201
|
Puhlmann ML, de Vos WM. Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health. Front Immunol 2022; 13:954845. [PMID: 36059540 PMCID: PMC9434118 DOI: 10.3389/fimmu.2022.954845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary fibers contribute to structure and storage reserves of plant foods and fundamentally impact human health, partly by involving the intestinal microbiota, notably in the colon. Considerable attention has been given to unraveling the interaction between fiber type and gut microbiota utilization, focusing mainly on single, purified fibers. Studying these fibers in isolation might give us insights into specific fiber effects, but neglects how dietary fibers are consumed daily and impact our digestive tract: as intrinsic structures that include the cell matrix and content of plant tissues. Like our ancestors we consume fibers that are entangled in a complex network of plants cell walls that further encapsulate and shield intra-cellular fibers, such as fructans and other components from immediate breakdown. Hence, the physiological behavior and consequent microbial breakdown of these intrinsic fibers differs from that of single, purified fibers, potentially entailing unexplored health effects. In this mini-review we explain the difference between intrinsic and isolated fibers and discuss their differential impact on digestion. Subsequently, we elaborate on how food processing influences intrinsic fiber structure and summarize available human intervention studies that used intrinsic fibers to assess gut microbiota modulation and related health outcomes. Finally, we explore current research gaps and consequences of the intrinsic plant tissue structure for future research. We postulate that instead of further processing our already (extensively) processed foods to create new products, we should minimize this processing and exploit the intrinsic health benefits that are associated with the original cell matrix of plant tissues.
Collapse
Affiliation(s)
- Marie-Luise Puhlmann
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Marie-Luise Puhlmann,
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
202
|
Wozniak H, Beckmann TS, Fröhlich L, Soccorsi T, Le Terrier C, de Watteville A, Schrenzel J, Heidegger CP. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care 2022; 26:250. [PMID: 35982499 PMCID: PMC9386657 DOI: 10.1186/s13054-022-04127-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communication with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely dysbiosis, with a severe reduction in "health-promoting" commensal intestinal bacteria (such as Firmicutes or Bacteroidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important effects, including changes in gut integrity and in the production of metabolites such as short-chain fatty acids and trimethylamine N-oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, highlighting the concept of the gut-organ axis. Thus, dysbiosis will affect other organs and could have an impact on the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The precise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging research area that offers exciting opportunities for disease prevention, management and therapy, particularly in critical care where multi-organ failure is often the focus. This narrative review provides an overview of the normal composition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care setting, and highlights the concept of the gut-organ axis.
Collapse
Affiliation(s)
- Hannah Wozniak
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Tal Sarah Beckmann
- Division of Anesthesiology, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorin Fröhlich
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Tania Soccorsi
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aude de Watteville
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudia-Paula Heidegger
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
203
|
Nishida A, Nishino K, Ohno M, Sakai K, Owaki Y, Noda Y, Imaeda H. Update on gut microbiota in gastrointestinal diseases. World J Clin Cases 2022; 10:7653-7664. [PMID: 36158494 PMCID: PMC9372855 DOI: 10.12998/wjcc.v10.i22.7653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The human gut is a complex microbial ecosystem comprising approximately 100 trillion microbes collectively known as the "gut microbiota". At a rough estimate, the human gut microbiome contains almost 3.3 million genes, which are about 150 times more than the total human genes present in the human genome. The vast amount of genetic information produces various enzymes and physiologically active substances. Thus, the gut microbiota contributes to the maintenance of host health; however, when healthy microbial composition is perturbed, a condition termed "dysbiosis", the altered gut microbiota can trigger the development of various gastrointestinal diseases. The gut microbiota has consequently become an extremely important research area in gastroenterology. It is also expected that the results of research into the gut microbiota will be applied to the prevention and treatment of human gastrointestinal diseases. A randomized controlled trial conducted by a Dutch research group in 2013 showed the positive effect of fecal microbiota transplantation (FMT) on recurrent Clostridioides difficile infection (CDI). These findings have led to the development of treatments targeting the gut microbiota, such as probiotics and FMT for inflammatory bowel diseases (IBD) and other diseases. This review focuses on the association of the gut microbiota with human gastrointestinal diseases, including CDI, IBD, and irritable bowel syndrome. We also summarize the therapeutic options for targeting the altered gut microbiota, such as probiotics and FMT.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Kyohei Nishino
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Masashi Ohno
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Keitaro Sakai
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yuji Owaki
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yoshika Noda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Hirotsugu Imaeda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| |
Collapse
|
204
|
Bonomini-Gnutzmann R, Plaza-Díaz J, Jorquera-Aguilera C, Rodríguez-Rodríguez A, Rodríguez-Rodríguez F. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9518. [PMID: 35954878 PMCID: PMC9368618 DOI: 10.3390/ijerph19159518] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
(1) Background: The gut microbiota might play a part in affecting athletic performance and is of considerable importance to athletes. The aim of this study was to search the recent knowledge of the protagonist played by high-intensity and high-duration aerobic exercise on gut microbiota composition in athletes and how these effects could provide disadvantages in sports performance. (2) Methods: This systematic review follows the PRISMA guidelines. An exhaustive bibliographic search in Web of Science, PubMed, and Scopus was conducted considering the articles published in the last 5 years. The selected articles were categorized according to the type of study. The risk of bias was assessed using the Joanna Briggs Institute's Critical Appraisal Tool for Systematic Reviews. (3) Results: Thirteen studies had negative effects of aerobic exercise on intestinal microbiota such as an upsurge in I-FABP, intestinal distress, and changes in the gut microbiota, such as an increase in Prevotella, intestinal permeability and zonulin. In contrast, seven studies observed positive effects of endurance exercise, including an increase in the level of bacteria such as increased microbial diversity and increased intestinal metabolites. (4) Conclusions: A large part of the studies found reported adverse effects on the intestinal microbiota when performing endurance exercises. In studies carried out on athletes, more negative effects on the microbiota were found than in those carried out on non-athletic subjects.
Collapse
Affiliation(s)
| | - Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
| | - Andrés Rodríguez-Rodríguez
- Gastric Cancer Research Group—Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| |
Collapse
|
205
|
Zhang Y, Yan S, Sheng S, Qin Q, Chen J, Li W, Li T, Gao X, Wang L, Ang L, Ding S. Comparison of gut microbiota in male MAFLD patients with varying liver stiffness. Front Cell Infect Microbiol 2022; 12:873048. [PMID: 35992168 PMCID: PMC9381746 DOI: 10.3389/fcimb.2022.873048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In this study, we examined the changes to the composition and function of the gut microbiota from patients with metabolic dysfunction-associated fatty liver disease (MAFLD).We compared patients in a case group (liver stiffness (LSM) ≥ 7.4 kPa) with a matched control group (LSM < 7.4 kPa) and investigated the correlation between characteristics of the microbiota and other biochemical indicators. METHODS The study looked at a total of 85 men with MAFLD, 17 of whom were in the case group and 68 of whom were in the control group. We measured waist circumference, blood pressure, and body mass index, as well as clinical parameters including liver stiffness, enzyme levels, cholesterol levels, and fat attenuation. Whole-genome shotgun sequencing technology and the MetaCyc database were then used to detect the composition and major pathways of the gut microbiota for each patient. Statistical analyses were performed, including the chi-square test, the student's t-test, the Wilcoxon rank-sum test, and the Mann-Whitney test. RESULTS Whole-genome sequencing showed that the composition of the gut microbiota in patients with an LSM of above 7.4 kPa was significantly different to that of the control group. There were seven bacterial species that were different between the two groups. Prevotella copri, Phascolarctobacterium succinatutens, Eubacterium biforme, and Collinsella aerofaciens were enriched in the case group (P < 0.05). Conversely, Bacteroides coprocola, Bacteroides stercoris and Clostridiales bacterium 1_7_47FAA were decreased in the case group (P < 0.05). Furthermore, after removing low abundance pathways, a total of 32 microbial pathways were found to be significantly different between the two groups. Most pathways enriched in the case group over the control were related to biosynthesis of metabolites including amino acids, vitamins, nucleosides, and nucleotides. Conclusion. The composition and function of the gut microbiota in patients with increased liver stiffness are significantly altered. This observation may provide new avenues to better understand the mechanism of liver fibrosis.
Collapse
Affiliation(s)
- Yuheng Zhang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Center for Precision Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shifeng Sheng
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Qin
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weikang Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Gao
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Ang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
206
|
Hickmott AJ, Boose KJ, Wakefield ML, Brand CM, Snodgrass JJ, Ting N, White FJ. A comparison of faecal glucocorticoid metabolite concentration and gut microbiota diversity in bonobos ( Pan paniscus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35960548 DOI: 10.1099/mic.0.001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex, age, diet, stress and social environment have all been shown to influence the gut microbiota. In several mammals, including humans, increased stress is related to decreasing gut microbial diversity and may differentially impact specific taxa. Recent evidence from gorillas shows faecal glucocorticoid metabolite concentration (FGMC) did not significantly explain gut microbial diversity, but it was significantly associated with the abundance of the family Anaerolineaceae. These patterns have yet to be examined in other primates, like bonobos (Pan paniscus). We compared FGMC to 16S rRNA amplicons for 202 bonobo faecal samples collected across 5 months to evaluate the impact of stress, measured with FGMC, on the gut microbiota. Alpha diversity measures (Chao's and Shannon's indexes) were not significantly related to FGMC. FGMC explained 0.80 % of the variation in beta diversity for Jensen-Shannon and 1.2% for weighted UniFrac but was not significant for unweighted UniFrac. We found that genus SHD-231, a member of the family Anaerolinaceae had a significant positive relationship with FGMC. These results suggest that bonobos are relatively similar to gorillas in alpha diversity and family Anaerolinaceae responses to FGMC, but different from gorillas in beta diversity. Members of the family Anaerolinaceae may be differentially affected by FGMC across great apes. FGMC appears to be context dependent and may be species-specific for alpha and beta diversity but this study provides an example of consistent change in two African apes. Thus, the relationship between physiological stress and the gut microbiome may be difficult to predict, even among closely related species.
