201
|
Shin C, Baik I. Bacterial Extracellular Vesicle Composition in Human Urine and the 10-Year Risk of Abdominal Obesity. Metab Syndr Relat Disord 2023. [PMID: 37134220 DOI: 10.1089/met.2022.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Objective: We aimed to evaluate a causal relationship between commensal bacteria and abdominal obesity. Methods: A prospective study, including 2222 adults who provided urine samples at baseline, was performed. These samples were used for assays of genomic DNA from bacterial extracellular vesicles (EVs). During the 10-year period, the incidence rates of obesity (measured as body mass index) and abdominal obesity (measured as waist circumference) were ascertained as outcomes. To evaluate associations of bacterial composition at the phylum and genus levels with the outcomes, the hazard ratio (HR) and its confidence interval (95% CI) were estimated. Results: No significant association was observed for the risk of obesity, whereas the risk of abdominal obesity was inversely associated with the composition of Proteobacteria and positively associated with that of Firmicutes (adjusted P value <0.05). In joint analysis for the combination groups of Proteobacteria and Firmicutes composition tertiles, the group with top tertiles of both Proteobacteria and Firmicutes showed a significant HR of 2.59 (95% CI: 1.33 - 5.01) compared with the reference with lower tertiles (adjusted P value <0.05). Some genera of these phyla were associated with the risk of abdominal obesity. Conclusions: These findings suggest that bacterial composition in urinary EV samples can predict the 10-year risk of abdominal obesity.
Collapse
Affiliation(s)
- Chol Shin
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Inkyung Baik
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
202
|
Houston KV, Patel A, Saadeh M, Vargas A, Vilela Sangay AR, D’Souza SM, Yoo BS, Johnson DA. Gastrointestinal microbiome and coronavirus disease: evidence of a bidirectional association. EXPLORATION OF MEDICINE 2023:157-165. [DOI: 10.37349/emed.2023.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/02/2023] [Indexed: 01/16/2025] Open
Abstract
The gastrointestinal (GI) microbiome remains an emerging topic of study and the characterization and impact on human health and disease continue to be an area of great interest. Similarly, the coronavirus disease 2019 (COVID-19) pandemic has significantly impacted the healthcare system with active disease, lasting effects, and complications with the full impact yet to be determined. The most current evidence of the interaction between COVID-19 and the GI microbiome is reviewed, with a focus on key mediators and the microbiome changes associated with acute disease and post-acute COVID-19 syndrome (PACS).
Collapse
Affiliation(s)
- Kevin V. Houston
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ankit Patel
- Department of Internal Medicine, George Washington University, Washington, D.C. 20052, USA
| | - Michael Saadeh
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Alejandra Vargas
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ana Rosa Vilela Sangay
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Steve M. D’Souza
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Byung Soo Yoo
- Department of Gastroenterology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - David A. Johnson
- Department of Gastroenterology, Eastern VA Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
203
|
Minkoff NZ, Aslam S, Medina M, Tanner-Smith EE, Zackular JP, Acra S, Nicholson MR, Imdad A. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst Rev 2023; 4:CD013871. [PMID: 37096495 PMCID: PMC10125800 DOI: 10.1002/14651858.cd013871.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND Clostridioides difficile (formerly known as Clostridium difficile) is a bacterium that can cause potentially life-threatening diarrheal illness in individuals with an unhealthy mixture of gut bacteria, known as dysbiosis, and can cause recurrent infections in nearly a third of infected individuals. The traditional treatment of recurrent C difficile infection (rCDI) includes antibiotics, which may further exacerbate dysbiosis. There is growing interest in correcting the underlying dysbiosis in rCDI using of fecal microbiota transplantation (FMT); and there is a need to establish the benefits and harms of FMT for the treatment of rCDI based on data from randomized controlled trials. OBJECTIVES To evaluate the benefits and harms of donor-based fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile infection in immunocompetent people. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 31 March 2022. SELECTION CRITERIA We considered randomized trials of adults or children with rCDI for inclusion. Eligible interventions must have met the definition of FMT, which is the administration of fecal material containing distal gut microbiota from a healthy donor to the gastrointestinal tract of a person with rCDI. The comparison group included participants who did not receive FMT and were given placebo, autologous FMT, no intervention, or antibiotics with activity against C difficile. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. proportion of participants with resolution of rCDI and 2. serious adverse events. Our secondary outcomes were 3. treatment failure, 4. all-cause mortality, 5. withdrawal from study, 6. rate of new CDI infection after a successful FMT, 7. any adverse event, 8. quality of life, and 9. colectomy. We used the GRADE criteria to assess certainty of evidence for each outcome. MAIN RESULTS We included six studies with 320 participants. Two studies were conducted in Denmark, and one each in the Netherlands, Canada, Italy, and the US. Four were single-center and two were multicenter studies. All studies included only adults. Five studies excluded people who were severely immunocompromised, with only one study including 10 participants who were receiving immunosuppressive therapy out of the 64 enrolled; these were similarly distributed between the FMT arm (4/24 or 17%) and comparison arms (6/40 or 15%). The route of administration was the upper gastrointestinal tract via a nasoduodenal tube in one study, two studies used enema only, two used colonoscopic only delivery, and one used either nasojejunal or colonoscopic delivery, depending on a clinical determination of whether the recipient could tolerate a colonoscopy. Five studies had at least one comparison group that received vancomycin. The risk of bias (RoB 2) assessments did not find an overall high risk of bias for any outcome. All six studies assessed the efficacy and safety of FMT for the treatment of rCDI. Pooled results from six studies showed that the use of FMT in immunocompetent participants with rCDI likely leads to a large increase in resolution of rCDI in the FMT group compared to control (risk ratio (RR) 1.92, 95% confidence interval (CI) 1.36 to 2.71; P = 0.02, I2 = 63%; 6 studies, 320 participants; number needed to treat for an additional beneficial outcome (NNTB) 3; moderate-certainty evidence). Fecal microbiota transplantation probably results in a slight reduction in serious adverse events; however, the CIs around the summary estimate were wide (RR 0.73, 95% CI 0.38 to 1.41; P = 0.24, I² = 26%; 6 studies, 320 participants; NNTB 12; moderate-certainty evidence). Fecal microbiota transplantation may result in a reduction in all-cause mortality; however, the number of events was small, and the CIs of the summary estimate were wide (RR 0.57, 95% CI 0.22 to 1.45; P = 0.48, I2 = 0%; 6 studies, 320 participants; NNTB 20; low-certainty evidence). None of the included studies reported colectomy rates. AUTHORS' CONCLUSIONS In immunocompetent adults with rCDI, FMT likely leads to a large increase in the resolution of recurrent Clostridioides difficile infection compared to alternative treatments such as antibiotics. There was no conclusive evidence regarding the safety of FMT for the treatment of rCDI as the number of events was small for serious adverse events and all-cause mortality. Additional data from large national registry databases might be required to assess any short-term or long-term risks with using FMT for the treatment of rCDI. Elimination of the single study that included some immunocompromised people did not alter these conclusions. Due to the low number of immunocompromised participants enrolled, conclusions cannot be drawn about the risks or benefits of FMT for rCDI in the immunocompromised population.
