201
|
Dobrijevic D, Di Liberto G, Tanaka K, de Wouters T, Dervyn R, Boudebbouze S, Binesse J, Blottière HM, Jamet A, Maguin E, van de Guchte M. High-throughput system for the presentation of secreted and surface-exposed proteins from Gram-positive bacteria in functional metagenomics studies. PLoS One 2013; 8:e65956. [PMID: 23799065 PMCID: PMC3682982 DOI: 10.1371/journal.pone.0065956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/30/2013] [Indexed: 12/13/2022] Open
Abstract
Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g. in studies of the gut microbiota), physico-chemical (e.g. in studies of soil or water environments), or other parameters. Observed correlations can then be used to formulate hypotheses concerning microbial gene functions in relation to the ecosystem studied. In this context, functional metagenomics studies aim to validate these hypotheses and to explore the mechanisms involved. One possible approach is to PCR amplify or chemically synthesize genes of interest and to express them in a suitable host in order to study their function. For bacterial genes, Escherichia coli is often used as the expression host but, depending on the origin and nature of the genes of interest and the test system used to evaluate their putative function, other expression systems may be preferable. In this study, we developed a system to evaluate the role of secreted and surface-exposed proteins from Gram-positive bacteria in the human gut microbiota in immune modulation. We chose to use a Gram-positive host bacterium, Bacillus subtilis, and modified it to provide an expression background that behaves neutral in a cell-based immune modulation assay, in vitro. We also adapted an E. coli – B. subtilis shuttle expression vector for use with the Gateway high-throughput cloning system. Finally, we demonstrate the functionality of this host-vector system through the cloning and expression of a flagellin-coding sequence, and show that the expression-clone elicits an inflammatory response in a human intestinal epithelial cell line. The expression host can easily be adapted to assure neutrality in other assay systems, allowing the use of the presented presentation system in functional metagenomics of the gut and other ecosystems.
Collapse
Affiliation(s)
- Dragana Dobrijevic
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Gaetana Di Liberto
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Kosei Tanaka
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Tomas de Wouters
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Rozenn Dervyn
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Samira Boudebbouze
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Johan Binesse
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Alexandre Jamet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Maarten van de Guchte
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
202
|
Garn H, Neves JF, Blumberg RS, Renz H. Effect of barrier microbes on organ-based inflammation. J Allergy Clin Immunol 2013; 131:1465-78. [PMID: 23726530 PMCID: PMC4592166 DOI: 10.1016/j.jaci.2013.04.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022]
Abstract
The prevalence and incidence of chronic inflammatory disorders, including allergies and asthma, as well as inflammatory bowel disease, remain on the increase. Microbes are among the environmental factors that play an important role in shaping normal and pathologic immune responses. Several concepts have been put forward to explain the effect of microbes on the development of these conditions, including the hygiene hypothesis and the microbiota hypothesis. Recently, the dynamics of the development of (intestinal) microbial colonization, its effect on innate and adaptive immune responses (homeostasis), and the role of environmental factors, such as nutrition and others, have been extensively investigated. Furthermore, there is now increasing evidence that a qualitative and quantitative disturbance in colonization (dysbiosis) is associated with dysfunction of immune responses and development of various chronic inflammatory disorders. In this article the recent epidemiologic, clinical, and experimental evidence for this interaction is discussed.
Collapse
Affiliation(s)
- Holger Garn
- Institute of Laboratory Medicine, Philipps-Universität Marburg
| | - Joana F. Neves
- Division of Gastroenterology and Hepatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Richard S. Blumberg
- Division of Gastroenterology and Hepatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps-Universität Marburg
| |
Collapse
|
203
|
Claassen S, du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods 2013; 94:103-110. [PMID: 23684993 PMCID: PMC5809576 DOI: 10.1016/j.mimet.2013.05.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/29/2023]
Abstract
Differences in the composition of the gut microbiota have been associated with a range of diseases using culture-independent methods. Reliable extraction of nucleic acid is a key step in identifying the composition of the faecal microbiota. Five widely used commercial deoxyribonucleic acid (DNA) extraction kits (QIAsymphony® Virus/Bacteria Midi Kit (kit QS), ZR Fecal DNA MiniPrep™ (kit Z), QIAamp® DNA Stool Mini Kit (kit QA), Ultraclean® Fecal DNA Isolation Kit (kit U) and PowerSoil® DNA Isolation Kit (kit P)) were evaluated, using human faecal samples. Yield, purity and integrity of total genomic DNA were compared spectrophotometrically and using gel electrophoresis. Three bacteria, commonly found in human faeces were quantified using real time polymerase chain reaction (qPCR) and total bacterial diversity was studied using denaturing gradient gel electrophoresis (DGGE) as well as terminal restriction fragment length polymorphism (T-RFLP). The measurements of DNA yield and purity exhibited variations between the five kits tested in this study. Automated kit QS exhibited the best quality and highest quantity of DNA. All kits were shown to be reproducible with CV values≤0.46 for DNA extraction. qPCR results showed that all kits were uniformly efficient for extracting DNA from the selected target bacteria. DGGE and T-RFLP produced the highest diversity scores for DNA extracted using kit Z (H'=2.30 and 1.27) and kit QS (H'=2.16 and 0.94), which also extracted the highest DNA yields compared to the other kits assessed.
Collapse
Affiliation(s)
- Shantelle Claassen
- Division of Medical Microbiology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa.
| | - Elloise du Toit
- Division of Medical Microbiology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- National Health Laboratory Service, National Institute for Communicable Diseases, Groote Schuur Hospital, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
204
|
Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 2013; 4:87. [PMID: 23616784 PMCID: PMC3627978 DOI: 10.3389/fmicb.2013.00087] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is amongst the most densely populated microbial ecosystem on earth. While the microbiome exerts numerous health beneficial functions, the high density of micro-organisms within this ecosystem also facilitates horizontal transfer of antimicrobial resistance (AMR) genes to potential pathogenic bacteria. Over the past decades antibiotic susceptibility testing of specific indicator bacteria from the microbiome, such as Escherichia coli, has been the method of choice in most studies. These studies have greatly enlarged our understanding on the prevalence and distribution of AMR and associated risk factors. Recent studies using (functional) metagenomics, however, highlighted the unappreciated diversity of AMR genes in the human microbiome and identified genes that had not been described previously. Next to metagenomics, more targeted approaches such as polymerase chain reaction for detection and quantification of AMR genes within a population are promising, in particular for large-scale epidemiological screening. Here we present an overview of the indigenous microbiota as a reservoir of AMR genes, the current knowledge on this “resistome” and the recent and upcoming advances in the molecular diagnostic approaches to unravel this reservoir.
Collapse
Affiliation(s)
- John Penders
- Department of Medical Microbiology, Maastricht University Medical Centre+ Maastricht, Netherlands
| | | | | | | |
Collapse
|
205
|
A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 2013; 109 Suppl 1:S1-34. [PMID: 23343744 DOI: 10.1017/s0007114512005119] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To monitor inflammation in a meaningful way, the markers used must be valid: they must reflect the inflammatory process under study and they must be predictive of future health status. In 2009, the Nutrition and Immunity Task Force of the International Life Sciences Institute, European Branch, organized an expert group to attempt to identify robust and predictive markers, or patterns or clusters of markers, which can be used to assess inflammation in human nutrition studies in the general population. Inflammation is a normal process and there are a number of cells and mediators involved. These markers are involved in, or are produced as a result of, the inflammatory process irrespective of its trigger and its location and are common to all inflammatory situations. Currently, there is no consensus as to which markers of inflammation best represent low-grade inflammation or differentiate between acute and chronic inflammation or between the various phases of inflammatory responses. There are a number of modifying factors that affect the concentration of an inflammatory marker at a given time, including age, diet and body fatness, among others. Measuring the concentration of inflammatory markers in the bloodstream under basal conditions is probably less informative compared with data related to the concentration change in response to a challenge. A number of inflammatory challenges have been described. However, many of these challenges are poorly standardised. Patterns and clusters may be important as robust biomarkers of inflammation. Therefore, it is likely that a combination of multiple inflammatory markers and integrated readouts based upon kinetic analysis following defined challenges will be the most informative biomarker of inflammation.