Collapse
Affiliation(s)
- Alexana J Hickmott
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.,Texas Biomedical Research Institute, San Antonio, TX 78227, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Klaree J Boose
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Monica L Wakefield
- Sociology, Anthropology, and Philosophy, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.,Bakar Computational Health Sciences Institute, University of California, San Francisco, USA
| | - J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.,Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Frances J White
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
207
|
Pu G, Hou L, Du T, Wang B, Liu H, Li K, Niu P, Zhou W, Huang R, Li P. Effects of short-term feeding with high fiber diets on growth, utilization of dietary fiber, and microbiota in pigs. Front Microbiol 2022; 13:963917. [PMID: 35966661 PMCID: PMC9363921 DOI: 10.3389/fmicb.2022.963917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
Abstract
Finishing pigs can adapt to high-fiber diet smoothly according to the production performance and their intestinal microbiota through a 28-day trial or longer. However, it is unclear, at which stage during the experimental period, the adaptation occurred. Here we studied the dosage effects of dietary fiber (Total dietary fiber (TDF) from 16.70 to 24.11%) on growth performance, fiber digestibility, fecal microbiota, and microbial fermentation of finishing pigs during a 14-day feeding period. The results showed that the average daily feed intake (ADFI) and feed/gain (F/G) of pigs were not affected as the dietary fiber increased. Apparent total tract digestibility (ATTD) of cellulose, hemicellulose, insoluble dietary fiber (IDF), soluble dietary fiber (SDF), and TDF of pigs remained unchanged when TDF was between 16.70 and 17.75%, while strikingly decreased when TDF increased from 17.75 to 24.11%. It is worth noting that increasing fiber intake seemed to favor hemicellulose digestion. In addition, the increase in fiber intake increased fecal microbial diversity, especially improved the proportion of the members of the family Prevotellaceae, Ruminococcaceae, and Lachnospiraceae, and decreased the abundance of the genus Streptococcus. Moreover, the increase in fiber intake promoted the digestion of fiber, production of short chain fatty acids (SCFAs), and enhanced microbial pyruvate metabolism and butanoate metabolism. In conclusion, short-term high fiber feeding has no adverse effects on the growth performance of finishing pigs. ATTD of dietary fiber of finishing pigs was maintained when TDF was at 17.75%. And short-term high fiber feeding improved microbial diversity and fiber degradation functions of finishing pigs.
Collapse
Affiliation(s)
- Guang Pu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Taoran Du
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Binbin Wang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Hang Liu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Kaijun Li
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Peipei Niu
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Wuduo Zhou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| | - Ruihua Huang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| | - Pinghua Li
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| |
Collapse
|
208
|
Sindhunata DP, Meijnikman AS, Gerdes VE, Nieuwdorp M. Dietary fructose as a metabolic risk factor. Am J Physiol Cell Physiol 2022; 323:C847-C856. [DOI: 10.1152/ajpcell.00439.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last decades, the role of the intestinal microbiota in metabolic diseases has come forward. In this regard, both composition and function of our intestinal microbiota is highly variable and influenced by multiple factors, of which diet is one of the major elements. Between 1970 and 1990 diet composition has changed and consumption of dietary sugars has increased, of which fructose intake rose by more than tenfold. This increased intake of sugars and fructose is considered as one of the major risk factors in the developments of obesity and several metabolic disturbances. In this review, we describe the association of dietary fructose intake with insulin resistance, non-alcoholic fatty liver disease (NAFLD) and lipid metabolism. Moreover, we will focus on the potential causality of this altered gut microbiota using fecal transplantation studies in human metabolic disease and whether fecal microbial transplant can reverse this phenotype.
Collapse
Affiliation(s)
- Daniko P. Sindhunata
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM, Hoofddorp, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| | - Abraham Stijn Meijnikman
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| | - Victor E.A. Gerdes
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM, Hoofddorp, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center Amsterdam, the Netherlands
| |
Collapse
|
209
|
Lycium barbarum polysaccharide modulates gut microbiota to alleviate rheumatoid arthritis in a rat model. NPJ Sci Food 2022; 6:34. [PMID: 35864275 PMCID: PMC9304368 DOI: 10.1038/s41538-022-00149-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Rheumatoid arthritis (RA) seriously impairs the quality of life of sufferers. It has been shown that Lycium barbarum polysaccharide (LBP), a natural active indigestible ingredient with medicinal and edible functions, can effectively relieve RA, however, whether this effect is related to gut microbiota is not known. This study aimed to explore the RA alleviating mechanism of LBP mediated by gut microbiota using a collagen-induced arthritis rat model. The results showed that LBP significantly changed the gut microflora structure accompanied with the RA alleviation. Specifically, a LBP intervention reduced the relative abundance of Lachnospiraceae_NK4A136_group and uncultured_bacterium_f_Ruminococcaceae and significantly increased the abundance of Romboutsia, Lactobacillus, Dubosiella and Faecalibaculum. The mRNA contents of several colonic epithelial genes including Dpep3, Gstm6, Slc27a2, Col11a2, Sycp2, SNORA22, Tnni1, Gpnmb, Mypn and Acsl6, which are potentially associated to RA, were down-regulated due to the DNA hypermethylation, possibly caused by the elevating content of a bacterial metabolite S-adenosyl methionine (SAM). In conclusion, our current study suggests that LBP alleviated RA by reshaping the composition of intestinal microflora which may generate SAM, inducing DNA hypermethylation of RA-related genes in the host intestinal epithelium and subsequently reducing their expression.
Collapse
|
210
|
Jia L, Wu J, Lei Y, Kong F, Zhang R, Sun J, Wang L, Li Z, Shi J, Wang Y, Wei Y, Zhang K, Lei Z. Oregano Essential Oils Mediated Intestinal Microbiota and Metabolites and Improved Growth Performance and Intestinal Barrier Function in Sheep. Front Immunol 2022; 13:908015. [PMID: 35903106 PMCID: PMC9314563 DOI: 10.3389/fimmu.2022.908015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
With the increased demand for safe and sustainable alternatives to growth promoting antibiotics in the livestock industry, oregano essential oils (OEO) and Lactobacillus reuteri (LR) have been examined as alternatives to antibiotics for growth promotion and to improve animal health and performance. However, the mechanism underlying the OEO and LR mediation of sheep growth remains unknown. In this study, 16S rRNA gene sequencing and untargeted metabolomics were used to determine the role of the gut microbiota in the growth improvements observed. The potential modulating roles of intestinal microbial metabolites of OEO and LR to intestinal health were systematically explored as well. It was observed that both OEO and LR had greater average daily gain (ADG) and lower F/G ratio. Furthermore, OEO also appeared to have produced a greater amylase enzyme activity and mucin gene expression in the jejunal mucosa. It was also observed that OEO reduced serum IL-2 and TNF-β as well as mRNA levels of NF-κB p65, toll-like receptor-4 (TLR-4), and IL-6 in the jejunal mucosa. Moreover, dietary OEO supplementation increased the abundances of Ruminococcus, Bifidobacterium and Enterococcus, while the relative abundances of Succiniclasticum, Marvinbryantia and Streptococcus were enriched in LR group. Spearman’s correlation analysis revealed that the abundances of Bifidobacterium, Ruminococcus and Enterococcus were positively correlated with the mRNA expression of mucins. Moreover, the relative abundance of Enterococcus was positively correlated with amylase activity. Metabolomics analysis indicated that OEO and LR increased the levels of indole acetaldehyde and indole-3-acetic acid through the tryptophan metabolism pathway. It was observed that LR also decreased the inflammatory metabolites including tryptamine and 5-hydroxyindole-3-acetic acid. Collectively, these results suggested that OEO exerted a beneficial effect on growth performance and the mucosal barrier, affected tryptophan metabolism and improved the intestinal microbiota of sheep.
Collapse
Affiliation(s)
- Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianping Wu
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fanyun Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianxiang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liao Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yubing Wei
- The Animal Husbandry and Veterinary Station in Pingshan Lake Mongolian Township of Ganzhou District, Zhangye, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Zhaomin Lei,
| |
Collapse
|
211
|
Pleić IL, Bušelić I, Messina M, Hrabar J, Žuvić L, Talijančić I, Žužul I, Pavelin T, Anđelić I, Pleadin J, Puizina J, Grubišić L, Tibaldi E, Šegvić-Bubić T. A plant-based diet supplemented with Hermetia illucens alone or in combination with poultry by-product meal: one step closer to sustainable aquafeeds for European seabass. J Anim Sci Biotechnol 2022; 13:77. [PMID: 35811320 PMCID: PMC9272557 DOI: 10.1186/s40104-022-00725-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Increasing demand for high-value fish species and pressure on forage fish is challenging aquaculture to ensure sustainable growth by replacing protein sources in aquafeeds with plant and terrestrial animal proteins, without compromising the economic value and quality of the final fish product. In the present study, the effects of a plant protein-based diet (CV), two plant-based diets in which graded amounts of plan protein mixtures were replaced with Hermetia illucens meal alone (VH10) or in combination with poultry by-product meal (PBM) (VH10P30), a fishmeal (FM) diet (CF) and an FM diet supplemented with H. illucens (FH10) on growth performance, gut health and homeostasis of farmed subadult European seabass were tested and compared. Results Fish fed the VH10 and VH10P30 diets showed the highest specific growth rates and lowest feed conversion ratios among the tested groups. Expectedly, the best preservation of PI morphology was observed in fish fed the CF or FH10 diets, while fish fed the CV diet exhibited significant degenerative changes in the proximal and distal intestines. However, PBM supplementation mitigated these effects and significantly improved all gut morphometric parameters in the VH10P30 group. Partial substitution of the plant mixture with insect meal alone or PBM also induced most BBM genes and activated BBM enzymes, suggesting a beneficial effect on intestinal digestive/absorption functions. Regarding intestinal microbiota, fish fed diets containing H. illucens meal (FH10, VH10, VH10P30) had the highest richness of bacterial communities and abundance of beneficial genera such as Lactobacillus and Bacillus. On the other hand, fish fed CV had the highest microbial diversity but lost a significant component of fish intestinal microbiota, the phylum Bacteroidetes. Finally, skin pigmentation most similar to that of farmed or even wild seabass was also observed in the fish groups fed CF, FH10 or VH10P30. Conclusion Plant-based diets supplemented with PBM and H. illucens pupae meal have great potential as alternative diets for European seabass, without affecting growth performance, gut homeostasis, or overall fitness. This also highlights the importance of animal proteins in diets of European seabass, as the addition of a small amount of these alternative animal protein sources significantly improved all measured parameters. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00725-z.