Collapse
Affiliation(s)
- Nathan Zev Minkoff
- Pediatric Gastroenterology, Hepatology and Nutrition, Valley Children's Hospital, Madera, California, USA
| | - Scheherzade Aslam
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melissa Medina
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Joseph P Zackular
- Department of Pathology and Laboratory Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sari Acra
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maribeth R Nicholson
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
204
|
Imdad A, Pandit NG, Zaman M, Minkoff NZ, Tanner-Smith EE, Gomez-Duarte OG, Acra S, Nicholson MR. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev 2023; 4:CD012774. [PMID: 37094824 PMCID: PMC10133790 DOI: 10.1002/14651858.cd012774.pub3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing disease of the gastrointestinal (GI) tract that is thought to be associated with a complex interplay between the immune system, the GI tract lining, the environment, and the gut microbiome, leading to an abnormal inflammatory response in genetically susceptible individuals. An altered composition of the gut's native microbiota, known as dysbiosis, may have a major role in the pathogenesis of ulcerative colitis (UC) and Crohn disease (CD), two subtypes of IBD. There is growing interest in the correction of this underlying dysbiosis using fecal microbiota transplantation (FMT). OBJECTIVES To evaluate the benefits and safety profile of FMT for treatment of IBD in adults and children versus autologous FMT, placebo, standard medication, or no intervention. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, two clinical trial registries, and the reference sections of published trials through 22 December 2022. SELECTION CRITERIA We included randomized controlled trials that studied adults and children with UC or CD. Eligible intervention arms used FMT, defined as the delivery of healthy donor stool containing gut microbiota to a recipient's GI tract, to treat UC or CD. DATA COLLECTION AND ANALYSIS Two review authors independently screened studies for inclusion. Our primary outcomes were: 1. induction of clinical remission, 2. maintenance of clinical remission, and 3. serious adverse events. Our secondary outcomes were: 4. any adverse events, 5. endoscopic remission, 6. quality of life, 7. clinical response, 8. endoscopic response, 9. withdrawals, 10. inflammatory markers, and 11. microbiome outcomes. We used the GRADE approach to assess the certainty of evidence. MAIN RESULTS We included 12 studies with 550 participants. Three studies were conducted in Australia; two in Canada; and one in each of the following: China, the Czech Republic, France, India, the Netherlands, and the USA. One study was conducted in both Israel and Italy. FMT was administered in the form of capsules or suspensions and delivered by mouth, nasoduodenal tube, enema, or colonoscopy. One study delivered FMT by both oral capsules and colonoscopy. Six studies were at overall low risk of bias, while the others had either unclear or high risk of bias. Ten studies with 468 participants, of which nine studies focused on adults and one focused on children, reported induction of clinical remission in people with UC at longest follow-up (range 6 to 12 weeks) and showed that FMT may increase rates of induction of clinical remission in UC compared to control (risk ratio (RR) 1.79, 95% confidence interval (CI) 1.13 to 2.84; low-certainty evidence). Five studies showed that FMT may increase rates of induction of endoscopic remission in UC at longest follow-up (range 8 to 12 weeks); however, the CIs around the summary estimate were wide and included a possible null effect (RR 1.45, 95% CI 0.64 to 3.29; low-certainty evidence). Nine studies with 417 participants showed that FMT may result in little to no difference in rates of any adverse events (RR 0.99, 95% CI 0.85 to 1.16; low-certainty evidence). The evidence was very uncertain about the risk of serious adverse events (RR 1.77, 95% CI 0.88 to 3.55; very low-certainty evidence) and improvement in quality of life (mean difference (MD) 15.34, 95% CI -3.84 to 34.52; very low-certainty evidence) when FMT was used to induce remission in UC. Two studies, of which one also contributed data for induction of remission in active UC, assessed maintenance of remission in people with controlled UC at longest follow-up (range 48 to 56 weeks). The evidence was very uncertain about the use of FMT for maintenance of clinical remission (RR 2.97, 95% CI 0.26 to 34.42; very low-certainty evidence) and endoscopic remission (RR 3.28, 95% CI 0.73 to 14.74; very low-certainty evidence). The evidence was also very uncertain about the risk of serious adverse events, risk of any adverse events, and improvement in quality of life when FMT was used to maintain remission in UC. None of the included studies assessed use of FMT for induction of remission in people with CD. One study with 21 participants reported data on FMT for maintenance of remission in people with CD. The evidence was very uncertain about the use of FMT for maintenance of clinical remission in CD at 24 weeks (RR 1.21, 95% CI 0.36 to 4.14; very low-certainty evidence). The evidence was also very uncertain about the risk of serious or any adverse events when FMT was used to maintain remission in CD. None of the studies reported data on use of FMT for maintenance of endoscopic remission or improvement in quality of life in people with CD. AUTHORS' CONCLUSIONS FMT may increase the proportion of people with active UC who achieve clinical and endoscopic remission. The evidence was very uncertain about whether use of FMT in people with active UC impacted the risk of serious adverse events or improvement in quality of life. The evidence was also very uncertain about the use of FMT for maintenance of remission in people with UC, as well as induction and maintenance of remission in people with CD, and no conclusive statements could be made in this regard. Further studies are needed to address the beneficial effects and safety profile of FMT in adults and children with active UC and CD, as well as its potential to promote longer-term maintenance of remission in UC and CD.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Natasha G Pandit
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Muizz Zaman
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nathan Zev Minkoff
- Pediatric Gastroenterology, Hepatology and Nutrition, Valley Children's Hospital, Madera, CA, USA
| | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Sari Acra
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maribeth R Nicholson
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
205
|
Maidment TI, Bryan ER, Pyne M, Barnes M, Eccleston S, Cunningham S, Whitlock E, Redman K, Nicolson V, Beagley KW, Pelzer E. Characterisation of the koala (Phascolarctos cinereus) pouch microbiota in a captive population reveals a dysbiotic compositional profile associated with neonatal mortality. MICROBIOME 2023; 11:75. [PMID: 37060097 PMCID: PMC10105441 DOI: 10.1186/s40168-023-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Captive koala breeding programmes are essential for long-term species management. However, breeding efficacy is frequently impacted by high neonatal mortality rates in otherwise healthy females. Loss of pouch young typically occurs during early lactation without prior complications during parturition and is often attributed to bacterial infection. While these infections are thought to originate from the maternal pouch, little is known about the microbial composition of koala pouches. As such, we characterised the koala pouch microbiome across the reproductive cycle and identified bacteria associated with mortality in a cohort of 39 captive animals housed at two facilities. RESULTS Using 16S rRNA gene amplicon sequencing, we observed significant changes in pouch bacterial composition and diversity between reproductive time points, with the lowest diversity observed following parturition (Shannon entropy - 2.46). Of the 39 koalas initially sampled, 17 were successfully bred, after which seven animals lost pouch young (overall mortality rate - 41.18%). Compared to successful breeder pouches, which were largely dominated by Muribaculaceae (phylum - Bacteroidetes), unsuccessful breeder pouches exhibited persistent Enterobacteriaceae (phylum - Proteobacteria) dominance from early lactation until mortality occurred. We identified two species, Pluralibacter gergoviae and Klebsiella pneumoniae, which were associated with poor reproductive outcomes. In vitro antibiotic susceptibility testing identified resistance in both isolates to several antibiotics commonly used in koalas, with the former being multidrug resistant. CONCLUSIONS This study represents the first cultivation-independent characterisation of the koala pouch microbiota, and the first such investigation in marsupials associated with reproductive outcomes. Overall, our findings provide evidence that overgrowth of pathogenic organisms in the pouch during early development is associated with neonatal mortality in captive koalas. Our identification of previously unreported, multidrug resistant P. gergoviae strains linked to mortality also underscores the need for improved screening and monitoring procedures aimed at minimising neonatal mortality in future. Video Abstract.
Collapse
Affiliation(s)
- Toby I Maidment
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia.
| | - Emily R Bryan
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Michele Barnes
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Sarah Eccleston
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Samantha Cunningham
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Emma Whitlock
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Kelsie Redman
- Billabong Zoo Koala and Wildlife Park, 61 Billabong Drive, Port Macquarie, NSW, 2444, Australia
| | - Vere Nicolson
- Paradise Country, Production Drive, Oxenford, QLD, 4210, Australia
| | - Kenneth W Beagley
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Elise Pelzer
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| |
Collapse
|
206
|
Oliveira RA, Pamer EG. Assembling symbiotic bacterial species into live therapeutic consortia that reconstitute microbiome functions. Cell Host Microbe 2023; 31:472-484. [PMID: 37054670 DOI: 10.1016/j.chom.2023.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Increasing experimental evidence suggests that administering live commensal bacterial species can optimize microbiome composition and lead to reduced disease severity and enhanced health. Our understanding of the intestinal microbiome and its functions has increased over the past two decades largely due to deep sequence analyses of fecal nucleic acids, metabolomic and proteomic assays to measure nutrient use and metabolite production, and extensive studies on the metabolism and ecological interactions of a wide range of commensal bacterial species inhabiting the intestine. Herein, we review new and important findings that have emerged from this work and provide thoughts and considerations on approaches to re-establish and optimize microbiome functions by assembling and administering commensal bacterial consortia.
Collapse
Affiliation(s)
- Rita A Oliveira
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, Chicago, IL, USA.
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, Chicago, IL, USA; Department of Microbiology, University of Chicago Medicine, Chicago, IL, USA; Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
207
|
Szydlowska M, Lasky G, Oldham S, Rivera C, Ford M, Sellman BR, Rhodes CJ, Cohen TS. Restoring polyamine levels by supplementation of spermidine modulates hepatic immune landscape in murine model of NASH. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166697. [PMID: 37054999 DOI: 10.1016/j.bbadis.2023.166697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
AIMS To determine if changes in polyamines metabolism occur during non-alcoholic steatohepatitis (NASH) in human patients and mice, as well as to assess systemic and liver-specific effects of spermidine administration into mice suffering from advanced NASH. MATERIALS AND METHODS Human fecal samples were collected from 50 healthy and 50 NASH patients. For the preclinical studies C57Bl6/N male mice fed GAN or NIH-31 diet for 6 months were ordered from Taconic and liver biopsy was performed. Based on severity of liver fibrosis, body composition and body weight, the mice from both dietary groups were randomized into another two groups: half receiving 3 mM spermidine in drinking water, half normal water for subsequent 12 weeks. Body weight was measured weekly and glucose tolerance and body composition were assessed at the end. Blood and organs were collected during necropsy, and intrahepatic immune cells were isolated for flow cytometry analysis. RESULTS Metabolomic analysis of human and murine feces confirmed that levels of polyamines decreased along NASH progression. Administration of exogenous spermidine to the mice from both dietary groups did not affect body weight, body composition or adiposity. Moreover, incidence of macroscopic hepatic lesions was higher in NASH mice receiving spermidine. On the other hand, spermidine normalized numbers of Kupffer cells in the livers of mice suffering from NASH, although these beneficial effects did not translate into improved liver steatosis or fibrosis severity. CONCLUSION Levels of polyamines decrease during NASH in mice and human patients but spermidine administration does not improve advanced NASH.
Collapse
Affiliation(s)
- Marta Szydlowska
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Ginger Lasky
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Stephanie Oldham
- Research and Early Development, Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Cristian Rivera
- Research and Early Development, Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Ford
- Animal Sciences & Technologies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Taylor S Cohen
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| |
Collapse
|
208
|
Scarsella E, Meineri G, Sandri M, Ganz HH, Stefanon B. Characterization of the Blood Microbiome and Comparison with the Fecal Microbiome in Healthy Dogs and Dogs with Gastrointestinal Disease. Vet Sci 2023; 10:vetsci10040277. [PMID: 37104432 PMCID: PMC10144428 DOI: 10.3390/vetsci10040277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Recent studies have found bacterial DNA in the blood of healthy individuals. To date, most studies on the blood microbiome have focused on human health, but this topic is an expanding research area in animal health as well. This study aims to characterize the blood microbiome of both healthy dogs and those with chronic gastro-enteropathies. For this study, blood and fecal samples were collected from 18 healthy and 19 sick subjects, DNA was extracted through commercial kits, and the V3-V4 regions of the 16S rRNA gene were sequenced on the Illumina platform. The sequences were analyzed for taxonomic annotation and statistical analysis. Alpha and beta diversities of fecal microbiome were significantly different between the two groups of dogs. Principal coordinates analysis revealed that healthy and sick subjects were significantly clustered for both blood and fecal microbiome samples. Moreover, bacterial translocation from the gut to the bloodstream has been suggested because of found shared taxa. Further studies are needed to determine the origin of the blood microbiome and the bacteria viability. The characterization of a blood core microbiome in healthy dogs has potential for use as a diagnostic tool to monitor for the development of gastro-intestinal disease.