Collapse
|
206
|
Lee KH, Park HJ, Seo HG, Kim JH, Lim GS, Lee WY, Kim NH, Kim JH, Lee JH, Jung HS, Sung SH, Song H. Immune modulation effect of porcine placenta extracts in weaned the pig. J Anim Sci 2013; 91:2405-13. [PMID: 23463569 DOI: 10.2527/jas.2012-5208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a previous study, we established a collection of appropriate porcine placental extracts using PBS at 80°C (PE-PBS80) as a food supplement to increase immune activities in a mice model. In this study, piglets were treated with 0.1%, 0.3%, and 0.5% PE-PBS80 for 3 wk after weaning. Experiments were performed at 2 separate farms using 2 different pig varieties. Composition of white blood cells, lymphocyte activation, and cytokine concentrations were analyzed to assess the immune modulation effect. In Exp. 1, the number of white blood cells increased significantly in the PE-PBS80 treatment and T- and B-cell activation increased as well (P < 0.01). Interestingly, piglets in all treatments in Exp. 2 were naturally infected by a rotavirus at the third day of the experiment but recovered after d 10. Increased lymphocyte activation was observed in the PE-PBS80 treatment (P < 0.01) regardless of viral infection. Additionally, unlike in Exp. 1, the percentage of granulocytes and concentrations of interferon-γ, IL-1β, and IgG increased in the PE-PBS80 treatment (P < 0.01) and were more active in the 0.3% PE-PBS80 treatment compared with the control and the other treatment. In conclusion, 0.3% PE-PBS80 treatment modulated immune activities in antigen-infected piglets. Therefore, the PE-PBS80 pig placental extract, particularly the 0.3% supplement to the normal diet, could be useful as an alternative feed supplement to modulate immune activity during the early piglet period.
Collapse
Affiliation(s)
- K H Lee
- Department of Animal and Food Bioscience, College of Natural Science, Konkuk University, Chung-ju 380-701, Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 2013; 4:158-64. [PMID: 23333861 PMCID: PMC3595077 DOI: 10.4161/gmic.23567] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is convincing evidence from recent human and animal studies that suggests the intestinal microbiota plays an important role in regulating immune responses associated with the development of allergic asthma, particularly during early infancy. Although identifying the mechanistic link between host-microbe interactions in the gut and lung mucosal tissues has proved challenging, several very recent studies are now providing significant insights. We have shown that administering vancomycin to mice early in life shifts resident gut flora and enhances future susceptibility to allergic asthma. This effect was not observed in mice given another antibiotic, streptomycin, nor when either antibiotic was administered to adult mice. In this addendum, we further analyze the link between early life administration of vancomycin and future susceptibility to asthma and describe how specific immune cell populations, which have been implicated in other asthma-related microbiota studies, are affected. We propose that shifts in gut microbiota exacerbate asthma-related immune responses when they occur shortly after birth and before weaning (perinatal period), and suggest that these effects may be mediated, at least in the case of vancomycin, by elevated serum IgE and reduced regulatory T cell populations.
Collapse
Affiliation(s)
- Shannon L. Russell
- Department of Microbiology and Immunology; University of British Columbia; Vancouver, BC Canada,Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada
| | - Matthew J. Gold
- The Biomedical Research Center; University of British Columbia; Vancouver, BC Canada
| | - Benjamin P. Willing
- Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada
| | - Lisa Thorson
- Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada
| | - Kelly M. McNagny
- The Biomedical Research Center; University of British Columbia; Vancouver, BC Canada,Correspondence to: Kelly M. McNagny, and Brett B. Finlay,
| | - Brett B. Finlay
- Department of Microbiology and Immunology; University of British Columbia; Vancouver, BC Canada,Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada,Correspondence to: Kelly M. McNagny, and Brett B. Finlay,
| |
Collapse
|
208
|
Abstract
Probiotics are live micro-organisms that when given in adequate amounts can cause health benefits. The safety and efficacy of probiotics in the prevention and treatment of various clinical conditions have been evaluated in randomised controlled clinical trials, systematic reviews and meta-analyses. Generally, their safety has been documented. As a supplement to standard rehydration therapy, probiotics have been demonstrated to shorten the duration of diarrhoea resulting from acute viral gastroenteritis and in preventing antibiotic-associated diarrhoea in healthy children. Preliminary evidence suggests that probiotics might prevent necrotising enterocolitis in very-low-birth-weight infants, but further studies are needed before definite conclusions can be drawn. Probiotics have also been assessed in the treatment and prevention of allergic disease but the results, although promising, need further confirmation. Targeting a paediatric population, probiotics have been evaluated in the treatment of irritable bowel syndrome, ulcerative colitis, Helicobacter pylori gastritis and infantile colic, but at this stage, there is no evidence to support their routine use for these indications. There is a great need for studies aiming at disentangling the mechanisms by which probiotics mediate their clinical effects and for comparative studies between various probiotic bacteria. We still need to know which probiotic(s) to use and for which indications. A clearer message on dosages, optimal timing and duration of administration is needed. For this purpose, more carefully designed and sufficiently powered, randomised controlled trials with predefined outcomes are needed.
Collapse
|
209
|
Holvoet S, Zuercher AW, Julien-Javaux F, Perrot M, Mercenier A. Characterization of candidate anti-allergic probiotic strains in a model of th2-skewed human peripheral blood mononuclear cells. Int Arch Allergy Immunol 2013; 161:142-54. [PMID: 23343780 DOI: 10.1159/000343703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 09/19/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Pre-clinical and clinical studies have evaluated the efficacy of probiotics in allergy. However, predictive in vitro systems for rational strain selection are still missing. METHODS We developed a novel in vitro screening system for the characterization of probiotics with anti-allergic potential. In this model, human peripheral blood mononuclear cells (PBMC) from healthy donors (n = 68) were skewed towards a Th2 cytokine phenotype by culture with IL-4 and anti-CD40, to resemble cells from allergic donors. Th2-skewed cells were then co-cultured with probiotics; a total of 35 strains were tested. Levels of IFN-γ, IL-10, IL-5 and 7 additional cytokines in culture supernatants were determined by ELISA or multiplex assay. Gene expression was assessed by real-time PCR. For validation, splenocytes from ovalbumin-primed mice and PBMC from grass-allergic donors were restimulated with respective antigen and co-cultured with probiotics, and cytokine profiles were correlated. RESULTS Culture with IL-4 and anti-CD40 antibody induced secretion of IL-5 from PBMC, indicative of induction of a Th2 phenotype. Cytokine profiles induced by probiotics were strain specific even though species- and genus-specific clustering was observed for many strains by principal component analysis. This was paralleled by mRNA levels of the corresponding genes such as increased Tbet and reduced GATA-3 gene expression. Cytokine profiles induced by probiotics in PBMC stimulated with IL-4 and anti-CD40 correlated with those obtained from allergen-stimulated murine splenocytes or human PBMC from grass-allergic donors. CONCLUSIONS Cytokine profiling of probiotic strains with IL-4-/anti-CD40-stimulated PBMC allowed to determine the effect of probiotics on Th2-skewed cells and thus to classify probiotic strains with anti-allergic potential.
