201
|
Abstract
Most neurological and psychiatric disorders involve selective or preferential impairments of neurotransmitter systems. Therefore, studies of functional transmitter pathophysiology in human brain are of unique importance in view of the development of effective, mechanism-based, therapeutic modalities. It is well known that central nervous system functional proteins, including receptors, transporters, ion channels, and enzymes, can exhibit high heterogeneity in terms of structure, function, and pharmacological profile. If the existence of types and subtypes of functional proteins amplifies the possibility of developing selective drugs, such heterogeneity certainly increases the likelihood of interspecies differences. It is therefore essential, before choosing animal models to be used in preclinical pharmacology experimentation, to establish whether functionally corresponding proteins in men and animals also display identical pharmacological profiles. Because of evidence that scaffolding proteins, trafficking between plasma membrane and intracellular pools, phosphorylation and allosteric modulators can affect the function of receptors and transporters, experiments with human clones expressed in host cells where the environment of native receptors is rarely reproduced should be interpreted with caution. Thus, the use of neurosurgically removed fresh human brain tissue samples in which receptors, transporters, ion channels, and enzymes essentially retain their natural environment represents a unique experimental approach to enlarge our understanding of human brain processes and to help in the choice of appropriate animal models. Using this experimental approach, many human brain functional proteins, in particular transmitter receptors, have been characterized in terms of localization, function, and pharmacological properties.
Collapse
Affiliation(s)
- Maurizio Raiteri
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
202
|
Longordo F, Feligioni M, Chiaramonte G, Sbaffi PF, Raiteri M, Pittaluga A. The human immunodeficiency virus-1 protein transactivator of transcription up-regulates N-methyl-D-aspartate receptor function by acting at metabotropic glutamate receptor 1 receptors coexisting on human and rat brain noradrenergic neurones. J Pharmacol Exp Ther 2006; 317:1097-105. [PMID: 16489129 DOI: 10.1124/jpet.105.099630] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of the human immunodeficiency virus-1 transactivator of transcription (Tat) on the release of norepinephrine (NE) from human and rat brain synaptosomes. Tat could not evoke directly release of [3H]NE. In the presence of Tat (1 nM), N-methyl-D-aspartate (NMDA) concentrations unable to release (human synaptosomes) or slightly releasing (rat synaptosomes) [3H]NE became very effective. The NMDA/Tat-evoked release depends on NMDA receptors (NMDARs) since it was abolished by MK-801 (dizocilpine). Tat binding at NMDARs was excluded. The NMDA-induced release of [3H]NE in the presence of glycine was further potentiated by Tat. The release evoked by NMDA/glycine/Tat depends on metabotropic glutamate receptor 1 (mGluR1) activation, since it was halved by mGluR1 antagonists. Tat seems to act at the glutamate recognition site of mGluR1. Recently, Tat was shown to release [3H]acetylcholine from human cholinergic terminals; here, we demonstrate that this effect is also mediated by presynaptic mGluR1. The peptide sequence Tat41-60, but not Tat61-80, mimicked Tat. Phospholipase C, protein kinase C, and cytosolic tyrosine kinase are involved in the NMDA/glycine/Tat-evoked [3H]NE release. To conclude, Tat can represent a potent pathological agonist at mGlu1 receptors able to release acetylcholine from human cholinergic terminals and up-regulate NMDARs mediating NE release from human and rat noradrenergic terminals.
Collapse
Affiliation(s)
- Fabio Longordo
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
203
|
Franco R, Casadó V, Mallol J, Ferrada C, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI. The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 2006; 69:1905-12. [PMID: 16501032 DOI: 10.1124/mol.105.020685] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.