Collapse
|
212
|
Dietary Utilization Drives the Differentiation of Gut Bacterial Communities between Specialist and Generalist Drosophilid Flies. Microbiol Spectr 2022; 10:e0141822. [PMID: 35863034 PMCID: PMC9431182 DOI: 10.1128/spectrum.01418-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gut bacteria play vital roles in the dietary detoxification, digestion, and nutrient supplementation of hosts during dietary specialization. The roles of gut bacteria in the host can be unveiled by comparing communities of specialist and generalist bacterial species. However, these species usually have a long evolutionary history, making it difficult to determine whether bacterial community differentiation is due to host dietary adaptation or phylogenetic divergence. In this regard, we investigated the bacterial communities from two Araceae-feeding Colocasiomyia species and further performed a meta-analysis by incorporating the published data from Drosophila bacterial community studies. The compositional and functional differentiation of bacterial communities was uncovered by comparing three (Araceae-feeding, mycophagous, and cactophilic) specialists with generalist flies. The compositional differentiation showed that Bacteroidetes and Firmicutes inhabited specialists, while more Proteobacteria lived in generalists. The functional prediction based on the bacterial community compositions suggested that amino acid metabolism and energy metabolism are overrepresented pathways in specialists and generalists, respectively. The differences were mainly associated with the higher utilization of structural complex carbohydrates, protein utilization, vitamin B12 acquisition, and demand for detoxification in specialists than in generalists. The complementary roles of bacteria reveal a connection between gut bacterial communities and fly dietary specialization. IMPORTANCE Gut bacteria may play roles in the dietary utilization of hosts, especially in specialist animals, during long-term host-microbe interaction. By comparing the gut bacterial communities between specialist and generalist drosophilid flies, we found that specialists harbor more bacteria linked to complex carbohydrate degradation, amino acid metabolism, vitamin B12 formation, and detoxification than do generalists. This study reveals the roles of gut bacteria in drosophilid species in dietary utilization.
Collapse
|
213
|
Xu Q, Li D, Chen J, Yang J, Yan J, Xia Y, Zhang F, Wang X, Cao H. Crosstalk between the gut microbiota and postmenopausal osteoporosis: Mechanisms and applications. Int Immunopharmacol 2022; 110:108998. [PMID: 35785728 DOI: 10.1016/j.intimp.2022.108998] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Postmenopausal osteoporosis (PMO) results from a reduction in bone mass and microarchitectural deterioration in bone tissue due to estrogen deficiency, which may increase the incidence of fragility fractures. The number of people suffering from PMO has increased over the years because of the rapidly aging population worldwide. However, several pharmacological agents for the treatment of PMO have many safety risks and impose a heavy financial burden to patients and society. In recent years, the "gut-bone" axis has been proposed as a new approach in the prevention and treatment of PMO. This paper reviews the relationship between the gut microbiota and PMO, which mainly includes the underlying mechanisms between hormones, immunity, nutrient metabolism, metabolites of the gut microbiota and intestinal permeability, and explores the possible role of the gut microbiota in these processes. Finally, we discuss the therapeutic effects of diet, prebiotics, probiotics, and fecal microbiota transplantation on the gut microbiota.
Collapse
Affiliation(s)
- Qin Xu
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Dan Li
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Nursing Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ju Yang
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jiai Yan
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yanping Xia
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Zhang
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xuesong Wang
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hong Cao
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
214
|
Pettinelli P, Arendt BM, Schwenger KJ, Sivaraj S, Bhat M, Comelli EM, Lou W, Allard JP. Relationship Between Hepatic Gene Expression, Intestinal Microbiota, and Inferred Functional Metagenomic Analysis in NAFLD. Clin Transl Gastroenterol 2022; 13:e00466. [PMID: 35166723 PMCID: PMC10476782 DOI: 10.14309/ctg.0000000000000466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION We previously reported a lower fecal abundance of Ruminococcus spp., Faecalibacterium prausnitzii , and Coprococcus spp. in nonalcoholic fatty liver disease (NAFLD). In this article, we assess the associations between hepatic gene expression, the specific taxa, and bacterial pathways. METHODS The relationships between hepatic genes that were differentially expressed in patients with NAFLD vs healthy controls (HC) and the abundance of these specific taxa were studied. Inferred functional metagenomic analysis using Piphillin was also performed to investigate associations with bacterial pathways. RESULTS Fifteen patients with NAFLD and 6 HC participated. Of 728 hepatic genes examined, 176 correlated with the abundance of Ruminococcus spp., 138 with F. prausnitzii , and 92 with Coprococcus spp. For Ruminococcus spp., genes were enriched in gene ontology (GO) terms related to apoptotic process, response to external and cytokine stimuli, and regulation of signaling. Several genes related to the Kyoto Encyclopedia of Genes and Genomes pathway insulin resistance were correlated with F. prausnitzii . The hepatic genes associated with F. prausnitzii were enriched in GO terms related to cellular response to different stimuli, apoptotic process, and regulation of metabolic pathways. For Coprococcus spp., only the GO term response to external stimulus was enriched. There was a distinct pattern of associations between hepatic genes and bacterial taxa in NAFLD vs HC. For bacterial pathways, 65 and 18 hepatic genes correlated with bacterial metabolic functions in NAFLD and HC, respectively. DISCUSSION Hepatic gene expression related to insulin resistance, inflammation, external stimuli, and apoptosis correlated with bacterial taxa. Patients with NAFLD showed a higher presence of bacterial pathways associated with lipid metabolism.
Collapse
Affiliation(s)
- Paulina Pettinelli
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
- Departamento de Ciencias de la Salud, Carrera de Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Región Metropolitana, Chile
| | - Bianca M. Arendt
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
| | | | - Saranya Sivaraj
- Multi Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, Toronto, Ontario, Canada;
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elena M. Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Joannah and Brian Lawson Centre for Child Nutrition and Health, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Wendy Lou
- Dalla Lana School of Public Health, Health Sciences Building, University of Toronto, Toronto, Ontario, Canada.
| | - Johane P. Allard
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
215
|
Goya-Jorge E, Gonza I, Bondue P, Douny C, Taminiau B, Daube G, Scippo ML, Delcenserie V. Human Adult Microbiota in a Static Colon Model: AhR Transcriptional Activity at the Crossroads of Host–Microbe Interaction. Foods 2022; 11:foods11131946. [PMID: 35804761 PMCID: PMC9265634 DOI: 10.3390/foods11131946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Functional symbiotic intestinal microbiota regulates immune defense and the metabolic processing of xenobiotics in the host. The aryl hydrocarbon receptor (AhR) is one of the transcription factors mediating host–microbe interaction. An in vitro static simulation of the human colon was used in this work to analyze the evolution of bacterial populations, the microbial metabolic output, and the potential induction of AhR transcriptional activity in healthy gut ecosystems. Fifteen target taxa were explored by qPCR, and the metabolic content was chromatographically profiled using SPME-GC-MS and UPLC-FLD to quantify short-chain fatty acids (SCFA) and biogenic amines, respectively. Over 72 h of fermentation, the microbiota and most produced metabolites remained stable. Fermentation supernatant induced AhR transcription in two of the three reporter gene cell lines (T47D, HepG2, HT29) evaluated. Mammary and intestinal cells were more sensitive to microbiota metabolic production, which showed greater AhR agonism than the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) used as a positive control. Some of the SCFA and biogenic amines identified could crucially contribute to the potent AhR induction of the fermentation products. As a fundamental pathway mediating human intestinal homeostasis and as a sensor for several microbial metabolites, AhR activation might be a useful endpoint to include in studies of the gut microbiota.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Pauline Bondue
- Research & Development, ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium;
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
- Correspondence: ; Tel.: +32-4-366-51-24
| |
Collapse
|
216
|
Ermolenko E, Simanenkova A, Voropaeva L, Lavrenova N, Kotyleva M, Minasian S, Chernikova A, Timkina N, Gladyshev N, Dmitriev A, Suvorov A, Galagudza M, Karonova T. Metformin Influence on the Intestinal Microbiota and Organism of Rats with Metabolic Syndrome. Int J Mol Sci 2022; 23:6837. [PMID: 35743280 PMCID: PMC9224185 DOI: 10.3390/ijms23126837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Metformin is a first-line drug for DM2 treatment and prevention, but its complex effect on impaired glucose tolerance (IGT), including its influence on myocardial resistance to ischemia-reperfusion injury, is not completely studied. We aimed to evaluate the influence of metformin on the intestinal microbiota (IM), metabolism, and functional and morphological characteristics of myocardium in rats with IGT. IGT was modelled in SPF Wistar rats with a high-fat diet and streptozotocin and nicotinamide injection. Rats were divided into three groups: IGT (without treatment), IGT MET (metformin therapy), and CRL (without IGT induction and treatment). IGT group was characterized by: higher body weight, increased serum glucose and total cholesterol levels, atherogenic coefficient, impairment in the functional parameters of the isolated heart during perfusion, and larger myocardium infarction (MI) size in comparison with the CRL group. IM of IGT rats differed from that of CRL: an increase of Bacteroides, Acinetobacter, Akkermansia, Roseburia, and a decrease of Lactobacillus genera representation. Metformin therapy led to the diminishing of metabolic syndrome (MS) symptoms, which correlated with IM restoration, especially with the growth of Akkermansia spp. and decline of Roseburia populations and their influence on other members of IM. The obtained results allow us to consider from a new point of view the expediency of probiotic A. muciniphila use for MS treatment.