Collapse
Affiliation(s)
- Elisa Scarsella
- AnimalBiome, 400 29th Street, Suite 101, Oakland, CA 94609, USA
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giorgia Meineri
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Misa Sandri
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Holly H Ganz
- AnimalBiome, 400 29th Street, Suite 101, Oakland, CA 94609, USA
| | - Bruno Stefanon
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
209
|
Chakaroun RM, Olsson LM, Bäckhed F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat Rev Cardiol 2023; 20:217-235. [PMID: 36241728 DOI: 10.1038/s41569-022-00771-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/12/2022]
Abstract
Despite milestones in preventive measures and treatment, cardiovascular disease (CVD) remains associated with a high burden of morbidity and mortality. The protracted nature of the development and progression of CVD motivates the identification of early and complementary targets that might explain and alleviate any residual risk in treated patients. The gut microbiota has emerged as a sentinel between our inner milieu and outer environment and relays a modified risk associated with these factors to the host. Accordingly, numerous mechanistic studies in animal models support a causal role of the gut microbiome in CVD via specific microbial or shared microbiota-host metabolites and have identified converging mammalian targets for these signals. Similarly, large-scale cohort studies have repeatedly reported perturbations of the gut microbial community in CVD, supporting the translational potential of targeting this ecological niche, but the move from bench to bedside has not been smooth. In this Review, we provide an overview of the current evidence on the interconnectedness of the gut microbiome and CVD against the noisy backdrop of highly prevalent confounders in advanced CVD, such as increased metabolic burden and polypharmacy. We further aim to conceptualize the molecular mechanisms at the centre of these associations and identify actionable gut microbiome-based targets, while contextualizing the current knowledge within the clinical scenario and emphasizing the limitations of the field that need to be overcome.
Collapse
Affiliation(s)
- Rima Mohsen Chakaroun
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lisa M Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
210
|
Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut 2023; 72:772-786. [PMID: 36720630 PMCID: PMC10086306 DOI: 10.1136/gutjnl-2022-328970] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
The microbiome has been proven to be associated with many diseases and has been used as a biomarker and target in disease prevention and intervention. Currently, the vital role of the microbiome in pregnant women and newborns is increasingly emphasised. In this review, we discuss the interplay of the microbiome and the corresponding immune mechanism between mothers and their offspring during the perinatal period. We aim to present a comprehensive picture of microbial transmission and potential immune imprinting before and after delivery. In addition, we discuss the possibility of in utero microbial colonisation during pregnancy, which has been highly debated in recent studies, and highlight the importance of the microbiome in infant development during the first 3 years of life. This holistic view of the role of the microbial interplay between mothers and infants will refine our current understanding of pregnancy complications as well as diseases in early life and will greatly facilitate the microbiome-based prenatal diagnosis and treatment of mother-infant-related diseases.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of System Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
211
|
Dahmer M, Jennings A, Parker M, Sanchez-Pinto LN, Thompson A, Traube C, Zimmerman JJ. Pediatric Critical Care in the Twenty-first Century and Beyond. Crit Care Clin 2023; 39:407-425. [PMID: 36898782 DOI: 10.1016/j.ccc.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pediatric critical care addresses prevention, diagnosis, and treatment of organ dysfunction in the setting of increasingly complex patients, therapies, and environments. Soon burgeoning data science will enable all aspects of intensive care: driving facilitated diagnostics, empowering a learning health-care environment, promoting continuous advancement of care, and informing the continuum of critical care outside the intensive care unit preceding and following critical illness/injury. Although novel technology will progressively objectify personalized critical care, humanism, practiced at the bedside, defines the essence of pediatric critical care now and in the future.
Collapse
Affiliation(s)
- Mary Dahmer
- Division of Critical Care, Department of Pediatrics, University of Michigan, 1500 East Medical Center Drive, F6790/5243, Ann Arbor, MI, USA
| | - Aimee Jennings
- Division of Critical Care Medicine, Advanced Practice, FA.2.112, Seattle Children's Hospital, 4800 Sandpoint Way Northeast, Seattle, WA 98105, USA
| | - Margaret Parker
- Department of Pediatrics, Stony Brook University, 7762 Bloomfield Road, Easton, MD 21601, USA
| | - Lazaro N Sanchez-Pinto
- Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 East Chicago Avenue, Box 73, Chicago, IL 60611-2605, USA
| | - Ann Thompson
- Department of Critical Care Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Chani Traube
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY 10065, USA
| | - Jerry J Zimmerman
- Department of Pediatrics, FA.2.300B Seattle Children's Hospital, 4800 Sandpoint Way Northeast, Seattle, WA 98105, USA; Pediatric Critical Care Medicine, Seattle Children's Hospital, Harborview Medical Center, University of Washington, School of Medicine, FA.2.300B, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA.
| |
Collapse
|
212
|
Elghannam MT, Hassanien MH, Ameen YA, Turky EA, Elattar GM, ElRay AA, Eltalkawy MD. Oral microbiota and liver diseases. Clin Nutr ESPEN 2023; 54:68-72. [PMID: 36963900 DOI: 10.1016/j.clnesp.2022.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Gut microbiota plays a crucial role in our health and particularly liver diseases, including NAFLD, cirrhosis, and HCC. Oral microbiome and its role in health and disease represent an active field of research. Several lines of evidence have suggested that oral microbiota dysbiosis represents a major factor contributing to the occurrence and progression of many liver diseases. The human microbiome is valuable to the diagnosis of cancer and provides a novel strategy for targeted therapy of HCC. The most studied liver disease in relation to oral-gut-liver axis dysbiosis includes MAFLD; however, other diseases include Precancerous liver disease as viral liver diseases, liver cirrhosis, AIH and liver carcinoma (HCC). It seems that restoring populations of beneficial organisms and correcting dysbiosis appears to improve outcomes in liver disorders. We discuss the possible role of oral microbiota in these diseases.
Collapse
Affiliation(s)
- Maged Tharwat Elghannam
- TBRI, Warak ALHadar, P.O. Box 30 Imbaba, Cairo, Egypt; Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | | | | | | | | | - Ahmed Aly ElRay
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | | |
Collapse
|
213
|
Boodaghidizaji M, Jungles T, Chen T, Zhang B, Landay A, Keshavarzian A, Hamaker B, Ardekani A. Machine learning based gut microbiota pattern and response to fiber as a diagnostic tool for chronic inflammatory diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534466. [PMID: 37034781 PMCID: PMC10081192 DOI: 10.1101/2023.03.27.534466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gut microbiota has been implicated in the pathogenesis of multiple gastrointestinal (GI) and systemic metabolic and inflammatory disorders where disrupted gut microbiota composition and function (dysbiosis) has been found in multiple studies. Thus, human microbiome data has a potential to be a great source of information for the diagnosis and disease characteristics (phenotypes, disease course, therapeutic response) of diseases with dysbiotic microbiota community. However, multiple attempts to leverage gut microbiota taxonomic data for diagnostic and disease characterization have failed due to significant inter-individual variability of microbiota community and overlap of disrupted microbiota communities among multiple diseases. One potential approach is to look at the microbiota community pattern and response to microbiota modifiers like dietary fiber in different disease states. This approach is now feasible by availability of machine learning that is able to identify hidden patterns in the human microbiome and predict diseases. Accordingly, the aim of our study was to test the hypothesis that application of machine learning algorithms can distinguish stool microbiota pattern and microbiota response to fiber between diseases where overlapping dysbiotic microbiota have been previously reported. Here, we have applied machine learning algorithms to distinguish between Parkinson's disease, Crohn's disease (CD), ulcerative colitis (UC), human immune deficiency virus (HIV), and healthy control (HC) subjects in the presence and absence of fiber treatments. We have shown that machine learning algorithms can classify diseases with accuracy as high as 95%. Furthermore, machine learning methods applied to the microbiome data to predict UC vs CD led to prediction accuracy as high as 90%.
Collapse
|
214
|
Ogrotis I, Koufakis T, Kotsa K. Changes in the Global Epidemiology of Type 1 Diabetes in an Evolving Landscape of Environmental Factors: Causes, Challenges, and Opportunities. Medicina (B Aires) 2023; 59:medicina59040668. [PMID: 37109626 PMCID: PMC10141720 DOI: 10.3390/medicina59040668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The worldwide incidence of type 1 diabetes mellitus (T1DM) has increased in recent decades. The reasons behind this phenomenon are not yet fully understood. Early life infections, prenatal and perinatal factors, and diet composition have been associated with the triggering of autoimmunity and the risk of presentation of T1DM. However, the rapid increase in new cases of the disease raises the hypothesis that lifestyle factors, which have traditionally been associated with type 2 diabetes, such as obesity and unhealthy eating patterns could also play a role in the genesis of autoimmune diabetes. This article aims to highlight the changing epidemiology of T1DM and the importance of properly recognizing the environmental factors behind it, as well as the connections with the pathogenesis of the disorder and the need to prevent or delay T1DM and its long-term complications.
Collapse
Affiliation(s)
- Ioannis Ogrotis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-099-4706
| |
Collapse
|
215
|
Werner M, Weeger J, Hörner-Schmid L, Weber K, Palić J, Shih J, Suchodolski JS, Pilla R, Schulz B. Comparison of the respiratory bacterial microbiome in cats with feline asthma and chronic bronchitis. Front Vet Sci 2023; 10:1148849. [PMID: 37051512 PMCID: PMC10083293 DOI: 10.3389/fvets.2023.1148849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
Objectives While feline chronic bronchitis (CB) is known as neutrophilic bronchial inflammation (NI), feline asthma (FA) is defined as an eosinophilic airway inflammation (EI). Feline chronic bronchial disease refers to both syndromes, with similar clinical presentations and applied treatment strategies. Recent studies described alterations of the microbiota composition in cats with FA, but little is known about the comparison of the lung microbiota between different types of feline bronchial disease. The study aimed to describe the bacterial microbiota of the lower respiratory tracts of cats with FA and CB and to identify potential differences. Methods Twenty-two client-owned cats with FA (n = 15) or CB (n = 7) confirmed via bronchoalveolar-lavage (BALF)-cytology were included. Next-generation sequencing analysis of 16S rRNA genes was performed on bacterial DNA derived from BALF samples. QIIME was used to compare microbial composition and diversity between groups. Results Evenness and alpha-diversity-indices did not significantly differ between cats with FA and CB (Shannon p = 0.084, Chao 1 p = 0.698, observed ASVs p = 0.944). Based on a PERMANOVA analysis, no significant differences were observed in microbial composition between animals of both groups (Bray-Curtis metric, R-value 0.086, p = 0.785; unweighted UniFrac metric, R-value -0.089, p = 0.799; weighted Unifrac metric, R-value -0.072, p = 0.823). Regarding taxonomic composition, significant differences were detected for Actinobacteria on the phylum level (p = 0.026), Mycoplasma spp. (p = 0.048), and Acinetobacteria (p = 0.049) on the genus level between cats with FA and CB, with generally strong interindividual differences seen. There was a significant difference in the duration of clinical signs before diagnosis in animals dominated by Bacteriodetes (median 12 months, range 2-58 months) compared to animals dominated by Proteobacteria (median 1 month, range 1 day to 18 months; p = 0.003). Conclusions and relevance Lung microbiota composition is very similar in cat populations with spontaneous FA and CB besides small differences in some bacterial groups. However, with disease progression, the lung microbiome of cats with both diseases appears to shift away from dominantly Proteobacteria to a pattern more dominated by Bacteriodetes. A substantial proportion of cats tested positive for Mycoplasma spp. via sequencing, while none of them tested positive using classical PCR.
