201
|
Sharma A, Raman A, Pradeep AR. Role of 1% alendronate gel as adjunct to mechanical therapy in the treatment of chronic periodontitis among smokers. J Appl Oral Sci 2017; 25:243-249. [PMID: 28678942 PMCID: PMC5482246 DOI: 10.1590/1678-7757-2016-0201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Alendronate (ALN) inhibits osteoclastic bone resorption and triggers osteostimulative properties both in vivo and in vitro, as shown by increase in matrix formation. This study aimed to explore the efficacy of 1% ALN gel as local drug delivery (LDD) in adjunct to scaling and root planing (SRP) for the treatment of chronic periodontitis among smokers. Material and Methods 75 intrabony defects were treated in 46 male smokers either with 1% ALN gel or placebo gel. ALN gel was prepared by adding ALN into carbopol-distilled water mixture. Clinical parameters [modified sulcus bleeding index, plaque index, probing depth (PD), and periodontal attachment level (PAL)] were recorded at baseline, at 2 months, and at 6 months, while radiographic parameters were recorded at baseline and at 6 months. Defect fill at baseline and at 6 months was calculated on standardized radiographs by using the image analysis software. Results Mean PD reduction and mean PAL gain were found to be greater in the ALN group than in the placebo group, both at 2 and 6 months. Furthermore, a significantly greater mean percentage of bone fill was found in the ALN group (41.05±11.40%) compared to the placebo group (2.5±0.93%). Conclusions The results of this study showed 1% ALN stimulated a significant increase in PD reduction, PAL gain, and an improved bone fill compared to placebo gel in chronic periodontitis among smokers. Thus, 1% ALN, along with SRP, is effective in the treatment of chronic periodontitis in smokers.
Collapse
Affiliation(s)
| | | | - Avani Raju Pradeep
- Government Dental College and Research Institute, Department of Periodontics, Bangalore, Karnataka, India
| |
Collapse
|
202
|
Song WS, Lee JK, Park SH, Um HS, Lee SY, Chang BS. Comparison of periodontitis-associated oral biofilm formation under dynamic and static conditions. J Periodontal Implant Sci 2017; 47:219-230. [PMID: 28861286 PMCID: PMC5577440 DOI: 10.5051/jpis.2017.47.4.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/14/2017] [Indexed: 11/28/2022] Open
Abstract
Purpose The purpose of this study was to compare the characteristics of single- and dual-species in vitro oral biofilms made by static and dynamic methods. Methods Hydroxyapatite (HA) disks, 12.7 mm in diameter and 3 mm thick, were coated with processed saliva for 4 hours. The disks were divided into a static method group and a dynamic method group. The disks treated with a static method were cultured in 12-well plates, and the disks in the dynamic method group were cultured in a Center for Disease Control and Prevention (CDC) biofilm reactor for 72 hours. In the single- and dual-species biofilms, Fusobacterium nucleatum and Porphyromonas gingivalis were used, and the amount of adhering bacteria, proportions of species, and bacterial reduction of chlorhexidine were examined. Bacterial adhesion was examined with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Results Compared with the biofilms made using the static method, the biofilms made using the dynamic method had significantly lower amounts of adhering and looser bacterial accumulation in SEM and CLSM images. The proportion of P. gingivalis was higher in the dynamic method group than in the static method group; however, the difference was not statistically significant. Furthermore, the biofilm thickness and bacterial reduction by chlorhexidine showed no significant differences between the 2 methods. Conclusions When used to reproduce periodontal biofilms composed of F. nucleatum and P. gingivalis, the dynamic method (CDC biofilm reactor) formed looser biofilms containing fewer bacteria than the well plate. However, this difference did not influence the thickness of the biofilms or the activity of chlorhexidine. Therefore, both methods are useful for mimicking periodontitis-associated oral biofilms.
Collapse
Affiliation(s)
- Won Sub Song
- Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Jae-Kwan Lee
- Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Se Hwan Park
- Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Heung-Sik Um
- Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Si Young Lee
- Department of Microbiology and Immunology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Beom-Seok Chang
- Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| |
Collapse
|
203
|
Heyman L, Houri-Haddad Y, Heyman SN, Ginsburg I, Gleitman Y, Feuerstein O. Combined antioxidant effects of Neem extract, bacteria, red blood cells and Lysozyme: possible relation to periodontal disease. Altern Ther Health Med 2017; 17:399. [PMID: 28797303 PMCID: PMC5553582 DOI: 10.1186/s12906-017-1900-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/02/2017] [Indexed: 02/04/2023]
Abstract
Background The common usage of chewing sticks prepared from Neem tree (Azadirachta indica) in India suggests its potential efficacy in periodontal diseases. The objective of this study is to explore the antibacterial effects of Neem leaf extract on the periodontophatic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and its antioxidant capacities alone and in combination with bacteria and polycationic peptides that may be at the site of inflammation. Methods Neem leaf extract was prepared by ethanol extraction. The growth kinetics of P. gingivalis and F. nucleatum under anaerobic conditions in the presence of Neem leaf extract were measured. Broth microdilution test was used to determine the Minimal Inhibitory Concentration (MIC) of Neem leaf extract against each bacterial strain. The effect of Neem leaf extract on the coaggregation of the bacteria was assessed by a visual semi-quantitative assay. The antioxidant capacities of Neem leaf extract alone and in combination with bacteria, with the addition of red blood cells or the polycationic peptides chlorhexidine and lisozyme, were determined using a chemiluminescence assay. Results Neem leaf extract showed prominent dose-dependent antibacterial activity against P. gingivalis, however, had no effect on the growth of F. nucleatum nor on the coaggregation of the two bacteria. Yet, it showed intense antioxidant activity, which was amplified following adherence to bacteria and with the addition of red blood cells or the polycationic peptides. Conclusions Neem leaf extract, containing polyphenols that adhere to oral surfaces, have the potential to provide long-lasting antibacterial as well as synergic antioxidant activities when in complex with bacteria, red blood cells and lisozyme. Thus, it might be especially effective in periodontal diseases.
Collapse
|
204
|
Ho MH, Chang HC, Chang YC, Claudia J, Lin TC, Chang PC. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration. Int J Nanomedicine 2017; 12:5525-5535. [PMID: 28831251 PMCID: PMC5548280 DOI: 10.2147/ijn.s137342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study aimed to develop a functionally graded membrane (FGM) to prevent infection and promote tissue regeneration. Poly(l-lactide-co-d,l-lactide) encapsulating platelet-derived growth factor (PDLLA-PDGF) or metronidazole (PDLLA-MTZ) was electrospun to form a nanofibrous layer on the inner or outer surface of a clinically available collagen membrane, respectively. The membrane was characterized for the morphology, molecule release profile, in vitro and in vivo biocompatibility, and preclinical efficiency for alveolar ridge regeneration. The PDLLA-MTZ and PDLLA-PDGF nanofibers were 800–900 nm in diameter, and the thicknesses of the functional layers were 20–30 μm, with sustained molecule release over 28 days. All of the membranes tested were compatible with cell survival in vitro and showed good tissue integration with minimal fibrous capsule formation or inflammation. Cell proliferation was especially prominent on the PDLLA-PDGF layer in vivo. On the alveolar ridge, all FGMs reduced wound dehiscence compared with the control collagen membrane, and the FGM with PDLLA-PDGF promoted osteogenesis significantly. In conclusion, the FGMs with PDLLA-PDGF and PDLLA-MTZ showed high biocompatibility and facilitated wound healing compared with conventional membrane, and the FGM with PDLLA-PDGF enhanced alveolar ridge regeneration in vivo. The design represents a beneficial modification, which may be easily adapted for future clinical use.
Collapse
Affiliation(s)
- Ming-Hua Ho
- Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hao-Chieh Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chia Chang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeiannete Claudia
- Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
205
|
Abstract
Hyaluronic acid (HA; synonyms- Hyaluronan, Hyaluronate) is a glycosaminoglycan found in the connective tissue of vertebrates. It is the most abundant glycosaminoglycan of higher molecular weight in the extracellular matrix of soft periodontal tissues. The use of HA in the treatment of inflammatory process is established in medical areas such as orthopedics, dermatology and ophthalmology. In the field of dentistry, it has shown anti-inflammatory and anti-bacterial effects in gingivitis and periodontitis therapy. Due to its tissue healing properties, it could be used as an adjunct to mechanical therapy in the treatment of periodontitis.
Collapse
|
206
|
Yoshida A, Sasaki H, Toyama T, Araki M, Fujioka J, Tsukiyama K, Hamada N, Yoshino F. Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Sci Rep 2017; 7:5225. [PMID: 28701797 PMCID: PMC5507902 DOI: 10.1038/s41598-017-05706-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
The development of antibiotics cannot keep up with the speed of resistance acquired by microorganisms. Recently, the development of antimicrobial photodynamic therapy (aPDT) has been a necessary antimicrobial strategy against antibiotic resistance. Among the wide variety of bacteria found in the oral flora, Porphyromonas gingivalis (P. gingivalis) is one of the etiological agents of periodontal disease. aPDT has been studied for periodontal disease, but has risks of cytotoxicity to normal stained tissue. In this study, we performed aPDT using protoporphyrin IX (PpIX), an intracellular pigment of P. gingivalis, without an external photosensitizer. We confirmed singlet oxygen generation by PpIX in a blue-light irradiation intensity-dependent manner. We discovered that blue-light irradiation on P. gingivalis is potentially bactericidal. The sterilization mechanism seems to be oxidative DNA damage in bacterial cells. Although it is said that no resistant bacteria will emerge using aPDT, the conventional method relies on an added photosensitizer dye. PpIX in P. gingivalis is used in energy production, so aPDT applied to PpIX of P. gingivalis should limit the appearance of resistant bacteria. This approach not only has potential as an effective treatment for new periodontal diseases, but also offers potential antibacterial treatment for multiple drug resistant bacteria.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Division of Photomedical Dentistry, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Haruka Sasaki
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Toshizo Toyama
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Mitsunori Araki
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jun Fujioka
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Koichi Tsukiyama
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Fumihiko Yoshino
- Division of Photomedical Dentistry, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan.