Collapse
Affiliation(s)
- Elena Ermolenko
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Anna Simanenkova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Lyubov Voropaeva
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Nadezhda Lavrenova
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Maryna Kotyleva
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Sarkis Minasian
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Alena Chernikova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Natalya Timkina
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Nikita Gladyshev
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Alexander Dmitriev
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Alexander Suvorov
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Michael Galagudza
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Tatiana Karonova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| |
Collapse
|
217
|
Thomas MS, Blesso CN, Calle MC, Chun OK, Puglisi M, Fernandez ML. Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metab Syndr Relat Disord 2022; 20:429-439. [PMID: 35704900 DOI: 10.1089/met.2021.0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a clear correlation between gut microbiota, diet, and metabolic outcomes. A diet high in fiber has been shown to decrease inflammation, increase insulin sensitivity, and reduce dyslipidemias whereas a diet high in fat and sugar leads to dyslipidemia, insulin resistance, and low-grade inflammation. There is recent evidence suggesting that the human gut microbiota has a significant role in the development or the resolution of metabolic syndrome (MetS) and associated conditions. Leading a stressful, sedentary lifestyle with limited or no physical activity and consuming an unhealthy diet high in saturated fat, simple carbohydrates, and sodium and low in dietary fiber and in high-quality protein are some of the contributing factors. Unhealthy diets have been shown to induce alterations in the gut microbiota and contribute to the pathogenesis of MetS by altering microbiota composition and disrupting the intestinal barrier, which leads to low-grade systemic inflammation. In contrast, healthy diets can lead to changes in microbiota that increase gut barrier function and increase the production of anti-inflammatory biomarkers. This review aims at providing a more in-depth discussion of diet-induced dysbiosis of the gut microbiota and its effect on MetS. Here, we discuss the possible mechanisms involved in the development of the metabolic biomarkers that define MetS, with an emphasis on the role of sugar and dietary fiber in microbiome-mediated changes in low-grade systemic inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Minu S Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Mariana C Calle
- Health Sciences Department ST 110-M, Worcester University, Worcester, Massachusetts, USA
| | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Michael Puglisi
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
218
|
Cheng H, Liu J, Zhang D, Tan Y, Feng W, Peng C. Gut microbiota, bile acids, and nature compounds. Phytother Res 2022; 36:3102-3119. [PMID: 35701855 DOI: 10.1002/ptr.7517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Natural compounds (NPs) have historically made a major contribution to pharmacotherapy in various diseases and drug discovery. In the past decades, studies on gut microbiota have shown that the efficacy of NPs can be affected by the interactions between gut microbiota and NPs. On one hand, gut microbiota can metabolize NPs. On the other hand, NPs can influence the metabolism and composition of gut microbiota. Among gut microbiota metabolites, bile acids (BAs) have attracted widespread attention due to their effects on the body homeostasis and the development of diseases. Studies have also confirmed that NPs can regulate the metabolism of BAs and ultimately regulate the physiological function of the body and disease progresses. In this review, we comprehensively summarize the interactions among NPs, gut microbiota, and BAs. In addition, we also discuss the role of microbial BAs metabolism in understanding the toxicity and efficacy of NPs. Furthermore, we present personal insights into the future research directions of NPs and BAs.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
219
|
Joly Condette C, Djekkoun N, Reygner J, Depeint F, Delanaud S, Rhazi L, Bach V, Khorsi-Cauet H. Effect of daily co-exposure to inulin and chlorpyrifos on selected microbiota endpoints in the SHIME® model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:118961. [PMID: 35183667 DOI: 10.1016/j.envpol.2022.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The intestinal microbiota has a key role in human health via the interaction with the somatic and immune cells in the digestive tract environment. Food, through matrix effect, nutrient and non-nutrient molecules, is a key regulator of microbiota diversity. As a food contaminant, the pesticide chlorpyrifos (CPF) has an effect on the composition of the intestinal microbiota and induces perturbation of microbiota. Prebiotics (and notably inulin) are known for their ability to promote an equilibrium of the microbiota that favours saccharolytic bacteria. The SHIME® dynamic in vitro model of the human intestine was exposed to CPF and inulin concomitantly for 30 days, in order to assess variations in both the bacterial populations and their metabolites. Various analyses of the microbiota (notably temporal temperature gradient gel electrophoresis) revealed a protective effect of the prebiotic through inhibition of the enterobacterial (E. coli) population. Bifidobacteria were only temporarily inhibited at D15 and recovered at D30. Although other potentially beneficial populations (lactobacilli) were not greatly modified, their activity and that of the saccharolytic bacteria in general were highlighted by an increase in levels of short-chain fatty acids and more specifically butyrate. Given the known role of host-microbiota communication, CPF's impact on the body's homeostasis remains to be determined.
Collapse
Affiliation(s)
| | | | - Julie Reygner
- Laboratoire PériTox UMR_I 01, CURS-UPJV, F-80054, Amiens, France
| | - Flore Depeint
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle - Université D'Artois, F-60026, Beauvais, France
| | | | - Larbi Rhazi
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle - Université D'Artois, F-60026, Beauvais, France
| | - Veronique Bach
- Laboratoire PériTox UMR_I 01, CURS-UPJV, F-80054, Amiens, France
| | | |
Collapse
|
220
|
Costescu Strachinaru DI, Gallez JL, Daras S, Paridaens MS, Engel H, François PM, Rose T, Vanbrabant P, Soentjens P. A case of Flavonifractor plautii blood stream infection in a severe burn patient and a review of the literature. Acta Clin Belg 2022; 77:693-697. [PMID: 34151750 DOI: 10.1080/17843286.2021.1944584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Flavonifractor plautii is a strictly anaerobic rod shaped bacterium belonging to the family of Clostridiales. It is a commensal of the human intestinal microbiota which was seldom isolated from clinical samples, therefore clinical data are scarce. To date, only four cases of F. plautii infections were described, all occurring in immunosuppressed patients. CASE PRESENTATION We report a case where F. plautii was isolated from the blood culture of a severe burn victim and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. DISCUSSION To the best of our knowledge, this is the first case of F. plautii blood stream infection described in a burn patient.
Collapse
Affiliation(s)
| | - Jean-Luc Gallez
- Department of Microbiology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Sonia Daras
- Department of Microbiology, Queen Astrid Military Hospital, Brussels, Belgium
| | | | - Harald Engel
- Burn Unit, Queen Astrid Military Hospital, Brussels, Belgium
| | | | - Thomas Rose
- Burn Unit, Queen Astrid Military Hospital, Brussels, Belgium
| | - Peter Vanbrabant
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Patrick Soentjens
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
221
|
Santos VM, Brito AKP, Amorim AT, Souza IR, Santos MB, Campos GB, Dos Santos DC, Júnior ACRB, Santana JM, Santos DB, Mancini MC, Timenetsky J, Marques LM. Evaluation of fecal microbiota and its correlation with inflammatory, hormonal, and nutritional profiles in women. Braz J Microbiol 2022; 53:1001-1009. [PMID: 35277849 PMCID: PMC9151974 DOI: 10.1007/s42770-022-00729-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The present study evaluated the gut microbiota profiles of 40 women and correlated them with their nutritional, inflammatory, and hormonal profiles. Stool and blood samples were collected, and anthropometric measurements were obtained from 20 women diagnosed with obesity ("case" group) and 20 women with weight in the normal range ("control" group). Bacteria belonging to two phyla, Firmicutes and Bacteroidetes, one class, Mollicutes, and four genera were evaluated by real-time polymerase chain reaction. Levels of 18 inflammatory cytokines were measured using the Luminex assay, and ghrelin and leptin levels were measured using enzymatic immunoadsorption assay. Mollicutes proportion differed significantly between the case and control groups, and a significant positive association was detected between the presence of Mollicutes and obesity. Statistically significant differences were observed between the proportions of Firmicutes and Bacteroidetes in the two groups, with a higher proportion of Firmicutes/Bacteroidetes ratio among the gut microbiota of women in the case group compared to those of the control group. Higher counts of Escherichia coli and Clostridium spp. were observed in the control group than in the case group, whereas higher counts of Lactobacillus spp. and Bacteroides spp. were detected in the case group than in the control group. There was a positive correlation between interleukin-6 (IL-6) and interferon-γ (IFN-γ) levels and the anthropometric variables and a negative correlation between IL-10 and these variables. Leptin and ghrelin concentrations differed significantly between the two groups and showed positive and negative correlation with obesity predictors, respectively. Therefore, gut microbiota was associated with obesity in women from this study group. Moreover, this microbiota was associated with inflammatory profiles and alterations in ghrelin and leptin levels.
