201
|
Lee MW, Huffaker A, Crippen D, Robbins RT, Goggin FL. Plant elicitor peptides promote plant defences against nematodes in soybean. MOLECULAR PLANT PATHOLOGY 2018; 19:858-869. [PMID: 28600875 PMCID: PMC6638146 DOI: 10.1111/mpp.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 05/19/2023]
Abstract
Plant elicitor peptides (Peps) are widely distributed among angiosperms, and have been shown to amplify immune responses in multiple plant families. Here, we characterize three Peps from soybean (Glycine max) and describe their effects on plant defences against two damaging agricultural pests, the root-knot nematode (Meloidogyne incognita) and the soybean cyst nematode (Heterodera glycines). Seed treatments with exogenous GmPep1, GmPep2 or GmPep3 significantly reduced the reproduction of both nematodes. Pep treatment also protected plants from the inhibitory effects of root-knot nematodes on above-ground growth, and up-regulated basal expression levels of nematode-responsive defence genes. GmPep1 induced the expression of its propeptide precursor (GmPROPEP1), a nucleotide-binding site leucine-rich repeat protein (NBS-LRR), a pectin methylesterase inhibitor (PMEI), Respiratory Burst Oxidase Protein D (RBOHD) and the accumulation of reactive oxygen species (ROS) in leaves. In addition, GmPep2 and GmPep3 seed treatments up-regulated RBOHD expression and ROS accumulation in roots and leaves. These results suggest that GmPeps activate plant defences through systemic transcriptional reprogramming and ROS signalling, and that Pep seed treatments represent a potential strategy for nematode management.
Collapse
Affiliation(s)
- Min Woo Lee
- Department of EntomologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Alisa Huffaker
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCA 92903USA
| | - Devany Crippen
- Department of Plant PathologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Robert T. Robbins
- Department of Plant PathologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Fiona L. Goggin
- Department of EntomologyUniversity of ArkansasFayettevilleAR 72701USA
| |
Collapse
|
202
|
Wang L, Einig E, Almeida-Trapp M, Albert M, Fliegmann J, Mithöfer A, Kalbacher H, Felix G. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. NATURE PLANTS 2018; 4:152-156. [PMID: 29459726 DOI: 10.1038/s41477-018-0106-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 05/18/2023]
Abstract
The discovery in tomato of systemin, the first plant peptide hormone1,2, was a fundamental change for the concept of plant hormones. Numerous other peptides have since been shown to play regulatory roles in many aspects of the plant life, including growth, development, fertilization and interactions with symbiotic organisms3-6. Systemin, an 18 amino acid peptide derived from a larger precursor protein 7 , was proposed to act as the spreading signal that triggers systemic defence responses observed in plants after wounding or attack by herbivores1,7,8. Further work culminated in the identification of a leucine-rich repeat receptor kinase (LRR-RK) as the systemin receptor 160 (SR160)9,10. SR160 is a tomato homologue of Brassinosteroid Insensitive 1 (BRI1), which mediates the regulation of growth and development in response to the steroid hormone brassinolide11-13. However, a role of SR160/BRI1 as systemin receptor could not be corroborated by others14-16. Here, we demonstrate that perception of systemin depends on a pair of distinct LRR-RKs termed SYR1 and SYR2. SYR1 acts as a genuine systemin receptor that binds systemin with high affinity and specificity. Further, we show that presence of SYR1, although not decisive for local and systemic wound responses, is important for defence against insect herbivory.
Collapse
Affiliation(s)
- Lei Wang
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Markus Albert
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Judith Fliegmann
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Georg Felix
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
203
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
204
|
Lanes ÉC, Pope NS, Alves R, Carvalho Filho NM, Giannini TC, Giulietti AM, Imperatriz-Fonseca VL, Monteiro W, Oliveira G, Silva AR, Siqueira JO, Souza-Filho PW, Vasconcelos S, Jaffé R. Landscape Genomic Conservation Assessment of a Narrow-Endemic and a Widespread Morning Glory From Amazonian Savannas. FRONTIERS IN PLANT SCIENCE 2018; 9:532. [PMID: 29868042 PMCID: PMC5949356 DOI: 10.3389/fpls.2018.00532] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/05/2018] [Indexed: 05/22/2023]
Abstract
Although genetic diversity ultimately determines the ability of organisms to adapt to environmental changes, conservation assessments like the widely used International Union for Conservation of Nature (IUCN) Red List Criteria do not explicitly consider genetic information. Including a genetic dimension into the IUCN Red List Criteria would greatly enhance conservation efforts, because the demographic parameters traditionally considered are poor predictors of the evolutionary resilience of natural populations to global change. Here we perform the first genomic assessment of genetic diversity, gene flow, and patterns of local adaptation in tropical plant species belonging to different IUCN Red List Categories. Employing RAD-sequencing we identified tens of thousands of single-nucleotide polymorphisms in an endangered narrow-endemic and a least concern widespread morning glory (Convolvulaceae) from Amazonian savannas, a highly threatened and under-protected tropical ecosystem. Our results reveal greater genetic diversity and less spatial genetic structure in the endangered species. Whereas terrain roughness affected gene flow in both species, forested and mining areas were found to hinder gene flow in the endangered plant. Finally we implemented environmental association tests and genome scans for selection, and identified a higher proportion of candidate adaptive loci in the widespread species. These mainly contained genes related to pathogen resistance and physiological adaptations to life in nutrient-limited environments. Our study emphasizes that IUCN Red List Criteria do not always prioritize species with low genetic diversity or whose genetic variation is being affected by habitat loss and fragmentation, and calls for the inclusion of genetic information into conservation assessments. More generally, our study exemplifies how landscape genomic tools can be employed to assess the status, threats and adaptive responses of imperiled biodiversity.
Collapse
Affiliation(s)
| | - Nathaniel S. Pope
- Biological Laboratories, Department of Integrative Biology, University of Texas, Austin, TX, United States
| | | | | | | | | | | | | | | | - Amanda R. Silva
- Instituto Tecnológico Vale, Belém, Brazil
- Ciências Biológicas-Botânica Tropical, Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Belém, Brazil
| | | | - Pedro W. Souza-Filho
- Instituto Tecnológico Vale, Belém, Brazil
- Instituto de Geociências, Universidade Federal do Pará, Belém, Brazil
| | | | - Rodolfo Jaffé
- Instituto Tecnológico Vale, Belém, Brazil
- Departamento de Ecologia, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- *Correspondence: Rodolfo Jaffé
| |
Collapse
|
205
|
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and defense processes. Preciously, it is regraded some plant peptides function in plant growth and development, whereas others regulate defense response in plant-microbe interactions. However, this prejudice is got rid due to more and more evidence showed growth-related plant peptides also exhibit bifunctional roles in plant defense response against different microbial pathogens. Here we provide a mini-review of reported types of plant peptides, including their basic information, reported receptor ligands, and especially direct or indirect roles in plant immune responses.