Collapse
Affiliation(s)
- Rafael Franco
- Dept. Bioquimica i Biologia Molecular, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
205
|
Agnati LF, Leo G, Zanardi A, Genedani S, Rivera A, Fuxe K, Guidolin D. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol (Oxf) 2006; 187:329-44. [PMID: 16734770 DOI: 10.1111/j.1748-1716.2006.01579.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present paper deals with a fundamental issue in neuroscience: the inter-neuronal communication. The paper gives a brief account of our previous and more recent theoretical contributions to the subject and also reports new recent data that support some aspects of our proposal on two major modes of communication in the central nervous system: the wiring and the volume transmission. There exist two competing theories on inter-neuronal communication: the neuron doctrine and the theory of the diffuse nerve network, supported by Cajal and Golgi, respectively (see their respective Nobel Lectures). The present paper gives a brief account of a view on inter-neuronal communication in the brain, the volume and wiring transmission concept that to a great extent reconcile these two theories. Thus, the theory of volume and wiring transmission are summarized and its recent developments that allow to extend these two modes of communication from the cellular network to the molecular network level is also briefly illustrated. The explanatory value of this broadened view is further enhanced by our recent proposal on the existence of a Global Molecular Network enmeshing the entire central nervous system. It may be interesting to note that also the Global Molecular Network theory is reminiscent of the old reticular theory of Apathy. Finally, the so-called 'tide hypothesis' for diffusion of signals in the brain is briefly discussed and its possible extension to the molecular level is for the first time introduced. Early indirect evidence supporting volume transmission in the brain was the discovery of transmitter-receptor mismatches. Thus, as an experimental part of the present paper a new approach to evaluate transmitter-receptor mismatches is given and evidence for inter-relationships between temperature micro-gradients and mismatches is provided.
Collapse
Affiliation(s)
- L F Agnati
- Department of Biomedical Sciences, Section of Physiology, University of Modena, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
206
|
Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 2006; 26:2080-7. [PMID: 16481441 PMCID: PMC6674939 DOI: 10.1523/jneurosci.3574-05.2006] [Citation(s) in RCA: 472] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functional role of heteromers of G-protein-coupled receptors is a matter of debate. In the present study, we demonstrate that heteromerization of adenosine A1 receptors (A1Rs) and A2A receptors (A2ARs) allows adenosine to exert a fine-tuning modulation of glutamatergic neurotransmission. By means of coimmunoprecipitation, bioluminescence and time-resolved fluorescence resonance energy transfer techniques, we showed the existence of A1R-A2AR heteromers in the cell surface of cotransfected cells. Immunogold detection and coimmunoprecipitation experiments indicated that A1R and A2AR are colocalized in the same striatal glutamatergic nerve terminals. Radioligand-binding experiments in cotransfected cells and rat striatum showed that a main biochemical characteristic of the A1R-A2AR heteromer is the ability of A2AR activation to reduce the affinity of the A1R for agonists. This provides a switch mechanism by which low and high concentrations of adenosine inhibit and stimulate, respectively, glutamate release. Furthermore, it is also shown that A1R-A2AR heteromers constitute a unique target for caffeine and that chronic caffeine treatment leads to modifications in the function of the A1R-A2AR heteromer that could underlie the strong tolerance to the psychomotor effects of caffeine.