| |
Collapse
|
207
|
Liu CC, Chen CH, Tang CY, Chen KH, Chen ZF, Chang SH, Tsai CY, Liou ML. Prevalence and comparative analysis of the type IV secretion system in Aggregatibacter actinomycetemcomitan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:278-285. [PMID: 28711435 DOI: 10.1016/j.jmii.2016.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/11/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUD/PURPOSE Aggregatibacter actinomycetemcomitans has emerged as one of the aetiological agents in periodontal disease. Although Type IV secretion systems (T4SSs) are widely distributed in many bacteria, the genetic features and distribution of T4SSs in A. actinomycetemcomitans remain unclear. In this study, we investigated the prevalence of A. actinomycetemcomitans serotypes and their T4SSs in a Taiwanese population. METHODS A comparative analysis of 20 A. actinomycetemcomitans genomes and their T4SSs deposited in GenBank was performed. One hundred subjects, including 20 periodontitis and 80 normal subjects, were enrolled and PCR identification of A. actinomycetemcomitans serotypes and T4SS genes were performed. RESULTS Of 100 subjects, serotypes C (22%) and E (11%) were most common. In addition, T4SSs were distributed in all of the serotypes. The prevalence of T4SSs and their location in plasmids in periodontitis subjects were 1.28-2 fold higher but not significantly different compared to normal subjects. Of 20 A. actinomycetemcomitans genomes, only ten with complete T4SS modules could be detected, which was highly correlated with localized aggressive periodontitis (p < 0.1). Nine of ten T4SS modules were from periodontitis subjects. Phylogenetic analysis of 10 T4SSs in A. actinomycetemcomitans showed that they were clustered into two groups, T4SSAaI and T4SSAaII, with only T4SSAaI appearing in the Taiwanese subjects. CONCLUSION A. actinomycetemcomitans strains with different serotypes carrying T4SSAaI are widely distributed in a Taiwanese population. This is the first report to show the distribution and detailed comparative genomics of T4SSs in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Chih-Chin Liu
- Department of Bioinformatics, Chung Hua University, Hsin-Chu City, Taiwan; Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Chang-Hua Chen
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua City, Taiwan; Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung City, Taiwan
| | - Chuan Yi Tang
- Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Kuan-Hsueh Chen
- Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Zhao-Feng Chen
- Department of Nursing, Yuanpei University, Hsin-Chu City, Taiwan
| | - Shih-Hao Chang
- Department of Periodontics, Chang Gung Memorial Hospital, Tao-Yuan County, Taiwan
| | - Chi-Ying Tsai
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital, Tao-Yuan County, Taiwan
| | - Ming-Li Liou
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsin-Chu City, Taiwan.
| |
Collapse
|
208
|
Park BR, Ma JK, Park KB, Hong KW. Recapitulation of Genome-wide Association Study on Chronic Periodontitis in a Korean Population. ACTA ACUST UNITED AC 2017. [DOI: 10.15616/bsl.2017.23.2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo-Ruem Park
- TheragenEtex Bio Institute, Suwon, Gyeonggi-do 16229, Korea
| | | | | | - Kyung-Won Hong
- TheragenEtex Bio Institute, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
209
|
Cosgarea R, Heumann C, Juncar R, Tristiu R, Lascu L, Salvi GE, Arweiler NB, Sculean A. One year results of a randomized controlled clinical study evaluating the effects of non-surgical periodontal therapy of chronic periodontitis in conjunction with three or seven days systemic administration of amoxicillin/metronidazole. PLoS One 2017; 12:e0179592. [PMID: 28662049 PMCID: PMC5491014 DOI: 10.1371/journal.pone.0179592] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/18/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND To evaluate the clinical outcomes 12 months after systemic administration of amoxicillin (AMX) and metronidazole (MET) adjunctive to subgingival debridement (SD) in patients with severe chronic periodontitis (sChP). MATERIAL AND METHODS 102 patients with sChP were treated randomly as follows: SD within 2 consecutive days and placebo for 7 days (group A), SD+AMX+MET (both 500mg x3 times daily TID) for 3 days (group B), SD+AMX+MET (both 500mg x 3 TID) for 7 days (group C). At baseline, at 3-, 6-, and 12-months post-treatment probing pocket depth (PD), clinical attachment level (CAL), furcation involvement, bleeding on probing (BOP), full-mouth plaque score (FMPS) were determined. The reduction in the number of sites with PD≥6mm was defined as main outcome variable. RESULTS 75 patients completed the study. At 12 months, all three treatment groups showed statistically significant improvements (p<0.001) of mean PD, CAL, BOP and number of sites with PD≥6mm compared to baseline. Mean residual PD were statistically significantly lower and CAL gain statistically significantly greater in the two antibiotic groups as compared to placebo. While PD reductions (p = 0.012) and CAL gain (p = 0.017) were statistically significantly higher in group C compared to group A, only the 3-day AB group showed statistically significantly fewer sites with PD≥6mm at 12 m (p = 0.003). The reduction in the number of sites with PD≥6 mm (primary outcome) showed no statistical significant differences between the 3 treatment groups. However, in both antibiotic groups significantly more patients compared to the placebo group reached a low risk for disease progression at 12 months (≤4 sites with PD≥5mm). CONCLUSION At 12 months, both adjunctive antibiotic protocols resulted in statistically significantly greater clinical improvements compared to placebo.
Collapse
Affiliation(s)
- Raluca Cosgarea
- Clinic of Periodontology, Philipps University, Marburg, Germany
- Clinic of Prosthodontics, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Christian Heumann
- Department for Statistics, Ludwig-Maximilians University, Munich, Germany
| | - Raluca Juncar
- Clinic of Prosthodontics, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Roxana Tristiu
- Clinic of Prosthodontics, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Liana Lascu
- Clinic of Prosthodontics, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | | | | | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
210
|
Banerjee S, Tian T, Wei Z, Peck KN, Shih N, Chalian AA, O'Malley BW, Weinstein GS, Feldman MD, Alwine J, Robertson ES. Microbial Signatures Associated with Oropharyngeal and Oral Squamous Cell Carcinomas. Sci Rep 2017; 7:4036. [PMID: 28642609 PMCID: PMC5481414 DOI: 10.1038/s41598-017-03466-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
The microbiome is fundamentally one of the most unique organs in the human body. Dysbiosis can result in critical inflammatory responses and result in pathogenesis contributing to neoplastic events. We used a pan-pathogen array technology (PathoChip) coupled with next-generation sequencing to establish microbial signatures unique to human oral and oropharyngeal squamous cell carcinomas (OCSCC/OPSCC). Signatures for DNA and RNA viruses including oncogenic viruses, gram positive and negative bacteria, fungi and parasites were detected. Cluster and topological analyses identified 2 distinct groups of microbial signatures related to OCSCCs/OPSCCs. Results were validated by probe capture next generation sequencing; the data from which also provided a comprehensive map of integration sites and chromosomal hotspots for micro-organism genomic insertions. Identification of these microbial signatures and their integration sites may provide biomarkers for OCSCC/OPSCC diagnosis and prognosis as well as novel avenues for study of their potential role in OCSCCs/OPSCCs.
Collapse
Affiliation(s)
- Sagarika Banerjee
- Department of Otorhinolaryngology-Head and neck surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, New Jersey, 07102, United States of America
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, New Jersey, 07102, United States of America
| | - Kristen N Peck
- Department of Otorhinolaryngology-Head and neck surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Natalie Shih
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, United States of America
| | - Ara A Chalian
- Department of Otorhinolaryngology-Head and neck surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Bert W O'Malley
- Department of Otorhinolaryngology-Head and neck surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Gregory S Weinstein
- Department of Otorhinolaryngology-Head and neck surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, United States of America
| | - James Alwine
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and neck surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America.
| |
Collapse
|
211
|
Paju S, Oittinen J, Haapala H, Asikainen S, Paavonen J, Pussinen PJ. Porphyromonas gingivalis may interfere with conception in women. J Oral Microbiol 2017; 9:1330644. [PMID: 28748034 PMCID: PMC5508391 DOI: 10.1080/20002297.2017.1330644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/07/2017] [Indexed: 10/28/2022] Open
Abstract
In this observational and prospective study, we investigated if microbiological and serological markers of periodontitis associated with conception in 256 non-pregnant women (Mage = 29.2 years; range 19-42 years). Clinical oral and gynecological examinations were performed, major periodontal pathogens in the saliva were detected, and serum and saliva antibodies against major periodontal pathogens were analyzed. The follow-up period for becoming pregnant was 12 months. Porphyromonas gingivalis was significantly (p = 0.032) more frequently detected in the saliva among those who did not become pregnant (8.3%) than among those who became pregnant (2.1%). The median levels of salivary P. gingivalis immunoglobulin A (IgA; p = 0.006) and IgG (p = 0.007) antibodies were higher among those who did not become pregnant compared to those who became pregnant. Hazard ratios (HR) for not becoming pregnant were HR = 3.75 (95% confidence interval [CI] 1.01-13.9; p = 0.048) if the subject was polymerase chain reaction-positive for P. gingivalis with high salivary antibodies against it, and HR = 1.62 (95% CI 1.03-2.54; p = 0.035) if she had high levels of serum P. gingivalis IgA and signs of periodontal infection. P. gingivalis associated with no success in getting pregnant.