Collapse
Affiliation(s)
- Melanie Werner
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, Zurich, Switzerland
| | - Jasmin Weeger
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Lina Hörner-Schmid
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Karin Weber
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Jelena Palić
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Kornwestheim, Germany
| | - Jonathan Shih
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Bianka Schulz
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
216
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
217
|
Tristan Asensi M, Napoletano A, Sofi F, Dinu M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023; 15:1546. [PMID: 36986276 PMCID: PMC10058108 DOI: 10.3390/nu15061546] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Low-grade inflammation alters the homeostasis of the organism and favors the onset of many chronic diseases. The global growth in the prevalence of noncommunicable diseases in recent years has been accompanied by an increase in the consumption of ultra-processed foods (UPF). Known to be hyperpalatable, economic and ready-to-eat, increased consumption of UPF has already been recognized as a risk factor for several chronic diseases. Different research groups have tried to investigate whether UPF consumption could promote low-grade inflammation and thus favor the development of noncommunicable diseases. Current evidence highlights the adverse health effects of UPF characteristics, not only due to the nutrients provided by a diet rich in UPF, but also due to the non-nutritive components present in UPF and the effect they may have on gut health. This review aims to summarize the available evidence on the possible relationship between excessive UPF consumption and modulation of low-grade inflammation, as potential promoters of chronic disease.
Collapse
Affiliation(s)
- Marta Tristan Asensi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Antonia Napoletano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
218
|
Ait-Zenati F, Djoudi F, Mehelleb D, Madaoui M. Involvement of the human microbiome in frequent cancers, current knowledge and carcinogenesis mechanisms. Bull Cancer 2023:S0007-4551(23)00092-9. [PMID: 36959041 DOI: 10.1016/j.bulcan.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
The human body is home to a complex microbial community, living in symbiosis. However, when an imbalance occurs, known as dysbiosis, it can lead to organic diseases such as cancers. Helicobacter pylori is commonly recognized as the causative agent of gastric cancer. Numerous studies have explored the potential role of other microorganisms in cancers. For example, the role of intestinal microbiota in the hepatocellular carcinoma formation and progression, the microbiota in breast cancer and the interaction between the microbiome and TP53 in human lung carcinogenesis. In this review, we highlight the latest findings on the microbiome involved in the most common cancers and the suggested mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Fazia Ait-Zenati
- Laboratoire d'écologie microbienne, département de microbiologie, université de Bejaia, route de Targa-Ouzemour, Bejaia, Algeria
| | - Ferhat Djoudi
- Laboratoire d'écologie microbienne, département de microbiologie, université de Bejaia, route de Targa-Ouzemour, Bejaia, Algeria.
| | - Dalila Mehelleb
- Laboratoire d'écologie microbienne, département de microbiologie, université de Bejaia, route de Targa-Ouzemour, Bejaia, Algeria
| | - Menad Madaoui
- Laboratoire d'écologie microbienne, département de microbiologie, université de Bejaia, route de Targa-Ouzemour, Bejaia, Algeria
| |
Collapse
|
219
|
DiPalma MP, Blattman JN. The impact of microbiome dysbiosis on T cell function within the tumor microenvironment (TME). Front Cell Dev Biol 2023; 11:1141215. [PMID: 37009485 PMCID: PMC10063789 DOI: 10.3389/fcell.2023.1141215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Insights into the effect of the microbiome’s composition on immune cell function have recently been discerned and further characterized. Microbiome dysbiosis can result in functional alterations across immune cells, including those required for innate and adaptive immune responses to malignancies and immunotherapy treatment. Dysbiosis can yield changes in or elimination of metabolite secretions, such as short-chain fatty acids (SCFAs), from certain bacterial species that are believed to impact proper immune cell function. Such alterations within the tumor microenvironment (TME) can significantly affect T cell function and survival necessary for eliminating cancerous cells. Understanding these effects is essential to improve the immune system’s ability to fight malignancies and the subsequent efficacy of immunotherapies that rely on T cells. In this review, we assess typical T cell response to malignancies, classify the known impact of the microbiome and particular metabolites on T cells, discuss how dysbiosis can affect their function in the TME then further describe the impact of the microbiome on T cell-based immunotherapy treatment, with an emphasis on recent developments in the field. Understanding the impact of dysbiosis on T cell function within the TME can carry substantial implications for the design of immunotherapy treatments and further our understanding of factors that could impact how the immune system combats malignancies.
Collapse
Affiliation(s)
- Michelle P. DiPalma
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
| | - Joseph N. Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
- *Correspondence: Joseph N. Blattman,
| |
Collapse
|
220
|
Deng Q, Wang Z, Wu P, Liang H, Wu H, Zhang L, Ying J. 16S rRNA gene sequencing reveals an altered composition of gut microbiota in children with Mycoplasma pneumoniae pneumonia treated with azithromycin. J GEN APPL MICROBIOL 2023; 68:253-261. [PMID: 35811116 DOI: 10.2323/jgam.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.
Collapse
Affiliation(s)
- Qiong Deng
- Department of Urology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Zhu Wang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Pengmei Wu
- Department of Paediatrics, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Hui Liang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Haixia Wu
- Department of Paediatrics, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Lirong Zhang
- Department of Gynaecology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Jing Ying
- Department of Paediatrics, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| |
Collapse
|
221
|
Vallino L, Garavaglia B, Visciglia A, Amoruso A, Pane M, Ferraresi A, Isidoro C. Cell-free Lactiplantibacillus plantarum OC01 supernatant suppresses IL-6-induced proliferation and invasion of human colorectal cancer cells: Effect on β-Catenin degradation and induction of autophagy. J Tradit Complement Med 2023; 13:193-206. [PMID: 36970462 PMCID: PMC10037073 DOI: 10.1016/j.jtcme.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Background and aim Gut microbiota is considered as a complex organ of human body. The interaction between the host and microbiota is dynamic and controlled by a huge number of factors, such as lifestyle, geography, pharmaceuticals, diet, and stress. The breakdown of this relationship could change microbiota composition favoring the onset of several diseases, including cancer. Metabolites released by microbiota bacterial strains have been reported to elicit protective effects on the mucosa that could contrast cancer development and progression. Here, we tested the ability of specific probiotic strain Lactiplantibacillus plantarum OC01-derived metabolites (NCIMB 30624) to contrast the malignant features of colorectal cancer (CRC) cells. Experimental procedure The study was performed on two cell lines, HCT116 and HT29, cultured in 2D and 3D, and focused on the hallmarks of cell proliferation and migration. Results and conclusion Probiotic metabolites reduced cell proliferation both in 2D and 3D-spheroid cultures, the latter model mimicking the growth in vivo. The bacterial metabolites also contrasted the pro-growth and pro-migratory activity of inteurleukin-6 (IL-6), an inflammatory cytokine abundantly found in the tumor microenvironment of CRC. These effects were associated with inhibition of the ERK and of the mTOR/p70S6k pathways and with the inhibition of the E-to N-Cadherin switch. In a parallel study, we found that sodium butyrate (a representative of the main probiotic metabolites) induced autophagy and β-Catenin degradation, which is consistent with the growth inhibitory activity. The present data indicate that the metabolites of Lactiplantibacillus plantarum OC01 (NCIMB 30624) elicits anti-tumor effect and support its possible inclusion as adjuvant therapy of CRC for limiting cancer growth and progression.
Collapse
Affiliation(s)
- Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | | | - Angela Amoruso
- Probiotical Research Srl, via E. Mattei, 3, 28100, Novara, Italy
| | - Marco Pane
- Probiotical Research Srl, via E. Mattei, 3, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
222
|
Gastrointestinal and Hepatobiliary Symptoms and Disorders with Long (Chronic) COVID Infection. Gastroenterol Clin North Am 2023; 52:139-156. [PMID: 36813422 PMCID: PMC9940919 DOI: 10.1016/j.gtc.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Long COVID is a novel syndrome characterizing new or persistent symptoms weeks after COVID-19 infection and involving multiple organ systems. This review summarizes the gastrointestinal and hepatobiliary sequelae of long COVID syndrome. It describes potential biomolecular mechanisms, prevalence, preventative measures, potential therapies, and health care and economic impact of long COVID syndrome, particularly of its gastrointestinal (GI) and hepatobiliary manifestations.
