201
|
Nasrolahi A, Mahmoudi J, Akbarzadeh A, Karimipour M, Sadigh-Eteghad S, Salehi R, Farhoudi M. Neurotrophic factors hold promise for the future of Parkinson's disease treatment: is there a light at the end of the tunnel? Rev Neurosci 2018; 29:475-489. [PMID: 29305570 DOI: 10.1515/revneuro-2017-0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by a spectrum of clinicopathologic signs and a complex etiology. PD results from the degeneration of dopaminergic (DAergic) neurons in the substantia nigra. Current therapies for PD are only able to alleviate symptoms without stopping disease progression. In addition, the available therapeutic strategies do not have long-lasting effects. Furthermore, these therapies cause different ranges of adverse side effects. There is great interest in neurotrophic factors (NTFs) due to their ability to promote the survival of different neural cells. These factors are divided into four families: neurotrophins, neurokines, the glial cell line-derived NTF family of ligands, and the newly recognized cerebral DA NTF/mesencephalic astrocyte-derived NTF family. The protective and therapeutic effects of these factors on DAergic neurons make them suitable for the prevention of progressive cell loss in PD. Based on the above premise, we focus on the protective effects of NTFs, especially CDNF and MANF, on nigrostriatal DAergic neurons in PD.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Mohammad Karimipour
- Neuroscience Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran.,Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran.,Neuroscience Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| |
Collapse
|
202
|
Sison SL, Vermilyea SC, Emborg ME, Ebert AD. Using Patient-Derived Induced Pluripotent Stem Cells to Identify Parkinson's Disease-Relevant Phenotypes. Curr Neurol Neurosci Rep 2018; 18:84. [PMID: 30284665 DOI: 10.1007/s11910-018-0893-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting older individuals. The specific cause underlying dopaminergic (DA) neuron loss in the substantia nigra, a pathological hallmark of PD, remains elusive. Here, we highlight peer-reviewed reports using induced pluripotent stem cells (iPSCs) to model PD in vitro and discuss the potential disease-relevant phenotypes that may lead to a better understanding of PD etiology. Benefits of iPSCs are that they retain the genetic background of the donor individual and can be differentiated into specialized neurons to facilitate disease modeling. RECENT FINDINGS Mitochondrial dysfunction, oxidative stress, ER stress, and alpha-synuclein accumulation are common phenotypes observed in PD iPSC-derived neurons. New culturing technologies, such as directed reprogramming and midbrain organoids, offer innovative ways of investigating intraneuronal mechanisms of PD pathology. PD patient-derived iPSCs are an evolving resource to understand PD pathology and identify therapeutic targets.
Collapse
Affiliation(s)
- S L Sison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, BSB 409, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - S C Vermilyea
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - M E Emborg
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - A D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, BSB 409, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
203
|
Pan Y, Nicolazzo JA. Impact of aging, Alzheimer's disease and Parkinson's disease on the blood-brain barrier transport of therapeutics. Adv Drug Deliv Rev 2018; 135:62-74. [PMID: 29665383 DOI: 10.1016/j.addr.2018.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/17/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
Abstract
Older people are at a greater risk of medicine-induced toxicity resulting from either increased drug sensitivity or age-related pharmacokinetic changes. The scenario is further complicated with the two most prevalent age-related neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD). With aging, AD and PD, there is growing evidence of altered structure and function of the blood-brain barrier (BBB), including modifications to tight junctions and efflux transporters, such as P-glycoprotein. The subsequent impact on CNS drug exposure and risk of neurotoxicity from systemically-acting medicines is less well characterized. The purpose of this review, therefore, is to provide an overview of the multiple changes that occur to the BBB as a result of aging, AD and PD, and the impact that such changes have on CNS exposure of drugs, based on studies conducted in aged rodents or rodent models of disease, and in elderly people with and without AD or PD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
204
|
Okuzumi A, Kurosawa M, Hatano T, Takanashi M, Nojiri S, Fukuhara T, Yamanaka T, Miyazaki H, Yoshinaga S, Furukawa Y, Shimogori T, Hattori N, Nukina N. Rapid dissemination of alpha-synuclein seeds through neural circuits in an in-vivo prion-like seeding experiment. Acta Neuropathol Commun 2018; 6:96. [PMID: 30231908 PMCID: PMC6145187 DOI: 10.1186/s40478-018-0587-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 02/26/2023] Open
Abstract
Accumulating evidence suggests that the lesions of Parkinson's disease (PD) expand due to transneuronal spreading of fibrils composed of misfolded alpha-synuclein (a-syn), over the course of 5-10 years. However, the precise mechanisms and the processes underlying the spread of these fibril seeds have not been clarified in vivo. Here, we investigated the speed of a-syn transmission, which has not been a focus of previous a-syn transmission experiments, and whether a-syn pathologies spread in a neural circuit-dependent manner in the mouse brain. We injected a-syn preformed fibrils (PFFs), which are seeds for the propagation of a-syn deposits, either before or after callosotomy, to disconnect bilateral hemispheric connections. In mice that underwent callosotomy before the injection, the propagation of a-syn pathology to the contralateral hemisphere was clearly reduced. In contrast, mice that underwent callosotomy 24 h after a-syn PFFs injection showed a-syn pathology similar to that seen in mice without callosotomy. These results suggest that a-syn seeds are rapidly disseminated through neuronal circuits immediately after seed injection, in a prion-like seeding experiment in vivo, although it is believed that clinical a-syn pathologies take years to spread throughout the brain. In addition, we found that botulinum toxin B blocked the transsynaptic transmission of a-syn seeds by specifically inactivating the synaptic vesicle fusion machinery. This study offers a novel concept regarding a-syn propagation, based on the Braak hypothesis, and also cautions that experimental transmission systems may be examining a unique type of transmission, which differs from the clinical disease state.
Collapse
Affiliation(s)
- Ayami Okuzumi
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masaru Kurosawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masashi Takanashi
- Department of Neurology Juntendo University Koshigaya Hospital, 560 Fukuroyama, Koshigaya city, Saitama, 343-0032, Japan
| | - Shuuko Nojiri
- Medical Technology Innovation Center, Clinical Research and Trial Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Haruko Miyazaki
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Saki Yoshinaga
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, 223-8522, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Nobuyuki Nukina
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan.
| |
Collapse
|
205
|
Taylor C, Meisl G, Horrocks MH, Zetterberg H, Knowles TPJ, Klenerman D. Extrinsic Amyloid-Binding Dyes for Detection of Individual Protein Aggregates in Solution. Anal Chem 2018; 90:10385-10393. [PMID: 30059210 PMCID: PMC6127805 DOI: 10.1021/acs.analchem.8b02226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/30/2018] [Indexed: 01/23/2023]
Abstract
Protein aggregation is a key molecular feature underlying a wide array of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. To understand protein aggregation in molecular detail, it is crucial to be able to characterize the array of heterogeneous aggregates that are formed during the aggregation process. We present here a high-throughput method to detect single protein aggregates, in solution, from a label-free aggregation reaction, and we demonstrate the approach with the protein associated with Parkinson's disease, α-synuclein. The method combines single-molecule confocal microscopy with a range of amyloid-binding extrinsic dyes, including thioflavin T and pentameric formylthiophene acetic acid, and we show that we can observe aggregates at low picomolar concentrations. The detection of individual aggregates allows us to quantify their numbers. Furthermore, we show that this approach also allows us to gain structural insights from the emission intensity of the extrinsic dyes that are bound to aggregates. By analyzing the time evolution of the aggregate populations on a single-molecule level, we then estimate the fragmentation rate of aggregates, a key process that underlies the multiplication of pathological aggregates. We additionally demonstrate that the method permits the detection of these aggregates in biological samples. The capability to detect individual protein aggregates in solution opens up a range of new applications, including exploiting the potential of this method for high-throughput screening of human biofluids for disease diagnosis and early detection.
Collapse
Affiliation(s)
- Christopher
G. Taylor
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Georg Meisl
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Mathew H. Horrocks
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
- U.K.