Collapse
|
207
|
Patti L, Raiteri L, Grilli M, Parodi M, Raiteri M, Marchi M. P2X(7) receptors exert a permissive role on the activation of release-enhancing presynaptic alpha7 nicotinic receptors co-existing on rat neocortex glutamatergic terminals. Neuropharmacology 2006; 50:705-13. [PMID: 16427662 DOI: 10.1016/j.neuropharm.2005.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/27/2005] [Accepted: 11/28/2005] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate (ATP) has been reported to enhance the release of glutamate by acting at P2X presynaptic receptors. Acetylcholine (ACh) can elicit glutamate release through presynaptic nicotinic cholinergic receptors (nAChRs) of the alpha7 subtype situated on glutamatergic axon terminals, provided that the terminal membrane is weakly depolarized. Considering that ATP and ACh are co-transmitters, we here investigate on the possibility that P2X and nAChRs co-exist and interact on the same glutamatergic nerve endings using purified rat neocortex synaptosomes in superfusion. ATP evoked Ca(2+)-dependent release of pre-accumulated D-[(3)H]aspartate ([(3)H]D-ASP) as well as of endogenous glutamate; (-)-nicotine, inactive on its own, potentiated the ATP-evoked release. The ATP analogue benzoylbenzoylATP (BzATP) behaved like ATP, but was approximately 30 times more potent; the potentiation of the BzATP-evoked release was blocked by methyllycaconitine or alpha-bungarotoxin. Adding inactive concentrations of (-)-nicotine, epibatidine or choline together with inactive concentrations of BzATP resulted in significant elevation of the [(3)H]D-ASP release mediated by alpha7 nAChRs. To conclude, P2X(7) receptors and alpha7 nAChRs seem to co-exist and interact on rat neocortex glutamatergic terminals; in particular, P2X(7) receptors exert a permissive role on the activation of alpha7 nAChRs, suggesting that ATP may not only evoke glutamate release on its own, but may also regulate the release of the amino acid elicited by ACh.
Collapse
Affiliation(s)
- Laura Patti
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | | | | | | | | | | |
Collapse
|
208
|
Parodi M, Patti L, Grilli M, Raiteri M, Marchi M. Nicotine has a permissive role on the activation of metabotropic glutamate 5 receptors coexisting with nicotinic receptors on rat hippocampal noradrenergic nerve terminals. Neurochem Int 2006; 48:138-43. [PMID: 16214264 DOI: 10.1016/j.neuint.2005.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The existence of metabotropic glutamate receptors (mGluRs) on hippocampal noradrenergic nerve terminals and their interaction with coexisting nicotinic acetylcholine receptors (nAChRs) were investigated in superfused rat synaptosomes using [(3)H]-noradrenaline ([(3)H]-NA) release as a readout. The selective agonist of group I mGluRs, (S)-3,5-dihydroxyphenylglycine (DHPG), inactive on its own, acquired ability to release [(3)H]-NA when added together with (-)-nicotine. The effect of DHPG was prevented by 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective antagonist of mGluR5, but not by 7-(hydroxyimino)cyclopropane[b]chromen-1-carboxylate ethyl ester (CPCCOEt), selective antagonist of mGluR1. The [(3)H]-NA release evoked by (-)-nicotine plus DHPG was totally abrogated by the nAChR antagonist mecamylamine. Veratrine mimicked the permissive role of (-)-nicotine on the activation of mGluR5 mediating [(3)H]-NA release. The mGluR5-mediated component of the [(3)H]-NA release provoked by DHPG plus (-)-nicotine was blocked by xestospongin C, a selective antagonist of inositoltrisphosphate (IP(3)) receptors. It can be concluded that (i) release-enhancing mGluRs of subtype 5 exist on hippocampal noradrenergic axon terminals; (ii) activation of mGluR5 to mediate IP(3)-dependent NA release requires activation of depolarizing nAChRs coexisting on the same terminals.