Collapse
|
223
|
Exploring the Potential Molecular Mechanisms of Interactions between a Probiotic Consortium and Its Coral Host. mSystems 2023; 8:e0092122. [PMID: 36688656 PMCID: PMC9948713 DOI: 10.1128/msystems.00921-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Beneficial microorganisms for corals (BMCs) have been demonstrated to be effective probiotics to alleviate bleaching and mitigate coral mortality in vivo. The selection of putative BMCs is traditionally performed manually, using an array of biochemical and molecular tests for putative BMC traits. We present a comprehensive genetic survey of BMC traits using a genome-based framework for the identification of alternative mechanisms that can be used for future in silico selection of BMC strains. We identify exclusive BMC traits associated with specific strains and propose new BMC mechanisms, such as the synthesis of glycine betaine and ectoines. Our roadmap facilitates the selection of BMC strains while increasing the array of genetic targets that can be included in the selection of putative BMC strains to be tested as coral probiotics. IMPORTANCE Probiotics are currently the main hope as a potential medicine for corals, organisms that are considered the marine "canaries of the coal mine" and that are threatened with extinction. Our experiments have proved the concept that probiotics mitigate coral bleaching and can also prevent coral mortality. Here, we present a comprehensive genetic survey of probiotic traits using a genome-based framework. The main outcomes are a roadmap that facilitates the selection of coral probiotic strains while increasing the array of mechanisms that can be included in the selection of coral probiotics.
Collapse
|
224
|
Association Studies on Gut and Lung Microbiomes in Patients with Lung Adenocarcinoma. Microorganisms 2023; 11:microorganisms11030546. [PMID: 36985120 PMCID: PMC10059697 DOI: 10.3390/microorganisms11030546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Lung adenocarcinoma (LADC) is a prevalent type of lung cancer that is associated with lung and gut microbiota. However, the interactions between these microbiota and cancer development remain unclear. In this study, a microbiome study was performed on paired fecal and bronchoalveolar lavage fluid (BALF) samples from 42 patients with LADC and 64 healthy controls using 16S rRNA gene amplicon and shotgun metagenome sequencing, aiming to correlate the lung and gut microbiota with LADC. Patients with LADC had reduced α-diversity in the gut microbiome and altered β-diversity compared with healthy controls, and the abundances of Flavonifractor, Eggerthella, and Clostridium were higher in the gut microbiome of LADC patients. The increased abundance of microbial species, such as Flavonifractor plautii, was associated with advanced-stage LADC and a higher metastasis rate. Phylogenetically, Haemophilus parainfluenzae was the most frequently shared taxon in the lung and gut microbiota of LADC patients. Gut microbiome functional pathways involving leucine, propanoate, and fatty acids were associated with LADC progression. In conclusion, the low diversity of the gut microbiota and the presence of H. parainfluenzae in gut and lung microbiota were linked to LADC development, while an increased abundance of F. plautii and the enriched metabolic pathways could be associated with the progression of LADC.
Collapse
|
225
|
Zhao R, Symonds JE, Walker SP, Steiner K, Carter CG, Bowman JP, Nowak BF. Relationship between gut microbiota and Chinook salmon ( Oncorhynchus tshawytscha) health and growth performance in freshwater recirculating aquaculture systems. Front Microbiol 2023; 14:1065823. [PMID: 36825086 PMCID: PMC9941681 DOI: 10.3389/fmicb.2023.1065823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Gut microbiota play important roles in fish health and growth performance and the microbiome in fish has been shown to be a biomarker for stress. In this study, we surveyed the change of Chinook salmon (Oncorhynchus tshawytscha) gut and water microbiota in freshwater recirculating aquaculture systems (RAS) for 7 months and evaluated how gut microbial communities were influenced by fish health and growth performance. The gut microbial diversity significantly increased in parallel with the growth of the fish. The dominant gut microbiota shifted from a predominance of Firmicutes to Proteobacteria, while Proteobacteria constantly dominated the water microbiota. Photobacterium sp. was persistently the major gut microbial community member during the whole experiment and was identified as the core gut microbiota for freshwater farmed Chinook salmon. No significant variation in gut microbial diversity and composition was observed among fish with different growth performance. At the end of the trial, 36 out of 78 fish had fluid in their swim bladders. These fish had gut microbiomes containing elevated proportions of Enterococcus, Stenotrophomonas, Aeromonas, and Raoultella. Our study supports the growing body of knowledge about the beneficial microbiota associated with modern salmon aquaculture systems and provides additional information on possible links between dysbiosis and gut microbiota for Chinook salmon.
Collapse
Affiliation(s)
- Ruixiang Zhao
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
| | - Jane E. Symonds
- Cawthron Institute, Nelson, New Zealand
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | | | - Chris G. Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - John P. Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, Hobart, TAS, Australia
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
| |
Collapse
|
226
|
Rosas-Salazar C, Kimura KS, Shilts MH, Strickland BA, Freeman MH, Wessinger BC, Gupta V, Brown HM, Boone HH, Rajagopala SV, Turner JH, Das SR. Upper respiratory tract microbiota dynamics following COVID-19 in adults. Microb Genom 2023; 9:mgen000957. [PMID: 36820832 PMCID: PMC9997743 DOI: 10.1099/mgen.0.000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
To date, little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, on the upper respiratory tract (URT) microbiota over time. To fill this knowledge gap, we used 16S ribosomal RNA gene sequencing to characterize the URT microbiota in 48 adults, including (1) 24 participants with mild-to-moderate COVID-19 who had serial mid-turbinate swabs collected up to 21 days after enrolment and (2) 24 asymptomatic, uninfected controls who had mid-turbinate swabs collected at enrolment only. To compare the URT microbiota between groups in a comprehensive manner, different types of statistical analyses that are frequently employed in microbial ecology were used, including ⍺-diversity, β-diversity and differential abundance analyses. Final statistical models included age, sex and the presence of at least one comorbidity as covariates. The median age of all participants was 34.00 (interquartile range=28.75-46.50) years. In comparison to samples from controls, those from participants with COVID-19 had a lower observed species index at day 21 (linear regression coefficient=-13.30; 95 % CI=-21.72 to -4.88; q=0.02). In addition, the Jaccard index was significantly different between samples from participants with COVID-19 and those from controls at all study time points (PERMANOVA q<0.05 for all comparisons). The abundance of three amplicon sequence variants (ASVs) (one Corynebacterium ASV, Frederiksenia canicola, and one Lactobacillus ASV) were decreased in samples from participants with COVID-19 at all seven study time points, whereas the abundance of one ASV (from the family Neisseriaceae) was increased in samples from participants with COVID-19 at five (71.43 %) of the seven study time points. Our results suggest that mild-to-moderate COVID-19 can lead to alterations of the URT microbiota that persist for several weeks after the initial infection.
Collapse
Affiliation(s)
- Christian Rosas-Salazar
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kyle S Kimura
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meghan H Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Britton A Strickland
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael H Freeman
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Veerain Gupta
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hunter M Brown
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Helen H Boone
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seesandra V Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin H Turner
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suman Ranjan Das
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
227
|
Sharma S, Hegde P, Panda S, Orimoloye MO, Aldrich CC. Drugging the microbiome: targeting small microbiome molecules. Curr Opin Microbiol 2023; 71:102234. [PMID: 36399893 DOI: 10.1016/j.mib.2022.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
The human microbiome represents a large and diverse collection of microbes that plays an integral role in human physiology and pathophysiology through interactions with the host and within the microbial community. While early work exploring links between microbiome signatures and diseases states has been associative, emerging evidence demonstrates the metabolic products of the human microbiome have more proximal causal effects on disease phenotypes. The therapeutic implications of this shift are profound as manipulation of the microbiome by the administration of live biotherapeutics, ongoing, can now be pursued alongside research efforts toward describing inhibitors of key microbiome enzymes involved in the biosynthesis of metabolites implicated in various disease states and processing of host-derived metabolites. With growing interest in 'drugging the microbiome', we review few notable microbial metabolites for which traditional drug-development campaigns have yielded compounds with therapeutic promise.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
228
|
Parke EC, Plutynski A. Going big by going small: Trade-offs in microbiome explanations of cancer. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 97:101-110. [PMID: 36645963 DOI: 10.1016/j.shpsa.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Microbial factors have been implicated in cancer risk, disease progression, treatment and prevention. The key word, however, is "implicated." Our aim in this paper is to map out some of the tensions between competing methods, goals, and standards of evidence in cancer research with respect to the causal role of microbial factors. We discuss an array of pragmatic and epistemic trade-offs in this research area: prioritizing coarse-grained versus fine-grained explanations of the roles of microbiota in cancer; explaining general versus specific cancer targets; studying model organisms versus human patients; and understanding and explaining cancer versus developing diagnostic tools and treatments. In light of these trade-offs and the distinctive complexity and heterogeneity on both sides of the microbiome-cancer relationship, we suggest that it would be more productive and intellectually honest to frame much of this work, at least currently, in terms of generating causal hypotheses to investigate further. Claims of established causal connections between the microbiome and cancer are in many cases overstated. We also discuss the value of "black boxing" microbial causal variables in this research context and draw some general cautionary lessons for ongoing discussions of microbiomes and cancer.
Collapse
Affiliation(s)
- Emily C Parke
- Philosophy, School of Humanities, University of Auckland, New Zealand.
| | - Anya Plutynski
- Philosophy, Washington University in St. Louis, United States
| |
Collapse
|
229
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
230
|
Valverde-Molina J, García-Marcos L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023; 15:nu15030486. [PMID: 36771193 PMCID: PMC9921812 DOI: 10.3390/nu15030486] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The importance of the microbiome, and of the gut-lung axis in the origin and persistence of asthma, is an ongoing field of investigation. The process of microbial colonisation in the first three years of life is fundamental for health, with the first hundred days of life being critical. Different factors are associated with early microbial dysbiosis, such as caesarean delivery, artificial lactation and antibiotic therapy, among others. Longitudinal cohort studies on gut and airway microbiome in children have found an association between microbial dysbiosis and asthma at later ages of life. A low α-diversity and relative abundance of certain commensal gut bacterial genera in the first year of life are associated with the development of asthma. Gut microbial dysbiosis, with a lower abundance of Phylum Firmicutes, could be related with increased risk of asthma. Upper airway microbial dysbiosis, especially early colonisation by Moraxella spp., is associated with recurrent viral infections and the development of asthma. Moreover, the bacteria in the respiratory system produce metabolites that may modify the inception of asthma and is progression. The role of the lung microbiome in asthma development has yet to be fully elucidated. Nevertheless, the most consistent finding in studies on lung microbiome is the increased bacterial load and the predominance of proteobacteria, especially Haemophilus spp. and Moraxella catarrhalis. In this review we shall update the knowledge on the association between microbial dysbiosis and the origins of asthma, as well as its persistence, phenotypes, and severity.