Collapse
Affiliation(s)
- Verena M Santos
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Anne Karoline P Brito
- Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Aline T Amorim
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Izadora R Souza
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Maysa B Santos
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Guilherme B Campos
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil.,Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Deborah C Dos Santos
- Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Antônio Carlos R Braga Júnior
- Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Jerusa M Santana
- Federal University of Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil
| | | | - Marcio C Mancini
- Clinical Hospital of Medical School, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Lucas M Marques
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil. .,Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil.
| |
Collapse
|
222
|
Interaction Between Altered Gut Microbiota and Sepsis: A Hypothesis or an Authentic Fact? J Intensive Care Med 2022; 38:121-131. [DOI: 10.1177/08850666221102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies’ results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.
Collapse
|
223
|
Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients 2022; 14:nu14102096. [PMID: 35631237 PMCID: PMC9147914 DOI: 10.3390/nu14102096] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/13/2022] Open
Abstract
The colon harbours a dynamic and complex community of microorganisms, collectively known as the gut microbiota, which constitutes the densest microbial ecosystem in the human body. These commensal gut microbes play a key role in human health and diseases, revealing the strong potential of fine-tuning the gut microbiota to confer health benefits. In this context, dietary strategies targeting gut microbes to modulate the composition and metabolic function of microbial communities are of increasing interest. One such dietary strategy is the use of prebiotics, which are defined as substrates that are selectively utilised by host microorganisms to confer a health benefit. A better understanding of the metabolic pathways involved in the breakdown of prebiotics is essential to improve these nutritional strategies. In this review, we will present the concept of prebiotics, and focus on the main sources and nature of these components, which are mainly non-digestible polysaccharides. We will review the breakdown mechanisms of complex carbohydrates by the intestinal microbiota and present short-chain fatty acids (SCFAs) as key molecules mediating the dialogue between the intestinal microbiota and the host. Finally, we will review human studies exploring the potential of prebiotics in metabolic diseases, revealing the personalised responses to prebiotic ingestion. In conclusion, we hope that this review will be of interest to identify mechanistic factors for the optimization of prebiotic-based strategies.
Collapse
|
224
|
Potential for Natural Attenuation of Domestic and Agricultural Pollution in Karst Groundwater Environments. WATER 2022. [DOI: 10.3390/w14101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In karst areas, anthropogenic contaminants reach the subsurface with detrimental effects on the groundwater ecosystem and downstream springs, which often serve as drinking water sources for the local human communities. We analyzed the water chemistry and microbial community composition in upstream and downstream locations of five hydrokarst systems (HKS) during four seasons. Conductivity and nitrates were higher in the downstream springs than in the pre-karst waters, whereas the concentration of organic matter, considered here as a pollution indicator, was lower. The microbial community composition varied largely between upstream and downstream locations, with multiple species of potentially pathogenic bacteria decreasing in the HKS. Bacteria indicative of pollution decreased as well when passing through the HKS, but potential biodegraders increased. This suggests that the HKS can filter out part of the polluting organic matter and, with it, part of the associated microorganisms. Nevertheless, the water quality, including the presence of pathogens in downstream springs, must be further monitored to control whether the water is appropriate for consumption. In parallel, the human populations located upstream must be advised of the risks resulting from their daily activities, improper stocking of their various wastes and dumping of their refuse in surface streams.
Collapse
|
225
|
Eltokhi A, Sommer IE. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front Neurosci 2022; 16:852506. [PMID: 35546876 PMCID: PMC9081810 DOI: 10.3389/fnins.2022.852506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Depression is a severe mental disorder that places a significant economic burden on public health. The reciprocal link between the trillions of bacteria in the gut, the microbiota, and depression is a controversial topic in neuroscience research and has drawn the attention of public interest and press coverage in recent years. Mounting pieces of evidence shed light on the role of the gut microbiota in depression, which is suggested to involve immune, endocrine, and neural pathways that are the main components of the microbiota-gut-brain axis. The gut microbiota play major roles in brain development and physiology and ultimately behavior. The bidirectional communication between the gut microbiota and brain function has been extensively explored in animal models of depression and clinical research in humans. Certain gut microbiota strains have been associated with the pathophysiology of depression. Therefore, oral intake of probiotics, the beneficial living bacteria and yeast, may represent a therapeutic approach for depression treatment. In this review, we summarize the findings describing the possible links between the gut microbiota and depression, focusing mainly on the inflammatory markers and sex hormones. By discussing preclinical and clinical studies on probiotics as a supplementary therapy for depression, we suggest that probiotics may be beneficial in alleviating depressive symptoms, possibly through immune modulation. Still, further comprehensive studies are required to draw a more solid conclusion regarding the efficacy of probiotics and their mechanisms of action.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
226
|
Gastrointestinal Microbiota of Spiny Lobster: A Review. FISHES 2022. [DOI: 10.3390/fishes7030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gastrointestinal (GI) microbiota is a group of complex and dynamic microorganisms present in the GI tract of an organism that live in symbiosis with the host and benefit the host with various biological functions. The communities of GI microbiota are formed by various aerobic, anaerobic, and facultatively anaerobic bacteria in aquatic species. In spiny lobsters, common GI microorganisms found in the GI tract are Vibrio, Pseudomonas, Bacillus, Micrococcus, and Flavobacterium, where the structure and abundance of these microbes are varied depending on the environment. GI microbiotas hold an important role and significantly affect the overall condition of spiny lobsters, such as secreting digestive enzymes (lipase, protease, and cellulase), helping in digesting food intake, providing nutrition and synthesising vitamins needed by the host system, and protecting the host against infection from pathogens and diseases by activating an immune mechanism in the GI tract. The microorganisms in the water column, sediment, and diet are primarily responsible for altering, manipulating, and shaping GI microbial structures and communities. This review also highlights the possibilities of isolating the indigenous GI microbiota as a potential probiotic strain and introducing it to spiny lobster juveniles and larvae for better health management.
Collapse
|
227
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
228
|
Mejia-Gomez J, Zigras T, Patel Y, Wolfman W, Philippopoulos E, Shaltout N, Rotstein C, Laframboise S, Patel SN, Kus JV, Poutanen SM, Hosseini-Moghaddam SM. First reported case of Robinsoniella peoriensis pyometra and bloodstream infection: A case report and review of the literature. Anaerobe 2022; 75:102581. [DOI: 10.1016/j.anaerobe.2022.102581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
|
229
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
230
|
Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022; 10:biomedicines10051037. [PMID: 35625774 PMCID: PMC9138548 DOI: 10.3390/biomedicines10051037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut–skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut–skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.
Collapse
|
231
|
Feng R, Zhang T, Kayani MUR, Wang Z, Shen Y, Su KL, Bielike K, Chen L. Patients with Primary and Secondary Bile Duct Stones Harbor Distinct Biliary Microbial Composition and Metabolic Potential. Front Cell Infect Microbiol 2022; 12:881489. [PMID: 35548466 PMCID: PMC9082501 DOI: 10.3389/fcimb.2022.881489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022] Open
Abstract
IntroductionCholelithiasis has a high incidence worldwide and limited treatment options due to its poorly understood pathogenesis. Furthermore, the role of biliary microbiota in cholelithiasis remains understudied. To address these questions, we performed microbial sequencing from biliary samples from primary bile duct stone (PBDS) and secondary bile duct stone (SBDS) patients.ResultsWe analyzed in total 45 biliary samples, including those from cholelithiasis patients with PBDS or SBDS and people with other digestive diseases. 16S rRNA sequencing showed the bacteria family Alcaligenaceae increased in relative abundance in the lithiasis group compared with the non-lithiasis group. In addition, the PBDS group showed significantly lower bacterial diversity than SBDS, with Propionibacteriaceae, Sphingomonadaceae, and Lactobacillaceae as the most significant bacteria families decreased in relative abundance. We further performed whole metagenomic shotgun sequencing (wMGS) and found increased ability of biofilm synthesis and the ability to sense external stimuli in PBDS based on functional annotation of mapped reads. From genome-resolved analysis of the samples, we identified 36 high-quality draft bacterial genome sequences with completion ≥70% and contamination ≤10%. Most of these genomes were classified into Proteobacteria, Firmicutes, or Actinobacteria.ConclusionsOur findings indicated that there is a subtle impact on biliary microbiome from cholelithiasis while the difference is more pronounced between the PBDS and SBDS. It was revealed that the diversity of biliary microbiota in PBDS is lower, while some metabolic pathways are up-regulated, including those linked to higher incidence of different types of cancer, providing new insights for the understanding of cholelithiasis with different origin.
Collapse
Affiliation(s)
- Ru Feng
- Center for Microbiota and Immunological Diseases, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masood ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Shen
- Center for Microbiota and Immunological Diseases, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenn Liu Su
- Center for Microbiota and Immunological Diseases, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kouken Bielike
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Lei Chen, ; Kouken Bielike,
| | - Lei Chen
- Center for Microbiota and Immunological Diseases, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Lei Chen, ; Kouken Bielike,
| |
Collapse
|
232
|
A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients. Nutrients 2022; 14:nu14091773. [PMID: 35565740 PMCID: PMC9101735 DOI: 10.3390/nu14091773] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and its prevalence worldwide is increasing. Several studies support the pathophysiological role of the gut–liver axis, where specific signal pathways are finely tuned by intestinal microbiota both in the onset and progression of NAFLD. In the present study, we investigate the impact of different lifestyle interventions on the gut microbiota composition in 109 NAFLD patients randomly allocated to six lifestyle intervention groups: Low Glycemic Index Mediterranean Diet (LGIMD), aerobic activity program (ATFIS_1), combined activity program (ATFIS_2), LGIMD plus ATFIS_1 or ATFIS2 and Control Diet based on CREA-AN (INRAN). The relative abundances of microbial taxa at all taxonomic levels were explored in all the intervention groups and used to cluster samples based on a statistical approach, relying both on the discriminant analysis of principal components (DAPCs) and on a linear regression model. Our analyses reveal important differences when physical activity and the Mediterranean diet are merged as treatment and allow us to identify the most statistically significant taxa linked with liver protection. These findings agree with the decreased ‘controlled attenuation parameter’ (CAP) detected in the LGIMD-ATFIS_1 group, measured using FibroScan®. In conclusion, our study demonstrates the synergistic effect of lifestyle interventions (diet and/or physical activity programs) on the gut microbiota composition in NAFLD patients.