Collapse
Affiliation(s)
- Sébastien Holvoet
- Allergy Group, Department of Nutrition and Health, Nestlé Research Center, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
210
|
Aziz Q, Doré J, Emmanuel A, Guarner F, Quigley EMM. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil 2013; 25:4-15. [PMID: 23279728 DOI: 10.1111/nmo.12046] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The microbial community of the human gut - the enteric microbiota - plays a critical role in functions that sustain health and is a positive asset in host defenses. In recent years, our understanding of this so-called human 'super organism' has advanced, following characterization of fecal metagenomes which identified three core bacterial enterotypes, and based on basic and clinical research into the impact and consequences of microbiota biodiversity and change on gastrointestinal disorders and diseases. PURPOSE This article considers current knowledge and future perspectives on the make-up and function of human gut microbiota, with a particular focus on altered microbiota and gastrointestinal disorders, nutritional influences on the gut microbiota, and the consequences for gastrointestinal health, as well as improved understanding of gut-microbiota-brain communication.
Collapse
Affiliation(s)
- Q Aziz
- Centre for Digestive Diseases, Blizard Institute of Cell & Molecular Science, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
| | | | | | | | | |
Collapse
|
211
|
Xu X, Xu P, Ma C, Tang J, Zhang X. Gut microbiota, host health, and polysaccharides. Biotechnol Adv 2012; 31:318-37. [PMID: 23280014 DOI: 10.1016/j.biotechadv.2012.12.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | | | | | | | | |
Collapse
|
212
|
Abstract
PURPOSE OF REVIEW The prevalence of allergic diseases continues to rise globally in developed countries. Since the initial proposal of the hygiene hypothesis, there has been increasing evidence to suggest that the intestinal microbiota, particularly during early infancy, plays a critical role in regulating immune responses associated with the development of atopy. This review evaluates the key epidemiologic and mechanistic data published to date. RECENT FINDINGS Epidemiological data have provided the framework for animal studies investigating the importance of gut commensals in allergy development. These studies provide new insights about the microbial regulation of mucosal immune responses inside and outside the gut, and how these effects may drive allergic inflammation in susceptible individuals. Specific immune cells have been identified as mediators of these microbiota-regulated allergic responses. SUMMARY In the last year, technological advances have provided us with a better understanding of the gut microbiome in healthy and allergic individuals. Recent studies have identified the associations between particular gut microbes and different disease phenotypes, as well as identified immune cells and their mediators involved in allergy development. This research has provided a number of host and microbe targets that may be used to develop novel therapies suitable for the treatment or prevention of allergic diseases.
Collapse
|
213
|
Abstract
The delivery of certain living microorganisms in food has long been suggested as having positive health effects in humans. This practice has extended into food animal production, with a variety of microorganisms being used; lactic acid bacteria, various Bacillus species and the yeast Saccharomyces cerevisiae have been particularly used in the pig industry. The increased interest in probiotics is essentially due to the problem of microbial resistance to antibiotics and following the ban of the use of antibiotics in animal production, probiotics being considered an alternative means to reduce pathogen infection and improve animal health especially around the time of weaning. However, there is still a need to clarify the probiotic effectiveness in pigs, and the underlying mechanisms. When assessing the efficacy of probiotics one must consider the particular strain of organism being used and the production stage of the pigs being treated. The reproducible delivery of probiotics in industrial pig production is problematic as maintenance of viability is key to their beneficial activity, but difficult to achieve with commonly used feed processing technologies. One specific context where probiotics organisms may be reliably delivered is in systems utilising fermented liquid feeds. Liquid feed may be fermented by the activity of wild lactic acid bacteria or may be stimulated using specific isolates as 'starters'; the latter system has advantages in terms of reproducibility and speed of fermentation. The farm context in which the organism is used is likely to be critical; the use of probiotics is more likely to result in measurable economic gains in animals living in sub-optimal conditions rather than in those reared in the highest welfare and husbandry conditions. The establishment of a beneficial lactic acid bacteria population at birth may lead to healthier animals, this may be most effectively achieved by treating sows, which provide an amplification step and flood the neonatal pigs' environment with desirable bacterial strains. In contrast, it may be sufficient to provide a supportive, protective microbiota around the time of weaning as this is a time of major crisis with instability and loss of certain bacterial populations.
Collapse
|
214
|
The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol 2012; 107:1452-9. [PMID: 23034604 DOI: 10.1038/ajg.2012.93] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One hypothesis for the etiology of inflammatory bowel disease is that an altered or pathogenic microbiota causes inflammation in a genetically susceptible individual. Understanding the microbiota's role in the pathogenesis of the disease could lead to new IBD treatments aimed at shifting the bacteria in the gut back to eubiosis. Probiotics have some efficacy in the treatment of ulcerative colitis (UC), but our current repertoire is limited in potency. Fecal microbiota therapy (FMT) is an emerging treatment for several gastrointestinal and metabolic disorders. It has demonstrated efficacy in treating refractory Clostridium difficile infection, and there are case reports of FMT successfully treating UC. Further clinical studies are justified, and could be complemented by mouse models of fecal transplantation, in which variables can be controlled and manipulated.
Collapse
|
215
|
Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res Pract 2012; 2012:872716. [PMID: 23049548 PMCID: PMC3459241 DOI: 10.1155/2012/872716] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/20/2012] [Indexed: 12/14/2022] Open
Abstract
The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical) studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management.
Collapse
|
216
|
Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS One 2012; 7:e44595. [PMID: 22957008 PMCID: PMC3431319 DOI: 10.1371/journal.pone.0044595] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/03/2012] [Indexed: 12/20/2022] Open
Abstract
The establishment of a pioneer gut microbiota is increasingly recognized as a crucial stage in neonatal development influencing health throughout life. While current knowledge is mainly based on either culture or molecular analysis of feces, we opted for a comprehensive approach complementing culture with state-of-the-art molecular methods. The bacterial composition in feces from seven healthy vaginally-delivered, breast-fed neonates was analyzed at days 4-6, 9-14 and 25-30 postnatal, using culture, 16S rRNA gene sequencing of isolates, quantitative PCR and pyrosequencing. Anaerobes outnumbered facultative anaerobes in all seven neonates within the first days of life, owing to high levels of Bifidobacterium and unexpectedly also Bacteroides, which were inversely correlated. Four neonates harbored maternal Bacteroides levels, comprising typical adult species, throughout the neonatal period, while in three only subdominant levels were detected. In contrast, the major adult-type butyrate-producing anaerobic populations, Roseburia and Faecalibacterium, remained undetectable during the neonatal period. The presence of Bacteroidetes as pioneer bacteria in the majority of neonates studied demonstrates that adult-type strict anaerobes may reach adult-like population densities within the first week of life. Consequently the switch from facultative to strict anaerobes may occur earlier than previously assumed in breast-fed neonates, and the establishment of the major butyrate-producing populations may be limited by other factors than the absence of anaerobic conditions. The impact of breast milk components on the timing of establishment of anaerobic pioneer bacteria, as well as opportunistic pathogens should be further studied in regard to priming of the gut-associated immune system and consequences on later health.