Collapse
Affiliation(s)
- José Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
| | - Luis García-Marcos
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia and IMIB Biomedical Research Institute, 20120 Murcia, Spain
- Correspondence:
| |
Collapse
|
231
|
Farsijani S, Cauley JA, Peddada SD, Langsetmo L, Shikany JM, Orwoll ES, Ensrud KE, Cawthon PM, Newman AB. Relation Between Dietary Protein Intake and Gut Microbiome Composition in Community-Dwelling Older Men: Findings from the Osteoporotic Fractures in Men Study (MrOS). J Nutr 2023; 152:2877-2887. [PMID: 36205552 PMCID: PMC9839986 DOI: 10.1093/jn/nxac231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Little is known about the association of specific nutrients, especially proteins, on age-related gut dysbiosis. OBJECTIVES To determine the associations between the quantity and sources (vegetable and animal) of dietary protein intake and gut microbiome composition in community-dwelling older men. METHODS We performed a cross-sectional analysis on 775 older men from the Osteoporotic Fractures in Men Study (MrOS) (age 84.2 ± 4.0 y) with available dietary information and stool samples at visit 4 (2014-2016). Protein intake was estimated from a brief FFQ and adjusted to total energy intake. The gut microbiome composition was determined by 16S (v4) sequencing (processed by DADA2 and SILVA). A total of 11,534 amplicon sequence variants (ASVs) were identified and assigned to 21 phyla with dominance of Firmicutes (45%) and Bacteroidetes (43%). We performed α-diversity, β-diversity, and taxa abundance (by Analysis of Compositions of Microbiomes with Bias Correction [ANCOM-BC]) to determine the associations between protein intake and the gut microbiome. RESULTS Median protein intake was 0.7 g/(kg body weight · d). Participants with higher energy-adjusted protein intakes had higher Shannon and Chao1 α-diversity indices (P < 0.05). For β-diversity analysis, participants with higher protein intakes had a different center in weighted and unweighted UniFrac Principal Co-ordinates Analysis (PCoA) compared with those with lower intake (P < 0.05), adjusted for age, race, education, clinical center, batch number, fiber and energy intake, weight, height, and medications. Similarly, higher protein consumptions from either animal or vegetable sources were associated with higher gut microbiome diversity. Several genus-level ASVs, including Christensenellaceae, Veillonella, Haemophilus, and Klebsiella were more abundant in participants with higher protein intakes, whereas Clostridiales bacterium DTU089 and Desulfovibrio were more abundant in participants with lower protein intake (Bonferroni corrected P < 0.05). CONCLUSIONS We observed significant associations between protein intake and gut microbiome diversity in community-living older men. Further studies are needed to elucidate the mediation role of the gut microbiome on the relation between protein intake and health outcomes in older adults.
Collapse
Affiliation(s)
- Samaneh Farsijani
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Claude D. Pepper Older Americans Independence Center (OAICs), University of Pittsburgh, Pittsburgh, PA, USA
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jane A Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shyamal D Peddada
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lisa Langsetmo
- Center for Care Delivery and Outcomes Research, VA Health Care System, Minneapolis, MN, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric S Orwoll
- Division of Endocrinology, Diabetes and Clinical Nutrition, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kristine E Ensrud
- Center for Care Delivery and Outcomes Research, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine and Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Peggy M Cawthon
- California Pacific Medical Center Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Claude D. Pepper Older Americans Independence Center (OAICs), University of Pittsburgh, Pittsburgh, PA, USA
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
232
|
Kropochev AI, Lashin SA, Matushkin YG, Klimenko AI. Trait-Based Method of Quantitative Assessment of Ecological Functional Groups in the Human Intestinal Microbiome. BIOLOGY 2023; 12:biology12010115. [PMID: 36671807 PMCID: PMC9855786 DOI: 10.3390/biology12010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
We propose the trait-based method for quantifying the activity of functional groups in the human gut microbiome based on metatranscriptomic data. It allows one to assess structural changes in the microbial community comprised of the following functional groups: butyrate-producers, acetogens, sulfate-reducers, and mucin-decomposing bacteria. It is another way to perform a functional analysis of metatranscriptomic data by focusing on the ecological level of the community under study. To develop the method, we used published data obtained in a carefully controlled environment and from a synthetic microbial community, where the problem of ambiguity between functionality and taxonomy is absent. The developed method was validated using RNA-seq data and sequencing data of the 16S rRNA amplicon on a simplified community. Consequently, the successful verification provides prospects for the application of this method for analyzing natural communities of the human intestinal microbiota.
Collapse
Affiliation(s)
- Andrew I. Kropochev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk 630090, Russia
- Correspondence:
| | - Sergey A. Lashin
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yury G. Matushkin
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra I. Klimenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
233
|
Bay V, Gillespie A, Ganda E, Evans NJ, Carter SD, Lenzi L, Lucaci A, Haldenby S, Barden M, Griffiths BE, Sánchez-Molano E, Bicalho R, Banos G, Darby A, Oikonomou G. The bovine foot skin microbiota is associated with host genotype and the development of infectious digital dermatitis lesions. MICROBIOME 2023; 11:4. [PMID: 36624507 PMCID: PMC9830885 DOI: 10.1186/s40168-022-01440-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bovine Digital Dermatitis (BDD) is a prevalent infectious disease, causing painful foot skin lesions and lameness in cattle. We describe herein the bovine foot skin microbiota and its associations with BDD using 16S rRNA gene amplicon and shotgun metagenomic sequencing on samples from 259 dairy cows from three UK dairy farms. RESULTS We show evidence of dysbiosis, and differences in taxonomy and functional profiles in the bovine foot skin microbiome of clinically healthy animals that subsequently develop BDD lesions, compared to those that do not. Our results suggest that taxonomical and functional differences together with alterations in ecological interactions between bacteria in the normal foot skin microbiome may predispose an animal to develop BDD lesions. Using genome-wide association and regional heritability mapping approaches, we provide first evidence for interactions between host genotype and certain members of the foot skin microbiota. We show the existence of significant genetic variation in the relative abundance of Treponema spp. and Peptoclostridium spp. and identify regions in the bovine genome that explain a significant proportion of this variation. CONCLUSIONS Collectively this work shows early changes in taxonomic and functional profiles of the bovine foot-skin microbiota in clinically healthy animals which are associated with subsequent development of BDD and could be relevant to prevention of disease. The description of host genetic control of members of the foot skin microbiota, combined with the association of the latter with BDD development offer new insights into a complex relationship that can be exploited in selective breeding programmes. Video Abstract.
Collapse
Affiliation(s)
- V Bay
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Faculty of Agriculture, Ege University, İzmir, Turkey
| | - A Gillespie
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - E Ganda
- Department of Animal Science, Penn State University, State College, PA, USA
| | - N J Evans
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S D Carter
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - L Lenzi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - A Lucaci
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S Haldenby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - M Barden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - B E Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - R Bicalho
- FERA Diagnostics and Biologicals, College Station, TX, USA
| | - G Banos
- Scotland's Rural College (SRUC), Easter Bush, Midlothian, UK
| | - A Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - G Oikonomou
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
234
|
Chopra T, Hecht G, Tillotson G. Gut microbiota and microbiota-based therapies for Clostridioides difficile infection. Front Med (Lausanne) 2023; 9:1093329. [PMID: 36698844 PMCID: PMC9868170 DOI: 10.3389/fmed.2022.1093329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Clostridioides difficile infection poses significant clinical challenges due to its recurrent nature. Current antibiotic management does not address the underlying issue, that of a disturbed gastrointestinal microbiome, called dysbiosis. This provides a supportive environment for the germination of C. difficile spores which lead to infection and toxin production as well as an array of other health conditions. The use of microbiome restoration therapies such as live biotherapeutics can reverse dysbiosis and lead to good clinical outcomes. Several such therapies are under clinical investigation.
Collapse
Affiliation(s)
- Teena Chopra
- Division of Infectious Diseases, Wayne State University, Detroit, MI, United States,*Correspondence: Teena Chopra,
| | - Gail Hecht
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | | |
Collapse
|
235
|
Yamamoto A, Kambara Y, Fujiwara H. Impact of oral microbiota on pathophysiology of GVHD. Front Immunol 2023; 14:1132983. [PMID: 36969182 PMCID: PMC10033631 DOI: 10.3389/fimmu.2023.1132983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allogeneic transplantation of hematopoietic cells is the only curative therapy for several hematopoietic disease in which patients receive cytotoxic conditioning regimens followed by infusion of hematopoietic stem cells. Although the outcomes have improved over the past decades, graft-versus-host-disease (GVHD), the most common life-threatening complication, remains a major cause of non-relapse morbidity and mortality. Pathophysiology of acute GVHD characterized by host antigen-presenting cells after tissue damage and donor T-cells is well studied, and additionally the importance of recipient microbiota in the intestine is elucidated in the GVHD setting. Oral microbiota is the second most abundant bacterial flora in the body after the intestinal tract, and it is related to chronic inflammation and carcinogenesis. Recently, composition of the oral microbiome in GVHD related to transplantation has been characterized and several common patterns, dysbiosis and enrichment of the specific bacterial groups, have been reported. This review focuses on the role of the oral microbiota in the context of GVHD.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Yui Kambara
- Department of Hematology and Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- *Correspondence: Hideaki Fujiwara,
| |
Collapse
|
236
|
Intermittent fasting supports the balance of the gut microbiota composition. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:51-57. [PMID: 35953616 DOI: 10.1007/s10123-022-00272-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/06/2023]
Abstract
There is a growing body of detailed research demonstrating that intermittent fasting is essentially a cleansing activity in terms of health. Especially since its applications that exceed 16 h trigger autophagy, it continues its effect on all tissue and organ systems after the regeneration movement that starts at the cellular level. Similarly, it continues to be better understood with each passing day that the gut microbiota (GM) has many positive effects on all tissue and organ systems. Although the GM is affected by many different parameters, dietary habits are reported to be the most effective factor. Therefore, it is important to investigate the effects of different preferred fasting practices on the GM, which has numerous health benefits. Pointing out this situation, this study aims to determine the effects of 18-h intermittent fasting for 5 weeks on the shaping of GM. A 12-month-old male Wistar rat was chosen as the model organism in the study. At the end of the application, the metagenome was applied to the cecum content of the intestinal tissue collected from the sacrificed animals. Intermittent fasting practice led to an increase in alpha diversity, which expresses a significant bacterial diversity, the stabilization of Firmicutes and Bacteroidetes ratios (F/B), and the reshaping of the values with the highest prevalence in all stages of the classification, especially in the family, genus, and species care. Analysis results showed that the preferred intermittent fasting program helps balance the GM composition. This study is an important example showing the strong positive link between intermittent fasting and GM.