Dementia Research Institute, University
of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Henrik Zetterberg
- Clinical
Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry,
Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal 413 45, Sweden
- Sobell
Department of Motor Neuroscience and Movement Disorders, UCL Institute
of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- U.K.
Dementia Research Institute, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
206
|
Sonntag KC, Song B, Lee N, Jung JH, Cha Y, Leblanc P, Neff C, Kong SW, Carter BS, Schweitzer J, Kim KS. Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Prog Neurobiol 2018; 168:1-20. [PMID: 29653250 PMCID: PMC6077089 DOI: 10.1016/j.pneurobio.2018.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects about 0.3% of the general population. As the population in the developed world ages, this creates an escalating burden on society both in economic terms and in quality of life for these patients and for the families that support them. Although currently available pharmacological or surgical treatments may significantly improve the quality of life of many patients with PD, these are symptomatic treatments that do not slow or stop the progressive course of the disease. Because motor impairments in PD largely result from loss of midbrain dopamine neurons in the substantia nigra pars compacta, PD has long been considered to be one of the most promising target diseases for cell-based therapy. Indeed, numerous clinical and preclinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells as a standardized therapeutic regimen has been fraught with fundamental ethical, practical, and clinical issues, prompting scientists to explore alternative cell sources. Based on groundbreaking establishments of human embryonic stem cells and induced pluripotent stem cells, these human pluripotent stem cells have been the subject of extensive research, leading to tremendous advancement in our understanding of these novel classes of stem cells and promising great potential for regenerative medicine. In this review, we discuss the prospects and challenges of human pluripotent stem cell-based cell therapy for PD.
Collapse
Affiliation(s)
- Kai-C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Laboratory for Translational Research on Neurodegeneration, 115 Mill Street, Belmont, MA, 02478, United States; Program for Neuropsychiatric Research, 115 Mill Street, Belmont, MA, 02478, United States
| | - Bin Song
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Nayeon Lee
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Jin Hyuk Jung
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Young Cha
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Pierre Leblanc
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Carolyn Neff
- Kaiser Permanente Medical Group, Irvine, CA, 92618, United States
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, United States; Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States
| | - Jeffrey Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States.
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States.
| |
Collapse
|
207
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
208
|
Rawat A, Langen R, Varkey J. Membranes as modulators of amyloid protein misfolding and target of toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1863-1875. [PMID: 29702073 DOI: 10.1016/j.bbamem.2018.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
Abnormal protein aggregation is a hallmark of various human diseases. α-Synuclein, a protein implicated in Parkinson's disease, is found in aggregated form within Lewy bodies that are characteristically observed in the brains of PD patients. Similarly, deposits of aggregated human islet amyloid polypeptide (IAPP) are found in the pancreatic islets in individuals with type 2 diabetes mellitus. Significant number of studies have focused on how monomeric, disaggregated proteins transition into various amyloid structures leading to identification of a vast number of aggregation promoting molecules and processes over the years. Inasmuch as these factors likely enhance the formation of toxic, misfolded species, they might act as risk factors in disease. Cellular membranes, and particularly certain lipids, are considered to be among the major players for aggregation of α-synuclein and IAPP, and membranes might also be the target of toxicity. Past studies have utilized an array of biophysical tools, both in vitro and in vivo, to expound the membrane-mediated aggregation. Here, we focus on membrane interaction of α-synuclein and IAPP, and how various kinds of membranes catalyze or modulate the aggregation of these proteins and how, in turn, these proteins disrupt membrane integrity, both in vitro and in vivo. The membrane interaction and subsequent aggregation has been briefly contrasted to aggregation of α-synuclein and IAPP in solution. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Anoop Rawat
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| | - Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
209
|
Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ, Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA, Manjithaya R. Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRα Is Neuroprotective. Front Mol Neurosci 2018; 11:109. [PMID: 29686608 PMCID: PMC5900053 DOI: 10.3389/fnmol.2018.00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Mechanistic insights into aggrephagy, a selective basal autophagy process to clear misfolded protein aggregates, are lacking. Here, we report and describe the role of Estrogen Related Receptor α (ERRα, HUGO Gene Nomenclature ESRRA), new molecular player of aggrephagy, in keeping autophagy flux in check by inhibiting autophagosome formation. A screen for small molecule modulators for aggrephagy identified ERRα inverse agonist XCT 790, that cleared α-synuclein aggregates in an autophagy dependent, but mammalian target of rapamycin (MTOR) independent manner. XCT 790 modulates autophagosome formation in an ERRα dependent manner as validated by siRNA mediated knockdown and over expression approaches. We show that, in a basal state, ERRα is localized on to the autophagosomes and upon autophagy induction by XCT 790, this localization is lost and is accompanied with an increase in autophagosome biogenesis. In a preclinical mouse model of Parkinson's disease (PD), XCT 790 exerted neuroprotective effects in the dopaminergic neurons of nigra by inducing autophagy to clear toxic protein aggregates and, in addition, ameliorated motor co-ordination deficits. Using a chemical biology approach, we unrevealed the role of ERRα in regulating autophagy and can be therapeutic target for neurodegeneration.
Collapse
Affiliation(s)
- S. N. Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Aravinda K. Chavalmane
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Malini Pillai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Veena Ammanathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - D. J. Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Shashank Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Phalguni A. Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
210
|
de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical Considerations. J Alzheimers Dis 2018; 57:353-371. [PMID: 28211814 DOI: 10.3233/jad-161266] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing evidence that chronic brain hypoperfusion plays a central role in the development of Alzheimer's disease (AD) long before dyscognitive symptoms or amyloid-β accumulation in the brain appear. This commentary proposes that dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD) may also develop from chronic brain hypoperfusion following a similar but not identical neurometabolic breakdown as AD. The argument to support this conclusion is that chronic brain hypoperfusion, which is found at the early stages of the three dementias reviewed here, will reduce oxygen delivery and lower oxidative phosphorylation promoting a steady decline in the synthesis of the cell energy fuel adenosine triphosphate (ATP). This process is known to lead to oxidative stress. Virtually all neurodegenerative diseases, including FTD, DLB, and CJD, are characterized by oxidative stress that promotes inclusion bodies which differ in structure, location, and origin, as well as which neurological disorder they typify. Inclusion bodies have one thing in common; they are known to diminish autophagic activity, the protective intracellular degradative process that removes malformed proteins, protein aggregates, and damaged subcellular organelles that can disrupt neuronal homeostasis. Neurons are dependent on autophagy for their normal function and survival. When autophagic activity is diminished or impaired in neurons, high levels of unfolded or misfolded proteins overwhelm and downregulate the neuroprotective activity of unfolded protein response which is unable to get rid of dysfunctional organelles such as damaged mitochondria and malformed proteins at the synapse. The endpoint of this neuropathologic process results in damaged synapses, impaired neurotransmission, cognitive decline, and dementia.
Collapse
|
211
|
Cox D, Whiten DR, Brown JWP, Horrocks MH, San Gil R, Dobson CM, Klenerman D, van Oijen AM, Ecroyd H. The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity. J Biol Chem 2018; 293:4486-4497. [PMID: 29382725 DOI: 10.1074/jbc.m117.813865] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/21/2018] [Indexed: 11/06/2022] Open
Abstract
Proteostasis, or protein homeostasis, encompasses the maintenance of the conformational and functional integrity of the proteome and involves an integrated network of cellular pathways. Molecular chaperones, such as the small heat shock proteins (sHsps), are key elements of the proteostasis network that have crucial roles in inhibiting the aggregation of misfolded proteins. Failure of the proteostasis network can lead to the accumulation of misfolded proteins into intracellular and extracellular deposits. Deposits containing fibrillar forms of α-synuclein (α-syn) are characteristic of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. Here we show that the sHsp Hsp27 (HSPB1) binds to α-syn fibrils, inhibiting fibril growth by preventing elongation. Using total internal reflection fluorescence (TIRF)-based imaging methods, we show that Hsp27 binds along the surface of α-syn fibrils, decreasing their hydrophobicity. Binding of Hsp27 also inhibits cytotoxicity of α-syn fibrils. Our results demonstrate that the ability of sHsps, such as Hsp27, to bind fibrils represents an important mechanism through which they may mitigate cellular toxicity associated with aberrant protein aggregation. Fibril binding may represent a generic mechanism by which chaperone-active sHsps interact with aggregation-prone proteins, highlighting the potential to target sHsp activity to prevent or disrupt the onset and progression of α-syn aggregation associated with α-synucleinopathies.
