alternative biochemical sink, one which consumes excess photosynthesis-generated electrons, thus protecting photosynthetic apparatus from overreduction. Glycinebetaine biosynthesis in chloroplasts is up-regulated by increases in endogenous ABA or SA levels. In this review, we propose and discuss a model describing the close interaction and synergistic physiological effects of GB and ABA in the process of cold acclimation of higher plants.
Collapse
Affiliation(s)
- Leonid V Kurepin
- Department of Biology and The Biotron Center for Experimental Climate Change Research, University of Western Ontario (Western University), 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.
| | - Alexander G Ivanov
- Department of Biology and The Biotron Center for Experimental Climate Change Research, University of Western Ontario (Western University), 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
| | - Mohammad Zaman
- Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Richard P Pharis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia
- Department of Plant Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
| | - Vaughan Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Norman P A Hüner
- Department of Biology and The Biotron Center for Experimental Climate Change Research, University of Western Ontario (Western University), 1151 Richmond Street N., London, ON, N6A 5B7, Canada
| |
Collapse
|
237
|
Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P. Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. FRONTIERS IN PLANT SCIENCE 2015; 6:1077. [PMID: 26648959 PMCID: PMC4665137 DOI: 10.3389/fpls.2015.01077] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
Present and future food security is a critical issue compounded by the consequences of climate change on agriculture. Stress perception and signal transduction in plants causes changes in gene or protein expression which lead to metabolic and physiological responses. Phytohormones play a central role in the integration of different upstream signals into different adaptive outputs such as changes in the activity of ion-channels, protein modifications, protein degradation, and gene expression. Phytohormone biosynthesis and signaling, and recently also phytohormone crosstalk have been investigated intensively, but the function of jasmonates under abiotic stress is still only partially understood. Although most aspects of jasmonate biosynthesis, crosstalk and signal transduction appear to be similar for biotic and abiotic stress, novel aspects have emerged that seem to be unique for the abiotic stress response. Here, we review the knowledge on the role of jasmonates under drought and salinity. The crosstalk of jasmonate biosynthesis and signal transduction pathways with those of abscisic acid (ABA) is particularly taken into account due to the well-established, central role of ABA under abiotic stress. Likewise, the accumulating evidence of crosstalk of jasmonate signaling with other phytohormones is considered as important element of an integrated phytohormonal response. Finally, protein post-translational modification, which can also occur without de novo transcription, is treated with respect to its implications for phytohormone biosynthesis, signaling and crosstalk. To breed climate-resilient crop varieties, integrated understanding of the molecular processes is required to modulate and tailor particular nodes of the network to positively affect stress tolerance.
Collapse
Affiliation(s)
- Michael Riemann
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rohit Dhakarey
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Hazman
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Berta Miro
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Ajay Kohli
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Peter Nick
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
238
|
Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, Wang X. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2288-303. [PMID: 26400990 PMCID: PMC4634064 DOI: 10.1104/pp.15.00858] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/20/2015] [Indexed: 05/03/2023]
Abstract
The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation.
Collapse
Affiliation(s)
- Chunmei Zhong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Siting Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiyi Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lingfei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
239
|
Du H, Chang Y, Huang F, Xiong L. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:954-968. [PMID: 25418692 DOI: 10.1111/jipb.12313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice.
Collapse
Affiliation(s)
- Hao Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
240
|
Cai R, Zhang C, Zhao Y, Zhu K, Wang Y, Jiang H, Xiang Y, Cheng B. Genome-wide analysis of the IQD gene family in maize. Mol Genet Genomics 2015; 291:543-58. [PMID: 26453258 DOI: 10.1007/s00438-015-1122-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/18/2015] [Indexed: 12/25/2022]
Abstract
IQD gene family plays important roles in plant developmental processes and stress responses. To date, no systematic characterization of this gene family has been carried out in maize. In this study, 26 IQD genes, from ZmIQD1 to ZmIQD26, were identified using Blast search tools. The phylogenetic analysis showed these genes were divided into four subfamilies (IQD I-IV) and members within the same subfamily shared conserved exon/intron distribution and motif composition. The 26 ZmIQD genes are distributed unevenly on 8 of the 10 chromosomes, with 9 segmental duplication events, suggesting that the expansion of IQDs in maize was due to the segmental duplication. The analysis of Ka/Ks ratios showed that the duplicated ZmIQDs had primarily undergone strong purifying selection. In addition, the 26 ZmIQDs displayed different expression patterns at different developmental stages of maize based on transcriptome analysis. Further, quantitative real-time PCR analysis showed that all 26 ZmIQD genes were responsive to drought treatment, suggesting their crucial roles in drought stress response. Yeast two-hybrid assay proved that ZmIQD2 and ZmIQD15 can interact with ZmCaM2 and IQ or I in IQ motif is required for ZmIQD15 to combine with CaM2. Our results present a comprehensive overview of the maize IQD gene family and lay an important foundation for further analysis aimed at uncovering the biological functions of ZmIQDs in growth and development.