Collapse
Affiliation(s)
- Z. Hu
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - H. Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - K. Shi
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
- CONTACT Kai Shi Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
206
|
Fesenko I, Khazigaleeva R, Govorun V, Ivanov V. Analysis of Endogenous Peptide Pools of Physcomitrella patens Moss. Methods Mol Biol 2018; 1719:395-405. [PMID: 29476527 DOI: 10.1007/978-1-4939-7537-2_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we report our approach to peptidomic analysis of the plant object which led to structure elucidation of the title peptides. P. patens samples were extracted under conditions preventing proteolytic digestion by endogenous proteases. The extracts were fractionated on size exclusion columns and the peptide fractions subjected to LC-MS/MS analysis. Mass spectra datasets were analyzed for the presence of peptides derived from the proteins encoded by the moss genome. Experimental details are given for each step, selected chromatograms and mass-spectra are presented in figures.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Regina Khazigaleeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Govorun
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical Medicine, Moscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
207
|
Islam KT, Shah DM, El-Mounadi K. Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins. J Vis Exp 2017. [PMID: 29364205 DOI: 10.3791/55995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.
Collapse
|
208
|
Loo S, Kam A, Xiao T, Tam JP. Bleogens: Cactus-Derived Anti-Candida Cysteine-Rich Peptides with Three Different Precursor Arrangements. FRONTIERS IN PLANT SCIENCE 2017; 8:2162. [PMID: 29312404 PMCID: PMC5743680 DOI: 10.3389/fpls.2017.02162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/07/2017] [Indexed: 05/23/2023]
Abstract
Cysteine-rich peptides (CRPs) play important host-defense roles in plants. However, information concerning CRPs in the Cactaceae (cactus) family is limited, with only a single cactus-derived CRP described to date. Here, we report the identification of 15 novel CRPs with three different precursor architectures, bleogens pB1-15 from Pereskia bleo of the Cactaceae family. By combining proteomic and transcriptomic methods, we showed that the prototype, bleogen pB1, contained 36 amino acid residues, a six-cysteine motif typical of the six-cysteine-hevein-like peptide (6C-HLP) family, and a type I two-domain precursor consisting of an endoplasmic reticulum (ER) and a mature domain. In contrast, the precursors of the other 14 bleogens contained a type II three-domain architecture with a propeptide domain inserted between the ER and the mature bleogen domain. Four of these 14 bleogens display a third type of architecture with a tandemly repeating bleogen domain. A search of the Onekp database revealed that <1% plant species possess three different precursor architectures for the biosynthesis of 6C-HLPs, including Lophophora williamsii, Pereskia aculeate, Portulaca cryptopetala, Portulaca oleracea, Portulaca suffruticosa, and Talinum sp. NMR analysis confirmed that bleogen pB1 has cystine-knot disulfide connectivity as well as a two-beta-sheet and a four-loop structural fold that is similar to other 6C-HLPs. Sequence analysis, structural studies, and in silico modeling revealed that bleogen pB1 has a cation-polar-cation motif, a signature heparin-binding motif that was confirmed by heparin affinity chromatography. Cell-based assays showed that bleogen pB1 is non-toxic to mammalian cells but functions as an anti-Candida peptide. Taken together, our findings provide insight into the occurrence, functions and precursor architectures of CRPs in the cactus family.
Collapse
|
209
|
Stührwohldt N, Hohl M, Schardon K, Stintzi A, Schaller A. Post-translational maturation of IDA, a peptide signal controlling floral organ abscission in Arabidopsis. Commun Integr Biol 2017. [PMCID: PMC5824936 DOI: 10.1080/19420889.2017.1395119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The abscission of sepals, petals and stamens in Arabidopsis flowers is controlled by a peptide signal called IDA (Inflorescence Deficient in Abscission). IDA belongs to the large group of small post-translationally modified signaling peptides that are synthesized as larger precursors and require proteolytic processing and specific side chain modifications for signal biogenesis. Using tissue-specific expression of proteinase inhibitors as a novel approach for loss-of-function analysis, we recently identified the peptidases responsible for IDA maturation within the large family of subtilisin-like proteinases (subtilases; SBTs). Further biochemical and physiological assays identified three SBTs (AtSBT5.2, AtSBT4.12, AtSBT4.13) that cleave the IDA precursor to generate the N-terminus of the mature peptide. The C-terminal processing enzyme(s) remain(s) to be identified. While proline hydroxylation was suggested as additional post-translational modification required for IDA maturation, hydroxylated and non-hydroxylated IDA peptides were found to be equally active in bioassays for abscission.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Mathias Hohl
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Katharina Schardon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
210
|
de Bang TC, Lundquist PK, Dai X, Boschiero C, Zhuang Z, Pant P, Torres-Jerez I, Roy S, Nogales J, Veerappan V, Dickstein R, Udvardi MK, Zhao PX, Scheible WR. Genome-Wide Identification of Medicago Peptides Involved in Macronutrient Responses and Nodulation. PLANT PHYSIOLOGY 2017; 175:1669-1689. [PMID: 29030416 PMCID: PMC5717731 DOI: 10.1104/pp.17.01096] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
Growing evidence indicates that small, secreted peptides (SSPs) play critical roles in legume growth and development, yet the annotation of SSP-coding genes is far from complete. Systematic reannotation of the Medicago truncatula genome identified 1,970 homologs of established SSP gene families and an additional 2,455 genes that are potentially novel SSPs, previously unreported in the literature. The expression patterns of known and putative SSP genes based on 144 RNA sequencing data sets covering various stages of macronutrient deficiencies and symbiotic interactions with rhizobia and mycorrhiza were investigated. Focusing on those known or suspected to act via receptor-mediated signaling, 240 nutrient-responsive and 365 nodulation-responsive Signaling-SSPs were identified, greatly expanding the number of SSP gene families potentially involved in acclimation to nutrient deficiencies and nodulation. Synthetic peptide applications were shown to alter root growth and nodulation phenotypes, revealing additional regulators of legume nutrient acquisition. Our results constitute a powerful resource enabling further investigations of specific SSP functions via peptide treatment and reverse genetics.