Collapse
Affiliation(s)
- Ted Jost
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse, Zurich, Switzerland
- * E-mail:
| | - Christian P. Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Steinwiesenstrasse, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse, Zurich, Switzerland
| |
Collapse
|
217
|
Rupa P, Mine Y. Recent advances in the role of probiotics in human inflammation and gut health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8249-8256. [PMID: 22897745 DOI: 10.1021/jf301903t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The gastrointestinal (GI) tract provides residence to an astounding number of bacterial species, which have profound effects on host biology, function, physiology, and immune response. Discovery of "symbiosis factors" from symbionts that facilitate the peaceful coexistence of microbiota and the host immune system are of interest. Symbionts synthesize immunomodulatory molecules that guide maturation of the immune system and have pivotal roles in many biological processes; however, individuals differ in the makeup of their GI microbiota, which is influenced by many external and internal factors such as diet, antibiotic use, and host genetics, which in turn influences health and disease outcomes. Various endogenous, genetic, and environmental factors influence GI development including species composition and health status of neonates, resulting in interactions that occur between the bacteria and the host. Mechanisms of probiotics involved in homeostasis of a balanced immune system have been inconclusive. The probable mechanism of action may be postulated as direct competition between pathogenic bacteria in the gut and/or immune modulation. This review focuses on probiotics in health and disease prevention, especially the biological importance of intestinal regulation of inflammatory processes that may be beneficial in a multitude of disorders both inside and outside the GI tract.
Collapse
Affiliation(s)
- Prithy Rupa
- Department of Food Science, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
218
|
Vipperla K, O'Keefe SJ. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr Clin Pract 2012; 27:624-35. [PMID: 22868282 DOI: 10.1177/0884533612452012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in our ability to identify and characterize the human microbiota have transformed our appreciation of the function of the colon from an organ principally involved in the reabsorption of secretory fluids to a metabolic organ on a par with the liver. High-throughput technology has been applied to the identification of specific differences in microbial DNA, allowing the identification of trillions of microbes belonging to more than 1000 different species, with a metabolic mass of approximately 1.5 kg. The close proximity of these microbes with the mucosa and gut lymphoid tissue helps explain why a balanced microbiota is likely to preserve mucosal health, whereas an unbalanced composition, as seen in dysbiosis, may increase the prevalence of diseases not only of the mucosa but also within the body due to the strong interactions with the gut immune system, the largest immune organ of the body. Such abnormalities have been pinpointed as etiological factors in a wide range of diseases, including autoimmune disorders, allergy, irritable bowel syndrome, inflammatory bowel disease, obesity, and colon cancer. Recognition of the strong potential for food to manipulate microbiota composition has opened up new therapeutic strategies against these diseases based on dietary intervention.
Collapse
Affiliation(s)
- Kishore Vipperla
- Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
219
|
Collado MC, Cernada M, Baüerl C, Vento M, Pérez-Martínez G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 2012; 3:352-65. [PMID: 22743759 PMCID: PMC3463493 DOI: 10.4161/gmic.21215] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life.
Collapse
Affiliation(s)
- Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain.
| | | | | | | | | |
Collapse
|
220
|
Collado MC, Bäuerl C, Pérez-Martínez G. Defining microbiota for developing new probiotics. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:18579. [PMID: 23990820 PMCID: PMC3747743 DOI: 10.3402/mehd.v23i0.18579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human body harbors complex communities of microbes that play a prominent role in human health. Detailed characterization of the microbiota in the target population forms the basis of probiotic use. Probiotics are defined as live bacterial preparations with clinically documented health effects in humans, and independent of their genus and species, probiotic strains are unique and their beneficial properties on human health have to be assessed in a case-by-case manner. Understanding the mechanisms by which probiotics influence microbiota would facilitate the use of probiotics for both dietary management and reduction in risk of specific diseases. The development of high throughput sequencing methods has allowed metagenomic approaches to study the human microbiome. These efforts are starting to generate an inventory of bacterial taxons and functional features bound to particular health or disease status that allow inferring aspects of the microbiome's function. In the future, this information will allow the rational design of dietary interventions aimed to improve consumer's health via modulation of the microbiota.
Collapse
Affiliation(s)
- Maria Carmen Collado
- Institute of Agrochemistry and Food Science, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Paterna, Valencia, Spain
| | | | | |
Collapse
|
221
|
Candela M, Rampelli S, Turroni S, Severgnini M, Consolandi C, De Bellis G, Masetti R, Ricci G, Pession A, Brigidi P. Unbalance of intestinal microbiota in atopic children. BMC Microbiol 2012; 12:95. [PMID: 22672413 PMCID: PMC3404014 DOI: 10.1186/1471-2180-12-95] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 06/06/2012] [Indexed: 12/20/2022] Open
Abstract
Background Playing a strategic role in the host immune function, the intestinal microbiota has been recently hypothesized to be involved in the etiology of atopy. In order to investigate the gastrointestinal microbial ecology of atopic disease, here we performed a pilot comparative molecular analysis of the faecal microbiota in atopic children and healthy controls. Results Nineteen atopic children and 12 healthy controls aged 4–14 years were enrolled. Stools were collected and the faecal microbiota was characterized by means of the already developed phylogenetic microarray platform, HTF-Microbi.Array, and quantitative PCR. The intestinal microbiota of atopic children showed a significant depletion in members of the Clostridium cluster IV, Faecalibacterium prausnitzii, Akkermansia muciniphila and a corresponding increase of the relative abundance of Enterobacteriaceae. Conclusion Depleted in key immunomodulatory symbionts, the atopy-associated microbiota can represent an inflammogenic microbial consortium which can contribute to the severity of the disease. Our data open the way to the therapeutic manipulation of the intestinal microbiota in the treatment of atopy by means of pharmaceutical probiotics.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Walton SF, Weir C. The interplay between diet and emerging allergy: what can we learn from Indigenous Australians? Int Rev Immunol 2012; 31:184-201. [PMID: 22587020 DOI: 10.3109/08830185.2012.667180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathophysiology of atopic diseases, including asthma and allergy, is the result of complex gene-environment interactions. Since European colonization the Indigenous population of Australia has undergone significant changes with respect to their lifestyle as hunter-gatherers. These changes have had a detrimental effect on Aboriginal health, in part due to immunological modification. This review provides a comparative look at both the traditional Aboriginal/Indigenous diet and modern Western diets, examines some common allergies increasingly reported in contemporary Indigenous populations, and reviews concepts such the effect of vitamin deficiencies and changes in gut microbiota on immune function.
Collapse
Affiliation(s)
- Shelley F Walton
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | | |
Collapse
|
223
|
Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012; 13:440-7. [PMID: 22422004 DOI: 10.1038/embor.2012.32] [Citation(s) in RCA: 654] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/19/2012] [Accepted: 02/21/2012] [Indexed: 02/07/2023] Open
Abstract
Allergic asthma rates have increased steadily in developed countries, arguing for an environmental aetiology. To assess the influence of gut microbiota on experimental murine allergic asthma, we treated neonatal mice with clinical doses of two widely used antibiotics--streptomycin and vancomycin--and evaluated resulting shifts in resident flora and subsequent susceptibility to allergic asthma. Streptomycin treatment had little effect on the microbiota and on disease, whereas vancomycin reduced microbial diversity, shifted the composition of the bacterial population and enhanced disease severity. Neither antibiotic had a significant effect when administered to adult mice. Consistent with the 'hygiene hypothesis', our data support a neonatal, microbiota-driven, specific increase in susceptibility to experimental murine allergic asthma.