Collapse
Affiliation(s)
- Susanna Paju
- Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Oittinen
- Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Haapala
- Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sirkka Asikainen
- Faculty of Dentistry, Health Sciences Center, Kuwait University, Safat, Kuwait
| | - Jorma Paavonen
- Obstetrics and Gynecology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
212
|
Formulation of thermoreversible gel of cranberry juice concentrate: Evaluation, biocompatibility studies and its antimicrobial activity against periodontal pathogens. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1506-1514. [DOI: 10.1016/j.msec.2017.03.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
|
213
|
Duque C, João MFD, Camargo GADCG, Teixeira GS, Machado TS, Azevedo RDS, Mariano FS, Colombo NH, Vizoto NL, Mattos-Graner RDO. Microbiological, lipid and immunological profiles in children with gingivitis and type 1 diabetes mellitus. J Appl Oral Sci 2017; 25:217-226. [PMID: 28403363 PMCID: PMC5393543 DOI: 10.1590/1678-77572016-0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Objective The aim of this study was to compare the prevalence of periodontal pathogens, systemic inflammatory mediators and lipid profiles in type 1 diabetes children (DM) with those observed in children without diabetes (NDM), both with gingivitis. Material and methods Twenty-four DM children and twenty-seven NDM controls were evaluated. The periodontal status, glycemic and lipid profiles were determined for both groups. Subgingival samples of periodontal sites were collected to determine the prevalence of periodontal microorganisms by PCR. Blood samples were collected for IL-1-β, TNF-α and IL-6 analysis using ELISA kits. Results Periodontal conditions of DM and NDM patients were similar, without statistical differences in periodontal indices. When considering patients with gingivitis, all lipid parameters evaluated were highest in the DM group; Capnocytophaga sputigena and Capnocytophaga ochracea were more prevalent in the periodontal sites of DM children. “Red complex” bacteria were detected in few sites of DM and NDM groups. Fusobacterium nucleatum and Campylobacter rectus were frequently found in both groups. Similar levels of IL-1-β, TNF-α and IL-6 were detected in DM and NDM children. Conclusion Clinical and immunological profiles are similar between DM and NDM children. The presence of Capnocytophaga sputigena and Capnocytophaga ochracea were associated with gingivitis in DM children.
Collapse
Affiliation(s)
- Cristiane Duque
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, São Paulo, Brasil
| | - Mariana Ferreira Dib João
- Universidade de Campinas, Faculdade de odontologia de Piracicaba, Departamento de Diagnóstico Oral, Piracicaba, São Paulo, Brasil
| | | | - Gláucia Schuindt Teixeira
- Universidade Federal Fluminense, Faculdade de Odontologia de Nova Friburgo, Nova Friburgo, Rio de Janeiro, Brasil
| | - Thamiris Santana Machado
- Universidade Federal Fluminense, Faculdade de Odontologia de Nova Friburgo, Nova Friburgo, Rio de Janeiro, Brasil
| | - Rebeca de Souza Azevedo
- Universidade Federal Fluminense, Faculdade de Odontologia de Nova Friburgo, Nova Friburgo, Rio de Janeiro, Brasil
| | - Flávia Sammartino Mariano
- Universidade de Campinas, Faculdade de odontologia de Piracicaba, Departamento de Diagnóstico Oral, Piracicaba, São Paulo, Brasil
| | - Natália Helena Colombo
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, São Paulo, Brasil
| | - Natália Leal Vizoto
- Universidade de Campinas, Faculdade de odontologia de Piracicaba, Departamento de Diagnóstico Oral, Piracicaba, São Paulo, Brasil
| | - Renata de Oliveira Mattos-Graner
- Universidade de Campinas, Faculdade de odontologia de Piracicaba, Departamento de Diagnóstico Oral, Piracicaba, São Paulo, Brasil
| |
Collapse
|
214
|
Extracellular ATP is a key modulator of alveolar bone loss in periodontitis. Arch Oral Biol 2017; 81:131-135. [PMID: 28528307 DOI: 10.1016/j.archoralbio.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
Periodontal diseases are initiated by pathogenic bacterial biofilm activity that induces a host inflammatory cells immune response, degradation of dento gingival fibrous tissue and its detachment from root cementum. It is well accepted, that osteoclastic alveolar bone loss is governed exclusively through secretion of proinflammatory cytokines. Nevertheless, our findings suggest that once degradation of collagen fibers by MMPs occurs, a drop of cellular strains cause immediate release of ATP from marginal gingival fibroblasts, cell deformation and influx of Ca+2. Increased extracellular ATP (eATP) by interacting with P2×7 purinoreceptors, present on fibroblasts and osteoblasts, induces generation of receptor activator of nuclear factor kB ligand (RANKL) that further activates osteoclastic alveolar bone resorption and bone loss. In addition, increased eATP levels may amplify inflammation by promoting leukocyte recruitment and NALP3-inflammasome activation via P2×7. Then, the inflammatory cells secrete cytokines, interleukin IL-1, TNF and RANKL that further trigger alveolar bone resorption. Moreover, eATP can be secreted from periodontal bacteria that may further contribute to inflammation and bone loss in periodontitis. It seems therefore, that eATP is a key modulator that initiates the pathway of alveolar bone resorption and bone loss in patients with periodontal disease. In conclusion, we propose that strain release in gingival fibroblasts aligned on collagen fibers, due to activity of MMP, activates release of ATP that triggers the pathway of alveolar bone resorption in periodontitis. We predict that by controlling the eATP interaction with its cellular purinoreceptors will reduce significantly bone loss in periodontitis.
Collapse
|
215
|
Devang Divakar D, Muzaheed, Aldeyab SS, Alfawaz SA, AlKheraif AA, Ahmed Khan A. High proportions of Staphylococcus epidermidis in dental caries harbor multiple classes of antibiotics resistance, significantly increase inflammatory interleukins in dental pulps. Microb Pathog 2017; 109:29-34. [PMID: 28506885 DOI: 10.1016/j.micpath.2017.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/01/2022]
Abstract
Staphylococcus epidermidis is one of most prevalent in dental caries or dental pulp which has the capability of horizontal genetic transfer between different bacterial species in the oropharynx, suggesting that it may evolve with the dissemination of resistant determinants, This study was performed to molecularly characterize and differentiate S. epidermidis isolated from dental caries and healthy individual. Also, two important cytokines in inflammation were assayed caused due to S. epidermidis of health and dental caries sources. Dental caries strains were more resistant with high MIC 50 and MIC 90 value. These isolates also showed the presence of mecA gene and another virulence gene i. e sea and seb comparatively more than healthy individual isolates. SCCmec types, III and IV was more prevalent in dental caries isolates where an as healthy individual was more non-typable. Additionally, the quantity of IL-1β and IL-8 caused due to dental caries isolates was seen more which indicate dental caries isolates are able to induce. This study showed that S. epidermidis a normal flora of oropharyngeal are more diverse to those strains which cause dental caries. S. epidermidis owns a prodigious genetic plasticity that permits to obtain, lose or regulate genetic elements that provide compensations to improve its colonization in the host.
Collapse
Affiliation(s)
- Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; Department of Oral Medicine and Radiology, KVG Dental College and Hospital, Sullia, Karnataka, India.
| | - Muzaheed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, PO Box 2435, University of Dammam, Dammam 31441, Saudi Arabia
| | - Sultan Salem Aldeyab
- King Abdulaziz Medical City, Dental College, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Abdulaziz Abdullah AlKheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Aftab Ahmed Khan
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
216
|
Hobbins S, Chapple IL, Sapey E, Stockley RA. Is periodontitis a comorbidity of COPD or can associations be explained by shared risk factors/behaviors? Int J Chron Obstruct Pulmon Dis 2017; 12:1339-1349. [PMID: 28496317 PMCID: PMC5422335 DOI: 10.2147/copd.s127802] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COPD is recognized as having a series of comorbidities potentially related to common inflammatory processes. Periodontitis is one of the most common human inflammatory diseases and has previously been associated with COPD in numerous observational studies. As periodontitis and COPD are both chronic, progressive conditions characterized by neutrophilic inflammation with subsequent proteolytic destruction of connective tissue, it has been proposed that they share common pathophysiological processes. The mechanisms proposed to link COPD and periodontitis include mechanical aspiration of oral contents into the respiratory tree, overspill of locally produced inflammatory mediators into the systemic circulation or oral or lung-derived bacteremia activating an acute-phase response and also reactive oxygen species (ROS) and cytokine release by systemic neutrophils at distant sites. Studies of systemic neutrophils in COPD and chronic periodontitis describe altered cellular functions that would predispose to inflammation and tissue destruction both in the lung and in the mouth, again potentially connecting these conditions. However, COPD and periodontitis also share risk factors such as age, chronic tobacco smoke exposure, and social deprivation that are not always considered in observational and interventional studies. Furthermore, studies reporting associations have often utilized differing definitions of both COPD and periodontitis. This article reviews the current available evidence supporting the hypothesis that COPD and inflammatory periodontal disease (periodontitis) could be pathologically associated, including a review of shared inflammatory mechanisms. It highlights the potential limitations of previous studies, in particular, the lack of uniformly applied case definitions for both COPD and periodontitis and poor recognition of shared risk factors. Understanding associations between these conditions may inform why patients with COPD suffer such a burden of comorbid illness and new therapeutic strategies for both the diseases. However, further research is needed to clarify factors that may be directly causal as opposed to confounding relationships.
Collapse
Affiliation(s)
| | | | - Elizabeth Sapey
- Institute of Inflammation and Aging.,Centre for Translational Inflammation Research, Institute of Inflammation and Aging, Queen Elizabeth Hospital
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| |
Collapse
|
217
|
Koychev S, Dommisch H, Chen H, Pischon N. Antimicrobial Effects of Mastic Extract Against Oral and Periodontal Pathogens. J Periodontol 2017; 88:511-517. [DOI: 10.1902/jop.2017.150691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stefka Koychev
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
| | - Hong Chen
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
- Department of Stomatology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Nicole Pischon
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
| |
Collapse
|
218
|
Ranganathan AT, Sarathy S, Chandran CR, Iyan K. Subgingival prevalence rate of enteric rods in subjects with periodontal health and disease. J Indian Soc Periodontol 2017; 21:224-228. [PMID: 29440790 PMCID: PMC5803879 DOI: 10.4103/jisp.jisp_204_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The prevalence of enteric rods and their association with chronic periodontitis has gained prominence recently. Although the prevalence of these organisms from the subgingival plaque sample was reported in the literature, the carriage rate of these rods in our population is lacking. The present study was undertaken to know the carriage rate of enteric rods from our population in patients with periodontal health and disease. MATERIALS AND METHODS Eighty-four systemically healthy participants, inclusive of 46 males and 38 females, were selected for the study. The selected participants were subjected to a periodontal examination and were categorized into chronic periodontitis and healthy group. Subgingival plaque samples were taken from all the participants, plated onto McConkey agar plates, and incubated overnight at 37° C to check for the growth of organisms. The grown organisms were then cultured according to the standard procedures. RESULTS Prevalence of 71% and 83% of enteric rods in subjects with periodontal health and disease, respectively, was found in our study which was not statistically significant. CONCLUSION Although no significant differences exist in the prevalence of enteric rods between healthy and patients with chronic periodontitis, the prevalence rate of enteric rods in subgingival plaque samples is considerably high in our population.