Collapse
Affiliation(s)
- Dezerae Cox
- From the Illawarra Health and Medical Research Institute and.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Daniel R Whiten
- From the Illawarra Health and Medical Research Institute and.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - James W P Brown
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - Mathew H Horrocks
- From the Illawarra Health and Medical Research Institute and.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - Rebecca San Gil
- From the Illawarra Health and Medical Research Institute and.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, and
| | - Antoine M van Oijen
- From the Illawarra Health and Medical Research Institute and.,School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Heath Ecroyd
- From the Illawarra Health and Medical Research Institute and .,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
212
|
Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 2018; 592:728-742. [PMID: 29281123 DOI: 10.1002/1873-3468.12956] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential organelles within the cell where most ATP is produced through oxidative phosphorylation (OXPHOS). A subset of the genes needed for this process are encoded by the mitochondrial DNA (mtDNA). One consequence of OXPHOS is the production of mitochondrial reactive oxygen species (ROS), whose role in mediating cellular damage, particularly in damaging mtDNA during ageing, has been controversial. There are subsets of neurons that appear to be more sensitive to ROS-induced damage, and mitochondrial dysfunction has been associated with several neurodegenerative disorders. In this review, we will discuss the current knowledge in the field of mtDNA and neurodegeneration, the debate about ROS as a pathological or beneficial contributor to neuronal function, bona fide mtDNA diseases, and insights from mouse models of mtDNA defects affecting the central nervous system.
Collapse
Affiliation(s)
- Nadee Nissanka
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Carlos T Moraes
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
213
|
Bose A, Petsko GA, Eliezer D. Parkinson's Disease and Melanoma: Co-Occurrence and Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2018; 8:385-398. [PMID: 29991141 PMCID: PMC6130416 DOI: 10.3233/jpd-171263] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta, depletion of dopamine in the striatum and the presence of Lewy bodies. Cancer is uncontrolled growth of cells in the body and migration of these cells from their site of origin to other parts of the body. PD and cancer are two opposite diseases, one arising from cell proliferation and the other from cell degeneration. This fundamental difference is consistent with inverse comorbidity between most cancers and neurodegenerative diseases. However, a positive association of PD and melanoma has been reported which has recently become of significant interest. A link between PD and cancer has been supported by many epidemiological studies, most of which show that PD patients have a lower risk of developing most cancers than the general population. However, the mechanisms underlying this epidemiological observation are not known. In this review we focus on epidemiological studies correlating PD and melanoma and the possible mechanisms underlying the co-occurrence of the two diseases. We explore possible explanations for the important observations that more PD patients develop melanoma that would otherwise be expected and vice-versa.
Collapse
Affiliation(s)
- Anindita Bose
- Helen and Robert Appel Alzheimer’s disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gregory A. Petsko
- Helen and Robert Appel Alzheimer’s disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
214
|
Inhibitory effects of curcumin and cyclocurcumin in 1-methyl-4-phenylpyridinium (MPP +) induced neurotoxicity in differentiated PC12 cells. Sci Rep 2017; 7:16977. [PMID: 29209088 PMCID: PMC5717177 DOI: 10.1038/s41598-017-17268-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Development and progression of neurodegenerative diseases like Parkinson’s disease (PD) involve multiple pathways. Thus, effective therapeutic treatments should intervene to address all these pathways simultaneously for greater success. Most of the current pharmacotherapeutic approaches just supplement striatal dopamine. Hence, natural extracts of plants with therapeutic potential have been explored. Curcuminoids belong to one such group of polyphenol which show immense therapeutic effects. Here, we have used intracellular reactive oxygen species (ROS) measurement, and two-photon fluorescence lifetime imaging microscopy (2P-FLIM) of cellular autofluorescent co-enzyme reduced nicotinamide adenine dinucleotide (NADH) to study the inhibitory effects of curcumin and cyclocurcumin in alleviating PD like neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+) in neuronal growth factor (NGF) induced differentiated PC12 cells. Our results showed that both cyclocurcumin and curcumin reduced the level of ROS caused by MPP+ treatment. Moreover, a significant increase in the free, protein-bound, and average NADH fluorescence lifetimes along with a decrease in the relative contribution of free- vs. protein-bound NADH components in curcuminoids treated cells (pretreated with MPP+) were observed compared with those treated with MPP+ only. This study, which indicates that cyclocurcumin offers higher neuronal protection than curcumin, may initiate further studies of these compounds in the cure of neurodegenerative diseases.
Collapse
|
215
|
Azizi SA, Azizi SA. Synucleinopathies in neurodegenerative diseases: Accomplices, an inside job and selective vulnerability. Neurosci Lett 2017; 672:150-152. [PMID: 29217261 DOI: 10.1016/j.neulet.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
Abstract
Pathogenesis of degenerative diseases is complex and multifaceted. The disease phenotypes depend on the location of injury/damage in the brain networks and pathologically are characterized by loss of brain cells. The reason for this loss appears to be an accumulation of misfolded and dysfunctional proteins that trigger apoptotic cell death. The role of alpha-synuclein mutations, its interaction with other proteins and the cellular environment is discussed in the context of selective neuron loss.
Collapse
Affiliation(s)
- S Ausim Azizi
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 10140, United States.
| | - Saara-Anne Azizi
- Pritzker School of Medicine, University of Chicago, Chicago, Il 60637, United States.
| |
Collapse
|
216
|
Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J 2017; 58:190-201. [PMID: 28985333 PMCID: PMC5886328 DOI: 10.1093/ilar/ilx021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease are age-related neurodegenerative disorders characterized by progressive neuronal cell death. Although each disease has particular pathologies and symptoms, accumulated evidence points to similar mechanisms of neurodegeneration, including inflammation, oxidative stress, and protein aggregation. A significant body of research is ongoing to understand how these pathways affect each other and what ultimately triggers the onset of the disease. Experiments in nonhuman primates (NHPs) account for only 5% of all research in animals. Yet the impact of NHP studies for clinical translation is much greater, especially for neurodegenerative disorders, as NHPs have a complex cognitive and motor functions and highly developed neuroanatomy. New NHP models are emerging to better understand pathology and improve the platform in which to test novel therapies. The goal of this report is to review NHP models of AD, HD, and PD in the context of the current understanding of these diseases and their contribution to the development of novel therapies.
Collapse
Affiliation(s)
- Marina E Emborg
- Marina E. Emborg, MD, PhD, is the director of the Preclinical Parkinson’s Research Program at the Wisconsin National Primate Research Center and an associate professor in the department of Medical Physics at the University of Wisconsin in Madison, Wisconsin.
| |
Collapse
|
217
|
Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease. Front Mol Neurosci 2017; 10:352. [PMID: 29163029 PMCID: PMC5671573 DOI: 10.3389/fnmol.2017.00352] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Among the neurodegenerative disorders, Parkinson's disease (PD) ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD). Despite similarities between the characteristics of EOPD and late onset PD (LODP), EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ahmad R. Arshad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Siti A. Sulaiman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Amalia A. Saperi
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| |
Collapse
|
218
|
Zhou ZD, Tan EK. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener 2017; 12:75. [PMID: 29061112 PMCID: PMC5654065 DOI: 10.1186/s13024-017-0218-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
The homeostasis of iron is vital to human health, and iron dyshomeostasis can lead to various disorders. Iron homeostasis is maintained by iron regulatory proteins (IRP1 and IRP2) and the iron-responsive element (IRE) signaling pathway. IRPs can bind to RNA stem-loops containing an IRE in the untranslated region (UTR) to manipulate translation of target mRNA. However, iron can bind to IRPs, leading to the dissociation of IRPs from the IRE and altered translation of target transcripts. Recently an IRE is found in the 5′-UTR of amyloid precursor protein (APP) and α-synuclein (α-Syn) transcripts. The levels of α-Syn, APP and amyloid β-peptide (Aβ) as well as protein aggregation can be down-regulated by IRPs but are up-regulated in the presence of iron accumulation. Therefore, inhibition of the IRE-modulated expression of APP and α-Syn or chelation of iron in patient’s brains has therapeutic significance to human neurodegenerative diseases. Currently, new pre-drug IRE inhibitors with therapeutic effects have been identified and are at different stages of clinical trials for human neurodegenerative diseases. Although some promising drug candidates of chemical IRE inhibitors and iron-chelating agents have been identified and are being validated in clinical trials for neurodegenerative diseases, future studies are expected to further establish the clinical efficacy and safety of IRE inhibitors and iron-chelating agents in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.,Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
219
|
Suárez I, Bodega G, Rubio M, Fernández B. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy. Restor Neurol Neurosci 2017; 35:469-481. [PMID: 28984618 DOI: 10.3233/rnn-170728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. METHODS Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). RESULTS In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. CONCLUSION α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.