Collapse
Affiliation(s)
- Thomas C de Bang
- Noble Research Institute, Ardmore, Oklahoma 73401
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | - Xinbin Dai
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | | | - Pooja Pant
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Sonali Roy
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Vijaykumar Veerappan
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Rebecca Dickstein
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | | | | | | |
Collapse
|
211
|
Badet T, Voisin D, Mbengue M, Barascud M, Sucher J, Sadon P, Balagué C, Roby D, Raffaele S. Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance. PLoS Genet 2017; 13:e1007143. [PMID: 29272270 PMCID: PMC5757927 DOI: 10.1371/journal.pgen.1007143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/08/2018] [Accepted: 12/04/2017] [Indexed: 12/28/2022] Open
Abstract
Plant pathogens with a broad host range are able to infect plant lineages that diverged over 100 million years ago. They exert similar and recurring constraints on the evolution of unrelated plant populations. Plants generally respond with quantitative disease resistance (QDR), a form of immunity relying on complex genetic determinants. In most cases, the molecular determinants of QDR and how they evolve is unknown. Here we identify in Arabidopsis thaliana a gene mediating QDR against Sclerotinia sclerotiorum, agent of the white mold disease, and provide evidence of its convergent evolution in multiple plant species. Using genome wide association mapping in A. thaliana, we associated the gene encoding the POQR prolyl-oligopeptidase with QDR against S. sclerotiorum. Loss of this gene compromised QDR against S. sclerotiorum but not against a bacterial pathogen. Natural diversity analysis associated POQR sequence with QDR. Remarkably, the same amino acid changes occurred after independent duplications of POQR in ancestors of multiple plant species, including A. thaliana and tomato. Genome-scale expression analyses revealed that parallel divergence in gene expression upon S. sclerotiorum infection is a frequent pattern in genes, such as POQR, that duplicated both in A. thaliana and tomato. Our study identifies a previously uncharacterized gene mediating QDR against S. sclerotiorum. It shows that some QDR determinants are conserved in distantly related plants and have emerged through the repeated use of similar genetic polymorphisms at different evolutionary time scales.
Collapse
Affiliation(s)
- Thomas Badet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Derry Voisin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Malick Mbengue
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Justine Sucher
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pierre Sadon
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
212
|
Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 2017; 114:E10018-E10027. [PMID: 29087317 PMCID: PMC5699049 DOI: 10.1073/pnas.1708433114] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Noncoding RNAs are an underexplored reservoir of regulatory molecules in eukaryotes. We analyzed the environmental response of roots to phosphorus (Pi) nutrition to understand how a change in availability of an essential element is managed. Pi availability influenced translational regulation mediated by small upstream ORFs on protein-coding mRNAs. Discovery, classification, and evaluation of long noncoding RNAs (lncRNAs) associated with translating ribosomes uncovered diverse new examples of translational regulation. These included Pi-regulated small peptide synthesis, ribosome-coupled phased small interfering RNA production, and the translational regulation of natural antisense RNAs and other regulatory RNAs. This study demonstrates that translational control contributes to the stability and activity of regulatory RNAs, providing an avenue for manipulation of traits. Eukaryotic transcriptomes contain a major non–protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA (tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.
Collapse
|
213
|
Hsu PY, Benfey PN. Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants. Proteomics 2017; 18:e1700038. [PMID: 28759167 DOI: 10.1002/pmic.201700038] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Peptides encoded by small open reading frames (sORFs, usually <100 codons) play critical regulatory roles in plant development and environmental responses. Despite their importance, only a small number of these peptides have been identified and characterized. Genomic studies have revealed that many plant genomes contain thousands of possible sORFs, which could potentially encode small peptides. The challenge is to distinguish translated sORFs from nontranslated ones. Here, we highlight advances in methodologies for identifying these hidden sORFs in plant genomes, including ribosome profiling and proteomics. We also examine the evidence for new peptides arising from sORFs and discuss their functions in plant development, environmental responses, and translational control.
Collapse
Affiliation(s)
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
214
|
Busatto N, Salvagnin U, Resentini F, Quaresimin S, Navazio L, Marin O, Pellegrini M, Costa F, Mierke DF, Trainotti L. The Peach RGF/GLV Signaling Peptide pCTG134 Is Involved in a Regulatory Circuit That Sustains Auxin and Ethylene Actions. FRONTIERS IN PLANT SCIENCE 2017; 8:1711. [PMID: 29075273 PMCID: PMC5641559 DOI: 10.3389/fpls.2017.01711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
In vascular plants the cell-to-cell interactions coordinating morphogenetic and physiological processes are mediated, among others, by the action of hormones, among which also short mobile peptides were recognized to have roles as signals. Such peptide hormones (PHs) are involved in defense responses, shoot and root growth, meristem homeostasis, organ abscission, nutrient signaling, hormone crosstalk and other developmental processes and act as both short and long distant ligands. In this work, the function of CTG134, a peach gene encoding a ROOT GROWTH FACTOR/GOLVEN-like PH expressed in mesocarp at the onset of ripening, was investigated for its role in mediating an auxin-ethylene crosstalk. In peach fruit, where an auxin-ethylene crosstalk mechanism is necessary to support climacteric ethylene synthesis, CTG134 expression peaked before that of ACS1 and was induced by auxin and 1-methylcyclopropene (1-MCP) treatments, whereas it was minimally affected by ethylene. In addition, the promoter of CTG134 fused with the GUS reporter highlighted activity in plant parts in which the auxin-ethylene interplay is known to occur. Arabidopsis and tobacco plants overexpressing CTG134 showed abnormal root hair growth, similar to wild-type plants treated with a synthetic form of the sulfated peptide. Moreover, in tobacco, lateral root emergence and capsule size were also affected. In Arabidopsis overexpressing lines, molecular surveys demonstrated an impaired hormonal crosstalk, resulting in a re-modulated expression of a set of genes involved in both ethylene and auxin synthesis, transport and perception. These data support the role of pCTG134 as a mediator in an auxin-ethylene regulatory circuit and open the possibility to exploit this class of ligands for the rational design of new and environmental friendly agrochemicals able to cope with a rapidly changing environment.