Collapse
|
237
|
Kip E, Parr-Brownlie LC. Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders. Front Neurosci 2023; 17:1092537. [PMID: 36875655 PMCID: PMC9975355 DOI: 10.3389/fnins.2023.1092537] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Since the mid-20th century, Western societies have considered productivity and economic outcomes are more important than focusing on people's health and wellbeing. This focus has created lifestyles with high stress levels, associated with overconsumption of unhealthy foods and little exercise, which negatively affect people's lives, and subsequently lead to the development of pathologies, including neurodegenerative and psychiatric disorders. Prioritizing a healthy lifestyle to maintain wellbeing may slow the onset or reduce the severity of pathologies. It is a win-win for everyone; for societies and for individuals. A balanced lifestyle is increasingly being adopted globally, with many doctors encouraging meditation and prescribing non-pharmaceutical interventions to treat depression. In psychiatric and neurodegenerative disorders, the inflammatory response system of the brain (neuroinflammation) is activated. Many risks factors are now known to be linked to neuroinflammation such as stress, pollution, and a high saturated and trans fat diet. On the other hand, many studies have linked healthy habits and anti-inflammatory products with lower levels of neuroinflammation and a reduced risk of neurodegenerative and psychiatric disorders. Sharing risk and protective factors is critical so that individuals can make informed choices that promote positive aging throughout their lifespan. Most strategies to manage neurodegenerative diseases are palliative because neurodegeneration has been progressing silently for decades before symptoms appear. Here, we focus on preventing neurodegenerative diseases by adopting an integrated "healthy" lifestyle approach. This review summarizes the role of neuroinflammation on risk and protective factors of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Elodie Kip
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
238
|
Masood M, Nasser MI. Gut microbial metabolites and colorectal cancer. MICROBIAL BIOMOLECULES 2023:353-373. [DOI: 10.1016/b978-0-323-99476-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
239
|
Yamaguchi T, Nomura A, Matsubara A, Hisada T, Tamada Y, Mikami T, Ishida M. Effect of gut microbial composition and diversity on major inhaled allergen sensitization and onset of allergic rhinitis. Allergol Int 2023; 72:135-142. [PMID: 35850746 DOI: 10.1016/j.alit.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Decreased gut microbiota diversity is associated with gut dysbiosis and causes various diseases, including allergic diseases. We investigated the relationship between gut microbial diversity and sensitization to major inhaled allergens. Furthermore, the relationship of allergic symptom onset with bacterial composition in sensitized individuals was investigated. METHODS This study included 1092 local residents who had participated in the Iwaki Health Promotion Project in 2016. Blood samples were analyzed to ascertain specific IgE levels against major inhaled allergens (JCP, HD1, Grass-mix, Weed-mix). Nasal symptoms were estimated by questionnaires. Fecal samples were analyzed for bacterial 16S rRNA using next generation sequencing. The diversity index (α-diversity, β-diversity) and the composition of gut microbes in phylum/order levels were compared between patients sensitized or unsensitized to allergen, and symptomatic and asymptomatic groups. RESULTS Some α-diversity metrics were significantly decreased in patients who were sensitized to any/all four allergens compared with the unsensitized group. β-diversity differed significantly between those unsensitized and sensitized to all allergens (aged 20-49 years), and between those unsensitized and sensitized to any/all four allergens (aged ≥50 years). The relative abundance of Bacteroidales was significantly lower in the unsensitized than in the sensitized group. The composition and diversity of gut microbiota were similar between the symptomatic and asymptomatic groups. CONCLUSIONS Our results suggest that lack of diversity in gut microbiota has an effect on sensitization to allergens. Bacteroidales in order level may affect sensitization; however, the onset of allergy symptoms was not significantly associated with bacterial composition and diversity.
Collapse
Affiliation(s)
- Taimu Yamaguchi
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayami Nomura
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | - Yoshinori Tamada
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuya Mikami
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mizuri Ishida
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
240
|
Uehara O, Bi J, Zhuang D, Koivisto L, Abiko Y, Häkkinen L, Larjava H. Altered composition of the oral microbiome in integrin beta 6-deficient mouse. J Oral Microbiol 2022; 14:2122283. [PMID: 36117552 PMCID: PMC9481083 DOI: 10.1080/20002297.2022.2122283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Osamu Uehara
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Deshu Zhuang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yoshihiro Abiko
- School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
241
|
Han N, Zhang T, Qiang Y, Peng X, Li X, Zhang W. Time-scale analysis of the long-term variability of human gut microbiota characteristics in Chinese individuals. Commun Biol 2022; 5:1414. [PMID: 36564493 PMCID: PMC9789056 DOI: 10.1038/s42003-022-04359-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Studying the dynamics and stability of the human gut microbiota over time is important for exploring their relationship with human health and developing treatment strategies for putative microbiome-related ailments. Here, we collected stool samples from seven healthy Chinese subjects at 1-month intervals between 2016 and 2020. Sequencing and bioinformatics analyses revealed that the bacteria in the collected fecal samples fluctuated over time, and the extent of these changes increased over time. Further, the average shared proportion value obtained using Sourcetracker2 was 63.5% for samples collected from the same individual in the preceding month, and over a 3-year period, this value decreased to 40.7%. Furthermore, the proportion of different bacteria in the gut microbiota of the different subjects fluctuated to varying degrees. Therefore, our results suggested that it is important to consider the effect of time on gut microbiota composition when it is used to evaluate health. Our study opens up a new field of microbiota research, considering not just the instantaneous microbiota, but also the change of the gut microbiota over time.
Collapse
Affiliation(s)
- Na Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Tingting Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yujun Qiang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xianhui Peng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiuwen Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
242
|
Zhang W, Han N, Zhang T, Qiang Y, Peng X, Li X, Kan B. The Spatial Features and Temporal Changes in the Gut Microbiota of a Healthy Chinese Population. Microbiol Spectr 2022; 10:e0131022. [PMID: 36453887 PMCID: PMC9769860 DOI: 10.1128/spectrum.01310-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, we aimed to understand the characteristics of the gut microbial composition in a healthy Chinese population and to evaluate if they differed across different regions. In addition, we aimed to understand the changes in the gut microbial composition over time. We collected 239 fecal samples from healthy Chinese adults living in four regions and performed a 1-year time cohort study in a small population in Beijing. The Chinese gut microbiota share 34 core bacterial genera and 39 core bacterial species, which exist in all collected samples. Several disease-related microorganisms (DRMs), virulence factors, and antibiotic resistance genes were found in one or more healthy Chinese samples. Differences in gut microbiota were observed in samples from different regions, locations, individuals, and time points. Compared to other factors, time was associated with a lower degree of change in the gut microbiota. Our findings revealed spatial and temporal changes in the gut microbiota of healthy Chinese individuals. Compared to fecal microbiomes of 152 samples in the publicly released the Human Microbiome Project (HMP) project from the United States, samples in this study have higher variability in the fecal microbiome, with higher richness, Shannon diversity indices, and Pielou evenness indexes, at both the genus and species levels. The microbiota data obtained in this study will provide a detailed basis for further understanding the composition of the gut microbiota in the healthy Chinese population. IMPORTANCE China accounts for approximately 1/5th of the world's total population. Differences in environment, ethnicity, and living habits could impart unique features to the structure of the gut microbiota of Chinese individuals. In 2016, we started to investigate healthy Chinese people and their gut microbiomes. Phase I results for 16S rRNA amplicons have been released. However, owing to the limitations of 16S rRNA amplicon sequencing, the gut microbiome of a healthy Chinese population could not be examined thoroughly at the species level, and the detailed changes in the gut microbiota over time need to be investigated. To address these knowledge gaps, we started a phase II study and investigated the basis for variations in the gut microbiome composition in a healthy Chinese population at the species level using shotgun metagenomics technology. In the phase II study, we also conducted a time scale analysis of fecal samples from healthy Chinese subjects, as a pioneered study, which quantitatively clarified the changes in the gut microbiota at both the spatial and temporal levels and elucidated the distribution pattern of DRMs in healthy Chinese individuals.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tingting Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujun Qiang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xianhui Peng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuwen Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
243
|
Sadrifar S, Abbasi-Dokht T, Forouzandeh S, Malek F, Baharlou R. The impact of multistrains of probiotics on Th17-related cytokines in patients with asthma: a randomized, double-blind, placebo-controlled trial. J Asthma 2022; 60:1306-1315. [PMID: 36332136 DOI: 10.1080/02770903.2022.2144353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Asthma is known as one of the most common chronic inflammatory diseases characterized by recurrent obstruction and inflammation of the airways. Probiotics are defined as a group of beneficial living microorganisms that are beneficial in many disorders, including allergies. The aim of this study was to investigate the probiotic supplement effects on improvement of clinical asthma symptom and changes in the pattern of Th17-related inflammatory cytokines in asthmatic patients. METHODS This was a randomized controlled clinical trial with parallel, double-blind groups. Forty patients with asthma were enrolled and received 1 capsule/day of a probiotic supplement for 8 weeks. Respiratory function tests; and the level of IL-6, IL-17, IL-21 and TGF-β were evaluated at the baseline and end of intervention. RESULTS The results showed that the level of IL-6 and IL-17 in patients after receiving probiotics was reduced and expression of TGF-β was increased as compared to the baseline. Also, the expression of IL-17 and IL-21 in the probiotic group was significantly lower than the placebo group at the end of the intervention. In addition, an improvement in pulmonary function tests and clinical symptoms was observed after receiving probiotics. CONCLUSIONS Eight-weeks treatment with a probiotic supplementation suggests that it may effect on Th17 cells-associated IL-6, IL-17 and TGF-β; and Forced Expiratory Volume in 1 s and Forced Vital Capacity. Taken together, these results suggest that probiotics may have the ability to affect neutrophilic asthma and they can possibly be used besides common treatments for patients with neutrophilic asthma.