Collapse
Affiliation(s)
- Isabel Suárez
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain
| | - Miguel Rubio
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain
| | - Benjamín Fernández
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| |
Collapse
|
220
|
Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay S. Biological networks in Parkinson's disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics 2017; 18:721. [PMID: 28899360 PMCID: PMC5596942 DOI: 10.1186/s12864-017-4098-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/30/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorders in the world. Studying PD from systems biology perspective involving genes and their regulators might provide deeper insights into the complex molecular interactions associated with this disease. RESULT We have studied gene co-expression network obtained from a PD-specific microarray data. The co-expression network identified 11 hub genes, of which eight genes are not previously known to be associated with PD. Further study on the functionality of these eight novel hub genes revealed that these genes play important roles in several neurodegenerative diseases. Furthermore, we have studied the tissue-specific expression and histone modification patterns of the novel hub genes. Most of these genes possess several histone modification sites those are already known to be associated with neurodegenerative diseases. Regulatory network namely mTF-miRNA-gene-gTF involves microRNA Transcription Factor (mTF), microRNA (miRNA), gene and gene Transcription Factor (gTF). Whereas long noncoding RNA (lncRNA) mediated regulatory network involves miRNA, gene, mTF and lncRNA. mTF-miRNA-gene-gTF regulatory network identified a novel feed-forward loop. lncRNA-mediated regulatory network identified novel lncRNAs of PD and revealed the two-way regulatory pattern of PD-specific miRNAs where miRNAs can be regulated by both the TFs and lncRNAs. SNP analysis of the most significant genes of the co-expression network identified 20 SNPs. These SNPs are present in the 3' UTR of known PD genes and are controlled by those miRNAs which are also involved in PD. CONCLUSION Our study identified eight novel hub genes which can be considered as possible candidates for future biomarker identification studies for PD. The two regulatory networks studied in our work provide a detailed overview of the cellular regulatory mechanisms where the non-coding RNAs namely miRNA and lncRNA, can act as epigenetic regulators of PD. SNPs identified in our study can be helpful for identifying PD at an earlier stage. Overall, this study may impart a better comprehension of the complex molecular interactions associated with PD from systems biology perspective.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, P-1/12 C.I.T. Scheme VII M, Kolkata, 700054 India
| | - Debjani Roy
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, P-1/12 C.I.T. Scheme VII M, Kolkata, 700054 India
| | - Malay Bhattacharyya
- Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah, PO 711103 India
| | | |
Collapse
|
221
|
Shah A, Lenka A, Saini J, Wagle S, Naduthota RM, Yadav R, Pal PK, Ingalhalikar M. Altered Brain Wiring in Parkinson's Disease: A Structural Connectome-Based Analysis. Brain Connect 2017; 7:347-356. [DOI: 10.1089/brain.2017.0506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Apurva Shah
- Department of Electronics and Telecommunications, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| | - Abhishek Lenka
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Shivali Wagle
- Department of Electronics and Telecommunications, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| | - Rajini M. Naduthota
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Madhura Ingalhalikar
- Department of Electronics and Telecommunications, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| |
Collapse
|
222
|
Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission systems in Parkinson’s disease. Rev Neurosci 2017; 28:509-536. [DOI: 10.1515/revneuro-2016-0068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
AbstractParkinson’s disease (PD) is histologically characterized by the accumulation of α-synuclein particles, known as Lewy bodies. The second most common neurodegenerative disorder, PD is widely known because of the typical motor manifestations of active tremor, rigidity, and postural instability, while several prodromal non-motor symptoms including REM sleep behavior disorders, depression, autonomic disturbances, and cognitive decline are being more extensively recognized. Motor symptoms most commonly arise from synucleinopathy of nigrostriatal pathway. Glutamatergic, γ-aminobutyric acid (GABA)ergic, cholinergic, serotoninergic, and endocannabinoid neurotransmission systems are not spared from the global cerebral neurodegenerative assault. Wide intrabasal and extrabasal of the basal ganglia provide enough justification to evaluate network circuits disturbance of these neurotransmission systems in PD. In this comprehensive review, English literature in PubMed, Science direct, EMBASE, and Web of Science databases were perused. Characteristics of dopaminergic and non-dopaminergic systems, disturbance of these neurotransmitter systems in the pathophysiology of PD, and their treatment applications are discussed.
Collapse
Affiliation(s)
- Hossein Sanjari Moghaddam
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Student Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Zare-Shahabadi
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rahmani
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| |
Collapse
|
223
|
Madan A, Ray S, Burdick D, Agarwal P. Management of lower urinary tract symptoms in Parkinson's disease in the neurology clinic. Int J Neurosci 2017; 127:1136-1149. [DOI: 10.1080/00207454.2017.1327857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arina Madan
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sudeshna Ray
- Booth Gardner Parkinson's Care Center, Evergreen Neuroscience Institute, Kirkland, WA, USA
| | - Daniel Burdick
- Booth Gardner Parkinson's Care Center, Evergreen Neuroscience Institute, Kirkland, WA, USA
| | - Pinky Agarwal
- Booth Gardner Parkinson's Care Center, Evergreen Neuroscience Institute, Kirkland, WA, USA
| |
Collapse
|
224
|
Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson's Disease. Metabolites 2017; 7:metabo7020022. [PMID: 28538683 PMCID: PMC5487993 DOI: 10.3390/metabo7020022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ “hijacks” the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling.
Collapse
|
225
|
Covell DJ, Robinson JL, Akhtar RS, Grossman M, Weintraub D, Bucklin HM, Pitkin RM, Riddle D, Yousef A, Trojanowski JQ, Lee VMY. Novel conformation-selective alpha-synuclein antibodies raised against different in vitro fibril forms show distinct patterns of Lewy pathology in Parkinson's disease. Neuropathol Appl Neurobiol 2017; 43:604-620. [PMID: 28386933 DOI: 10.1111/nan.12402] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
AIMS The aim of this study was to test the hypothesis that different conformations of misfolded α-synuclein (α-syn) are present in Parkinson's disease (PD) brain. METHODS Using two previously characterized conformations of α-syn fibrils, we generated new conformation-selective α-syn monoclonal antibodies (mAbs). We then interrogated multiple brain regions in a well-characterized autopsy cohort of PD patients (n = 49) with these mAbs, Syn7015 and Syn9029. RESULTS Syn7015 detects Lewy bodies (LBs) and Lewy neurites (LNs) formed by pathological α-syn in all brain regions tested, and is particularly sensitive to LNs and small Lewy dots, inclusions believed to form early in the disease. Further, we observed colocalization between Syn7015 and an early marker of α-syn pathology formation, phospho-Ser129-α-syn, and a lack of extensive colocalization with markers of more mature pathology. In comparison, Syn9029 detects Lewy pathology in all regions examined, but indicates significantly fewer LNs than Syn7015. In addition, colocalization of Syn9029 with later markers of α-syn pathology maturation (ubiquitin and P62) suggests that the pathology detected by Syn9029 is older. Semiquantitative scoring of both LN and LB pathology in nine brain regions further established this trend, with Syn7015 LN scores consistently higher than Syn9029 LN scores. CONCLUSIONS Our data indicate that different conformations of α-syn pathology are present in PD brain and correspond to different stages of maturity for Lewy pathology. Regional analysis of Syn7015 and Syn9029 immunostaining also provides support for the Braak hypothesis that α-syn pathology advances through the brain.