Collapse
Affiliation(s)
- Ronghao Cai
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Congsheng Zhang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhao
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kejun Zhu
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yufu Wang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. .,Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
241
|
Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. Int J Mol Sci 2015; 16:22960-75. [PMID: 26404260 PMCID: PMC4613346 DOI: 10.3390/ijms160922960] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022] Open
Abstract
Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.
Collapse
|
242
|
Hauvermale AL, Tuttle KM, Takebayashi Y, Seo M, Steber CM. Loss of Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors. PLANT & CELL PHYSIOLOGY 2015; 56:1773-85. [PMID: 26136598 DOI: 10.1093/pcp/pcv084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/02/2015] [Indexed: 05/23/2023]
Abstract
Dormancy prevents seeds from germinating under favorable conditions until they have experienced dormancy-breaking conditions, such as after-ripening through a period of dry storage or cold imbibition. Abscisic acid (ABA) hormone signaling establishes and maintains seed dormancy, whereas gibberellin (GA) signaling stimulates germination. ABA levels decrease and GA levels increase with after-ripening and cold stratification. However, increasing GA sensitivity may also be critical to dormancy loss since increasing seed GA levels are detectable only with long periods of after-ripening and imbibition. After-ripening and cold stratification act additively to enhance GA hormone sensitivity in ga1-3 seeds that cannot synthesize GA. Since the overexpression of the GA receptor GID1 (GIBBERELLIN-INSENSITIVE DWARF1) enhanced this dormancy loss, and because gid1a gid1b gid1c triple mutants show decreased germination, the effects of dormancy-breaking treatments on GID1 mRNA and protein accumulation were examined. Partial after-ripening resulted in increased GID1b, but not GID1a or GID1c mRNA levels. Cold imbibition stimulated the accumulation of all three GID1 transcripts, but resulted in no increase in GA sensitivity during ga1-3 seed germination unless seeds were also partially after-ripened. This is probably because after-ripening was needed to enhance GID1 protein accumulation, independently of transcript abundance. The rise in GID1b transcript with after-ripening was not associated with decreased ABA levels, suggesting there is ABA-independent GID1b regulation by after-ripening and the 26S proteasome. GA and the DELLA RGL2 repressor of GA responses differentially regulated the three GID1 transcripts. Moreover, DELLA RGL2 appeared to switch between positive and negative regulation of GID1 expression in response to dormancy-breaking treatments.
Collapse
Affiliation(s)
- Amber L Hauvermale
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164-6420, USA
| | - Keiko M Tuttle
- Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164-6420, USA
| | - Yumiko Takebayashi
- RIKEN, Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Mitsunori Seo
- RIKEN, Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Camille M Steber
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164-6420, USA Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164-6420, USA USDA-ARS, Wheat Genetics, Quality, Physiology, and Disease Research Unit, Pullman, WA, USA
| |
Collapse
|
243
|
Hill K. Post-translational modifications of hormone-responsive transcription factors: the next level of regulation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4933-45. [PMID: 26041319 DOI: 10.1093/jxb/erv273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants exhibit a high level of developmental plasticity and growth is responsive to multiple developmental and environmental cues. Hormones are small endogenous signalling molecules which are fundamental to this phenotypic plasticity. Post-translational modifications of proteins are a central feature of the signal transduction pathways that regulate gene transcription in response to hormones. Modifications that affect the function of transcriptional regulators may also serve as a mechanism to incorporate multiple signals, mediate cross-talk, and modulate specific responses. This review discusses recent research that suggests hormone-responsive transcription factors are subject to multiple modifications which imply an additional level of regulation conferred by enzymes that mediate specific modifications, such as phosphorylation, ubiquitination, SUMOylation, and S-nitrosylation. These modifications can affect protein stability, sub-cellular localization, interactions with co-repressors and activators, and DNA binding. The focus here is on direct cross-talk involving transcription factors downstream of auxin, brassinosteroid, and gibberellin signalling. However, many of the concepts discussed are more broadly relevant to questions of how plants can modify their growth by regulating subsets of genes in response to multiple cues.