Collapse
|
224
|
Ayres JS, Trinidad NJ, Vance RE. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat Med 2012; 18:799-806. [PMID: 22522562 PMCID: PMC3472005 DOI: 10.1038/nm.2729] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/13/2012] [Indexed: 12/14/2022]
Abstract
The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobiont, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant Escherichia coli pathobiont that expanded markedly in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system.
Collapse
Affiliation(s)
- Janelle S Ayres
- Department of Molecular & Cell Biology, Division of Immunology & Pathogenesis, University of California, Berkeley, USA.
| | | | | |
Collapse
|
225
|
|
226
|
Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon C, Gajer P, White JR, Koenig SSK, Sakamoto J, Boothe D, Gicquelais R, Kryszak D, Puppa E, Catassi C, Ravel J, Fasano A. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS One 2012; 7:e33387. [PMID: 22432018 PMCID: PMC3303818 DOI: 10.1371/journal.pone.0033387] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/13/2012] [Indexed: 12/16/2022] Open
Abstract
Celiac disease (CD) is a unique autoimmune disorder in which the genetic factors (DQ2/DQ8) and the environmental trigger (gluten) are known and necessary but not sufficient for its development. Other environmental components contributing to CD are poorly understood. Studies suggest that aspects of gluten intake might influence the risk of CD occurrence and timing of its onset, i.e., the amount and quality of ingested gluten, together with the pattern of infant feeding and the age at which gluten is introduced in the diet. In this study, we hypothesize that the intestinal microbiota as a whole rather than specific infections dictates the switch from tolerance to immune response in genetically susceptible individuals. Using a sample of infants genetically at risk of CD, we characterized the longitudinal changes in the microbial communities that colonize infants from birth to 24 months and the impact of two patterns of gluten introduction (early vs. late) on the gut microbiota and metabolome, and the switch from gluten tolerance to immune response, including onset of CD autoimmunity. We show that infants genetically susceptible to CD who are exposed to gluten early mount an immune response against gluten and develop CD autoimmunity more frequently than at-risk infants in which gluten exposure is delayed until 12 months of age. The data, while derived from a relatively small number of subjects, suggest differences between the developing microbiota of infants with genetic predisposition for CD and the microbiota from infants with a non-selected genetic background, with an overall lack of bacteria of the phylum Bacteriodetes along with a high abundance of Firmicutes and microbiota that do not resemble that of adults even at 2 years of age. Furthermore, metabolomics analysis reveals potential biomarkers for the prediction of CD. This study constitutes a definite proof-of-principle that these combined genomic and metabolomic approaches will be key to deciphering the role of the gut microbiota on CD onset.
Collapse
Affiliation(s)
- Maria Sellitto
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Guoyun Bai
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gloria Serena
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - W. Florian Fricke
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Craig Sturgeon
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pawel Gajer
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James R. White
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sara S. K. Koenig
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joyce Sakamoto
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dustin Boothe
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rachel Gicquelais
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah Kryszak
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elaine Puppa
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Carlo Catassi
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alessio Fasano
- Mucosal Biology Research Center, Center for Celiac Research and Departments of Pediatrics, Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
227
|
Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2012; 2:233. [PMID: 22724057 PMCID: PMC3380406 DOI: 10.1038/srep00233] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Low-molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) -a novel technique for analyzing and differentially displaying metabolic profiles- in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p < 0.05), 77 metabolites were present in significantly lower concentrations and/or incidence in the GF mice than in the Ex-GF mice (p < 0.05), and 56 metabolites showed no differences in the concentration or incidence between GF and Ex-GF mice. These indicate that intestinal microbiota highly influenced the colonic luminal metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions.
Collapse
Affiliation(s)
- Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Tokyo 190-0182, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
The lumen of the gastrointestinal (GI) tract is home to an enormous quantity of different bacterial species, our microbiota, that thrive in an often symbiotic relationship with the host. Given that the healthy host must regulate contact between the microbiota and its immune system to avoid overwhelming systemic immune activation, humans have evolved several mechanisms to attenuate systemic microbial translocation (MT) and its consequences. However, several diseases are associated with the failure of one or more of these mechanisms, with consequent immune activation and deleterious effects on health. Here, we discuss the mechanisms underlying MT, diseases associated with MT, and therapeutic interventions that aim to decrease it.
Collapse
Affiliation(s)
- Jason M Brenchley
- Program in Barrier Immunity and Repair and Immunopathogenesis Unit, Lab of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA.
| | | |
Collapse
|
229
|
Hamer HM, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol Gastrointest Liver Physiol 2012; 302:G1-9. [PMID: 22016433 PMCID: PMC3345969 DOI: 10.1152/ajpgi.00048.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a functional analysis of the microbiota. In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized. To analyze colonic microbial metabolites, the most conventional way is by application of a hypothesis-driven targeted approach, through quantification of selected metabolites from carbohydrate (e.g., short-chain fatty acids) and protein fermentation (e.g., p-cresol, phenol, ammonia, or H(2)S), secondary bile acids, or colonic enzymes. The application of stable isotope-labeled substrates can provide an elegant solution to study these metabolic pathways in vivo. On the other hand, a top-down approach can be followed by applying metabolite fingerprinting techniques based on (1)H-NMR or mass spectrometric analysis. Quantification of known metabolites and characterization of metabolite patterns in urine, breath, plasma, and fecal samples can reveal new pathways and give insight into physiological regulatory processes of the colonic microbiota. In addition, specific metabolic profiles can function as a diagnostic tool for the identification of several gastrointestinal diseases, such as ulcerative colitis and Crohn's disease. Nevertheless, future research will have to evaluate the relevance of associations between metabolites and different disease states.
Collapse
Affiliation(s)
- Henrike M. Hamer
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Vicky De Preter
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karen Windey
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
230
|
The mediating effect of microbial colonization on the effect of cesarean section delivery. J Allergy Clin Immunol 2011; 129:584-5; author reply 585-6. [PMID: 22206773 DOI: 10.1016/j.jaci.2011.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/23/2011] [Indexed: 11/21/2022]
|
231
|
Mulder IE, Schmidt B, Lewis M, Delday M, Stokes CR, Bailey M, Aminov RI, Gill BP, Pluske JR, Mayer CD, Kelly D. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS One 2011; 6:e28279. [PMID: 22216092 PMCID: PMC3245219 DOI: 10.1371/journal.pone.0028279] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/04/2011] [Indexed: 12/12/2022] Open
Abstract
Background Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. Methodology/Principal Findings Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolator-reared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. Conclusions/Significance Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.