Collapse
Affiliation(s)
| | - Sarath Sarathy
- Department of Periodontics, Tagore Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Chitraa Rama Chandran
- Department of Periodontics, Tagore Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Kannan Iyan
- Department of Microbiology, Tagore Medical College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
219
|
Chatzistavrianou D, Blair F. Diagnosis and management of chronic and aggressive periodontitis part 1: periodontal assessment and diagnosis. ACTA ACUST UNITED AC 2017; 44:306-8, 310, 313-5. [DOI: 10.12968/denu.2017.44.4.306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Despoina Chatzistavrianou
- Specialist in Prosthodontics, Specialty Registrar in Restorative Dentistry, Birmingham Dental Hospital and University of Birmingham School of Dentistry, Birmingham Community Healthcare NHS Trust, Birmingham, UK
| | - Fiona Blair
- Consultant and Senior Clinical Lecturer in Restorative Dentistry, Birmingham Dental Hospital and University of Birmingham School of Dentistry, Birmingham Community Healthcare NHS Trust, Birmingham, UK
| |
Collapse
|
220
|
Borsanelli AC, Gaetti-Jardim E, Schweitzer CM, Viora L, Busin V, Riggio MP, Dutra IS. Black-pigmented anaerobic bacteria associated with ovine periodontitis. Vet Microbiol 2017; 203:271-274. [PMID: 28619155 DOI: 10.1016/j.vetmic.2017.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/27/2022]
Abstract
Periodontitis is a polymicrobial infectious disease that causes occlusion change, tooth loss, difficulty in rumination, and premature culling of animals. This study aimed to detect species of the genera Porphyromonas and Prevotella present in the periodontal pocket of sheep with lesions deeper than 5mm (n=14) and in the gingival sulcus of animals considered periodontally healthy (n=20). The presence of microorganisms was evaluated by polymerase chain reaction (PCR) using specific primers for Porphyromonas asaccharolytica, Porphyromonas endodontalis, Porphyromonas gingivalis, Porphyromonas gulae, Prevotella buccae, Prevotella intermedia, Prevotella loescheii, Prevotella melaninogenica, Prevotella nigrescens, Prevotella oralis, and Prevotella tannerae. Prevalence and risk analysis were performed using Student's t-test and Spearman's correlation. Among the Prevotella and Porphyromonas species detected in the periodontal lesions of sheep, P. melaninogenica (85.7%), P. buccae (64.3%), P. gingivalis (50%), and P. endodontalis (50%) were most prevalent. P. gingivalis (15%) and P. oralis (10%) prevailed in the gingival sulcus. P. gulae and P. tannerae were not detected in the 34 samples studied. Data evaluation by t-test verified that occurrence of P. asaccharolytica, P. endodontalis, P. gingivalis, P. buccae, P. intermedia, P. melalinogenica, and P. nigrescens correlated with sheep periodontitis. The findings of this study will be an important contribution to research on pathogenesis of sheep periodontitis and development of its control measures.
Collapse
Affiliation(s)
- Ana C Borsanelli
- School of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, Brazil.
| | | | | | - Lorenzo Viora
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Valentina Busin
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Iveraldo S Dutra
- School of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, Brazil
| |
Collapse
|
221
|
Tang Q, Chen LL, Wei F, Sun WL, Lei LH, Ding PH, Tan JY, Chen XT, Wu YM. Effect of 15-Deoxy-Δ 12,14-prostaglandin J 2Nanocapsules on Inflammation and Bone Regeneration in a Rat Bone Defect Model. Chin Med J (Engl) 2017; 130:347-356. [PMID: 28139520 PMCID: PMC5308019 DOI: 10.4103/0366-6999.198924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the major metabolites from prostaglandin D2 in arachidonic acid metabolic pathway, has potential anti-inflammatory properties. The objective of this study was to explore the effects of 15d-PGJ2-loaded poly(D,L-lactide-co-glycolide) nanocapsules (15d-PGJ2-NC) on inflammatory responses and bone regeneration in local bone defect. METHODS The study was conducted on 96 Wistar rats from June 2014 to March 2016. Saline, unloaded nanoparticles, free 15d-PGJ2or 15d-PGJ2-NC, were delivered through a collagen vehicle inside surgically created transcortical defects in rat femurs. Interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the surrounding soft tissue were analyzed by Western blot and in the defect by quantitative real-time polymerase chain reaction over 14 days. Simultaneously, bone morphogenetic protein-6 (BMP-6) and platelet-derived growth factor-B (PDGF-B) messenger RNA (mRNA) in the defect were examined. New bone formation and EphrinB2 and osteoprotegerin (OPG) protein expression in the cortical defect were observed by Masson's Trichrome staining and immunohistochemistry over 28 days. Data were analyzed by one-way analysis of variance. Least-significant difference and Dunnett's T3 methods were used with a bilateral P< 0.05. RESULTS Application of l5d-PGJ2-NC (100 μg/ml) in the local bone defect significantly decreased IL-6, IL-1β, and TNF-α mRNA and protein, compared with saline-treated controls (P < 0.05). l5d-PGJ2-NC upregulated BMP-6 and PDGF-B mRNA (P < 0.05). New bone formation was observed in the cortical defect in l5d-PGJ2-NC-treated animals from 7th day onward (P < 0.001). Expression of EphrinB2 and OPG presented early on day 3 and persisted through day 28 in 15d-PGJ2-NC group (P < 0.05). CONCLUSION Stable l5d-PGJ2-NC complexes were prepared that could attenuate IL-6, IL-1β, and TNF-α expression, while increasing new bone formation and growth factors related to bone regeneration.
Collapse
Affiliation(s)
- Qi Tang
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Li-Li Chen
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Fen Wei
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Wei-Lian Sun
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Li-Hong Lei
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Pei-Hui Ding
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jing-Yi Tan
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xiao-Tao Chen
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yan-Min Wu
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
222
|
Periodontal Application of Manuka Honey: Antimicrobial and Demineralising Effects In Vitro. Int J Dent 2017; 2017:9874535. [PMID: 28392803 PMCID: PMC5368358 DOI: 10.1155/2017/9874535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/22/2023] Open
Abstract
Background. Topical application of manuka honey is effective in the treatment of burns and soft-tissue infections. The aim of this study was to assess the antibacterial activity of manuka honey against plaque-associated bacteria in vitro in order to evaluate the potential application as an adjunct to periodontal treatment. Materials and Methods. The minimum bacteriostatic and bactericidal concentrations (MIC and MBC) of manuka honey were compared to those of white clover honey against a variety of plaque-associated bacteria, at the natural and neutral pH. Dissolved calcium was measured following incubation of honeys with hydroxyapatite (HA) beads to assess their potential to demineralise oral hard tissues. Results. Both honeys inhibited most tested oral bacteria at similar MIC/MBC, but Streptococcus mutans was comparatively resistant. The honeys at pH neutral had little effect on antimicrobial activity. Incubation of HA beads in honey solutions resulted in pH-dependent calcium dissolution, and inoculation with S. mutans promoted further demineralisation by both types of honey. Conclusion. Manuka honey is antimicrobial towards representative oral bacteria. However, the relative resistance of S. mutans in association with the high concentrations of fermentable carbohydrates in honey and the direct demineralising effect at natural pH mitigate against the application of honey as an adjunct in the treatment of periodontal disease.
Collapse
|
223
|
Silva VDO, Pereira LJ, Murata RM. Oral microbe-host interactions: influence of β-glucans on gene expression of inflammatory cytokines and metabolome profile. BMC Microbiol 2017; 17:53. [PMID: 28270109 PMCID: PMC5341410 DOI: 10.1186/s12866-017-0946-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study was to evaluate the effects of β-glucan on the expression of inflammatory mediators and metabolomic profile of oral cells [keratinocytes (OBA-9) and fibroblasts (HGF-1) in a dual-chamber model] infected by Aggregatibacter actinomycetemcomitans. The periodontopathogen was applied and allowed to cross the top layer of cells (OBA-9) to reach the bottom layer of cells (HGF-1) and induce the synthesis of immune factors and cytokines in the host cells. β-glucan (10 μg/mL or 20 μg/mL) were added, and the transcriptional factors and metabolites produced were quantified in the remaining cell layers and supernatant. Results The relative expression of interleukin (IL)-1-α and IL-18 genes in HGF-1 decreased with 10 μg/mL or 20 μg/mL of β-glucan, where as the expression of PTGS-2 decreased only with 10 μg/mL. The expression of IL-1-α increased with 20 μg/mL and that of IL-18 increased with 10 μg/mL in OBA-9; the expression of BCL 2, EP 300, and PTGS-2 decreased with the higher dose of β-glucan. The production of the metabolite 4-aminobutyric acid presented lower concentrations under 20 μg/mL, whereas the concentrations of 2-deoxytetronic acid NIST and oxalic acid decreased at both concentrations used. Acetophenone, benzoic acid, and pinitol presented reduced concentrations only when treated with 10 μg/mL of β-glucan. Conclusions Treatment with β-glucans positively modulated the immune response and production of metabolites.