Collapse
Affiliation(s)
- Kristine Hill
- Plant Sciences Division and Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
244
|
Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.) Raf.) in response to cold stress. BMC Genomics 2015. [PMID: 26219960 PMCID: PMC4518522 DOI: 10.1186/s12864-015-1629-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trifoliate orange (Poncirus trifoliata (L.) Raf.) is extremely cold hardy after a full acclimation; however the underlying molecular mechanisms underlying this economically valuable trait remain poorly understood. In this study, global transcriptome profiles of trifoliate orange under cold conditions (4 °C) over a time course were generated by high-throughput sequencing. RESULTS More than 68 million high-quality reads were produced and assembled into a non-redundant data of 77,292 unigenes with an average length of 1112 bp (N50 = 1778 bp). Of these, 23,846 had significant sequence similarity to known genes and these were assigned to 61 gene ontology (GO) categories and 25 clusters of orthologous groups (COG) involved in 128 KEGG pathways. Sequences derived from cold-treated and control plants were mapped to the assembled transcriptome, resulting in the identification of 5549 differentially expressed genes (DEGs). These comprised 600 (462 up-regulated, 138 down-regulated), 2346 (1631 up-regulated, 715 down-regulated), and 5177 (2702 up-regulated, 2475 down-regulated) genes from the cold-treated samples at 6, 24 and 72 h, respectively. The accuracy of the RNA-seq derived transcript expression data was validated by analyzing the expression patterns of 17 DEGs by qPCR. Plant hormone signal transduction, plant-pathogen interaction, and secondary metabolism were the most significantly enriched GO categories amongst in the DEGs. A total of 60 transcription factors were shown to be cold responsive. In addition, a number of genes involved in the catabolism and signaling of hormones, such as abscisic acid, ethylene and gibberellin, were affected by the cold stress. Meanwhile, levels of putrescine progressively increased under cold, which was consistent with up-regulation of an arginine decarboxylase gene. CONCLUSIONS This dataset provides valuable information regarding the trifoliate orange transcriptome changes in response to cold stress and may help guide future identification and functional analysis of genes that are importnatn for enhancing cold hardiness.
Collapse
|
245
|
Kundu S. Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology. FRONTIERS IN PLANT SCIENCE 2015; 6:489. [PMID: 26236316 PMCID: PMC4502536 DOI: 10.3389/fpls.2015.00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/19/2015] [Indexed: 05/24/2023]
Abstract
Can the stimulus-driven synergistic association of 2-oxoglutarate dependent dioxygenases be influenced by the kinetic parameters of binding and catalysis?In this manuscript, I posit that these indices are necessary and specific for a particular stimulus, and are key determinants of a dynamic clustering that may function to mitigate the effects of this trigger. The protein(s)/sequence(s) that comprise this group are representative of all major kingdoms of life, and catalyze a generic hydroxylation, which is, in most cases accompanied by a specialized conversion of the substrate molecule. Iron is an essential co-factor for this transformation and the response to waning levels is systemic, and mandates the simultaneous participation of molecular sensors, transporters, and signal transducers. Here, I present a proof-of-concept model, that an evolving molecular network of 2OG-dependent enzymes can maintain iron homeostasis in the cytosol of root hair cells of members of the family Gramineae by actuating a non-reductive compensatory chelation by the phytosiderophores. Regression models of empirically available kinetic data (iron and alpha-ketoglutarate) were formulated, analyzed, and compared. The results, when viewed in context of the superfamily responding as a unit, suggest that members can indeed, work together to accomplish system-level function. This is achieved by the establishment of transient metabolic conduits, wherein the flux is dictated by kinetic compatibility of the participating enzymes. The approach adopted, i.e., predictive mathematical modeling, is integral to the hypothesis-driven acquisition of experimental data points and, in association with suitable visualization aids may be utilized for exploring complex plant biochemical systems.
Collapse
Affiliation(s)
- Siddhartha Kundu
- *Correspondence: Siddhartha Kundu, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India ;
| |
Collapse
|
246
|
Marín-de la Rosa N, Pfeiffer A, Hill K, Locascio A, Bhalerao RP, Miskolczi P, Grønlund AL, Wanchoo-Kohli A, Thomas SG, Bennett MJ, Lohmann JU, Blázquez MA, Alabadí D. Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins. PLoS Genet 2015; 11:e1005337. [PMID: 26134422 PMCID: PMC4489807 DOI: 10.1371/journal.pgen.1005337] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis. Plants respond to environmental cues by modulating transcriptional circuits. One mechanism for such modulation involves DELLA proteins. They are promiscuous interactors of transcription factors and, in most cases, this interaction impairs the recognition of the DNA target sequences. Here we show that DELLA proteins are also recruited to multiple locations of the genome where they act as transcriptional coactivators, and we demonstrate how physical interaction with type-B ARRs is relevant for the regulation of meristem maintenance and photomorphogenesis.