Collapse
Affiliation(s)
- Nicola Busatto
- Department of Biology, University of Padova, Padova, Italy
- Department of Genomics and Crop Biology, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | | | | | | | | | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Fabrizio Costa
- Department of Genomics and Crop Biology, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Dale F. Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
215
|
Hastwell AH, de Bang TC, Gresshoff PM, Ferguson BJ. CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus, compared with those of soybean, common bean and Arabidopsis. Sci Rep 2017; 7:9384. [PMID: 28839170 PMCID: PMC5570945 DOI: 10.1038/s41598-017-09296-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
CLE peptide hormones are critical regulators of many cell proliferation and differentiation mechanisms in plants. These 12-13 amino acid glycosylated peptides play vital roles in a diverse range of plant tissues, including the shoot, root and vasculature. CLE peptides are also involved in controlling legume nodulation. Here, the entire family of CLE peptide-encoding genes was identified in Medicago truncatula (52) and Lotus japonicus (53), including pseudogenes and non-functional sequences that were identified. An array of bioinformatic techniques were used to compare and contrast these complete CLE peptide-encoding gene families with those of fellow legumes, Glycine max and Phaseolus vulgaris, in addition to the model plant Arabidopsis thaliana. This approach provided insight into the evolution of CLE peptide families and enabled us to establish putative M. truncatula and L. japonicus orthologues. This includes orthologues of nodulation-suppressing CLE peptides and AtCLE40 that controls the stem cell population of the root apical meristem. A transcriptional meta-analysis was also conducted to help elucidate the function of the CLE peptide family members. Collectively, our analyses considerably increased the number of annotated CLE peptides in the model legume species, M. truncatula and L. japonicus, and substantially enhanced the knowledgebase of this critical class of peptide hormones.
Collapse
Affiliation(s)
- April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Thomas C de Bang
- Plant Biology Division, Noble Research Institute LLC, Ardmore, Oklahoma, 73401, USA
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
216
|
Ezura K, Ji-Seong K, Mori K, Suzuki Y, Kuhara S, Ariizumi T, Ezura H. Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum). PLoS One 2017; 12:e0180003. [PMID: 28683065 PMCID: PMC5500324 DOI: 10.1371/journal.pone.0180003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fruit set involves the developmental transition of an unfertilized quiescent ovary in the pistil into a fruit. While fruit set is known to involve the activation of signals (including various plant hormones) in the ovary, many biological aspects of this process remain elusive. To further expand our understanding of this process, we identified genes that are specifically expressed in tomato (Solanum lycopersicum L.) pistils during fruit set through comprehensive RNA-seq-based transcriptome analysis using 17 different tissues including pistils at six different developmental stages. First, we identified 532 candidate genes that are preferentially expressed in the pistil based on their tissue-specific expression profiles. Next, we compared our RNA-seq data with publically available transcriptome data, further refining the candidate genes that are specifically expressed within the pistil. As a result, 108 pistil-specific genes were identified, including several transcription factor genes that function in reproductive development. We also identified genes encoding hormone-like peptides with a secretion signal and cysteine-rich residues that are conserved among some Solanaceae species, suggesting that peptide hormones may function as signaling molecules during fruit set initiation. This study provides important information about pistil-specific genes, which may play specific roles in regulating pistil development in relation to fruit set.
Collapse
Affiliation(s)
- Kentaro Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kim Ji-Seong
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Mori
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoru Kuhara
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
217
|
Khazigaleeva RA, Vinogradova SV, Petrova VL, Fesenko IA, Arapidi GP, Kamionskaya AM, Govorun VM, Ivanov VT. Antimicrobial activity of endogenous peptides of the moss Physcomitrella patens. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
218
|
Fedoreyeva LI, Dilovarova TA, Ashapkin VV, Martirosyan YT, Khavinson VK, Kharchenko PN, Vanyushin BF. Short Exogenous Peptides Regulate Expression of CLE, KNOX1, and GRF Family Genes in Nicotiana tabacum. BIOCHEMISTRY. BIOKHIMIIA 2017; 82:521-528. [PMID: 28371610 DOI: 10.1134/s0006297917040149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10-7-10-9 M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.
Collapse
Affiliation(s)
- L I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia.
| | | | | | | | | | | | | |
Collapse
|
219
|
Tang D, Wang G, Zhou JM. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. THE PLANT CELL 2017; 29:618-637. [PMID: 28302675 PMCID: PMC5435430 DOI: 10.1105/tpc.16.00891] [Citation(s) in RCA: 471] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to "hide" microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis.
Collapse
Affiliation(s)
- Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxun Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
220
|
Cools TL, Struyfs C, Cammue BPA, Thevissen K. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 2017; 12:441-454. [DOI: 10.2217/fmb-2016-0181] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Bruno PA Cammue
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
221
|
Vanyushin BF, Ashapkin VV, Aleksandrushkina NI. Regulatory Peptides in Plants. BIOCHEMISTRY (MOSCOW) 2017; 82:89-94. [PMID: 28320293 DOI: 10.1134/s0006297917020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.
Collapse
Affiliation(s)
- B F Vanyushin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
222
|
Weiller F, Moore JP, Young P, Driouich A, Vivier MA. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides. ANNALS OF BOTANY 2017; 119:803-813. [PMID: 27481828 PMCID: PMC5379576 DOI: 10.1093/aob/mcw141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection.
Collapse
Affiliation(s)
- Florent Weiller
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - John P. Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Philip Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
223
|
Kaufmann C, Motzkus M, Sauter M. Phosphorylation of the phytosulfokine peptide receptor PSKR1 controls receptor activity. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1411-1423. [PMID: 28338789 PMCID: PMC5441923 DOI: 10.1093/jxb/erx030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phytosulfokine peptide receptor PSKR1 is modified by phosphorylation of its cytoplasmic kinase domain. We analyzed defined phosphorylation sites by site-directed mutagenesis with regard to kinase activity in vitro and receptor activity in planta. S696 and S698 in the juxtamembrane (JM) domain are phosphorylated in planta. The phosphomimetic S696D/S698D replacements resulted in reduced transphosphorylation activity of PSKR1 kinase in vitro but did not reduce autophosphorylation activity. Growth-promoting activity of the PSKR1(S696D/S698D) receptor isoform was impaired in the shoot but not in the root. The JM domain thus seems to be important for phosphorylation of a target protein required for shoot growth promotion. The phosphomimetic replacement T998D at the C-terminus (CT) abolished kinase activity in vitro but not receptor function in planta, indicating that additional levels of regulation exist in planta. A possible mode of receptor regulation is the interaction with regulatory proteins such as the calcium sensor calmodulin (CaM). We show that the previously reported binding of CaM2 to PSKR1 is calcium-dependent, occurs predominately to the hypophosphorylated soluble PSKR1 kinase, and does not significantly change PSKR1 kinase activity. In conclusion, our results show that peptide signaling of growth by PSKR1 is regulated by differential phosphorylation of the juxtamembrane and C-terminal domains of the intracellular receptor part and suggest that interaction of PSKR1 with CaM serves a function other than the regulation of kinase activity.