Collapse
Affiliation(s)
- Viviam de Oliveira Silva
- Herman Ostrow School of Dentistry, Division of Periodontology Diagnostic Sciences, Dental Hygiene & Biomedical Science, University of Southern California, Los Angeles, CA, USA.,Department of Veterinary Medicine, Physiology and Pharmacology Area, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Luciano José Pereira
- Department of Health Sciences, Physiology Area, Federal University of Lavras,Lavras, Minas Gerais, Brazil
| | - Ramiro Mendonça Murata
- School of Dental Medicine, Department Foundational Sciences, East Carolina University, 1851 MacGregor Downs Road, Greeville, NC, 27834-4354, USA. .,Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
224
|
Rath H, Stumpp SN, Stiesch M. Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials. PLoS One 2017; 12:e0172095. [PMID: 28187188 PMCID: PMC5302373 DOI: 10.1371/journal.pone.0172095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/31/2017] [Indexed: 11/28/2022] Open
Abstract
Since the introduction of modern dental implants in the 1980s, the number of inserted implants has steadily increased. Implant systems have become more sophisticated and have enormously enhanced patients’ quality of life. Although there has been tremendous development in implant materials and clinical methods, bacterial infections are still one of the major causes of implant failure. These infections involve the formation of sessile microbial communities, called biofilms. Biofilms possess unique physical and biochemical properties and are hard to treat conventionally. There is a great demand for innovative methods to functionalize surfaces antibacterially, which could be used as the basis of new implant technologies. Present, there are few test systems to evaluate bacterial growth on these surfaces under physiological flow conditions. We developed a flow chamber model optimized for the assessment of dental implant materials. As a result it could be shown that biofilms of the five important oral bacteria Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans, can be reproducibly formed on the surface of titanium, a frequent implant material. This system can be run automatically in combination with an appropriate microscopic device and is a promising approach for testing the antibacterial effect of innovative dental materials.
Collapse
Affiliation(s)
- Henryke Rath
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Sascha Nico Stumpp
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
225
|
Tonsekar PP, Jiang SS, Yue G. Periodontal disease, tooth loss and dementia: Is there a link? A systematic review. Gerodontology 2017; 34:151-163. [DOI: 10.1111/ger.12261] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Pallavi P. Tonsekar
- Department of Periodontics; Rutgers School of Dental Medicine; Newark NJ USA
| | - Shuying S. Jiang
- Institutional Assessment and Quality Improvement; Rutgers School of Dental Medicine; Newark NJ USA
| | - Gang Yue
- Department of Periodontics; Rutgers School of Dental Medicine; Newark NJ USA
| |
Collapse
|
226
|
Kakuta E, Nomura Y, Morozumi T, Nakagawa T, Nakamura T, Noguchi K, Yoshimura A, Hara Y, Fujise O, Nishimura F, Kono T, Umeda M, Fukuda M, Noguchi T, Yoshinari N, Fukaya C, Sekino S, Numabe Y, Sugano N, Ito K, Kobayashi H, Izumi Y, Takai H, Ogata Y, Takano S, Minabe M, Makino-Oi A, Saito A, Abe Y, Sato S, Suzuki F, Takahashi K, Sugaya T, Kawanami M, Hanada N, Takashiba S, Yoshie H. Assessing the progression of chronic periodontitis using subgingival pathogen levels: a 24-month prospective multicenter cohort study. BMC Oral Health 2017; 17:46. [PMID: 28093069 PMCID: PMC5240246 DOI: 10.1186/s12903-017-0337-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The diagnosis of the progression of periodontitis presently depends on the use of clinical symptoms (such as attachment loss) and radiographic imaging. The aim of the multicenter study described here was to evaluate the diagnostic use of the bacterial content of subgingival plaque recovered from the deepest pockets in assessing disease progression in chronic periodontitis patients. METHODS This study consisted of a 24-month investigation of a total of 163 patients with chronic periodontitis who received trimonthly follow-up care. Subgingival plaque from the deepest pockets was recovered and assessed for bacterial content of Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans using the modified Invader PLUS assay. The corresponding serum IgG titers were measured using ELISA. Changes in clinical parameters were evaluated over the course of 24 months. The sensitivity, specificity, and prediction values were calculated and used to determine cutoff points for prediction of the progression of chronic periodontitis. RESULTS Of the 124 individuals who completed the 24-month monitoring phase, 62 exhibited progression of periodontitis, whereas 62 demonstrated stable disease. The P. gingivalis counts of subgingival plaque from the deepest pockets was significantly associated with the progression of periodontitis (p < 0.001, positive predictive value = 0.708). CONCLUSIONS The P. gingivalis counts of subgingival plaque from the deepest pockets may be associated with the progression of periodontitis.
Collapse
Affiliation(s)
- E Kakuta
- Department of Oral Microbiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Japan
| | - Y Nomura
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - T Morozumi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, Japan
| | - T Nakagawa
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - T Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - K Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - A Yoshimura
- Department of Periodontology, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Japan
| | - Y Hara
- Department of Periodontology, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Japan
| | - O Fujise
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - F Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - T Kono
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Japan
| | - M Umeda
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Japan
| | - M Fukuda
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-doori,Chikusa-ku, Nagoya, Japan
| | - T Noguchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-doori,Chikusa-ku, Nagoya, Japan
| | - N Yoshinari
- Department of Periodontology, School of Dentistry, Matsumoto Dental University, 1780 Hirokagobara, Shiojiri, Nagano, Japan
| | - C Fukaya
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - S Sekino
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, Japan
| | - Y Numabe
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, Japan
| | - N Sugano
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, Japan
| | - K Ito
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, Japan
| | - H Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Y Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - H Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho-nishi, Matsudo-shi, Chiba, Japan
| | - Y Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho-nishi, Matsudo-shi, Chiba, Japan
| | - S Takano
- Bunkyo-Dori Dental Clinic, 2-4-1 Anagawa, Inage-ku, Chiba, Japan
| | - M Minabe
- Bunkyo-Dori Dental Clinic, 2-4-1 Anagawa, Inage-ku, Chiba, Japan.,Division of Periodontology, Department of Oral function and Restoration, School of Dentistry, Kanagawa Dental University, 82 Inaokacho, Yokosuka, Kanagawa, Japan
| | - A Makino-Oi
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misakicho, Chiyoda-ku, Tokyo, Japan
| | - A Saito
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misakicho, Chiyoda-ku, Tokyo, Japan
| | - Y Abe
- Comprehensive Dental Care, The Nippon Dental University Niigata Hospital, 1-8 Hamaura-cho, Chuo-ku, Niigata, Japan
| | - S Sato
- Department of Periodontology, School of life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, Japan
| | - F Suzuki
- Division of Dental Anesthesiology, Department of Oral Surgery, School of Dentistry, Ohu University, 31-1 Misumido, Tomita, Koriyama, Fukushima, Japan
| | - K Takahashi
- Division of Periodontics, Department of Conservative Dentistry, School of Dentistry, Ohu University, 31-1 Misumido, Tomita, Koriyama, Fukushima, Japan
| | - T Sugaya
- Division of Periodontology and Endodontology, Department of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, Japan
| | - M Kawanami
- Division of Periodontology and Endodontology, Department of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, Japan
| | - N Hanada
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - S Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan
| | - H Yoshie
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
227
|
Dhotre SV, Davane MS, Nagoba BS. Periodontitis, Bacteremia and Infective Endocarditis: A Review Study. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2017; In press. [DOI: 10.5812/pedinfect.41067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
|
228
|
Boyapati R, Gojja P, Chintalapani S, Nagubandi K, Ramisetti A, Salavadhi SS. Efficacy of local drug delivery of Achyranthes aspera gel in the management of chronic periodontitis: A clinical study. J Indian Soc Periodontol 2017; 21:46-49. [PMID: 29386800 PMCID: PMC5767990 DOI: 10.4103/jisp.jisp_130_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Context: Periodontitis is an inflammatory disease of microbial origin. Locally delivered antimicrobials reduce subgingival flora. Achyranthes aspera gel has antimicrobial, antioxidant, anti-inflammatory, and immunostimulant effects. Aims: To evaluate the efficacy of local drug delivery of A. aspera gel in the management of chronic periodontitis. Materials and Methods: Thirty patients with chronic periodontitis were considered in the study and categorized into two equal groups (Group A: scaling and root planing (SRP) with A. aspera gel, Group B: SRP with placebo gel). Patients were enlisted from the Department of Periodontics, Mamata Dental College and Hospital. The clinical parameters (gingival index, bleeding on probing, probing pocket depth, and clinical attachment level) were recorded at baseline and 3 months. Statistical Analysis Used: All the obtained data were sent for statistical analyses using SPSS version 18. Results: The periodontitis and the Achyranthes were statistically analyzed. A comparison of clinical parameters for test group and control group from baseline to 3 months was done using paired t-test. Intergroup comparison for both the groups was done using independent sample t-test. Conclusions: A. aspera gel when delivered locally along with SRP showed a beneficial effect. A. aspera gel as a non-surgical local drug delivery system proved to be without any side effects in the management of periodontitis. A. aspera gel has strong anti-inflammatory effects in addition to its antioxidant activity.
Collapse
Affiliation(s)
| | - Prathibha Gojja
- Department of Periodontics, Mamata Dental College, Khammam, Telangana, India
| | | | | | - Arpita Ramisetti
- Department of Periodontics, Mamata Dental College, Khammam, Telangana, India
| | | |
Collapse
|
229
|
Komath M, Varma HK, John A, Krishnan V, Simon D, Ramanathan M, Bhuvaneshwar GS. Designing Bioactive Scaffolds for Dental Tissue Engineering. REGENERATIVE MEDICINE: LABORATORY TO CLINIC 2017:423-447. [DOI: 10.1007/978-981-10-3701-6_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
230
|
YİĞİTARSLAN K, Akın ÖZCAN Ü. KÖPEKLERDE PERİODONTAL HASTALIKLAR. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2016. [DOI: 10.24880/maeuvfd.287351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
231
|
Comparative Study on the Characteristics of Weissella cibaria CMU and Probiotic Strains for Oral Care. Molecules 2016; 21:molecules21121752. [PMID: 27999400 PMCID: PMC6274271 DOI: 10.3390/molecules21121752] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 01/22/2023] Open
Abstract
Probiotics have been demonstrated as a new paradigm to substitute antibiotic treatment for dental caries, gingivitis, and chronic periodontitis. The present work was conducted to compare the characteristics of oral care probiotics: Weissella cibaria CMU (Chonnam Medical University) and four commercial probiotic strains. Survival rates under poor oral conditions, acid production, hydrogen peroxide production, as well as inhibition of biofilm formation, coaggregation, antibacterial activity, and inhibition of volatile sulfur compounds were evaluated. The viability of W. cibaria CMU was not affected by treatment of 100 mg/L lysozyme for 90 min and 1 mM hydrogen peroxide for 6 h. Interestingly, W. cibaria produced less acid and more hydrogen peroxide than the other four probiotics. W. cibaria inhibited biofilm formation by Streptococcus mutans at lower concentrations (S. mutans/CMU = 8) and efficiently coaggregated with Fusobacterium nucleatum. W. cibaria CMU and two commercial probiotics, including Lactobacillus salivarius and Lactobacillus reuteri, showed high antibacterial activities (>97%) against cariogens (S. mutans and Streptococcus sobrinus), and against periodontopathogens (F. nucleatum and Porphyromonas gingivalis). All of the lactic acid bacterial strains in this study significantly reduced levels of hydrogen sulfide and methyl mercaptan produced by F. nucleatum and P. gingivalis (p < 0.05). These results suggest that W. cibaria CMU is applicable as an oral care probiotic.