Collapse
Affiliation(s)
- D J Covell
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J L Robinson
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R S Akhtar
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M Grossman
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - D Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - H M Bucklin
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R M Pitkin
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - D Riddle
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - A Yousef
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J Q Trojanowski
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - V M-Y Lee
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
226
|
Mannini B, Chiti F. Chaperones as Suppressors of Protein Misfolded Oligomer Toxicity. Front Mol Neurosci 2017; 10:98. [PMID: 28424588 PMCID: PMC5380756 DOI: 10.3389/fnmol.2017.00098] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/23/2017] [Indexed: 01/30/2023] Open
Abstract
Chaperones have long been recognized to play well defined functions such as to: (i) assist protein folding and promote formation and maintenance of multisubunit complexes; (ii) mediate protein degradation; (iii) inhibit protein aggregation; and (iv) promote disassembly of undesired aberrant protein aggregates. In addition to these well-established functions, it is increasingly clear that chaperones can also interact with aberrant protein aggregates, such as pre-fibrillar oligomers and fibrils, and inhibit their toxicity commonly associated with neurodegenerative diseases without promoting their disassembly. In particular, the evidence collected so far in different labs, exploiting different experimental approaches and using different chaperones and client aggregated proteins, indicates the existence of two distinct mechanisms of action mediated by the chaperones to neutralize the toxicity of aberrant proteins oligomers: (i) direct binding of the chaperones to the hydrophobic patches exposed on the oligomer/fibril surface, with resulting shielding or masking of the moieties responsible for the aberrant interactions with cellular targets; (ii) chaperone-mediated conversion of aberrant protein aggregates into large and more innocuous species, resulting in a decrease of their surface-to-volume ratio and diffusibility and in deposits more easily manageable by clearance mechanisms, such as autophagy. In this review article we will describe the in vitro and in vivo evidence supporting both mechanisms and how this results in a suppression of the detrimental effects caused by protein misfolded aggregates.
Collapse
Affiliation(s)
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of FlorenceFlorence, Italy
| |
Collapse
|
227
|
Secondary nucleation of monomers on fibril surface dominatesα-synuclein aggregation and provides autocatalytic amyloid amplification. Q Rev Biophys 2017; 50:e6. [DOI: 10.1017/s0033583516000172] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractParkinson's disease (PD) is characterized by proteinaceous aggregates named Lewy Bodies and Lewy Neurites containingα-synuclein fibrils. The underlying aggregation mechanism of this protein is dominated by a secondary process at mildly acidic pH, as in endosomes and other organelles. This effect manifests as a strong acceleration of the aggregation in the presence of seeds and a weak dependence of the aggregation rate on monomer concentration. The molecular mechanism underlying this process could be nucleation of monomers on fibril surfaces or fibril fragmentation. Here, we aim to distinguish between these mechanisms. The nature of the secondary processes was investigated using differential sedimentation analysis, trap and seed experiments, quartz crystal microbalance experiments and super-resolution microscopy. The results identify secondary nucleation of monomers on the fibril surface as the dominant secondary process leading to rapid generation of new aggregates, while no significant contribution from fragmentation was found. The newly generated oligomeric species quickly elongate to further serve as templates for secondary nucleation and this may have important implications in the spreading of PD.
Collapse
|
228
|
Abstract
INTRODUCTION Parkinson's disease (PD) is an insidious disorder affecting more than 1-2% of the population over the age of 65. Understanding the etiology of PD may create opportunities for developing new treatments. Genomic and transcriptomic studies are useful, but do not provide evidence for the actual status of the disease. Conversely, proteomic studies deal with proteins, which are real time players, and can hence provide information on the dynamic nature of the affected cells. The number of publications relating to the proteomics of PD is vast. Therefore, there is a need to evaluate the current proteomics literature and establish the connections between the past and the present to foresee the future. Areas covered: PubMed and Web of Science were used to retrieve the literature associated with PD proteomics. Studies using human samples, model organisms and cell lines were selected and reviewed to highlight their contributions to PD. Expert commentary: The proteomic studies associated with PD achieved only limited success in facilitating disease diagnosis, monitoring and progression. A global system biology approach using new models is needed. Future research should integrate the findings of proteomics with other omics data to facilitate both early diagnosis and the treatment of PD.
Collapse
Affiliation(s)
- Murat Kasap
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Gurler Akpinar
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Aylin Kanli
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| |
Collapse
|
229
|
Impact and influence of “omics” technology on hyper tension studies. Int J Cardiol 2017; 228:1022-1034. [DOI: 10.1016/j.ijcard.2016.11.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022]
|
230
|
Sharma SK, Priya S. Expanding role of molecular chaperones in regulating α-synuclein misfolding; implications in Parkinson's disease. Cell Mol Life Sci 2017; 74:617-629. [PMID: 27522545 PMCID: PMC11107554 DOI: 10.1007/s00018-016-2340-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson's disease (PD), Alzheimer's disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.
Collapse
Affiliation(s)
- Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Nanotherapeutics and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
231
|
Hasegawa T, Sugeno N, Kikuchi A, Baba T, Aoki M. Membrane Trafficking Illuminates a Path to Parkinson’s Disease. TOHOKU J EXP MED 2017; 242:63-76. [DOI: 10.1620/tjem.242.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine
| | - Toru Baba
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine
| |
Collapse
|
232
|
Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural Regen Res 2017; 12:549-557. [PMID: 28553325 PMCID: PMC5436343 DOI: 10.4103/1673-5374.205084] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurotrophic factors comprise essential secreted proteins that have several functions in neural and non-neural tissues, mediating the development, survival and maintenance of peripheral and central nervous system. Therefore, neurotrophic factor issue has been extensively investigated into the context of neurodegenerative diseases. Alzheimer's disease and Parkinson's disease show changes in the regulation of specific neurotrophic factors and their receptors, which appear to be critical for neuronal degeneration. Indeed, neurotrophic factors prevent cell death in degenerative processes and can enhance the growth and function of affected neurons in these disorders. Based on recent reports, this review discusses the main findings related to the neurotrophic factor support – mainly brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor – in the survival, proliferation and maturation of affected neurons in Alzheimer's disease and Parkinson's disease as well as their putative application as new therapeutic approach for these diseases management.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.,Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Anne Suely Savall
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | | | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| |
Collapse
|
233
|
Anderson DB, Zanella CA, Henley JM, Cimarosti H. Sumoylation: Implications for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:261-281. [PMID: 28197918 DOI: 10.1007/978-3-319-50044-7_16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.
Collapse
Affiliation(s)
- Dina B Anderson
- Ipsen Bioinnovation Ltd, Units 4-10 The Quadrant, Barton Lane, Abingdon, OX14 3YS, UK
| | - Camila A Zanella
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.
| |
Collapse
|
234
|
Ingram T, Chakrabarti L. Proteomic profiling of mitochondria: what does it tell us about the ageing brain? Aging (Albany NY) 2016; 8:3161-3179. [PMID: 27992860 PMCID: PMC5270661 DOI: 10.18632/aging.101131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression.