Collapse
Affiliation(s)
- Christine Kaufmann
- Entwicklungsbiologie und Physiologie der Pflanzen, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany
| | - Michael Motzkus
- Entwicklungsbiologie und Physiologie der Pflanzen, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany
| | - Margret Sauter
- Entwicklungsbiologie und Physiologie der Pflanzen, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany
| |
Collapse
|
224
|
Hazarika RR, De Coninck B, Yamamoto LR, Martin LR, Cammue BPA, van Noort V. ARA-PEPs: a repository of putative sORF-encoded peptides in Arabidopsis thaliana. BMC Bioinformatics 2017; 18:37. [PMID: 28095775 PMCID: PMC5240266 DOI: 10.1186/s12859-016-1458-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/31/2016] [Indexed: 12/24/2022] Open
Abstract
Background Many eukaryotic RNAs have been considered non-coding as they only contain short open reading frames (sORFs). However, there is increasing evidence for the translation of these sORFs into bioactive peptides with potent signaling, antimicrobial, developmental, antioxidant roles etc. Yet only a few peptides encoded by sORFs are annotated in the model organism Arabidopsis thaliana. Results To aid the functional annotation of these peptides, we have developed ARA-PEPs (available at http://www.biw.kuleuven.be/CSB/ARA-PEPs), a repository of putative peptides encoded by sORFs in the A. thaliana genome starting from in-house Tiling arrays, RNA-seq data and other publicly available datasets. ARA-PEPs currently lists 13,748 sORF-encoded peptides with transcriptional evidence. In addition to existing data, we have identified 100 novel transcriptionally active regions (TARs) that might encode 341 novel stress-induced peptides (SIPs). To aid in identification of bioactivity, we add functional annotation and sequence conservation to predicted peptides. Conclusion To our knowledge, this is the largest repository of plant peptides encoded by sORFs with transcript evidence, publicly available and this resource will help scientists to effortlessly navigate the list of experimentally studied peptides, the experimental and computational evidence supporting the activity of these peptides and gain new perspectives for peptide discovery. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1458-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rashmi R Hazarika
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, Leuven, B-3001, Belgium
| | - Barbara De Coninck
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, Leuven, B-3001, Belgium.,Department of Plant Systems Biology, VIB, Technologiepark 927, Ghent, B-9052, Belgium
| | - Lidia R Yamamoto
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, Leuven, B-3001, Belgium
| | - Laura R Martin
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, Leuven, B-3001, Belgium
| | - Bruno P A Cammue
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, Leuven, B-3001, Belgium.,Department of Plant Systems Biology, VIB, Technologiepark 927, Ghent, B-9052, Belgium
| | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, Leuven, B-3001, Belgium.
| |
Collapse
|
225
|
Duruflé H, Hervé V, Balliau T, Zivy M, Dunand C, Jamet E. Proline Hydroxylation in Cell Wall Proteins: Is It Yet Possible to Define Rules? FRONTIERS IN PLANT SCIENCE 2017; 8:1802. [PMID: 29089960 PMCID: PMC5651053 DOI: 10.3389/fpls.2017.01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
Cell wall proteins (CWPs) play critical and dynamic roles in plant cell walls by contributing to developmental processes and response to environmental cues. Since the CWPs go through the secretion pathway, most of them undergo post-translational modifications (PTMs) which can modify their biological activity. Glycosylation is one of the major PTMs of CWPs and refers to N-glycosylation, O-glycosylation and glypiation. Each of these PTMs occurs in different amino acid contexts which are not all well defined. This article deals with the hydroxylation of Pro residues which is a prerequisite for O-glycosylation of CWPs on hydroxyproline (Hyp) residues. The location of Hyp residues is well described in several structural CWPs, but yet rarely described in other CWPs. In this article, it is studied in detail in five Arabidopsis thaliana proteins using mass spectrometry data: one of them (At4g38770, AtPRP4) is a structural CWP containing 32.5% of Pro residues arranged in typical motifs, the others are either rich (27-28%, At1g31580 and At2g10940) or poor (6-8%, At1g09750 and At3g08030) in Pro residues. The known rules of Pro hydroxylation allowed a good prediction of Hyp location in AtPRP4. However, they could not be applied to the other proteins whatever their Pro content. In addition, variability of the Pro hydroxylation patterns was observed within some amino acid motifs in all the proteins and new patterns of Pro hydroxylation are described. Altogether, this work shows that Hyp residues are present in more protein families than initially described, and that Pro hydroxylation patterns could be different in each of them. This work paves the way for completing the existing Pro hydroxylation code.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Hervé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- INRS – Institut Armand Frappier, Laval, Canada
| | - Thierry Balliau
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Zivy
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- *Correspondence: Elisabeth Jamet,
| |
Collapse
|
226
|
Zhu FY, Chen MX, Su YW, Xu X, Ye NH, Cao YY, Lin S, Liu TY, Li HX, Wang GQ, Jin Y, Gu YH, Chan WL, Lo C, Peng X, Zhu G, Zhang J. SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. FRONTIERS IN PLANT SCIENCE 2016; 7:1926. [PMID: 28066479 PMCID: PMC5169098 DOI: 10.3389/fpls.2016.01926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/05/2016] [Indexed: 05/21/2023]
Abstract
Modern rice cultivars have large panicle but their yield potential is often not fully achieved due to poor grain-filling of late-flowering inferior spikelets (IS). Our earlier work suggested a broad transcriptional reprogramming during grain filling and showed a difference in gene expression between IS and earlier-flowering superior spikelets (SS). However, the links between the abundances of transcripts and their corresponding proteins are unclear. In this study, a SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) -based quantitative proteomic analysis has been applied to investigate SS and IS proteomes. A total of 304 proteins of widely differing functionality were observed to be differentially expressed between IS and SS. Detailed gene ontology analysis indicated that several biological processes including photosynthesis, protein metabolism, and energy metabolism are differentially regulated. Further correlation analysis revealed that abundances of most of the differentially expressed proteins are not correlated to the respective transcript levels, indicating that an extra layer of gene regulation which may exist during rice grain filling. Our findings raised an intriguing possibility that these candidate proteins may be crucial in determining the poor grain-filling of IS. Therefore, we hypothesize that the regulation of proteome changes not only occurs at the transcriptional, but also at the post-transcriptional level, during grain filling in rice.