Collapse
|
233
|
The Effects of High Fiber Rye, Compared to Refined Wheat, on Gut Microbiota Composition, Plasma Short Chain Fatty Acids, and Implications for Weight Loss and Metabolic Risk Factors (the RyeWeight Study). Nutrients 2022; 14:nu14081669. [PMID: 35458231 PMCID: PMC9032876 DOI: 10.3390/nu14081669] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Consumption of whole grain and cereal fiber have been inversely associated with body weight and obesity measures in observational studies but data from large, long-term randomized interventions are scarce. Among the cereals, rye has the highest fiber content and high rye consumption has been linked to increased production of gut fermentation products, as well as reduced risks of obesity and metabolic disease. The effects on body weight and metabolic risk factors may partly be mediated through gut microbiota and/or their fermentation products. We used data from a randomized controlled weight loss trial where participants were randomized to a hypocaloric diet rich in either high fiber rye foods or refined wheat foods for 12 weeks to investigate the effects of the intervention on gut microbiota composition and plasma short chain fatty acids, as well as the potential association with weight loss and metabolic risk markers. Rye, compared to wheat, induced some changes in gut microbiota composition, including increased abundance of the butyrate producing Agathobacter and reduced abundance of [Ruminococcus] torques group, which may be related to reductions in low grade inflammation caused by the intervention. Plasma butyrate increased in the rye group. In conclusion, intervention with high fiber rye foods induced some changes in gut microbiota composition and plasma short chain fatty acid concentration, which were associated with improvements in metabolic risk markers as a result of the intervention.
Collapse
|
234
|
Thiam M, Wang Q, Barreto Sánchez AL, Zhang J, Ding J, Wang H, Zhang Q, Zhang N, Wang J, Li Q, Wen J, Zhao G. Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Functional Capacity in Infected Chicken. Front Immunol 2022; 13:816689. [PMID: 35493492 PMCID: PMC9047862 DOI: 10.3389/fimmu.2022.816689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiota plays a vital role in ensuring the maintenance of host health through interactions with the immune system. The Heterophil/Lymphocyte (H/L) ratio reflects poultry’s robustness and immune system status. Chickens with low H/L ratio are superior to the chickens with high H/L ratio in survival, immune response, and resistance to Salmonella infection, but the underlying mechanisms remain unclear. This study aimed to identify microorganisms associated with resistance to Salmonella Enteritidis infection in chickens based on the H/L ratio. The 16S rRNA and metagenomic analysis were conducted to examine microbiome and functional capacity between the 2 groups, and Short Chain Fatty Acids (SCFAs) and histopathology were conducted to explore the potential difference between susceptible and resistant groups at 7 and 21 days post-infection (dpi). The microbiome exploration revealed that low H/L ratio chickens, compared to high H/L ratio chickens, displayed a significantly higher abundance of Proteobacteria (Escherichia coli) and Bacteroidetes (Bacteroides plebeius) at 7 and 21 dpi, respectively. Anaerostipes (r = 0.63) and Lachnoclostridium (r = 0.63) were identified as bacterial genus significantly correlated with H/L (P < 0.001). Interestingly, Bacteroides was significantly and positively correlated with bodyweight post-infection (r = 0.72), propionate (r = 0.78) and valerate (r = 0.82) contents, while Salmonella was significantly and negatively correlated with bodyweight post-infection (r = − 0.67), propionate (r = − 0.61) and valerate (r = − 0.65) contents (P < 0.001). Furthermore, the comparative analysis of the functional capacity of cecal microbiota of the chickens with high and low H/L ratio revealed that the chickens with low H/L ratio possess more enriched immune pathways, lower antibiotic resistance genes and virulence factors compared to the chickens with high H/L ratio. These results suggest that the chickens with low H/L ratio are more resistant to Salmonella Enteritidis, and it is possible that the commensal Proteobacteria and Bacteroidetes are involved in this resistance against Salmonella infection. These findings provide valuable resources for selecting and breeding disease-resistant chickens.
Collapse
|
235
|
Liu T, Guo Y, Lu C, Cai C, Gao P, Cao G, Li B, Guo X, Yang Y. Effect of Different Pig Fecal Microbiota Transplantation on Mice Intestinal Function and Microbiota Changes During Cold Exposure. Front Vet Sci 2022; 9:805815. [PMID: 35498721 PMCID: PMC9044030 DOI: 10.3389/fvets.2022.805815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cold stress influences intestinal processes, causing physiological and immunological responses in animals. Intestinal microbiota participates in maintaining the stability of the intestinal environment. However, phenotypic characteristics and the effects of porcine microbiota changes under cold conditions remain poorly understood. Here, the fecal microbiota of cold tolerant breed (Mashen) and cold sensitive breed (Duroc-Landrace-Yorkshire) was transferred to germ-free mice, respectively. After a cold exposure (4°C) for 21 days, intestinal function and microbe changes of mice were explored. The results showed that Mashen pigs microbiota transplantation made the body temperature of the mice stable, in which the fat weight and expression of uncoupling protein 1 (UCP1), carnitine palmitoyltransferase 1B (Cpt1b), and Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) were significantly higher (P < 0.05) than those of the control group. The results of intestinal structure and expression of serum inflammatory factors showed that fecal microbiota transplantation (FMT) mice have more intact intestinal structure and high expression of proinflammatory factor such as interleukin-4 (IL-4). The study of mice fecal microbiome characterized via 16S rRNA sequencing found that pig microbiota transplantation changed the abundance of Firmicutes. In addition, it identified discriminative features of Firmicutes in the microbiota between two breeds of pig, in which Clostridiaceae were enriched in the microbiota community of Mashen pig and Coriobacteriales were significantly (P < 0.05) enriched in the Duroc-Landrace-Yorkshire pig microbiota transplantation group based on linear discriminant analysis effect size (LEfSe) analysis. Finally, we found that the content of propionic acid and butyric acid in rectal contents significantly changed and the abundances of Clostridium and Lachnospira showed significant correlations with changes in short-chain fatty acids. The results suggest that pig fecal microbiota transplantation can alleviate the changes in physiological and biochemical indicators in mice caused by cold exposure. Mice have gut microbes altered and improved gut barrier function via fecal microbiota transplantation in pigs.
Collapse
|
236
|
Miranda-Carrazco A, Chávez-López C, Ramírez-Villanueva DA, Dendooven L. Bacteria in (vermi)composted organic wastes mostly survive when applied to an arable soil cultivated with wheat (Triticum sp. L.). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:363. [PMID: 35419663 DOI: 10.1007/s10661-022-09996-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Composting and vermicomposting are an environmentally friendly way to reduce pathogens in organic wastes and generate a valuable product that provides nutrients for crops. However, how the bacterial community structure changes during these different processes and if the bacteria applied with the (vermi)composted products survive in an arable cultivated soil is still largely unknown. In this study, we monitored how the bacterial community structure changed during conditioning, composting with and without Eisenia fetida, and when the end-product was applied to arable soil cultivated with wheat Triticum sp. L. The organic wastes used were biosolid, cow manure, and a mixture of both. Large changes occurred in the relative abundance of some of the most abundant bacterial genera during conditioning, but the changes were much smaller during composting or vermicomposting. The bacterial community structure was significantly different in the organic wastes during conditioning and (vermi)composting but adding E. fetida had no significant effect on it. Changes in the relative abundance of the bacterial groups in the (vermi)composted waste applied to the arable soil cultivated with wheat were small, suggesting that most survived even after 140 days. As such, applying (vermi)composted organic wastes not only adds nutrients to a crop but also contributes to the survival of plant growth-promoting bacteria found in the (vermi)compost. However, putative human pathogens found in the biosolid also survived in the arable soil, and their relative abundance remained high but mixing the biosolid with cow manure reduced that risk. It was found that applying (vermi)composted organic wastes to an arable soil not only provides plant nutrients and adds bacteria with plant growth-promoting capacities, but some putative pathogens also survived.
Collapse
Affiliation(s)
- Alejandra Miranda-Carrazco
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Claudia Chávez-López
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | | | - Luc Dendooven
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
237
|
Fast growth can counteract antibiotic susceptibility in shaping microbial community resilience to antibiotics. Proc Natl Acad Sci U S A 2022; 119:e2116954119. [PMID: 35394868 PMCID: PMC9169654 DOI: 10.1073/pnas.2116954119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAntibiotic exposure stands among the most used interventions to drive microbial communities away from undesired states. How the ecology of microbial communities shapes their recovery-e.g., posttreatment shifts toward Clostridioides difficile infections in the gut-after antibiotic exposure is poorly understood. We study community response to antibiotics using a model community that can reach two alternative states. Guided by theory, our experiments show that microbial growth following antibiotic exposure can counteract antibiotic susceptibility in driving transitions between alternative community states. This makes it possible to reverse the outcome of antibiotic exposure through modifying growth dynamics, including cooperative growth, of community members. Our research highlights the relevance of simple ecological models to better understand the long-term effects of antibiotic treatment.