Collapse
Affiliation(s)
- Thomas Ingram
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Lisa Chakrabarti
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
235
|
Del Tredici K, Braak H. Review: Sporadic Parkinson's disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol 2016; 42:33-50. [PMID: 26662475 DOI: 10.1111/nan.12298] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/04/2015] [Accepted: 12/13/2015] [Indexed: 12/17/2022]
Abstract
The development of α-synuclein immunoreactive aggregates in selectively vulnerable neuronal types of the human central, peripheral, and enteric nervous systems is crucial for the pathogenesis of sporadic Parkinson's disease. The presence of these lesions persists into the end phase of the disease, a process that is not subject to remission. The initial induction of α-synuclein misfolding and subsequent aggregation probably occurs in the olfactory bulb and/or the enteric nervous system. Each of these sites is exposed to potentially hostile environmental factors. Once formed, the aggregates appear to be capable of propagating trans-synaptically from nerve cell to nerve cell in a virtually self-promoting pathological process. A regional distribution pattern of aggregated α-synuclein emerges that entails the involvement of only a few types of susceptible and axonally interconnected projection neurons within the human nervous system. One major route of disease progression may originate in the enteric nervous system and retrogradely reach the dorsal motor nucleus of the vagal nerve in the lower brainstem. From there, the disease process proceeds chiefly in a caudo-rostral direction through visceromotor and somatomotor brainstem centres to the midbrain, forebrain, and cerebral cortex. Spinal cord centres may become involved by means of descending projections from involved lower brainstem nuclei as well as by sympathetic projections connecting the enteric nervous system with postganglionic peripheral ganglia and preganglionic nuclei of the spinal cord. The development of experimental cellular and animal models is helping to explain the mechanisms of how abnormal α-synuclein can undergo aggregation and how transmission along axonal connectivities can occur, thereby encouraging the initiation of potential disease-modifying therapeutic strategies for sporadic Parkinson's disease.
Collapse
Affiliation(s)
- K Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - H Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
236
|
Uchihara T. An order in Lewy body disorders: Retrograde degeneration in hyperbranching axons as a fundamental structural template accounting for focal/multifocal Lewy body disease. Neuropathology 2016; 37:129-149. [DOI: 10.1111/neup.12348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Toshiki Uchihara
- Laboratory of Structural Neuropathology; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa, Setagaya Tokyo Japan
| |
Collapse
|
237
|
Neuromolecular imaging, a nanobiotechnology for Parkinson's disease: advancing pharmacotherapy for personalized medicine. J Neural Transm (Vienna) 2016; 124:57-78. [PMID: 27796511 DOI: 10.1007/s00702-016-1633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Evaluating each patient and animal as its own control achieves personalized medicine, which honors the hippocratic philosophy, explaining that "it is far more important to know what person has the disease than what disease the person has." Similarly, individualizing molecular signaling directly from the patient's brain in real time is essential for providing prompt, patient-based treatment as dictated by the point of care. Fortunately, nanotechnology effectively treats many neurodegenerative diseases. In particular, the new medicinal frontier for the discovery of therapy for Parkinson's disease is nanotechnology and nanobiotechnology. Indeed, the unique nanotechnology of neuromolecular imaging combined with the series of nanobiosensors enables continuous videotracking of molecular neurotransmitters in both the normal physiologic and disease states with long-term electrochemical operational stability. This nanobiotechnology is able to track a signal in real time with excellent temporal and spatial resolution directly from each patient's brain to a computer as subjects are behaving during movement, normal and/or dysfunctional including prion-like Parkinson's behavioral biometrics. Moreover, the molecular signaling performed by these nanobiosensors live streams directly online and originates from precise neuroanatomic brain sites such as, in this case, the dorsal striatum in basal ganglia. Thus, the nanobiotechnology studies discussed herein imaged neuromolecules with and without L-3,4-dihydroxyphenylalanine (L-DOPA) in dorsal striatal basal ganglia neurons. Parkinsonian and non-Parkinsonian animals were video-tracked, and images were readily seen on a laptop via a potentiostat using a semiderivative electrical circuit. Administered L-DOPA doses were 50 and 100 mg/kg intraperitoneally (ip); the same experimental paradigm was used to image and then contrast data. Results showed that the baseline release of biogenic amine molecules was significantly above detection limits in non-Parkinsonian animals. After administration of L-DOPA, biogenic amines significantly increased in these non-Parkinson's animals. Nevertheless, it is intriguing to see that L-DOPA could not enable synaptic dopamine release in Parkinson's animals, thereby demonstrating that biogenic amines are biomarkers for Parkinson's disease. Biomarkers are biochemical, genetic, or molecular measures of biological reactions. Importantly, there were other significant biomarkers present in Parkinsonian animals and absent in non-Parkinsonian animals; these were peptide neurotransmitters that include dynorphin and somatostatin in the brain with detection limits of 40 nM for dynorphin and 37 nM for somatostatin (see Table 1). Furthermore, L-DOPA significantly increased these peptide biomarkers, dynorphin and somatostatin, in Parkinson's animals. Targeting biomarkers enables new diagnostic devices and treatments for Parkinson's disease through nanotechnology and nanobiotechnology.
Collapse
|
238
|
Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease. Expert Opin Investig Drugs 2016; 25:1281-1294. [DOI: 10.1080/13543784.2016.1237501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nóra Török
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsófia Majláth
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
239
|
Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 2016; 74:409-434. [PMID: 27600680 PMCID: PMC5241350 DOI: 10.1007/s00018-016-2351-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.
Collapse
|
240
|
Özcan T, Benli E, Özer F, Demir EY, Kaya Y, Ayyıldız A. The association between symptoms of sexual dysfunction and age at onset in Parkinson's disease. Clin Auton Res 2016; 26:205-9. [PMID: 27188193 DOI: 10.1007/s10286-016-0356-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/21/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Age at onset in Parkinson's disease (PD) seems to be related nonmotor symptoms. In this study we investigated the effect of the age at onset on symptoms of sexual dysfunction (SSD) in patients with PD. METHODS This prospective study comprised 22 consecutive outpatients with early onset PD (EOPD-onset of the disease before 55 years), and 66 outpatients with late onset PD (LOPD-onset of PD over 55 years). They were all recruited from the Department of Movement Disorders, Clinic of Neurology. The diagnosis was established according to the UK PD Brain Bank Criteria by a movement disorders specialist. The Unified PD Rating Scale (UPDRS) motor was used to assess motor disability and Hoehn and Yahr (H&Y) stage was used to establish disease severity. The sexual functions of the patients were rated by applying the Arizona Sexual Experiences Scale (ASEX). RESULTS Thirteen EOPD patients (59.09 %) and 53 of the LOPD patients (80.3 %) (p 0.047) reported dissatisfaction with at least one item of ASEX. There were no differences between H&Y stages (p 0.205) UPDRS total (p 0.267) and motor scores (p 0.100) between groups. LOPD patients had significantly higher ASEX scores than EOPD patients (p 0.001). INTERPRETATION Sexual dysfunciton occurs more frequently and more severely in LOPD than EOPD patients. PD patients with different ages at onset clinically present differently in terms of SSD.
Collapse
Affiliation(s)
- Tuba Özcan
- Department of Neurology, School of Medicine, Ordu University, Ordu, Turkey.