Collapse
Affiliation(s)
- Fu-Yuan Zhu
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Yu-Wen Su
- School of Pharmacy, Nanjing Medical UniversityNanjing, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Neng-Hui Ye
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Yun-Ying Cao
- College of Life Sciences, Nantong UniversityNantong, China
| | - Sheng Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Tie-Yuan Liu
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Hao-Xuan Li
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Guan-Qun Wang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Yu Jin
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Yong-Hai Gu
- The Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Wai-Lung Chan
- School of Biological Science, The University of Hong KongHong Kong, China
| | - Clive Lo
- School of Biological Science, The University of Hong KongHong Kong, China
| | - Xinxiang Peng
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| |
Collapse
|
227
|
Games PD, daSilva EQG, Barbosa MDO, Almeida-Souza HO, Fontes PP, deMagalhães-Jr MJ, Pereira PRG, Prates MV, Franco GR, Faria-Campos A, Campos SVA, Baracat-Pereira MC. Computer aided identification of a Hevein-like antimicrobial peptide of bell pepper leaves for biotechnological use. BMC Genomics 2016; 17:999. [PMID: 28105928 PMCID: PMC5249031 DOI: 10.1186/s12864-016-3332-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Antimicrobial peptides from plants present mechanisms of action that are different from those of conventional defense agents. They are under-explored but have a potential as commercial antimicrobials. Bell pepper leaves ('Magali R') are discarded after harvesting the fruit and are sources of bioactive peptides. This work reports the isolation by peptidomics tools, and the identification and partially characterization by computational tools of an antimicrobial peptide from bell pepper leaves, and evidences the usefulness of records and the in silico analysis for the study of plant peptides aiming biotechnological uses. RESULTS Aqueous extracts from leaves were enriched in peptide by salt fractionation and ultrafiltration. An antimicrobial peptide was isolated by tandem chromatographic procedures. Mass spectrometry, automated peptide sequencing and bioinformatics tools were used alternately for identification and partial characterization of the Hevein-like peptide, named HEV-CANN. The computational tools that assisted to the identification of the peptide included BlastP, PSI-Blast, ClustalOmega, PeptideCutter, and ProtParam; conventional protein databases (DB) as Mascot, Protein-DB, GenBank-DB, RefSeq, Swiss-Prot, and UniProtKB; specific for peptides DB as Amper, APD2, CAMP, LAMPs, and PhytAMP; other tools included in ExPASy for Proteomics; The Bioactive Peptide Databases, and The Pepper Genome Database. The HEV-CANN sequence presented 40 amino acid residues, 4258.8 Da, theoretical pI-value of 8.78, and four disulfide bonds. It was stable, and it has inhibited the growth of phytopathogenic bacteria and a fungus. HEV-CANN presented a chitin-binding domain in their sequence. There was a high identity and a positive alignment of HEV-CANN sequence in various databases, but there was not a complete identity, suggesting that HEV-CANN may be produced by ribosomal synthesis, which is in accordance with its constitutive nature. CONCLUSIONS Computational tools for proteomics and databases are not adjusted for short sequences, which hampered HEV-CANN identification. The adjustment of statistical tests in large databases for proteins is an alternative to promote the significant identification of peptides. The development of specific DB for plant antimicrobial peptides, with information about peptide sequences, functional genomic data, structural motifs and domains of molecules, functional domains, and peptide-biomolecule interactions are valuable and necessary.
Collapse
Affiliation(s)
- Patrícia Dias Games
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | | | - Meire de Oliveira Barbosa
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | | | - Patrícia Pereira Fontes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | - Marcos Jorge deMagalhães-Jr
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | | | - Maura Vianna Prates
- Embrapa Genetic Resources & Biotechnology, Brazilian Agricultural Research Corporation, Brasília, DF 70770-900 Brazil
| | - Gloria Regina Franco
- Department of Biochemistry and Immunology-ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901 Brazil
| | - Alessandra Faria-Campos
- Department of Computer Science-ICEX, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901 Brazil
| | - Sérgio Vale Aguiar Campos
- Department of Computer Science-ICEX, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901 Brazil
| | | |
Collapse
|
228
|
Schardon K, Hohl M, Graff L, Pfannstiel J, Schulze W, Stintzi A, Schaller A. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science 2016; 354:1594-1597. [PMID: 27940581 DOI: 10.1126/science.aai8550] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022]
Abstract
Peptide hormones that regulate plant growth and development are derived from larger precursor proteins by proteolytic processing. Our study addressed the role of subtilisin-like proteinases (SBTs) in this process. Using tissue-specific expression of proteinase inhibitors as a tool to overcome functional redundancy, we found that SBT activity was required for the maturation of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION), a peptide signal for the abscission of floral organs in Arabidopsis We identified three SBTs that process the IDA precursor in vitro, and this processing was shown to be required for the formation of mIDA (the mature and bioactive form of IDA) as the endogenous signaling peptide in vivo. Hence, SBTs act as prohormone convertases in plants, and several functionally redundant SBTs contribute to signal biogenesis.
Collapse
Affiliation(s)
- Katharina Schardon
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Mathias Hohl
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Lucile Graff
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, 70593 Stuttgart, Germany
| | - Waltraud Schulze
- University of Hohenheim, Department of Plant Systems Biology, 70593 Stuttgart, Germany
| | - Annick Stintzi
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Andreas Schaller
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany.
| |
Collapse
|
229
|
Lee JS, De Smet I. Fine-Tuning Development Through Antagonistic Peptides: An Emerging Theme. TRENDS IN PLANT SCIENCE 2016; 21:991-993. [PMID: 27769751 DOI: 10.1016/j.tplants.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Peptide ligand-receptor kinase interactions have emerged as a key component of plant growth and development. Now, highly related small signaling peptides have been shown to act antagonistically on the same receptor kinase, providing new insights into how plants optimize developmental processes using competitive peptides.