Collapse
Affiliation(s)
- Nora Marín-de la Rosa
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Anne Pfeiffer
- Department of Stem Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Kristine Hill
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, United Kingdom
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Rishikesh P. Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Sveriges Lantbruksuniversitet, Umeå, Sweden
- College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Pal Miskolczi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Sveriges Lantbruksuniversitet, Umeå, Sweden
| | | | | | | | - Malcolm J. Bennett
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Sveriges Lantbruksuniversitet, Umeå, Sweden
- College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jan U. Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
- * E-mail:
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
247
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
248
|
Chiang MH, Shen HL, Cheng WH. Genetic analyses of the interaction between abscisic acid and gibberellins in the control of leaf development in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:260-271. [PMID: 26025539 DOI: 10.1016/j.plantsci.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Although abscisic acid (ABA) and gibberellins (GAs) play pivotal roles in many physiological processes in plants, their interaction in the control of leaf growth remains elusive. In this study, genetic analyses of ABA and GA interplay in leaf growth were performed in Arabidopsis thaliana. The results indicate that for the ABA and GA interaction, leaf growth of both the aba2/ga20ox1 and aba2/GA20ox1 plants, which were derived from the crosses of aba2×ga20ox1 and aba2×GA20ox1 overexpressor, respectively, exhibits partially additive effects but is similar to the aba2 mutant. Consistently, the transcriptome analysis suggests that a substantial proportion (45-65%) of the gene expression profile of aba2/ga20ox1 and aba2/GA20ox1 plants overlap and share a pattern similar to the aba2 mutant. Thus, these data suggest that ABA deficiency dominates leaf growth regardless of GA levels. Moreover, the gene ontology (GO) analysis indicates gene enrichment in the categories of hormone response, developmental and metabolic processes, and cell wall organization in these three genotypes. Leaf developmental genes are also involved in the ABA-GA interaction. Collectively, these data support that the genetic relationship of ABA and GA interaction involves multiple coordinated pathways rather than a simple linear pathway for the regulation of leaf growth.
Collapse
Affiliation(s)
- Ming-Hau Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Hsing Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
249
|
Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Yang W, Zhao Y. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:146-56. [PMID: 26025528 DOI: 10.1016/j.plantsci.2015.03.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 05/18/2023]
Abstract
Plants have evolved a number of different mechanisms to respond and to adapt to abiotic stress for their survival. However, the regulatory mechanisms involved in coordinating abiotic stress tolerance and plant growth are not fully understood. Here, the function of OsMYB91, an R2R3-type MYB transcription factor of rice was explored. OsMYB91 was induced by abiotic stress, especially by salt stress. Analysis of chromatin structure of the gene revealed that salt stress led to rapid removal of DNA methylation from the promoter region and rapid changes of histone modifications in the locus. Plants over-expressing OsMYB91 showed reduced plant growth and accumulation of endogenous ABA under control conditions. Under salt stress, the over-expression plants showed enhanced tolerance with significant increases of proline levels and a highly enhanced capacity to scavenge active oxygen as well as the increased induction of OsP5CS1 and LOC_Os03g44130 compared to wild type, while RNAi plants were less sensitive. In addition, expression of OsMYB91 was also induced by other abiotic stresses and hormone treatment. More interestingly, SLR1, the rice homolog of Arabidopsis DELLA genes that have been shown to integrate endogenous developmental signals with adverse environmental conditions, was highly induced by OsMYB91 over-expression, while the salt-induction of SLR1 expression was impaired in the RNAi plants. These results suggested that OsMYB91 was a stress-responsive gene that might be involved in coordinating rice tolerance to abiotic stress and plant growth by regulating SLR1 expression.
Collapse
Affiliation(s)
- Ning Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Saifeng Cheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyun Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Hao Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, 91405 Orsay, France.
| | - Wenjing Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
250
|
Zhang L, Gu L, Ringler P, Smith S, Rushton PJ, Shen QJ. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:214-22. [PMID: 26025535 DOI: 10.1016/j.plantsci.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/14/2015] [Accepted: 04/19/2015] [Indexed: 05/06/2023]
Abstract
Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Patricia Ringler
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Stanley Smith
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Paul J Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX 75252, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|