Collapse
|
238
|
Milton-Laskibar I, Marcos-Zambrano LJ, Gómez-Zorita S, Carrillo de Santa Pau E, Fernández-Quintela A, Martínez JA, Portillo MP. Involvement of microbiota and short-chain fatty acids on non-alcoholic steatohepatitis when induced by feeding a hypercaloric diet rich in saturated fat and fructose. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e5. [PMID: 39295781 PMCID: PMC11406367 DOI: 10.1017/gmb.2022.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 09/21/2024]
Abstract
Consumption of high-energy-yielding diets, rich in fructose and lipids, is a factor contributing to the current increase in non-alcoholic fatty liver disease prevalence. Gut microbiota composition and short-chain fatty acids (SCFAs) production alterations derived from unhealthy diets are considered putative underlying mechanisms. This study aimed to determine relationships between changes in gut microbiota composition and SCFA levels by comparing rats featuring diet-induced steatohepatitis with control counterparts fed a standard diet. A high-fat high-fructose (HFHF) feeding induced higher body, liver and mesenteric adipose tissue weights, increased liver triglyceride content and serum transaminase, glucose, non-HDL-c and MCP-1 levels. Greater liver malondialdehyde levels and glutathione peroxidase activity were also observed after feeding the hypercaloric diet. Regarding gut microbiota composition, a lowered diversity and increased abundances of bacteria from the Clostridium sensu stricto 1, Blautia, Eubacterium coprostanoligenes group, Flavonifractor, and UBA1819 genera were found in rats featuring diet-induced steatohepatitis, as well as higher isobutyric, valeric and isovaleric acids concentrations. These results suggest that hepatic alterations produced by a hypercaloric HFHF diet may be related to changes in overall gut microbiota composition and abundance of specific bacteria. The shift in SCFA levels produced by this unbalanced diet cannot be discarded as potential mediators of the reported hepatic and metabolic alterations.
Collapse
Affiliation(s)
- Iñaki Milton-Laskibar
- Precision Nutrition and Cardiometabolic Health Program, IMDEA Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Judith Marcos-Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
| | - Saioa Gómez-Zorita
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Nutrition and Obesity group, Department of Pharmacy and Food Science, Faculty of Pharmacy, Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| | | | - Alfredo Fernández-Quintela
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Nutrition and Obesity group, Department of Pharmacy and Food Science, Faculty of Pharmacy, Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jose Alfredo Martínez
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - María Puy Portillo
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Nutrition and Obesity group, Department of Pharmacy and Food Science, Faculty of Pharmacy, Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| |
Collapse
|
239
|
Hintikka JE, Munukka E, Valtonen M, Luoto R, Ihalainen JK, Kallonen T, Waris M, Heinonen OJ, Ruuskanen O, Pekkala S. Gut Microbiota and Serum Metabolome in Elite Cross-Country Skiers: A Controlled Study. Metabolites 2022; 12:metabo12040335. [PMID: 35448522 PMCID: PMC9028832 DOI: 10.3390/metabo12040335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Exercise has been shown to affect gut the microbiome and metabolic health, with athletes typically displaying a higher microbial diversity. However, research on the gut microbiota and systemic metabolism in elite athletes remains scarce. In this study, we compared the gut microbiota profiles and serum metabolome of national team cross-country skiers at the end of an exhausting training and competitive season to those of normally physically-active controls. The gut microbiota were analyzed using 16S rRNA amplicon sequencing. Serum metabolites were analyzed using nuclear magnetic resonance. Phylogenetic diversity and the abundance of several mucin-degrading gut microbial taxa, including Akkermansia, were lower in the athletes. The athletes had a healthier serum lipid profile than the controls, which was only partly explained by body mass index. Butyricicoccus associated positively with HDL cholesterol, HDL2 cholesterol and HDL particle size. The Ruminococcus torques group was less abundant in the athlete group and positively associated with total cholesterol and VLDL and LDL particles. We found the healthier lipid profile of elite athletes to co-occur with known health-beneficial gut microbes. Further studies should elucidate these links and whether athletes are prone to mucin depletion related microbial changes during the competitive season.
Collapse
Affiliation(s)
- Jukka E. Hintikka
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
- Correspondence:
| | - Eveliina Munukka
- Turku Microbiome Biobank, Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| | - Maarit Valtonen
- Research Institute for Olympic Sports, 40700 Jyväskylä, Finland;
| | - Raakel Luoto
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Johanna K. Ihalainen
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
| | - Teemu Kallonen
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland;
| | - Matti Waris
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| | - Olli J. Heinonen
- Paavo Nurmi Centre, Department of Health and Physical Activity, University of Turku, 20540 Turku, Finland;
| | - Olli Ruuskanen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
| |
Collapse
|
240
|
Wang X, Shang Y, Wei Q, Wu X, Dou H, Zhang H, Zhou S, Sha W, Sun G, Ma S, Zhang H. Comparative Analyses of the Gut Microbiome of Two Fox Species, the Red Fox (Vulpes Vulpes) and Corsac Fox (Vulpes Corsac), that Occupy Different Ecological Niches. MICROBIAL ECOLOGY 2022; 83:753-765. [PMID: 34189610 DOI: 10.1007/s00248-021-01806-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiome is integral for the host's living and environmental adaptation and crucially important for understanding host adaptive mechanisms. The red fox (Vulpes vulpes) dominates a wider ecological niche and more complicated habitat than that of the corsac fox (V. corsac). However, the adaptive mechanisms (in particular, the gut microbiome responsible for this kind of difference) are still unclear. Therefore, we investigated the gut microbiome of these two species in the Hulunbuir grassland, China, and evaluated their microbiome composition, function, and adaptive mechanisms. We profiled the gut microbiome and metabolism function of red and corsac foxes via 16S rRNA gene and metagenome sequencing. The foxes harbored species-specific microbiomes and functions that were related to ecological niche and habitat. The red fox had abundant Bacteroides, which leads to significant enrichment of metabolic pathways (K12373 and K21572) and enzymes related to chitin and carbohydrate degradation that may help the red fox adapt to a wider niche. The corsac fox harbored large proportions of Blautia, Terrisporobacter, and ATP-binding cassette (ABC) transporters (K01990, K02003, and K06147) that can help maintain corsac fox health, allowing it to live in harsh habitats. These results indicate that the gut microbiome of the red and corsac foxes may have different abilities which may provide these species with differing capabilities to adapt to different ecological niches and habitats, thus providing important microbiome data for understanding the mechanisms of host adaptation to different niches and habitats.
Collapse
Affiliation(s)
- Xibao Wang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Yongquan Shang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Qinguo Wei
- College of Life Science, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shengyang Zhou
- College of Life Science, Qufu Normal University, Qufu, China
| | - Weilai Sha
- College of Life Science, Qufu Normal University, Qufu, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, China
| | - Shengchao Ma
- College of Life Science, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, China.
| |
Collapse
|
241
|
Ashniev GA, Petrov SN, Iablokov SN, Rodionov DA. Genomics-Based Reconstruction and Predictive Profiling of Amino Acid Biosynthesis in the Human Gut Microbiome. Microorganisms 2022; 10:740. [PMID: 35456791 PMCID: PMC9026213 DOI: 10.3390/microorganisms10040740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiota (HGM) have an impact on host health and disease. Amino acids are building blocks of proteins and peptides, also serving as precursors of many essential metabolites including nucleotides, cofactors, etc. Many HGM community members are unable to synthesize some amino acids (auxotrophs), while other members possess complete biosynthetic pathways for these nutrients (prototrophs). Metabolite exchange between auxotrophs and prototrophs affects microbial community structure. Previous studies of amino acid biosynthetic phenotypes were limited to model species or narrow taxonomic groups of bacteria. We analyzed over 2800 genomes representing 823 cultured HGM species with the aim to reconstruct biosynthetic pathways for proteinogenic amino acids. The genome context analysis of incomplete pathway variants allowed us to identify new potential enzyme variants in amino acid biosynthetic pathways. We further classified the studied organisms with respect to their pathway variants and inferred their prototrophic vs. auxotrophic phenotypes. A cross-species comparison was applied to assess the extent of conservation of the assigned phenotypes at distinct taxonomic levels. The obtained reference collection of binary metabolic phenotypes was used for predictive metabolic profiling of HGM samples from several large metagenomic datasets. The established approach for metabolic phenotype profiling will be useful for prediction of overall metabolic properties, interactions, and responses of HGM microbiomes as a function of dietary variations, dysbiosis and other perturbations.
Collapse
Affiliation(s)
- German A. Ashniev
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127994 Moscow, Russia; (G.A.A.); (S.N.I.)
| | - Sergey N. Petrov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127994 Moscow, Russia; (G.A.A.); (S.N.I.)
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
242
|
Akhremchuk KV, Skapavets KY, Akhremchuk AE, Kirsanava NP, Sidarenka AV, Valentovich LN. Gut microbiome of healthy people and patients with hematological malignancies in Belarus. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-18-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gut microbiota plays an important role in human health and the development of various diseases. We describe the intestinal microbiome of 31 healthy individuals and 29 patients who have hematological malignancies from Belarus. Bacteria that belong to Faecalibacterium, Blautia, Bacteroides, Ruminococcus, Bifidobacterium, Prevotella, Lactobacillus, and Alistipes genera were predominant in the gut of healthy people. Based on the dominant microbiota species, two enterotype-like clusters that are driven by Bacteroides and Blautia, respectively, were identified. A significant decrease in alpha diversity and alterations in the taxonomic composition of the intestinal microbiota were observed in patients with hematological malignancies compared to healthy people. The microbiome of these patients contained a high proportion of Bacteroides, Blautia, Faecalibacterium, Lactobacillus, Prevotella, Alistipes, Enterococcus, Escherichia-Shigella, Ruminococcus gnavus group, Streptococcus, and Roseburia. An increased relative abundance of Bacteroides vulgatus, Ruminococcus torques, Veillonella, Tuzzerella, Sellimonas, and a decreased number of Akkermansia, Coprococcus, Roseburia, Agathobacter, Lachnoclostridium, and Dorea were observed in individuals with hematological malignancies. Generally, the composition of the gut microbiome in patients was more variable than that of healthy individuals, and alterations in the abundance of certain microbial taxa were individually specific.