Collapse
Affiliation(s)
- Jin Suk Lee
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
230
|
Baumgartner D, Kopf M, Klähn S, Steglich C, Hess WR. Small proteins in cyanobacteria provide a paradigm for the functional analysis of the bacterial micro-proteome. BMC Microbiol 2016; 16:285. [PMID: 27894276 PMCID: PMC5126843 DOI: 10.1186/s12866-016-0896-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Despite their versatile functions in multimeric protein complexes, in the modification of enzymatic activities, intercellular communication or regulatory processes, proteins shorter than 80 amino acids (μ-proteins) are a systematically underestimated class of gene products in bacteria. Photosynthetic cyanobacteria provide a paradigm for small protein functions due to extensive work on the photosynthetic apparatus that led to the functional characterization of 19 small proteins of less than 50 amino acids. In analogy, previously unstudied small ORFs with similar degrees of conservation might encode small proteins of high relevance also in other functional contexts. Results Here we used comparative transcriptomic information available for two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechocystis sp. PCC 6714 for the prediction of small ORFs. We found 293 transcriptional units containing candidate small ORFs ≤80 codons in Synechocystis sp. PCC 6803, also including the known mRNAs encoding small proteins of the photosynthetic apparatus. From these transcriptional units, 146 are shared between the two strains, 42 are shared with the higher plant Arabidopsis thaliana and 25 with E. coli. To verify the existence of the respective μ-proteins in vivo, we selected five genes as examples to which a FLAG tag sequence was added and re-introduced them into Synechocystis sp. PCC 6803. These were the previously annotated gene ssr1169, two newly defined genes norf1 and norf4, as well as nsiR6(nitrogen stress-induced RNA 6) and hliR1(high light-inducible RNA 1) , which originally were considered non-coding. Upon activation of expression via the Cu2+.responsive petE promoter or from the native promoters, all five proteins were detected in Western blot experiments. Conclusions The distribution and conservation of these five genes as well as their regulation of expression and the physico-chemical properties of the encoded proteins underline the likely great bandwidth of small protein functions in bacteria and makes them attractive candidates for functional studies.
Collapse
Affiliation(s)
- Desiree Baumgartner
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Matthias Kopf
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.,Present Address: Molecular Health GmbH, Kurfürsten-Anlage 21, 69115, Heidelberg, Germany
| | - Stephan Klähn
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.
| |
Collapse
|
231
|
A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis. Curr Biol 2016; 26:2478-2485. [PMID: 27593376 DOI: 10.1016/j.cub.2016.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Secreted peptides mediate intercellular communication [1, 2]. Several secreted peptides in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family regulate morphogenesis of tissues, such as stomata and inflorescences in plants [3-15]. The biological functions of other EPFL family members remain unknown. Here, we show that the EPFL2 gene is required for growth of leaf teeth. EPFL2 peptide physically interacts with ERECTA (ER) family receptor-kinases and, accordingly, the attenuation of ER family activities leads to formation of toothless leaves. During the tooth growth process, responses to the phytohormone auxin are maintained at tips of the teeth to promote their growth [16-19]. In the growing tooth tip of epfl2 and multiple er family mutants, the auxin response becomes broader. Conversely, overexpression of EPFL2 diminishes the auxin response, indicating that the EPFL2 signal restricts the auxin response to the tooth tip. Interestingly, the tip-specific auxin response in turn organizes characteristic expression patterns of ER family and EPFL2 by enhancing ER family expression at the tip while eliminating the EPFL2 expression from the tip. Our findings identify the novel ligand-receptor pairs promoting the tooth growth, and further reveal a feedback circuit between the peptide-receptor system and auxin response as a mechanism for maintaining proper auxin maxima during leaf margin morphogenesis.
Collapse
|
232
|
Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY. Information Integration and Communication in Plant Growth Regulation. Cell 2016; 164:1257-1268. [PMID: 26967291 DOI: 10.1016/j.cell.2016.01.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.
Collapse
Affiliation(s)
- Juthamas Chaiwanon
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wenfei Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
233
|
Czyzewicz N, Nikonorova N, Meyer MR, Sandal P, Shah S, Vu LD, Gevaert K, Rao AG, De Smet I. The growing story of (ARABIDOPSIS) CRINKLY 4. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4835-4847. [PMID: 27208540 DOI: 10.1093/jxb/erw192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Receptor kinases play important roles in plant growth and development, but only few of them have been functionally characterized in depth. Over the past decade CRINKLY 4 (CR4)-related research has peaked as a result of a newly discovered role of ARABIDOPSIS CR4 (ACR4) in the root. Here, we comprehensively review the available (A)CR4 literature and describe its role in embryo, seed, shoot, and root development, but we also flag an unexpected role in plant defence. In addition, we discuss ACR4 domains and protein structure, describe known ACR4-interacting proteins and substrates, and elaborate on the transcriptional regulation of ACR4 Finally, we address the missing knowledge in our understanding of ACR4 signalling.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthew R Meyer
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Priyanka Sandal
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Shweta Shah
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - A Gururaj Rao
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
234
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
235
|
Ghorbani S, Hoogewijs K, Pečenková T, Fernandez A, Inzé A, Eeckhout D, Kawa D, De Jaeger G, Beeckman T, Madder A, Van Breusegem F, Hilson P. The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4877-87. [PMID: 27315833 PMCID: PMC4983112 DOI: 10.1093/jxb/erw241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The GOLVEN (GLV) gene family encode small secreted peptides involved in important plant developmental programs. Little is known about the factors required for the production of the mature bioactive GLV peptides. Through a genetic suppressor screen in Arabidopsis thaliana, two related subtilase genes, AtSBT6.1 and AtSBT6.2, were identified that are necessary for GLV1 activity. Root and hypocotyl GLV1 overexpression phenotypes were suppressed by mutations in either of the subtilase genes. Synthetic GLV-derived peptides were cleaved in vitro by the affinity-purified SBT6.1 catalytic enzyme, confirming that the GLV1 precursor is a direct subtilase substrate, and the elimination of the in vitro subtilase recognition sites through alanine substitution suppressed the GLV1 gain-of-function phenotype in vivo Furthermore, the protease inhibitor Serpin1 bound to SBT6.1 and inhibited the cleavage of GLV1 precursors by the protease. GLV1 and its homolog GLV2 were expressed in the outer cell layers of the hypocotyl, preferentially in regions of rapid cell elongation. In agreement with the SBT6 role in GLV precursor processing, both null mutants for sbt6.1 and sbt6.2 and the Serpin1 overexpression plants had shorter hypocotyls. The biosynthesis of the GLV signaling peptides required subtilase activity and might be regulated by specific protease inhibitors. The data fit with a model in which the GLV1 signaling pathway participates in the regulation of hypocotyl cell elongation, is controlled by SBT6 subtilases, and is modulated locally by the Serpin1 protease inhibitor.