Collapse
|
232
|
Laine ML, Morré SA, Murillo LS, van Winkelhoff AJ, Peña AS. CD14 and TLR4 Gene Polymorphisms in Adult Periodontitis. J Dent Res 2016; 84:1042-6. [PMID: 16246938 DOI: 10.1177/154405910508401114] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacterial deposits, smoking, and host genetic factors play a major role in an individual’s predisposition to periodontitis. Bacterial components are recognized by CD14 and toll-like receptor 4 (TLR4), resulting in a NF-κB-based inflammatory response. We hypothesized that functional CD14 and TLR4 polymorphisms contribute to periodontitis susceptibility. We aimed to investigate the occurrence of CD14-260C>T, TLR4 299Asp>Gly, and 399Thr>Ile gene polymorphisms in adult periodontititis. DNA was collected from 100 patients with severe periodontitis and from 99 periodontally healthy controls. The gene polymorphisms were determined by the PCR technique. The presence of the periodontal pathogens Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans, and whether the subjects smoked, was included in the analyses. The CD14-260T/T genotype was found in 34.0% of periodontitis patients and in 20.2% of controls. Logistic regression analysis adjusted for gender, age, smoking, and prevalence of P. gingivalis and A. actinomycetemcomitans showed an association between the CD14-260T/T genotype and periodontitis (P = 0.004, OR 3.0, 95% CI 1.4–6.9). We conclude that the CD14-260T/T genotype contributes to the susceptibility to severe periodontitis in Dutch Caucasians.
Collapse
Affiliation(s)
- M L Laine
- Department of Periodontology, Section of Oral Microbiology, Academic Centre for Dentistry Amsterdam, Van der Boechorsstraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
233
|
Bodet C, Chandad F, Grenier D. Anti-inflammatory Activity of a High-molecular-weight Cranberry Fraction on Macrophages Stimulated by Lipopolysaccharides from Periodontopathogens. J Dent Res 2016; 85:235-9. [PMID: 16498070 DOI: 10.1177/154405910608500306] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease affecting oral tissues. The continuous, high production of cytokines by host cells triggered by periodontopathogens is thought to be responsible for the destruction of tooth-supporting tissues. Macrophages play a critical role in this host inflammatory response to periodontopathogens. The aim of this study was to investigate the effect of non-dialyzable material prepared from cranberry juice concentrate on the pro-inflammatory cytokine response of macrophages induced by lipopolysaccharides (LPS) from Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum subsp. nucleatum, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Escherichia coli. Interleukin-1 beta (IL-1β), IL-6, IL-8, tumor necrosis factor alpha (TNF-α), and Regulated on Activation Normal T-cell Expressed and Secreted (RANTES) production by macrophages treated with the cranberry fraction prior to stimulation by LPS was evaluated by ELISA. Our results clearly indicate that the cranberry fraction was a potent inhibitor of the pro-inflammatory cytokine and chemokine responses induced by LPS. This suggests that cranberry constituents may offer perspectives for the development of a new therapeutic approach to the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- C Bodet
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
234
|
Dayan S, Stashenko P, Niederman R, Kupper TS. Oral Epithelial Overexpression of IL-1α Causes Periodontal Disease. J Dent Res 2016; 83:786-90. [PMID: 15381720 DOI: 10.1177/154405910408301010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontal disease is a bacterial infection that results in inflammatory destruction of tissues that support the teeth, including connective tissue and bone. In this study, we report that transgenic mice that overexpress the 17-kDa form of IL-1α in the basal layer of oral mucosal epithelium develop a syndrome that possesses all of the cardinal features of periodontal disease, including epithelial proliferation and apical migration, loss of attachment, and destruction of cementum and alveolar bone. In this model, bacterial colonization and infection were not required, since levels of periodontal bacteria were equivalent in transgenic and wild-type mice, and continuous treatment with antibiotics from birth did not ameliorate the disease. Our findings therefore indicate that elevated levels of IL-1α in the oral micro-environment can mediate all of the clinical features of periodontal disease.
Collapse
Affiliation(s)
- S Dayan
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
235
|
Zhou W, Zhang X, Zhu CL, He ZY, Liang JP, Song ZC. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response. PLoS One 2016; 11:e0166442. [PMID: 27832188 PMCID: PMC5104381 DOI: 10.1371/journal.pone.0166442] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/29/2016] [Indexed: 11/18/2022] Open
Abstract
Aim “Perioceutics” including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential “perioceutics” treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon) on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation. Methods Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM). The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs) was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8) was measured by enzyme-linked immunosorbent assay (ELISA). Results Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC) concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence factors (kgp, rgpA, rgpB, hagA, and ragA), while increasing the mRNA expression of ferritin (ftn) or hemolysin (hem). They did not show obvious cytotoxicity toward HGFs. They inhibited Pg-LPS-induced IL-6 and IL-8 secretion, which was reversed by luzindole, the melatonin receptor antagonist. Conclusion Melatonin receptor agonists can inhibit planktonic and biofilm growth of Porphyromonas gingivalis by affecting the virulent properties, as well as Pg-LPS-induced inflammatory response. Our study provides new evidence that melatonin receptor agonists might be useful as novel “perioceutics” agents to prevent and treat Porphyromonas gingivalis-associated periodontal diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Periodontology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Xuan Zhang
- Department of Pharmacy, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Cai-Lian Zhu
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Zhi-Yan He
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Jing-Ping Liang
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai 200011, China
- * E-mail: (ZCS); (JPL)
| | - Zhong-Chen Song
- Department of Periodontology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai 200011, China
- * E-mail: (ZCS); (JPL)
| |
Collapse
|
236
|
Kanoriya D, Pradeep AR, Garg V, Singhal S. Mandibular Degree II Furcation Defects Treatment With Platelet-Rich Fibrin and 1% Alendronate Gel Combination: A Randomized Controlled Clinical Trial. J Periodontol 2016; 88:250-258. [PMID: 27712462 DOI: 10.1902/jop.2016.160269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Different materials have been investigated for renewal of lost supporting periodontal structures and tested for furcation defect treatment. Platelet-rich fibrin (PRF) is a pool of growth-promoting factors and cytokines that promote bone regeneration and maturation of soft tissue. Alendronate (ALN), an influential member of the bisphosphonate group, is known to enhance osteoblastogenesis and inhibit osteoclastic bone resorption, thus promoting tissue regeneration. This randomized trial was done to assess effectiveness of PRF and 1% ALN gel combination in mandibular degree II furcation defect treatment in comparison with PRF and access therapy alone. METHODS Seventy-two mandibular molar furcation defects were treated with either access therapy alone (group 1), access therapy with PRF (group 2), or access therapy with PRF and 1% ALN (group 3). Plaque index, modified sulcus bleeding index, probing depth (PD), relative vertical attachment level (RVAL) and relative horizontal attachment level (RHAL), and intrabony defect depth were recorded at baseline and 9 months postoperatively. Radiographically, defect fill, assessed in percentage, was evaluated at baseline, before surgery, and 9 months post-therapy. RESULTS Group 3 showed greater PD reduction and RVAL and RHAL gain when compared with groups 1 and 2 postoperatively. Moreover, group 3 sites showed a significantly greater percentage of radiographic defect fill (56.01% ± 2.64%) when compared with group 2 (49.43% ± 3.70%) and group 1 (10.25% ± 3.66%) at 9 months. CONCLUSIONS Furcation defect treatment with autologous PRF combined with 1% ALN gel results in significant therapeutic outcomes when compared with PRF and access therapy alone. Combining ALN with PRF has potential for regeneration of furcation defects without any adverse effect on healing process.
Collapse
Affiliation(s)
- Dharmendra Kanoriya
- Department of Periodontology, Government Dental College and Research Institute (GDCRI), Bangalore, Karnataka, India
| | - A R Pradeep
- Department of Periodontology, Government Dental College and Research Institute (GDCRI), Bangalore, Karnataka, India
| | - Vibhuti Garg
- Department of Periodontology, Government Dental College and Research Institute (GDCRI), Bangalore, Karnataka, India
| | - Sandeep Singhal
- Department of Periodontology, Government Dental College and Research Institute (GDCRI), Bangalore, Karnataka, India
| |
Collapse
|
237
|
Kim YH, Kim SM, Lee SY. Antimicrobial Activity of Protamine against Oral Microorganisms. Biocontrol Sci 2016; 20:275-80. [PMID: 26699859 DOI: 10.4265/bio.20.275] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Protamine is an arginine-rich polycationic protein extracted from sperm cells of vertebrates including fishes such as salmon. The purpose of this study was to investigate the suppressive effects of protamine on the growth of oral pathogens for possible usage in dental materials. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the microdilution method. Twelve strains of oral viridans streptococci, Actinomyces naeslundii, Actinomyces odontolyticus, Enterococcus faecalis, Lactobacillus acidophilus, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans were suppressed by protamine. MIC and MBC values were between 0.009 ~ 20 mg/mL and 0.019 ~ 80 mg/mL, respectively. The bactericidal activities of protamine against susceptible bacterial species were dependent on the concentration of protamine and incubation time. Based on the results of this study, protamine would be a useful compound for the development of antimicrobial agents against oral pathogens in dental materials.