Collapse
Affiliation(s)
- K. V. Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| | - K. Y. Skapavets
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology
| | - A. E. Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| | - N. P. Kirsanava
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology
| | - A. V. Sidarenka
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| | - L. N. Valentovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| |
Collapse
|
243
|
Cataldi S, Bonavolontà V, Poli L, Clemente FM, De Candia M, Carvutto R, Silva AF, Badicu G, Greco G, Fischetti F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
Affiliation(s)
- Stefania Cataldi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Valerio Bonavolontà
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Luca Poli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Michele De Candia
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Roberto Carvutto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania;
| | - Gianpiero Greco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Francesco Fischetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| |
Collapse
|
244
|
Rehagel C, Akineden Ö, Usleber E. Microbiological and mycotoxicological analyses of processed cereal‐based complementary foods for infants and young children from the German market. J Food Sci 2022; 87:1810-1822. [DOI: 10.1111/1750-3841.16106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Christina Rehagel
- Dairy Sciences, Institute of Veterinary Food Science Justus‐Liebig University Giessen Giessen Germany
| | - Ömer Akineden
- Dairy Sciences, Institute of Veterinary Food Science Justus‐Liebig University Giessen Giessen Germany
| | - Ewald Usleber
- Dairy Sciences, Institute of Veterinary Food Science Justus‐Liebig University Giessen Giessen Germany
| |
Collapse
|
245
|
Marasco G, Cremon C, Barbaro MR, Stanghellini V, Barbara G. Gut microbiota signatures and modulation in irritable bowel syndrome. MICROBIOME RESEARCH REPORTS 2022; 1:11. [PMID: 38045643 PMCID: PMC10688783 DOI: 10.20517/mrr.2021.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2023]
Abstract
Irritable bowel syndrome (IBS) affects approximately one tenth of the general population and is characterized by abdominal pain associated with abnormalities in bowel habits. Visceral hypersensitivity, abnormal intestinal motor function, mucosal immune activation, and increased intestinal permeability concur to its pathophysiology. Psychological factors can influence symptom perception at the central nervous system level. In addition, recent evidence suggests that dysbiosis may be a key pathophysiological factor in patients with IBS. Increasing understanding of the pathophysiological mechanisms translates into new and more effective therapeutic approaches. Indeed, in line with this evidence, IBS therapies nowadays include agents able to modulate gut microbiota function and composition, such as diet, prebiotics, probiotics, and antibiotics. In addition, in the last decade, an increasing interest in fecal microbiota transplantation has been paid. An in-depth understanding of the intestinal microenvironment through accurate faucal microbiota and metabolite analysis may provide valuable insights into the pathophysiology of IBS, finally shaping new tailored IBS therapies.
Collapse
Affiliation(s)
- Giovanni Marasco
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna 40138, Italy
| | - Cesare Cremon
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Maria Raffaella Barbaro
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Vincenzo Stanghellini
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna 40138, Italy
| | - Giovanni Barbara
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna 40138, Italy
| |
Collapse
|
246
|
Davinelli S, Scapagnini G. Interactions between dietary polyphenols and aging gut microbiota: A review. Biofactors 2022; 48:274-284. [PMID: 34559427 DOI: 10.1002/biof.1785] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Aging induces significant shifts in the composition of gut microbiota associated with decreased microbial diversity. Age-related changes in gut microbiota include a loss of commensals and an increase in disease-associated pathobionts. These alterations are accelerated by lifestyle factors, such as poor nutritional habits, physical inactivity, and medications. Given that diet is one of the main drivers shaping the gut microbiota, nutritional interventions for restoring gut homeostasis are of great importance to the overall health of older adults. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as promising anti-aging candidates because of their ability to modulate some of the common denominators of aging, including gut dysbiosis. These compounds can influence the composition of the gut microbiota, and gut bacteria metabolize polyphenols into bioactive compounds that produce relevant health effects. Although the role of polyphenols on the aging gut has not been fully characterized, accumulating evidence suggests that these compounds exert selective effects on the gut microbial community. Here, we discuss the reciprocal interactions between polyphenols and gut microbiota and summarize the latest findings on the effects of polyphenols on modulating intestinal bacteria during aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
247
|
Janeiro MH, Ramírez MJ, Solas M. Dysbiosis and Alzheimer's Disease: Cause or Treatment Opportunity? Cell Mol Neurobiol 2022; 42:377-387. [PMID: 33400081 PMCID: PMC11441293 DOI: 10.1007/s10571-020-01024-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer's disease (AD). The term "gut-brain axis" refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules. Through this pathway, microbiota can influence the onset and progression of neuropathologies such as AD. This review discusses the possible interaction between the gut microbiome and AD, focusing on the role of gut microbiota in neuroinflammation, cerebrovascular degeneration and Aβ clearance.
Collapse
Affiliation(s)
- Manuel H Janeiro
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
248
|
Kim SH, Ramos SC, Valencia RA, Cho YI, Lee SS. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front Microbiol 2022; 13:804562. [PMID: 35295316 PMCID: PMC8919045 DOI: 10.3389/fmicb.2022.804562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) in dairy cows causes considerable losses in the dairy industry worldwide due to reduced animal performance, increased cases of metabolic disorders, altered rumen microbiome, and other health problems. Cows subjected to HS showed decreased ruminal pH and acetate concentration and an increased concentration of ruminal lactate. Heat-stressed cows have an increased abundance of lactate-producing bacteria such as Streptococcus and unclassified Enterobacteriaceae, and soluble carbohydrate utilizers such as Ruminobacter, Treponema, and unclassified Bacteroidaceae. Cellulolytic bacteria, especially Fibrobacteres, increase during HS due to a high heat resistance. Actinobacteria and Acetobacter, both acetate-producing bacteria, decreased under HS conditions. Rumen fermentation functions, blood parameters, and metabolites are also affected by the physiological responses of the animal during HS. Isoleucine, methionine, myo-inositol, lactate, tryptophan, tyrosine, 1,5-anhydro-D-sorbitol, 3-phenylpropionic acid, urea, and valine decreased under these conditions. These responses affect feed consumption and production efficiency in milk yield, growth rate, and reproduction. At the cellular level, activation of heat shock transcription factor (HSF) (located throughout the nucleus and the cytoplasm) and increased expression of heat shock proteins (HSPs) are the usual responses to cope with homeostasis. HSP70 is the most abundant HSP family responsible for the environmental stress response, while HSF1 is essential for increasing cell temperature. The expression of bovine lymphocyte antigen and histocompatibility complex class II (DRB3) is downregulated during HS, while HSP90 beta I and HSP70 1A are upregulated. HS increases the expression of the cytosolic arginine sensor for mTORC1 subunits 1 and 2, phosphorylation of mammalian target of rapamycin and decreases the phosphorylation of Janus kinase-2 (a signal transducer and activator of transcription factor-5). These changes in physiology, metabolism, and microbiomes in heat-stressed dairy cows require urgent alleviation strategies. Establishing control measures to combat HS can be facilitated by elucidating mechanisms, including proper HS assessment, access to cooling facilities, special feeding and care, efficient water systems, and supplementation with vitamins, minerals, plant extracts, and probiotics. Understanding the relationship between HS and the rumen microbiome could contribute to the development of manipulation strategies to alleviate the influence of HS. This review comprehensively elaborates on the impact of HS in dairy cows and introduces different alleviation strategies to minimize HS.
Collapse
Affiliation(s)
- Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Raniel A. Valencia
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Philippines
| | - Yong Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
249
|
Hiippala K, Khan I, Ronkainen A, Boulund F, Vähä-Mäkilä H, Suutarinen M, Seifert M, Engstrand L, Satokari R. Novel strain of Pseudoruminococcus massiliensis possesses traits important in gut adaptation and host-microbe interactions. Gut Microbes 2022; 14:2013761. [PMID: 34965174 PMCID: PMC8726730 DOI: 10.1080/19490976.2021.2013761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is an efficient treatment for recurrent Clostridioides difficile infection and currently investigated as a treatment for other intestinal and systemic diseases. Better understanding of the species potentially transferred in FMT is needed. We isolated from a healthy fecal donor a novel strain E10-96H of Pseudoruminococcus massiliensis, a recently described strictly anaerobic species currently represented only by the type strain. The whole genome sequence of E10-96H had over 98% similarity with the type strain. E10-96H carries 20 glycoside hydrolase encoding genes, degrades starch in vitro and thus may contribute to fiber degradation, cross-feeding of other species and butyrate production in the intestinal ecosystem. The strain carries pilus-like structures, harbors pilin genes in its genome and adheres to enterocytes in vitro but does not provoke a proinflammatory response. P. massiliensis seems to have commensal behavior with the host epithelium, and its role in intestinal ecology should be studied further.
Collapse
Affiliation(s)
- Kaisa Hiippala
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Imran Khan
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aki Ronkainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fredrik Boulund
- Centre for Translational Microbiome Research, Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Vähä-Mäkilä
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maiju Suutarinen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maike Seifert
- Centre for Translational Microbiome Research, Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,CONTACT Reetta Satokari Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
250
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|