Collapse
Affiliation(s)
- Imke E. Mulder
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Bettina Schmidt
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Marie Lewis
- Veterinary Pathology, Infection & Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Margaret Delday
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Christopher R. Stokes
- Veterinary Pathology, Infection & Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Veterinary Pathology, Infection & Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Rustam I. Aminov
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Bhupinder P. Gill
- Agricultural and Horticultural Development Board, Milton Keynes, United Kingdom
| | - John R. Pluske
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Claus-Dieter Mayer
- Biomathematics & Statistics Scotland, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Denise Kelly
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
232
|
Festi D, Schiumerini R, Birtolo C, Marzi L, Montrone L, Scaioli E, Di Biase AR, Colecchia A. Gut microbiota and its pathophysiology in disease paradigms. Dig Dis 2011; 29:518-24. [PMID: 22179206 DOI: 10.1159/000332975] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The gut flora carries out important functions for human health, although most of them are still unknown, and an alteration of any of them, due to a condition of dysbiosis, can lead to relevant pathological implications. Commensal bacteria in the gut are essential for the preservation of the integrity of the mucosal barrier function and an alteration in the anatomic functional integrity of this barrier has been implicated in the pathophysiologic process of different diseases. The gut microflora plays a role in modulating the intestinal immune system; in fact, it is essential for the maturation of gut-associated lymphatic tissue, the secretion of IgA and the production of antimicrobial peptides. The enteric flora represents a potent bioreactor which controls several metabolic functions, even if most of them are still unknown. The main metabolic functions are represented by the fermentation of indigestible food substances into simple sugars, absorbable nutrients, and short-chain fatty acids. Furthermore, the gut microbiota exerts important trophic and developmental functions on the intestinal mucosa. This overview focuses briefly on the physiological role of the gut microbiota in maintaining a healthy state and the potential role played by disturbances of both the function and composition of the gut microbiota in determining important pathological conditions, such as irritable bowel syndrome, inflammatory bowel disease, metabolic syndrome, obesity, and cancer.
Collapse
Affiliation(s)
- Davide Festi
- Department of Clinical Medicine, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Gigante G, Tortora A, Ianiro G, Ojetti V, Purchiaroni F, Campanale M, Cesario V, Scarpellini E, Gasbarrini A. Role of gut microbiota in food tolerance and allergies. Dig Dis 2011; 29:540-9. [PMID: 22179209 DOI: 10.1159/000332977] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alterations of commensal flora may cause various gastrointestinal and extraintestinal diseases, including food intolerances and food allergies. According to the 'microflora hypothesis', alterations in the composition of gut microbiota in industrialized countries have disturbed the mechanisms of mucosal immune tolerance. Over the past few years several studies have looked for a role for probiotics in the treatment of food allergies with promising results.
Collapse
Affiliation(s)
- Giovanni Gigante
- Internal Medicine Department, Catholic University of Sacred Heart, Gemelli Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Magnus MC, Håberg SE, Stigum H, Nafstad P, London SJ, Vangen S, Nystad W. Delivery by Cesarean section and early childhood respiratory symptoms and disorders: the Norwegian mother and child cohort study. Am J Epidemiol 2011; 174:1275-85. [PMID: 22038100 DOI: 10.1093/aje/kwr242] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies have indicated that children delivered by cesarean section are at an increased risk of developing wheezing and asthma. This could be the result of an altered immune system development due to delayed gut colonization or of increased neonatal respiratory morbidity. The authors examined the associations between delivery by cesarean section and the development of wheezing, asthma, and recurrent lower respiratory tract infections in children up to 36 months of age among 37,171 children in the Norwegian Mother and Child Cohort Study. Generalized linear models were used in the multivariable analysis. Children delivered by cesarean section had an increased likelihood of current asthma at 36 months of age (relative risk = 1.17, 95% confidence interval: 1.03, 1.32), and the association was stronger among children of nonatopic mothers (relative risk = 1.33, 95% confidence interval: 1.12, 1.58). No increased risk of wheezing or recurrent lower respiratory tract infections was seen among children delivered by cesarean section. Findings were similar among children delivered by acute and elective cesarean section. In conclusion, children delivered by cesarean section may have an increased risk of current asthma at 36 months, but residual confounding cannot be excluded. In future prospective studies, investigators should reexamine this association in different age groups.
Collapse
Affiliation(s)
- Maria C Magnus
- Department of Chronic Diseases, Division of Epidemiology, Norwegian Institute of Public Health, Oslo.
| | | | | | | | | | | | | |
Collapse
|
235
|
Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P. Cross-sectional and longitudinal comparisons of the predominant fecal microbiota compositions of a group of pediatric patients with cystic fibrosis and their healthy siblings. Appl Environ Microbiol 2011; 77:8015-24. [PMID: 21926193 PMCID: PMC3208981 DOI: 10.1128/aem.05933-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022] Open
Abstract
Although only poorly documented, it can be assumed that intensive antibiotic treatments of chronic lung infections in patients with cystic fibrosis (CF) also affect the diversity and metabolic functioning of the gastrointestinal microbiota and potentially lead to a state of dysbiosis. A better knowledge of the differences in gut microbiota composition and stability between patients with CF and healthy subjects could lead to optimization of current antibiotic therapies and/or development of add-on therapies. Using conventional culturing and population fingerprinting by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA amplicons, we compared the predominant fecal microbiota of 21 patients with CF and 24 healthy siblings in a cross-sectional study. General medium counts, as well as counts on media specific for lactic acid bacteria, clostridia, Bifidobacterium spp., Veillonella spp., and Bacteroides-Prevotella spp., were consistently higher in sibling samples than in CF samples, whereas the reverse was found for enterobacterial counts. DGGE fingerprinting uncovered large intersubject variations in both study groups. On the other hand, the cross-sectional data indicated that the predominant fecal microbiota of patients and siblings had comparable species richness. In addition, a longitudinal study was performed on 7 or 8 consecutive samples collected over a 2-year period from two patients and their respective siblings. For these samples, DGGE profiling indicated an overall trend toward lower temporal stability and lower species richness in the predominant fecal CF microbiota. The observed compositional and dynamic perturbations provide the first evidence of a general dysbiosis in children with CF compared to their siblings.
Collapse
Affiliation(s)
- Gwen Duytschaever
- Faculty of Sciences, Laboratory of Microbiology, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
236
|
Influencing mucosal homeostasis and immune responsiveness: the impact of nutrition and pharmaceuticals. Eur J Pharmacol 2011; 668 Suppl 1:S101-7. [PMID: 21810416 DOI: 10.1016/j.ejphar.2011.05.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 02/07/2023]
Abstract
Both nutrition and orally ingested drugs pass the gastrointestinal mucosa and may affect the balance between the mucosal immune system and microbial community herein, i.e. affecting composition of the microbial community as well as the status of local immune system that controls microbial composition and maintains mucosal integrity. Numerous ways are known by which the microbial community stimulates mammalian host's immune system and vice versa. The communication between microbiota and immune system is principally mediated by interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various local antigen-presenting cells, resulting in activation or modulation of both innate and adaptive immune responses. Current review describes some of the factors influencing development and maintenance of a proper mucosal/immune balance, with special attention to Toll like receptor signaling and regulatory T cell development. It further describes examples (antibiotic use, HIV and asthma will be discussed) showing that disruption of the balance can be linked to immune function failure. The therapeutic potential of nutritional pharmacology herein is the main focus of discussion.