| | - Erdal Benli
- Department of Urology, School of Medicine, Ordu University, Ordu, Turkey
| | - Feriha Özer
- Department of Neurology, School of Medicine, Medipol University, İstanbul, Turkey
| | - Esra Yancar Demir
- Department of Psychiatry, School of Medicine, Ordu University, Ordu, Turkey
| | - Yasemin Kaya
- Department of Internal Medicine, School of Medicine, Ordu University, Ordu, Turkey
| | - Ali Ayyıldız
- Department of Urology, School of Medicine, Ordu University, Ordu, Turkey
| |
Collapse
|
241
|
Arnhold M, Dening Y, Chopin M, Arévalo E, Schwarz M, Reichmann H, Gille G, Funk RHW, Pan-Montojo F. Changes in the sympathetic innervation of the gut in rotenone treated mice as possible early biomarker for Parkinson's disease. Clin Auton Res 2016; 26:211-22. [PMID: 27178445 PMCID: PMC4877429 DOI: 10.1007/s10286-016-0358-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/02/2016] [Indexed: 12/21/2022]
Abstract
Introduction Involvement of the peripheral nervous system (PNS) is relatively common in Parkinson’s disease (PD) patients. PNS alterations appear early in the course of the disease and are responsible for some of the non-motor symptoms observed in PD patients. In previous studies, we have shown that environmental toxins can trigger the disease by acting on the enteric nervous system. Material and methods Here, we analyzed the effect of mitochondrial Complex I inhibition on sympathetic neuritis in vivo and sympathetic neurons in vitro. Combining in vivo imaging and protein expression profiling. Results we found that rotenone, a widely used mitochondrial Complex I inhibitor decreases the density of sympathetic neurites innervating the gut in vivo, while in vitro, it induces the redistribution of intracellular alpha-synuclein and neurite degeneration. Interestingly, sympathetic neurons are much more resistant to rotenone exposure than mesencephalic dopaminergic neurons. Conclusion Altogether, these results suggest that enteric sympathetic denervation could be an initial pre-motor alteration in PD progression that could be used as an early biomarker of the disease. Electronic supplementary material The online version of this article (doi:10.1007/s10286-016-0358-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mike Arnhold
- Klinik und Poliklinik für Neurologie, Uniklinikum Carl-Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Yanina Dening
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Marchioninistr. 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Michaël Chopin
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Esteban Arévalo
- Institut für Anatomie, TU-Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Mathias Schwarz
- Institut für Anatomie, TU-Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Heinz Reichmann
- Klinik und Poliklinik für Neurologie, Uniklinikum Carl-Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Gabriele Gille
- Klinik und Poliklinik für Neurologie, Uniklinikum Carl-Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Richard H W Funk
- Institut für Anatomie, TU-Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Francisco Pan-Montojo
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Marchioninistr. 15, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
242
|
β-Asarone Inhibits IRE1/XBP1 Endoplasmic Reticulum Stress Pathway in 6-OHDA-Induced Parkinsonian Rats. Neurochem Res 2016; 41:2097-101. [PMID: 27097550 DOI: 10.1007/s11064-016-1922-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, with genetics and environment contributing to the disease onset. The limited pathological cognize of the disease restrained the approaches to improve the clinical treatment. Recently, studies showed that endoplasmic reticulum (ER) stress played an important role in the pathogenesis of PD. There was a neuroprotective effect partly mediated by modulating ER stress. β-Asarone is the essential constituent of Acorus tatarinowii Schott volatile oil. Our team observed that β-asarone could improve the behavior of parkinsonian rats; increase the HVA, Dopacl, and 5-HIAA levels; and reduce α-synuclein levels. Here we assumed that the protective role of β-asarone on parkinsonian rats was mediated via ER stress pathway. To prove the hypothesis we investigated the mRNA levels of glucose regulated protein 78 (GRP78) and C/EBP homologous binding protein (CHOP) in 6-hydroxy dopamine (6-OHDA) induced parkinsonian rats after β-asarone treatment. Furthermore, the inositol-requiring enzyme 1/X-Box Binding Protein 1 (IRE1/XBP1) ER stress pathway was also studied. The results showed that β-asarone inhibited the mRNA levels of GRP78 and CHOP, accompanied with the delined expressions of phosphorylated IER1 (p-IRE1) and XBP1. We deduced that β-asarone might have a protective effect on the 6-OHDA induced parkinsonian rats via IRE1/XBP1 Pathway. Collectively, all data indicated that β-asarone might be a potential candidate of medicine for clinical therapy of PD.
Collapse
|
243
|
Power JHT, Barnes OL, Chegini F. Lewy Bodies and the Mechanisms of Neuronal Cell Death in Parkinson's Disease and Dementia with Lewy Bodies. Brain Pathol 2016; 27:3-12. [PMID: 26667592 DOI: 10.1111/bpa.12344] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
Neuronal loss in specific brain regions and neurons with intracellular inclusions termed Lewy bodies are the pathologic hallmark in both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Lewy bodies comprise of aggregated intracellular vesicles and proteins and α-synuclein is reported to be a major protein component. Using human brain tissue from control, PD and DLB and light and confocal immunohistochemistry with antibodies to superoxide dismutase 2 as a marker for mitochondria, α-synuclein for Lewy bodies and βIII Tubulin for microtubules we have examined the relationship between Lewy bodies and mitochondrial loss. We have shown microtubule regression and mitochondrial and nuclear degradation in neurons with developing Lewy bodies. In PD, multiple Lewy bodies were often observed with α-synuclein interacting with DNA to cause marked nuclear degradation. In DLB, the mitochondria are drawn into the Lewy body and the mitochondrial integrity is lost. This work suggests that Lewy bodies are cytotoxic. In DLB, we suggest that microtubule regression and mitochondrial loss results in decreased cellular energy and axonal transport that leads to cell death. In PD, α-synuclein aggregations are associated with intact mitochondria but interacts with and causes nuclear degradation which may be the major cause of cell death.
Collapse
Affiliation(s)
- John H T Power
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| | - Olivia L Barnes
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| | - Fariba Chegini
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| |
Collapse
|
244
|
Vermilyea SC, Emborg ME. α-Synuclein and nonhuman primate models of Parkinson's disease. J Neurosci Methods 2015; 255:38-51. [PMID: 26247888 PMCID: PMC4604057 DOI: 10.1016/j.jneumeth.2015.07.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Accumulation of α-synuclein (α-syn) leading to the formation of insoluble intracellular aggregates named Lewy bodies is proposed to have a significant role in Parkinson's disease (PD) pathology. Nonhuman primate (NHP) models of PD have proven essential for understanding the neurobiological basis of the disease and for the preclinical evaluation of first-in-class and invasive therapies. In addition to neurotoxin, aging and intracerebral gene transfer models, a new generation of models using inoculations of α-syn formulations, as well as transgenic methods is emerging. Understanding of their advantages and limitations will be essential when choosing a platform to evaluate α-syn-related pathology and interpreting the test results of new treatments targeting α-syn aggregation. In this review we aim to provide insight on this issue by critically analyzing the differences in endogenous α-syn, as well as α-syn pathology in PD and PD NHP models.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States.
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States; Department of Medical Physics, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI 53715, United States.
| |
Collapse
|
245
|
Cowan CM, Quraishe S, Hands S, Sealey M, Mahajan S, Allan DW, Mudher A. Rescue from tau-induced neuronal dysfunction produces insoluble tau oligomers. Sci Rep 2015; 5:17191. [PMID: 26608845 PMCID: PMC4660438 DOI: 10.1038/srep17191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/12/2015] [Indexed: 12/18/2022] Open
Abstract
Aggregation of highly phosphorylated tau is a hallmark of Alzheimer’s
disease and other tauopathies. Nevertheless, animal models demonstrate that
tau-mediated dysfunction/toxicity may not require large tau aggregates but instead
may be caused by soluble hyper-phosphorylated tau or by small tau oligomers.
Challenging this widely held view, we use multiple techniques to show that insoluble
tau oligomers form in conditions where tau-mediated dysfunction is rescued in
vivo. This shows that tau oligomers are not necessarily always toxic.
Furthermore, their formation correlates with increased tau levels, caused
intriguingly, by either pharmacological or genetic inhibition of tau kinase
glycogen-synthase-kinase-3beta (GSK-3β). Moreover, contrary to common
belief, these tau oligomers were neither highly phosphorylated, and nor did they
contain beta-pleated sheet structure. This may explain their lack of toxicity. Our
study makes the novel observation that tau also forms non-toxic insoluble oligomers
in vivo in addition to toxic oligomers, which have been reported by
others. Whether these are inert or actively protective remains to be established.
Nevertheless, this has wide implications for emerging therapeutic strategies such as
those that target dissolution of tau oligomers as they may be ineffective or even
counterproductive unless they act on the relevant toxic oligomeric tau species.