Collapse
Affiliation(s)
- Yeon-Hee Kim
- Department of Microbiology and Immunology, College of Dentistry, Research Institute of Oral Science - Gangneung-Wonju National University
| | | | | |
Collapse
|
238
|
Shaw L, Harjunmaa U, Doyle R, Mulewa S, Charlie D, Maleta K, Callard R, Walker AS, Balloux F, Ashorn P, Klein N. Distinguishing the Signals of Gingivitis and Periodontitis in Supragingival Plaque: a Cross-Sectional Cohort Study in Malawi. Appl Environ Microbiol 2016; 82:6057-67. [PMID: 27520811 PMCID: PMC5038043 DOI: 10.1128/aem.01756-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Periodontal disease ranges from gingival inflammation (gingivitis) to the inflammation and loss of tooth-supporting tissues (periodontitis). Previous research has focused mainly on subgingival plaque, but supragingival plaque composition is also known to be associated with disease. Quantitative modeling of bacterial abundances across the natural range of periodontal severities can distinguish which features of disease are associated with particular changes in composition. We assessed a cross-sectional cohort of 962 Malawian women for periodontal disease and used 16S rRNA gene amplicon sequencing (V5 to V7 region) to characterize the bacterial compositions of supragingival plaque samples. Associations between bacterial relative abundances and gingivitis/periodontitis were investigated by using negative binomial models, adjusting for epidemiological factors. We also examined bacterial cooccurrence networks to assess community structure. The main differences in supragingival plaque compositions were associated more with gingivitis than periodontitis, including higher bacterial diversity and a greater abundance of particular species. However, even after controlling for gingivitis, the presence of subgingival periodontitis was associated with an altered supragingival plaque. A small number of species were associated with periodontitis but not gingivitis, including members of Prevotella, Treponema, and Selenomonas, supporting a more complex disease model than a linear progression following gingivitis. Cooccurrence networks of periodontitis-associated taxa clustered according to periodontitis across all gingivitis severities. Species including Filifactor alocis and Fusobacterium nucleatum were central to this network, which supports their role in the coaggregation of periodontal biofilms during disease progression. Our findings confirm that periodontitis cannot be considered simply an advanced stage of gingivitis even when only considering supragingival plaque. IMPORTANCE Periodontal disease is a major public health problem associated with oral bacteria. While earlier studies focused on a small number of periodontal pathogens, it is now accepted that the whole bacterial community may be important. However, previous high-throughput marker gene sequencing studies of supragingival plaque have largely focused on high-income populations with good oral hygiene without including a range of periodontal disease severities. Our study includes a large number of low-income participants with poor oral hygiene and a wide range of severities, and we were therefore able to quantitatively model bacterial abundances as functions of both gingivitis and periodontitis. A signal associated with periodontitis remains after controlling for gingivitis severity, which supports the concept that, even when only considering supragingival plaque, periodontitis is not simply an advanced stage of gingivitis. This suggests the future possibility of diagnosing periodontitis based on bacterial occurrences in supragingival plaque.
Collapse
Affiliation(s)
- Liam Shaw
- Institute for Child Health, UCL, London, United Kingdom Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, UCL, London, United Kingdom
| | - Ulla Harjunmaa
- Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Ronan Doyle
- Institute for Child Health, UCL, London, United Kingdom
| | - Simeon Mulewa
- University of Malawi College of Medicine, Blantyre, Malawi
| | - Davie Charlie
- University of Malawi College of Medicine, Blantyre, Malawi
| | - Ken Maleta
- University of Malawi College of Medicine, Blantyre, Malawi
| | - Robin Callard
- Institute for Child Health, UCL, London, United Kingdom
| | | | | | - Per Ashorn
- Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Nigel Klein
- Institute for Child Health, UCL, London, United Kingdom
| |
Collapse
|
239
|
Chen W, Gao B, Hao L, Zhu G, Jules J, Macdougall MJ, Han X, Zhou X, Li YP. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation. J Periodontal Res 2016; 51:647-60. [PMID: 26754272 PMCID: PMC5482270 DOI: 10.1111/jre.12345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. MATERIAL AND METHODS We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. RESULTS AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. CONCLUSION AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Bo Gao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Mary J. Macdougall
- Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, SDB Room 702, 1919 7 Avenue South, Birmingham AL 35233, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| |
Collapse
|
240
|
Kanoriya D, Pradeep AR, Singhal S, Garg V, Guruprasad CN. Synergistic Approach Using Platelet-Rich Fibrin and 1% Alendronate for Intrabony Defect Treatment in Chronic Periodontitis: A Randomized Clinical Trial. J Periodontol 2016; 87:1427-1435. [PMID: 27562221 DOI: 10.1902/jop.2016.150698] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Platelet-rich fibrin (PRF) is a reservoir of concentrated platelets that provides a pool of biologic growth-promoting factors and cytokines, which help in mediating regeneration of lost bone and soft tissue maturation. Alendronate (ALN), a member of the amino-bisphosphonate group, is known to enhance periodontal tissue regeneration by inhibiting osteoclast-mediated bone resorption and promoting osteoblast-mediated osteogenesis. The current intervention aims to assess combined effectiveness of PRF and 1% ALN with access therapy in intrabony defect (IBD) treatment in patients with chronic periodontitis (CP). METHODS Single IBDs in 90 patients were categorized into three groups: 1) group 1 had access therapy alone; 2) group 2 had access therapy with PRF; and 3) group 3 had access therapy with PRF + 1% ALN. Site-specific plaque index, modified sulcus bleeding index, probing depth (PD), clinical attachment level (CAL), and gingival marginal level, included as parameters for clinical assessment, were evaluated before surgery at baseline and 9 months postoperatively. Percentage IBD depth reduction, assessed using radiographs, was evaluated at baseline and postoperatively. RESULTS Compared with groups 1 and 2, group 3 exhibited significantly greater reduction in PD and gain in CAL postoperatively. Significantly greater IBD depth reduction was shown in group 3 (54.05% ± 2.88%) compared with group 2 (46% ± 1.89%) and group 1 (7.33% ± 4.86%) postoperatively. CONCLUSION Combined approach therapy of PRF + 1% ALN for IBD treatment in patients with CP showed better clinical parameter outcomes with greater IBD depth reduction compared with PRF and access therapy alone.
Collapse
Affiliation(s)
- Dharmendra Kanoriya
- Department of Periodontology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - A R Pradeep
- Department of Periodontology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - Sandeep Singhal
- Department of Periodontology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - Vibhuti Garg
- Department of Periodontology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - C N Guruprasad
- Department of Periodontology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
241
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
242
|
Innate Immune Response of Human Embryonic Stem Cell-Derived Fibroblasts and Mesenchymal Stem Cells to Periodontopathogens. Stem Cells Int 2016; 2016:8905365. [PMID: 27642305 PMCID: PMC5014959 DOI: 10.1155/2016/8905365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
Periodontitis involves complex interplay of bacteria and host immune response resulting in destruction of supporting tissues of the tooth. Toll-like receptors (TLRs) play a role in recognizing microbial pathogens and eliciting an innate immune response. Recently, the potential application of multipotent stem cells and pluripotent stem cells including human embryonic stem cells (hESCs) in periodontal regenerative therapy has been proposed. However, little is known about the impact of periodontopathogens on hESC-derived progenies. This study investigates the effects of heat-killed periodontopathogens, namely, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, on TLR and cytokine expression profile of hESC-derived progenies, namely, fibroblasts (hESC-Fib) and mesenchymal stem cells (hESC-MSCs). Additionally, the serotype-dependent effect of A. actinomycetemcomitans on hESC-derived progenies was explored. Both hESC-Fib and hESC-MSCs constitutively expressed TLR-2 and TLR-4. hESC-Fib upon exposure to periodontopathogens displayed upregulation of TLRs and release of cytokines (IL-1β, IL-6, and IL-8). In contrast, hESC-MSCs were largely nonresponsive to bacterial challenge, especially in terms of cytokine production. Further, exposure of hESC-Fib to A. actinomycetemcomitans serotype c was associated with higher IL-8 production than serotype b. In contrast, the hESC-MSCs displayed no serotype-dependent response. Differential response of the two hESC progenies implies a phenotype-dependent response to periodontopathogens and supports the concept of immunomodulatory properties of MSCs.
Collapse
|
243
|
Sun M, Zhou Z, Dong J, Zhang J, Xia Y, Shu R. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria. Microb Pathog 2016; 99:196-203. [PMID: 27565090 DOI: 10.1016/j.micpath.2016.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 01/02/2023]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention and treatment of periodontal diseases.