Collapse
Affiliation(s)
- Sarieh Ghorbani
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Kurt Hoogewijs
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Tamara Pečenková
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Ana Fernandez
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Annelies Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dorota Kawa
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Annemieke Madder
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Pierre Hilson
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Saclay Plant Science, F-78026 Versailles, France
| |
Collapse
|
236
|
Duran-Flores D, Heil M. Sources of specificity in plant damaged-self recognition. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:77-87. [PMID: 27421107 DOI: 10.1016/j.pbi.2016.06.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 05/21/2023]
Abstract
Plants perceive injury and herbivore attack via the recognition of damage-associated molecular patterns (DAMPs) and herbivore-associated molecular patterns (HAMPs). Although HAMPs in particular are cues that can indicate the presence of a specific enemy, the application of pure DAMPs or HAMPs frequently activates general downstream responses: membrane depolarization, Ca(2+) influxes, oxidative stress, MAPKinase activation and octadecanoid signaling at the molecular level, and the expression of digestion inhibitors, cell wall modifications and other general defenses at the phenotypic level. We discuss the relative benefits of perceiving the non-self versus the damaged-self and of specific versus non-specific responses and suggest that the perception of a complex mixture of DAMPs and HAMPs triggers fine-tuned plant responses. DAMPs such as extracellular ATP (eATP), cell wall fragments, signaling peptides, herbivore-induced volatile organic compounds (HI-VOCs) and eDNA hold the key for a more complete understanding of how plants perceive that and by whom they are attacked.
Collapse
Affiliation(s)
- Dalia Duran-Flores
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
237
|
De Coninck B, De Smet I. Plant peptides - taking them to the next level. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4791-5. [PMID: 27521600 PMCID: PMC5854176 DOI: 10.1093/jxb/erw309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: and
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Correspondence: and
| |
Collapse
|
238
|
Murphy E, Vu LD, Van den Broeck L, Lin Z, Ramakrishna P, van de Cotte B, Gaudinier A, Goh T, Slane D, Beeckman T, Inzé D, Brady SM, Fukaki H, De Smet I. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4863-75. [PMID: 27521602 PMCID: PMC4983113 DOI: 10.1093/jxb/erw281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation.
Collapse
Affiliation(s)
- Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Lisa Van den Broeck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhefeng Lin
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Priya Ramakrishna
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Brigitte van de Cotte
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Daniel Slane
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D- 72076 Tübingen, Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
239
|
Abstract
A significant part of the communication between plant cells is mediated by signaling peptides and their corresponding plasma membrane-localized receptor-like kinases. This communication mechanism serves as a key regulatory unit for coordination of plant growth and development. In the past years more peptide–receptor signaling pathways have been shown to regulate developmental processes, such as shoot and root meristem maintenance, seed formation, and floral abscission. More detailed understanding of the processes behind this regulation might also be helpful to increase the yield of crop plants.
Collapse
Affiliation(s)
- Maike Breiden
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, University Street, D-40225, Düsseldorf, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences and Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
240
|
Hammes UZ. Novel roles for phytosulfokine signalling in plant-pathogen interactions. PLANT, CELL & ENVIRONMENT 2016; 39:1393-1395. [PMID: 26574181 DOI: 10.1111/pce.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
This article comments on: Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
241
|
Canut H, Albenne C, Jamet E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:983-90. [PMID: 26945515 DOI: 10.1016/j.bbapap.2016.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hervé Canut
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Cécile Albenne
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
242
|
Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U. Root-to-shoot signalling: integration of diverse molecules, pathways and functions. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:87-104. [PMID: 32480444 DOI: 10.1071/fp15252] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/06/2015] [Indexed: 05/23/2023]
Abstract
Plant adaptive potential is critically dependent upon efficient communication and co-ordination of resource allocation and signalling between above- and below-ground plant parts. Plant roots act as gatekeepers that sense and encode information about soil physical, chemical and biological factors, converting them into a sophisticated network of signals propagated both within the root itself, and also between the root and shoot, to optimise plant performance for a specific set of conditions. In return, plant roots receive and decode reciprocal information coming from the shoot. The communication modes are highly diverse and include a broad range of physical (electric and hydraulic signals, propagating Ca2+ and ROS waves), chemical (assimilates, hormones, peptides and nutrients), and molecular (proteins and RNA) signals. Further, different signalling systems operate at very different timescales. It remains unclear whether some of these signalling systems operate in a priming mode(s), whereas others deliver more specific information about the nature of the signal, or whether they carry the same 'weight'. This review summarises the current knowledge of the above signalling mechanisms, and reveals their hierarchy, and highlights the importance of integration of these signalling components, to enable optimal plant functioning in a dynamic environment.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | | | - Michael A Djordjevic
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ulrike Mathesius
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
243
|
Mbengue M, Navaud O, Peyraud R, Barascud M, Badet T, Vincent R, Barbacci A, Raffaele S. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2016; 7:422. [PMID: 27066056 PMCID: PMC4814483 DOI: 10.3389/fpls.2016.00422] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/18/2016] [Indexed: 05/08/2023]
Abstract
Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.
Collapse
|
244
|
Czyzewicz N, De Smet I. The Arabidopsis thaliana CLAVATA3/EMBRYO-SURROUNDING REGION 26 (CLE26) peptide is able to alter root architecture of Solanum lycopersicum and Brassica napus. PLANT SIGNALING & BEHAVIOR 2016; 11:e1118598. [PMID: 26669515 PMCID: PMC4871666 DOI: 10.1080/15592324.2015.1118598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/06/2015] [Indexed: 05/23/2023]
Abstract
Optimal development of root architecture is vital to the structure and nutrient absorption capabilities of any plant. We recently demonstrated that AtCLE26 regulates A. thaliana root architecture development, possibly by altering auxin distribution to the root apical meristem via inhibition of protophloem development. In addition, we showed that AtCLE26 application is able to induce a root architectural change in the monocots Brachypodium distachyon and Triticum aestivum. Here, we showed that application of the synthetic AtCLE26 peptide similarly affects other important agricultural species, such as Brassica napus and Solanum lycopersicum.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD, United Kingdom
| |
Collapse
|