Collapse
Affiliation(s)
- Catherine M Cowan
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shmma Quraishe
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sarah Hands
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Megan Sealey
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sumeet Mahajan
- Institute of Life Sciences and Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Amritpal Mudher
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
246
|
Schiavio A, Altenmüller E. Exploring Music-Based Rehabilitation for Parkinsonism through Embodied Cognitive Science. Front Neurol 2015; 6:217. [PMID: 26539155 PMCID: PMC4609849 DOI: 10.3389/fneur.2015.00217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022] Open
Abstract
Recent embodied approaches in cognitive sciences emphasize the constitutive roles of bodies and environment in driving cognitive processes. Cognition is thus seen as a distributed system based on the continuous interaction of bodies, brains, and environment. These categories, moreover, do not relate only causally, through a sequential input-output network of computations; rather, they are dynamically enfolded in each other, being mutually implemented by the concrete patterns of actions adopted by the cognitive system. However, while this claim has been widely discussed across various disciplines, its relevance and potential beneficial applications for music therapy remain largely unexplored. With this in mind, we provide here an overview of the embodied approaches to cognition, discussing their main tenets through the lenses of music therapy. In doing so, we question established methodological and theoretical paradigms and identify possible novel strategies for intervention. In particular, we refer to the music-based rehabilitative protocols adopted for Parkinson's disease patients. Indeed, in this context, it has recently been observed that music therapy not only affects movement-related skills but that it also contributes to stabilizing physiological functions and improving socio-affective behaviors. We argue that these phenomena involve previously unconsidered aspects of cognition and (motor) behavior, which are rooted in the action-perception cycle characterizing the whole living system.
Collapse
Affiliation(s)
- Andrea Schiavio
- School of Music, The Ohio State University, Columbus, OH, USA
- Department of Music, The University of Sheffield, Sheffield, UK
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, University of Music, Drama and Media Hannover, Hannover, Germany
| |
Collapse
|
247
|
Hoang MT, Ita KB, Bair DA. Solid Microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride. Pharmaceutics 2015; 7:379-96. [PMID: 26426039 PMCID: PMC4695825 DOI: 10.3390/pharmaceutics7040379] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this project was to study the influence of microneedles on transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride across porcine ear skin in vitro. Microchannel visualization studies were carried out and characterization of the microchannel depth was performed using confocal laser scanning microscopy (CLSM) to demonstrate microchannel formation following microneedle roller application. We also report, for the first time, the use of TA.XT Plus Texture Analyzer to characterize burst force in pig skin for transdermal drug delivery experiments. This is the force required to rupture pig skin. The mean passive flux of amantadine hydrochloride, determined using a developed LC–MS/MS technique, was 22.38 ± 4.73 µg/cm2/h, while the mean flux following the use of a stainless steel microneedle roller was 49.04 ± 19.77 µg/cm2/h. The mean passive flux of pramipexole dihydrochloride was 134.83 ± 13.66 µg/cm2/h, while the flux following the use of a stainless steel microneedle roller was 134.04 ± 0.98 µg/cm2/h. For both drugs, the difference in flux values following the use of solid stainless steel microneedle roller was not statistically significantly (p > 0.05). Statistical analysis was carried out using the Mann–Whitney Rank sum test.
Collapse
Affiliation(s)
- Mylien T Hoang
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| | - Kevin B Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| | - Daniel A Bair
- Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA.
| |
Collapse
|
248
|
Sumikura H, Takao M, Hatsuta H, Ito S, Nakano Y, Uchino A, Nogami A, Saito Y, Mochizuki H, Murayama S. Distribution of α-synuclein in the spinal cord and dorsal root ganglia in an autopsy cohort of elderly persons. Acta Neuropathol Commun 2015; 3:57. [PMID: 26374630 PMCID: PMC4571135 DOI: 10.1186/s40478-015-0236-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022] Open
Abstract
Background Lewy body–related α-synucleinopathy (LBAS, the abnormal accumulation of pathologic α-synuclein) is found in the central and peripheral nervous systems, including the spinal cord, dorsal root ganglia, and sympathetic ganglia, of Parkinson’s disease patients. However, few studies have focused on the distribution of LBAS in the spinal cord, primary sensory neurons, and preganglionic sympathetic nerves. Results We analyzed 265 consecutive subjects with LBAS who underwent autopsy at a general geriatric hospital. LBAS in the spinal cord was significantly associated with that in the lower brainstem regions that are directly connected to the spinal cord (i.e., the medullary reticular formation and locus ceruleus), but it was not associated with the olfactory bulb–amygdala system, which is not directly connected to the spinal cord, suggesting that the lower brainstem is a key structure regarding the spread of LBAS to the spinal cord. In the primary sensory neurons, most subjects with LBAS in the dorsal root ganglia had LBAS in the dorsal root, and all subjects with LBAS in the dorsal root also had LBAS in the dorsal horn, suggesting that LBAS spreads retrogradely from the axonal terminals of the dorsal horn to the somata of the dorsal root ganglia via the dorsal root. In the preganglionic sympathetic nerves, the LBAS in the sympathetic ganglia preceded that in the nucleus of the intermediolateral column of the thoracic cord, suggesting that LBAS spreads retrogradely through the preganglionic sympathetic nerves. Conclusions LBAS in the spinal cord was associated with the lower regions of the brainstem, but not with the olfactory bulb or amygdala. LBAS may spread centrifugally along the primary sensory neurons, whereas it may spread centripetally along the preganglionic sympathetic nerves. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0236-9) contains supplementary material, which is available to authorized users.
Collapse
|
249
|
Is Cell Death Primary or Secondary in the Pathophysiology of Idiopathic Parkinson's Disease? Biomolecules 2015; 5:1467-79. [PMID: 26193328 PMCID: PMC4598759 DOI: 10.3390/biom5031467] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/21/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022] Open
Abstract
Currently, the pathophysiology of idiopathic Parkinson's disease is explained by a loss of mainly dopaminergic nerve cells that causes a neurotransmitter deficiency. In the final stage of the disease, there is a marked loss of neurons in the substantia nigra. In addition, Lewy bodies can be found in some of the remaining neurons, which serve as the pathological hallmark of the disease. These Lewy bodies are composed mainly of aggregated α-synuclein, a physiological presynaptic protein. Lewy bodies were thought to be the pathophysiologically relevant form of α-synuclein because their appearance coincided with neuron loss in the substantia nigra. In consequence, neuron loss was thought to be the primary step in the neurodegeneration in Parkinson's disease. On the other hand, the clinical syndrome suggests a synaptic disorder. If α-synuclein aggregation was causally linked to the pathophysiology of disease, α-synuclein pathology should be found at the synapse. As recently demonstrated, one to two orders of magnitude more α-synuclein aggregates are present in presynaptic terminals than in Lewy bodies or Lewy neurites. Degeneration of dendritic spines associated with synaptic α-synuclein aggregates has been shown to occur in human disease. In experiments, using transgenic mice or cell cultures, mild (two- to three-fold) overexpression of α-synuclein caused an altered vesicle turnover and led to a reduction in neurotransmitter release. Different approaches linked these alterations to presynaptic aggregation of α-synuclein. These findings may fundamentally change the pathophysiological concept of Parkinson's disease: not nerve cell loss, but the synaptic dysfunction of still existing nerve cells should become the focus of attention. From recent findings, it is quite evident that the death of dopaminergic neurons is a secondary event in the pathophysiology of Parkinson's disease.
Collapse
|
250
|
Conti A, Alessio M. Comparative Proteomics for the Evaluation of Protein Expression and Modifications in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:117-52. [PMID: 26315764 DOI: 10.1016/bs.irn.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Together with hypothesis-driven approaches, high-throughput differential proteomic analysis performed primarily not only in human cerebrospinal fluid and serum but also on protein content of other tissues (blood cells, muscles, peripheral nerves, etc.) has been used in the last years to investigate neurodegenerative diseases. Even if the goal for these analyses was mainly the discovery of neurodegenerative disorders biomarkers, the characterization of specific posttranslational modifications (PTMs) and the differential protein expression resulted in being very informative to better define the pathological mechanisms. In this chapter are presented and discussed the positive aspects and challenges of the outcomes of some of our investigations on neurological and neurodegenerative disease, in order to highlight the important role of protein PTMs studies in proteomics-based approaches.
Collapse
Affiliation(s)
- Antonio Conti
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Alessio
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|