Collapse
Affiliation(s)
- Sina Sadrifar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Abbasi-Dokht
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sarvenaz Forouzandeh
- Department of Internal Medicine, Kosar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Farhad Malek
- Department of Internal Medicine, Kosar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
244
|
Okada K, Takezawa K, Tsujimura G, Imanaka T, Kuribayashi S, Ueda N, Hatano K, Fukuhara S, Kiuchi H, Fujita K, Motooka D, Nakamura S, Koyama Y, Shimada S, Nonomura N. Localization and potential role of prostate microbiota. Front Cell Infect Microbiol 2022; 12:1048319. [PMID: 36569206 PMCID: PMC9768196 DOI: 10.3389/fcimb.2022.1048319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction We aimed to clarify the presence and localization of the prostate microbiota and examine its association with benign prostate enlargement (BPE). Methods The microbiota of prostate tissues and catheterized urine from 15 patients were analyzed by 16S metagenomic analysis and compared to show that the prostate microbiota was not a contaminant of the urinary microbiota. Fluorescence in situ hybridization (FISH) and in situ hybridization (ISH) using the specific probe for eubacteria was performed on prostate tissue to show the localization of bacteria in the prostate. The BPE group was defined as prostate volume ≥30 mL, and the non-BPE group as prostate volume <30 mL. The microbiota of the two groups were compared to clarify the association between prostate microbiota and BPE. Results Faith's phylogenetic diversity index of prostate tissue was significantly higher than that of urine (42.3±3.8 vs 25.5±5.6, P=0.01). Principal coordinate analysis showed a significant difference between the microbiota of prostate tissue and catheterized urine (P<0.01). FISH and ISH showed the presence of bacteria in the prostatic duct. Comparison of prostate microbiota between the BPE and non-BPE groups showed that the Chao1 index of the BPE group was significantly lower than that of the latter [142 (50-316) vs 169 (97-665), P=0.047] and the abundance of Burkholderia was significantly higher in the BPE group than in the latter. Conclusions We demonstrated that the prostate microbiota was located in the prostatic duct and reduced diversity of prostate microbiota was associated with BPE, suggesting that prostate microbiota plays a role in BPE.
Collapse
Affiliation(s)
- Koichi Okada
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Kentaro Takezawa
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan,*Correspondence: Kentaro Takezawa,
| | - Go Tsujimura
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Takahiro Imanaka
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Sohei Kuribayashi
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Norichika Ueda
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Hiroshi Kiuchi
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Faculty of Medicine, Kindai University Hospital, Osakasayama, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Osaka University Research Institute for Microbial Diseases, Suita, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Osaka University Research Institute for Microbial Diseases, Suita, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University of Graduate School of Medicine, Suita, Japan
| |
Collapse
|
245
|
Kowallik V, Das A, Mikheyev AS. Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Front Microbiol 2022; 13:1030771. [PMID: 36532456 PMCID: PMC9751584 DOI: 10.3389/fmicb.2022.1030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 04/12/2024] Open
Abstract
Microbiomes can enhance the health, fitness and even evolutionary potential of their hosts. Many organisms propagate favorable microbiomes fully or partially via vertical transmission. In the long term, such co-propagation can lead to the evolution of specialized microbiomes and functional interdependencies with the host. However, microbiomes are vulnerable to environmental stressors, particularly anthropogenic disturbance such as antibiotics, resulting in dysbiosis. In cases where microbiome transmission occurs, a disrupted microbiome may then become a contagious pathology causing harm to the host across generations. We tested this hypothesis using the specialized socially transmitted gut microbiome of honey bees as a model system. By experimentally passaging tetracycline-treated microbiomes across worker 'generations' we found that an environmentally acquired dysbiotic phenotype is heritable. As expected, the antibiotic treatment disrupted the microbiome, eliminating several common and functionally important taxa and strains. When transmitted, the dysbiotic microbiome harmed the host in subsequent generations. Particularly, naïve bees receiving antibiotic-altered microbiomes died at higher rates when challenged with further antibiotic stress. Bees with inherited dysbiotic microbiomes showed alterations in gene expression linked to metabolism and immunity, among other pathways, suggesting effects on host physiology. These results indicate that there is a possibility that sublethal exposure to chemical stressors, such as antibiotics, may cause long-lasting changes to functional host-microbiome relationships, possibly weakening the host's progeny in the face of future ecological challenges. Future studies under natural conditions would be important to examine the extent to which negative microbiome-mediated phenotypes could indeed be heritable and what role this may play in the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Vienna Kowallik
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
| | - Ashutosh Das
- Australian National University, Canberra, ACT, Australia
- Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
- Australian National University, Canberra, ACT, Australia
| |
Collapse
|
246
|
Loganathan T, Priya Doss C G. The influence of machine learning technologies in gut microbiome research and cancer studies - A review. Life Sci 2022; 311:121118. [DOI: 10.1016/j.lfs.2022.121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
247
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
248
|
Jiang R, Zhan X, Wang T. A Flexible Zero-Inflated Poisson-Gamma Model with Application to Microbiome Sequence Count Data. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2022.2151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Roulan Jiang
- Center for Statistical Science and Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Zhan
- Department of Biostatistics, School of Public Health, Beijing International Center for Mathematical Research and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Tianying Wang
- 3Center for Statistical Science and Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
249
|
Cai X, Luo Y, Zhang Y, Lin Y, Wu B, Cao Z, Hu Z, Wu X, Tan S. Airway microecology in rifampicin-resistant and rifampicin-sensitive pulmonary tuberculosis patients. BMC Microbiol 2022; 22:286. [PMID: 36447140 PMCID: PMC9706898 DOI: 10.1186/s12866-022-02705-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pulmonary tuberculosis is a chronic infectious disease of the respiratory system. It is still one of the leading causes of death from a single infectious disease, but it has been stuck in the study of a single pathogen. Recent studies have shown that many diseases are associated with disruption of the native microbiota. In this study we investigated the occurrence of tuberculosis and the correlation between drug resistance and respiratory flora. High-throughput 16 S rRNA gene sequencing was used to characterize the respiratory microbiota composition of 30 tuberculosis (TB) affected patients and compared with 30 healthy (H) controls. According to their Gene Xpert results, 30 pulmonary tuberculosis patients were divided into 12 persons in the drug-sensitive group (DS0) and 18 persons in the drug-resistant group (DR0). The microbial flora of the two were compared with the H group. RESULTS The data generated by sequencing showed that Firmicutes, Proteus, Bacteroides, Actinomyces and Fusobacterium were the five main bacterial phyla detected, and they constituted more than 96% of the microbial community. The relative abundances of Fusobacterium, Haemophilus, Porphyromonas, Neisseria, TM7, Spirochetes, SR1, and Tenericutes in the TB group was lower than that of the H group, and Granulicatella was higher than the H group. The PcoA diagrams of the two groups had obvious clustering differences. The Alpha diversity of the TB group was lower than that of the H group, and the Beta diversity was higher than that of the H group (P < 0.05). The relative abundance of Streptococcus in the DS0 group was significantly higher than that in the DR0 group (P < 0.05). CONCLUSION Pulmonary tuberculosis can cause disorders of the respiratory tract microbial flora, in which the relative abundance of Streptococcus was significantly different between rifampicin-sensitive and rifampicin-resistant patients.
Collapse
Affiliation(s)
- Xingshan Cai
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Yang Luo
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Yuanliang Zhang
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Yuan Lin
- grid.413422.20000 0004 1773 0966Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Bitong Wu
- grid.413422.20000 0004 1773 0966Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Zhizhong Cao
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Zuqiong Hu
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Xingyi Wu
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Shouyong Tan
- grid.413422.20000 0004 1773 0966Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| |
Collapse
|
250
|
The effect of “moderately restricted carbohydrate” diet on gut microbiota composition and metabolic parameters in women with metabolic syndrome: a study protocol for a randomized controlled trial. Trials 2022; 23:959. [DOI: 10.1186/s13063-022-06922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/12/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Metabolic syndrome (MetS) is a group of risk factors that increase the risk of death and a variety of chronic diseases. Recent studies have indicated that the imbalance of gut microbiota might contribute to development and progression of metabolic syndrome. Carbohydrate restriction in the diet has been proven to be one of the most effective methods in the management of metabolic syndrome, even in the absence of weight loss. However, no study has examined the effects of a carbohydrate-restricted diet on gut microbiota composition in metabolic syndrome patients. Thus, we will examine the effects of a “moderately restricted carbohydrate (MRC)” diet on gut microbiota, insulin resistance, and components of MetS among Iranian women. In addition, the stability of changes in dependent variables, including gut microbiota, will also be assessed.
Methods
This is a parallel randomized clinical trial in which 70 overweight or obese women aged 20–50 years with MetS will be randomly assigned to receive either MRC diet (42–45% carbohydrate, 35–40% fats) or a normal weight loss (NWL) diet (52–55% carbohydrate, 25–30% fats) for 3 months. Protein accounted for 15–17% of total energy in both diets. The quantity of gut microbiota including Firmicutes, Bacteroidetes, Bifidobacteria, Lactobacillus, Clostridium, Prevotella, Bacteroidetes, and Akkermansia muciniphila, as well as anthropometric, blood pressure, and metabolic parameters will be measured at study baseline and the end of trail. At the end of this phase, all participants will be placed on a weight maintenance diet for an additional 6 months. After following up study subjects in this duration, all dependent variables will be examined again to assess their stability over this period.
Discussion
To the best of our knowledge, this is the first randomized controlled trial investigating the effects of a moderately restricted carbohydrate diet on gut microbiota composition and several metabolic parameters during the weight loss and maintenance phases in women with MetS.
Trial registration
Iranian Registry of Clinical Trials (www.irct.ir, IRCT20210307050621N1). Registered on May 31, 2021.
Collapse
|