Collapse
|
237
|
Storrø O, Øien T, Langsrud Ø, Rudi K, Dotterud C, Johnsen R. Temporal variations in early gut microbial colonization are associated with allergen-specific immunoglobulin E but not atopic eczema at 2 years of age. Clin Exp Allergy 2011; 41:1545-54. [DOI: 10.1111/j.1365-2222.2011.03817.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
238
|
Thompson-Chagoyan OC, Fallani M, Maldonado J, Vieites JM, Khanna S, Edwards C, Doré J, Gil A. Faecal microbiota and short-chain fatty acid levels in faeces from infants with cow's milk protein allergy. Int Arch Allergy Immunol 2011; 156:325-32. [PMID: 21720179 DOI: 10.1159/000323893] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/22/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The present study was designed to compare the faecal microbiota and concentrations of faecal short-chain fatty acid and ammonia between healthy and cow's milk protein allergic (CMPA) infants. METHODS The population comprised 92 infants aged 2-12 months who were nonallergic (n = 46) or diagnosed as having CMPA (n = 46). Faecal samples were analyzed by fluorescent in situ hybridization and flow cytometry, using a panel of 10 rRNA targeted group- and species-specific oligonucleotide probes. Acetic, propionic, butyric, isocaproic and branched-chain short fatty acids (BCSFA) were measured by gas-liquid chromatography, lactate by enzymatic reaction, and pH and ammonia levels were determined. RESULTS CMPA infant faeces had significantly higher proportions of the Clostridium coccoides group and Atopobium cluster and a higher sum of the proportions of the different bacterial groups in comparison to healthy infant faeces. Faecal pH and ammonia did not significantly differ between CMPA and healthy infants. Faeces concentrations and percentages of butyric acid and BCSFA were higher in CMPA infants than in healthy infants. CONCLUSIONS The findings clearly set a link between a dysbiosis in gut microbiota composition and the pathogenesis of CMPA. No single species or genus appeared to play an essential role, but dysbiosis led to biomarkers of CMPA among bacterial fermentation products.
Collapse
Affiliation(s)
- Oscar C Thompson-Chagoyan
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
Incidences of allergic disease have recently increased worldwide. Allergen-specific immunotherapy (SIT) has long been a controversial treatment for allergic diseases. Although beneficial effects on clinically relevant outcomes have been demonstrated in clinical trials by subcutaneous immunotherapy (SCIT), there remains a risk of severe and sometimes fatal anaphylaxis. Mucosal immunotherapy is one advantageous choice because of its non-injection routes of administration and lower side-effect profile. This study reviews recent progress in mucosal immunotherapy for allergic diseases. Administration routes, antigen quality and quantity, and adjuvants used are major considerations in this field. Also, direct uses of unique probiotics, or specific cytokines, have been discussed. Furthermore, some researchers have reported new therapeutic ideas that combine two or more strategies. The most important strategy for development of mucosal therapies for allergic diseases is the improvement of antigen formulation, which includes continuous searching for efficient adjuvants, collecting more information about dominant T-cell epitopes of allergens, and having the proper combination of each. In clinics, when compared to other mucosal routes, sublingual immunotherapy (SLIT) is a preferred choice for therapeutic administration, although local and systemic side effects have been reported. Additionally, not every allergen has the same beneficial effect. Further studies are needed to determine the benefits of mucosal immunotherapy for different allergic diseases after comparison of the different administration routes in children and adults. Data collected from large, well-designed, double-blind, placebo-controlled, and randomized trials, with post-treatment follow-up, can provide robust substantiation of current evidence.
Collapse
|
240
|
Waligora-Dupriet A, Campeotto F, Romero K, Mangin I, Rouzaud G, Ménard O, Suau A, Soulaines P, Nicolis I, Kapel N, Dupont C, Butel M. Diversity of gut Bifidobacterium species is not altered between allergic and non-allergic French infants. Anaerobe 2011; 17:91-6. [DOI: 10.1016/j.anaerobe.2011.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/14/2011] [Indexed: 12/11/2022]
|
241
|
Abstract
The role of microorganisms in the gastrointestinal tract has undergone significant modification in the past few decades with new observations from clinical, epidemiologic, and basic science research. We now know that the perception of these gut microbes as pathogens or even as commensals is somewhat outdated. It is becoming increasingly clear that the gut microbiome plays an important role in a host of activities including digestion, protection from potentially pathogenic organisms, and the regulation and development of the host immune system. The complex interactions between microbes and host combined with recent clinical observations and epidemiologic trends may point to the convergence of two well-supported (though imperfect) hypotheses: the "hygiene hypothesis" and the "fetal programming hypothesis." We are beginning to understand that exposure to microbes before conception, during gestation, and in the neonatal period have profound effects on the developing immune system. Recent observations from a variety of fields help support the expansion of the "fetal programming hypothesis" to a host-microbe corollary that microbe-host interactions at critical windows influence the future immune phenotype, the maintenance of immune health, and the development of immune-mediated disease.
Collapse
Affiliation(s)
- Jess L Kaplan
- Department of Pediatrics and Mucosal Immunology Laboratory, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
242
|
Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145:745-57. [PMID: 21565393 PMCID: PMC3140910 DOI: 10.1016/j.cell.2011.04.022] [Citation(s) in RCA: 1556] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/20/2011] [Accepted: 04/22/2011] [Indexed: 02/07/2023]
Abstract
Inflammasomes are multiprotein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here, we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of the cytokine, CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1, and IL-18, may constitute a predisposing or initiating event in some cases of human IBD.
Collapse
Affiliation(s)
- Eran Elinav
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Weiss ST. Bacterial components plus vitamin D: the ultimate solution to the asthma (autoimmune disease) epidemic? J Allergy Clin Immunol 2011; 127:1128-30. [PMID: 21411129 PMCID: PMC3085556 DOI: 10.1016/j.jaci.2011.02.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023]
|
244
|
Vael C, Vanheirstraeten L, Desager KN, Goossens H. Denaturing gradient gel electrophoresis of neonatal intestinal microbiota in relation to the development of asthma. BMC Microbiol 2011; 11:68. [PMID: 21477358 PMCID: PMC3079593 DOI: 10.1186/1471-2180-11-68] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extended 'hygiene hypothesis' suggests that the initial composition of the infant gut microbiota is a key determinant in the development of atopic disease. Several studies have demonstrated that the microbiota of allergic and non-allergic infants are different even before the development of symptoms, with a critical time window during the first 6 months of life. The aim of the study was to investigate the association between early intestinal colonisation and the development of asthma in the first 3 years of life using DGGE (denaturing gradient gel electrophoresis). METHODS In a prospective birth cohort, 110 children were classified according to the API (Asthma Predictive Index). A positive index included wheezing during the first three years of life combined with eczema in the child in the first years of life or with a parental history of asthma. A fecal sample was taken at the age of 3 weeks and analysed with DGGE using universal and genus specific primers. RESULTS The Asthma Predictive Index was positive in 24/110 (22%) of the children. Using universal V3 primers a band corresponding to a Clostridum coccoides XIVa species was significantly associated with a positive API. A Bacteroides fragilis subgroup band was also significantly associated with a positive API. A final DGGE model, including both bands, allowed correct classification of 73% (80/110) of the cases. CONCLUSION Fecal colonisation at age 3 weeks with either a Bacteroides fragilis subgroup or a Clostridium coccoides subcluster XIVa species is an early indicator of possible asthma later in life. These findings need to be confirmed in a new longitudinal follow-up study.
Collapse
Affiliation(s)
- Carl Vael
- Department of Microbiology, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
245
|
D'Incà R, Barollo M, Scarpa M, Grillo AR, Brun P, Vettorato MG, Castagliuolo I, Sturniolo GC. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig Dis Sci 2011; 56:1178-87. [PMID: 20737210 DOI: 10.1007/s10620-010-1384-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 07/29/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND An imbalance in gut microbiota seems to contribute to the development of chronic inflammatory disorders of the gastrointestinal tract, such as ulcerative colitis (UC). Although it has been suggested that probiotic supplementation is an effective approach to colitis, its effects on intestinal flora and on mucosal cytokine balance have never been explored. AIM To evaluate the effect of Lactobacillus casei (L. casei) DG, a probiotic strain, on colonic-associated microbiota, mucosal cytokine balance, and toll-like receptor (TLR) expression. METHODS Twenty-six patients with mild left-sided UC were randomly allocated to one of three groups for an 8-week treatment period: the first group of 7 patients received oral 5-aminosalicylic acid (5-ASA) alone, the second group of 8 patients received oral 5-ASA plus oral L. casei DG, and the third group of 11 patients received oral 5-ASA and rectal L. casei DG. Biopsies were collected from the sigmoid region to culture mucosal-associated microbes and to assess cytokine and TLR messenger RNA (mRNA) levels by quantitative real-time polymerase chain reaction (RT-PCR). RESULTS 5-ASA alone or together with oral L. casei DG failed to affect colonic flora and TLR expression in a significant manner, but when coupled with rectally administered L. casei DG, it modified colonic microbiota by increasing Lactobacillus spp. and reducing Enterobacteriaceae. It also significantly reduced TLR-4 and interleukin (IL)-1β mRNA levels and significantly increased mucosal IL-10. CONCLUSIONS Manipulation of mucosal microbiota by L. casei DG and its effects on the mucosal immune system seem to be required to mediate the beneficial activities of probiotics in UC patients.