Collapse
Affiliation(s)
- Mengjun Sun
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zichao Zhou
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiachen Dong
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jichun Zhang
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yiru Xia
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Rong Shu
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
244
|
Ben Lagha A, Grenier D. Black tea theaflavins attenuate Porphyromonas gingivalis virulence properties, modulate gingival keratinocyte tight junction integrity and exert anti-inflammatory activity. J Periodontal Res 2016; 52:458-470. [PMID: 27549582 DOI: 10.1111/jre.12411] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Over the last 10 years, bioactive plant food compounds have received considerable attention in regard to their beneficial effects against periodontal disease. In this study, we investigated the effects of black tea theaflavins (TFs) on the virulence properties of Porphyromonas gingivalis and gingival keratinocyte tight junction integrity. In addition, the effects of black tea TFs on the nuclear factor-κB (NF-κB) signaling pathway and proinflammatory cytokine/matrix metalloproteinase (MMP) secretion by monocytes/macrophages were assessed. MATERIAL AND METHODS Virulence factor gene expression in P. gingivalis was investigated by quantitative real-time PCR. A fluorescence assay was used to determine P. gingivalis adherence to, and invasion of, a gingival keratinocyte monolayer. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. Proinflammatory cytokine and MMP secretion by P. gingivalis-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Gelatin degradation was monitored using a fluorogenic assay. RESULTS Black tea TFs dose-dependently inhibited the expression of genes encoding the major virulence factors of P. gingivalis and attenuated its adherence to gingival keratinocytes. A treatment of gingival keratinocytes with black tea TFs significantly enhanced tight junction integrity and prevented P. gingivalis-mediated tight junction damage as well as bacterial invasion. Black tea TFs reduced the secretion of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, chemokine (C-X-C) ligand 8, MMP-3, MMP-8 and MMP-9 by P. gingivalis-stimulated macrophages and attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. Lastly, black tea TFs inhibited gelatin degradation by MMP-9. CONCLUSION This study provides clear evidence that black tea TFs represent promising multifunctional therapeutic agents for prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- A Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - D Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| |
Collapse
|
245
|
Alamanda M, Denthumdas SK, Wadgave U, Pharne PM, Patil SJ, Kondreddi S, Deshpande P, Koppikar RS. Comparative Evaluation of Ciprofloxacin Levels in GCF and Plasma of Chronic Periodontitis Patients: Quasi Experimental Study. J Clin Diagn Res 2016; 10:ZC47-50. [PMID: 27504410 DOI: 10.7860/jcdr/2016/18446.7987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/16/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION For any antimicrobial approach to be successful in periodontal therapy, it is important that the antimicrobial agent targets the sub-gingival biofilm by attaining sufficient concentration at the sub-gingival site. AIM The purpose of the present study was to determine and compare the concentrations of ciprofloxacin present in Gingival Crevicular Fluid (GCF) and plasma after its systemic administration. MATERIALS AND METHODS A total of 20 subjects, in the age group of 30-60 years satisfying the inclusion and exclusion criteria, were chosen from the outpatient Department of Periodontology, Government Dental College and Hospital, Hyderabad and consent was obtained. Subjects were put on oral ciprofloxacin therapy (Baycip, Bayer Corporation) of 500mg twice daily doses for five days to establish steady state tissue levels of the agent. GCF and serum samples were collected at the 72(nd) hour after the first dose of ciprofloxacin and were compared using unpaired t test. RESULTS The mean gingival index value of the subjects was 1.8 ± 0.59 and the mean probing depth of the subjects taken in the study was 5.724 ± 0.47mm. The results of this study showed that ciprofloxacin concentrations were significantly higher (p<0.001) in GCF than in plasma. CONCLUSION Results from the present study and those from the earlier studies clearly indicate the ciprofloxacin's ability to reach and concentrate in infected periodontal sites via GCF. This property of ciprofloxacin may be useful for eradication of periodontal pathogens, thus improving the outcome of periodontal therapy.
Collapse
Affiliation(s)
- Madhavi Alamanda
- Reader, Department of Periodontics, Ahmedabad Dental College , Ahmedabad, Gujurat, India
| | - Sunil Kumar Denthumdas
- Associate Professor, Department of Periodontics, Bharati Vidyapeeth Deemed University Dental College and Hospital , Sangli, Maharashtra, India
| | - Umesh Wadgave
- Assistant Professor, Department of Public Health Dentistry, Bharati Vidyapeeth Deemed University Dental College and Hospital , Sangli, Maharashtra, India
| | - Pooja Mohan Pharne
- Assistant Professor, Department of Periodontics, Bharati Vidyapeeth Deemed University Dental College and Hospital , Sangli, Maharashtra, India
| | - Sandeep Jambukumar Patil
- Assistant Professor, Department of Periodontics, Bharati Vidyapeeth Deemed University Dental College and Hospital , Sangli, Maharashtra, India
| | - Sirisha Kondreddi
- Reader, Department of Periodontics, Drs Sudha & Nageswara Rao Siddhartha Institute of Dental Sciences , Chinoutapally, Krishna District, Andhra Pradesh, India
| | - Pavan Deshpande
- Assistant Professor, Department of Periodontics, Bharati Vidyapeeth Deemed University Dental College and Hospital , Sangli, Maharashtra, India
| | - Rajesh Suresh Koppikar
- Professor and Head, Department of Periodontics, Bharati Vidyapeeth Deemed University Dental College and Hospital , Sangli, Maharashtra, India
| |
Collapse
|
246
|
Abstract
Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.
Collapse
Affiliation(s)
- Deirdre L Church
- Departments of Pathology & Laboratory Medicine and Medicine, University of Calgary, and Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
247
|
Ahlstrand T, Tuominen H, Beklen A, Torittu A, Oscarsson J, Sormunen R, Pöllänen MT, Permi P, Ihalin R. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8. Virulence 2016; 8:115-134. [PMID: 27459270 PMCID: PMC5383217 DOI: 10.1080/21505594.2016.1216294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heidi Tuominen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Arzu Beklen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Jan Oscarsson
- b Oral Microbiology , Department of Odontology, Umeå University , Umeå , Sweden
| | - Raija Sormunen
- c Biocenter Oulu and Department of Pathology , University of Oulu , Oulu Finland
| | | | - Perttu Permi
- e Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , Helsinki , Finland.,f Department of Biological and Environmental Sciences , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland.,g Department of Chemistry , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
248
|
Cosgarea R, Juncar R, Heumann C, Tristiu R, Lascu L, Arweiler N, Stavropoulos A, Sculean A. Non-surgical periodontal treatment in conjunction with 3 or 7 days systemic administration of amoxicillin and metronidazole in severe chronic periodontitis patients. A placebo-controlled randomized clinical study. J Clin Periodontol 2016; 43:767-77. [DOI: 10.1111/jcpe.12559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Raluca Cosgarea
- Department of Periodontology; Philipps University Marburg; Marburg Germany
- Clinic for Prosthetic Dentistry; University Iuliu Hatieganu; Cluj-Napoca Romania
| | - Raluca Juncar
- Clinic for Prosthetic Dentistry; University Iuliu Hatieganu; Cluj-Napoca Romania
| | - Christian Heumann
- Department for Statistics; Ludwig-Maximilians University; Munich Germany
| | - Roxana Tristiu
- Clinic for Prosthetic Dentistry; University Iuliu Hatieganu; Cluj-Napoca Romania
| | - Liana Lascu
- Clinic for Prosthetic Dentistry; University Iuliu Hatieganu; Cluj-Napoca Romania
| | - Nicole Arweiler
- Department of Periodontology; Philipps University Marburg; Marburg Germany
| | - Andreas Stavropoulos
- Department of Periodontology; Faculty of dentistry; Malmö University; Malmö Sweden
| | - Anton Sculean
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| |
Collapse
|
249
|
Azad MF, Schwiertz A, Jentsch HFR. Adjunctive use of essential oils following scaling and root planing -a randomized clinical trial. Altern Ther Health Med 2016; 16:171. [PMID: 27266517 PMCID: PMC4897933 DOI: 10.1186/s12906-016-1117-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hitherto no study has been published on the effect of the adjunctive administration of essential oils following scaling and root planing (SRP). This study describes the effect of a mouthrinse consisting of essential oils (Cymbopogon flexuosus, Thymus zygis and Rosmarinus officinalis) following SRP by clinical and microbiological variables in patients with generalized moderate chronic periodontitis. METHODS Forty-six patients (aged 40-65 years) with moderate chronic periodontitis were randomized in a double-blind study and rinsed their oral cavity following SRP with an essential oil mouthrinse (n = 23) or placebo (n = 23) for 14 days. Probing depth (PD), attachment level (AL), bleeding on probing (BOP) and modified sulcus bleeding index (SBI) were recorded at baseline and after 3 and 6 months. Subgingival plaque was taken for assessment of major bacteria associated with periodontitis. RESULTS AL, PD, BOP and SBI were significantly improved in both groups after three (p < 0.001) and 6 months (p ≤ 0.015). AL improved significantly better in the test than in the control group after 3 and 6 months (p < 0.001), so did PD after three months in the tendency (p = 0.1). BOP improved better in the test group after 3 months (p = 0.065). Numbers of Treponema denticola (p = 0.044) and Fusobacterium nucleatum (p = 0.029) decreased more in the test than in the control group after 3 months, those of Tannerella forsythia after 6 months (p = 0.039). Prevotella micra (p < 0.001, p = 0.035) and Campylobacter rectus (p = 0.002 , p = 0.012) decreased significantly in both groups after 3 months. CONCLUSIONS The adjunctive use of a mouthrinse containing essential oils following SRP has a positive effect on clinical variables and on bacterial levels in the subgingival biofilm. TRIAL REGISTRATION 332-12-24092012, DRKS 00009387, German Clinical Trials Register, Freiburg i. Br., 16.09.2015.
Collapse
|
250
|
Ilango P, Mahalingam A, Parthasarathy H, Katamreddy V, Subbareddy V. Evaluation of TLR2 and 4 in Chronic Periodontitis. J Clin Diagn Res 2016; 10:ZC86-9. [PMID: 27504418 DOI: 10.7860/jcdr/2016/18353.8027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periodontal disease is the major cause of adult tooth loss and is commonly characterized by a chronic inflammation caused by infection due to oral bacteria. Members of Toll-Like Receptor (TLR) family recognize conserved microbial structures, such as bacterial lipopolysaccharides and activate signalling pathways that result in immune responses against microbial infections. AIM The aim of the present study was to assess the mRNA expression of Toll-Like Receptor 2 and 4 in tissues with or without chronic periodontitis. MATERIALS AND METHODS Gingival tissue samples were collected from controls (30 subjects with healthy periodontal tissues) and experimental group (30 subjects with chronic periodontitis). Total RNA was extracted and RT-PCR was done for evaluation of TLR-2 and TLR-4. Mann Whitney U-test, Pearson Chi-square Test was used for statistics. RESULTS The results showed that there is a significant (p-value= 0.004) association between TLR-4 and the experimental group comprising of chronic periodontitis patients in comparison to the insignificant (p-value= 0.085) TLR-2 expression. CONCLUSION This study concludes that TLR-2 and TLR-4 expressed in the gingival tissues recognize different bacterial cell wall components thus helping us to associate its potential in diagnosing periodontal disease. Hence, in the future, these scientific findings can pave the way in using TLR as a diagnostic biomarker for periodontal disease.
Collapse
Affiliation(s)
- Paavai Ilango
- Reader, Department of Periodontology, Priyadarshini Dental College and Hospital , Pandur, Tamil Nadu, India
| | - Arulpari Mahalingam
- Reader, Department of Pedodontics, Thai Moogambigai Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Harinath Parthasarathy
- Professor, Department of Periodontology, SRM Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Vineela Katamreddy
- Reader, Department of Periodontology, Indira Gandhi Institute of Dental Sciences , Pondicherry, Tamil Nadu, India
| | - Venkat Subbareddy
- Reader, Department of Periodontology, CKS Teja Dental College and Hospital , Tirupathi, Andhra Pradesh, India
| |
Collapse
|