Collapse
Affiliation(s)
- Renata D'Incà
- Department of Surgical and Gastroenterological Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond) 2011; 35:522-9. [PMID: 21386800 DOI: 10.1038/ijo.2011.27] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate whether delivery mode (vaginal versus by caesarean section), maternal pre-pregnancy body mass index (BMI) and early exposure to antibiotics (<6 months of age) influence child's risk of overweight at age 7 years, hence supporting the hypotheses that environmental factors influencing the establishment and diversity of the gut microbiota are associated with later risk of overweight. DESIGN Longitudinal, prospective study with measure of exposures in infancy and follow-up at age 7 years. METHODS A total of 28 354 mother-child dyads from the Danish National Birth Cohort, with information on maternal pre-pregnancy BMI, delivery mode and antibiotic administration in infancy, were assessed. Logistic regression analyses were performed with childhood height and weight at the 7-year follow-up as outcome measures. RESULTS Delivery mode was not significantly associated with childhood overweight (odds ratio (OR):1.18, 95% confidence interval (CI): 0.95-1.47). Antibiotics during the first 6 months of life led to increased risk of overweight among children of normal weight mothers (OR: 1.54, 95% CI: 1.09-2.17) and a decreased risk of overweight among children of overweight mothers (OR: 0.54, 95% CI: 0.30-0.98). The same tendency was observed among children of obese mothers (OR: 0.85, 95% CI: 0.41-1.76). CONCLUSION The present cohort study revealed that a combination of early exposures, including delivery mode, maternal pre-pregnancy BMI and antibiotics in infancy, influences the risk of overweight in later childhood. This effect may potentially be explained by an impact on establishment and diversity of the microbiota.
Collapse
|
247
|
Sartor RB. Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. Mucosal Immunol 2011; 4:127-32. [PMID: 21248723 DOI: 10.1038/mi.2010.87] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Co-evolution with an extremely complex commensal enteric microbiota has helped shape mammalian mucosal immune responses. A yet incompletely defined subset of intestinal bacteria is required to stimulate chronic, immune-mediated intestinal inflammation, including human Crohn's disease, and intestinal microbiota composition is altered in a characteristic manner by the inflammatory response to create a dysbiotic relationship of protective vs. aggressive bacteria. We pose a number of questions regarding host interactions with the enteric microbiota, including influences of inflammation, host genetics, early environmental exposure, and diet on microbial composition and function, and conversely, the effect of bacterial metabolism, enteric fungi and viruses, and endogenous protective bacterial species on host immune and inflammatory responses. These questions are designed to stimulate research that will promote a better understanding of host-microbial interactions in the intestine and promote targeted novel therapeutic interventions.
Collapse
Affiliation(s)
- R B Sartor
- Department of Medicine/Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
248
|
Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol 2011; 76:301-10. [PMID: 21261668 DOI: 10.1111/j.1574-6941.2011.01058.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study evaluated the fecal microbiota of 12 healthy pet dogs and 12 pet cats using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing. A total of 120,406 pyrosequencing reads for bacteria (mean 5017) and 5359 sequences (one pool each for dogs and cats) for fungi were analyzed. Additionally, group-specific 16S rRNA gene clone libraries for Bifidobacterium spp. and lactic acid-producing bacteria (LAB) were constructed. The most abundant bacterial phylum was Firmicutes, followed by Bacteroidetes in dogs and Actinobacteria in cats. The most prevalent bacterial class in dogs and cats was Clostridia, dominated by the genera Clostridium (clusters XIVa and XI) and Ruminococcus. At the genus level, 85 operational taxonomic units (OTUs) were identified in dogs and 113 OTUs in cats. Seventeen LAB and eight Bifidobacterium spp. were detected in canine feces. Ascomycota was the only fungal phylum detected in cats, while Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota were identified in dogs. Nacaseomyces was the most abundant fungal genus in dogs; Saccharomyces and Aspergillus were predominant in cats. At the genus level, 33 different fungal OTUs were observed in dogs and 17 OTUs in cats. In conclusion, this study revealed a highly diverse bacterial and fungal microbiota in canine and feline feces.
Collapse
Affiliation(s)
- Stefanie Handl
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
249
|
Rigato PO, Fusaro AE, Victor JR, Sato MN. Maternal immunization to modulate the development of allergic response and pathogen infections. Immunotherapy 2011; 1:141-56. [PMID: 20635979 DOI: 10.2217/1750743x.1.1.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews recent experimental approaches of preventive strategies regarding allergy and infections by pathogens, particularly in early childhood, by targeting maternal immunomodulation. Basic research is essential to understand maternal vaccination as a strategy to control allergic disease and bacterial and viral infections; thus, providing support for future translational research. The environmental stimuli and host genetic factors, along with maternal influences in early life when immune systems are developing and during postnatal life, are essential for the decision between tolerance induction or allergen sensitization. Maternal immunomodulation strategies should serve as a challenge when attempting to halt the spread of allergy responses and viral infections, until the innate and adaptive arms of the immune system of the neonates are competent.
Collapse
Affiliation(s)
- Paula Ordonhez Rigato
- Laboratório de Dermatologia e Imunodeficiências - LIM56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical - Prédio II, Av Dr Enéas de Carvalho Aguiar, 500, 3 masculine andar, 05403-05000, São Paulo, Brazil
| | | | | | | |
Collapse
|
250
|
Trosvik P, Rudi K, Straetkvern KO, Jakobsen KS, Naes T, Stenseth NC. Web of ecological interactions in an experimental gut microbiota. Environ Microbiol 2011; 12:2677-87. [PMID: 20482738 DOI: 10.1111/j.1462-2920.2010.02236.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The dynamics of all ecosystems are dictated by intrinsic, density-dependent mechanisms and by density-independent environmental forcing. In spite of the importance of the gastrointestinal microbiota in health and disease, the ecology of this system remains largely unknown. Here, we take an ecological approach to gut microbial community analysis, with statistical modelling of time series data from chemostats. This approach removes effects of host forcing, allowing us to describe a network of intrinsic interactions determining the dynamic structure of an experimental gut microbiota. Surprisingly, the main colonization pattern in this simplified model system resembled that of the human infant gut, suggesting a potentially important role of density-dependent interactions in the early gut microbiota. Knowledge of ecological structures in microbial systems may provide us with a means of controlling such systems by modifying the strength and nature of interactions among microbes and between the microbes and their environment.
Collapse
Affiliation(s)
- Pål Trosvik
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Oslo N-0316, Norway
| | | | | | | | | | | |
Collapse
|