Collapse
Affiliation(s)
- Monica Parodi
- Sezione di Farmacologia e Tossicologia, Dipartimento di Medicina Sperimentale, Università di Genova, 16148 Genova, Italy
| | | | | | | | | |
Collapse
|
209
|
Mitrano DA, Smith Y. Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey. J Comp Neurol 2006; 500:788-806. [PMID: 17154259 DOI: 10.1002/cne.21214] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Group I metabotropic glutamate receptors (mGluRs) play critical roles in synaptic plasticity and drug addiction. To characterize potential sites whereby these receptors mediate their effects in the ventral striatum, we studied the subcellular and subsynaptic localization of mGluR1a and mGluR5 in the shell and core of the nucleus accumbens in rat and monkey. In both species, group I mGluRs are mainly postsynaptic in dendrites and spines, with rare presynaptic labeling in unmyelinated axons. Minor, yet significant, differences in proportions of specific immunoreactive elements were found between the accumbens shell and the accumbens core in monkey. At the subsynaptic level, significant differences were found in the proportion of plasma membrane-bound mGluR5 labeling between species. In dendrites, spines, and unmyelinated axons, a significantly larger proportion of mGluR5 labeling was bound to the plasma membrane in rats (50-70%) than in monkeys (30-50%). Conversely, mGluR1a displayed the same pattern of immunogold labeling in the two species. Electron microscopic colocalization studies revealed 30% colocalization of mGluR1a and mGluR5 in dendrites and as much as 50-65% in spines in both compartments of the rat accumbens. Both group I mGluRs were significantly expressed in D1-immunoreactive dendritic processes (60-75% colocalization) and spines (30-50%) of striatal projection neurons as well as dendrites of cholinergic (30-70%) and parvalbumin-containing (70-85%) interneurons. These findings highlight the widespread expression of group I mGluRs in projection neurons and interneurons of the shell and core of the nucleus accumbens, providing a solid foundation for regulatory and therapeutic functions of group I mGluRs in reward-related behaviors and drug addiction.
Collapse
Affiliation(s)
- Darlene A Mitrano
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
210
|
Ferré S, Borycz J, Goldberg SR, Hope BT, Morales M, Lluis C, Franco R, Ciruela F, Cunha R. ROLE OF ADENOSINE IN THE CONTROL OF HOMOSYNAPTIC PLASTICITY IN STRIATAL EXCITATORY SYNAPSES. J Integr Neurosci 2005; 4:445-64. [PMID: 16385640 DOI: 10.1142/s0219635205000987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 09/01/2005] [Indexed: 01/08/2023] Open
Abstract
Long-lasting, activity-dependent changes in synaptic efficacy at excitatory synapses are critical for experience-dependent synaptic plasticity. Synaptic plasticity at excitatory synapses is determined both presynaptically by changes in the probability of neurotransmitter release, and postsynaptically by changes in the availability of functional postsynaptic glutamate receptors. Two kinds of synaptic plasticity have been described. In homosynaptic or Hebbian plasticity, the events responsible for synaptic strengthening occur at the same synapse as is being strengthened. Homosynaptic plasticity is activity-dependent and associative, because it associates the firing of a postsynaptic neuron with that of the presynaptic neuron. Heterosynaptic plasticity, on the other hand, is activity-independent and the synaptic strength is modified as a result of the firing of a third, modulatory neuron. It has been suggested that long-term changes in synaptic strength, which are associated with gene transcription, can only be induced with the involvement of heterosynaptic plasticity. The neuromodulator adenosine plays an elaborated pre- and postsynaptic control of glutamatergic neurotransmission. This paper reviews the evidence suggesting that in some striatal excitatory synapses, adenosine can provide the heterosynaptic-like modulation essential for stabilizing homosynaptic plasticity without the need of a "third, modulatory neuron".
Collapse
Affiliation(s)
- Sergi Ferré
- National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Lahiri P, Chaudhuri U, Chattopadhyay A, Chakraborty P, Mandal D, Dasgupta AK. Structural insights in platelet receptor synergism-antiplatelet therapy in post-ischemic cerebrovascular events. Blood Cells Mol Dis 2005; 34:248-56. [PMID: 15885609 DOI: 10.1016/j.bcmd.2005.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 12/24/2004] [Accepted: 01/17/2005] [Indexed: 11/24/2022]
Abstract
Synergy between agonists of platelet aggregation, namely, ADP and epinephrine, has been studied in patients having a history of cerebrovascular ischemic event. There is a significant variability of responsiveness among individuals towards clopidogrel, which is a specific inhibitor of the low-affinity human purinergic receptor (P2Y12). For responders of clopidogrel, simultaneous application of ADP and epinephrine at sub-threshold concentrations (i.e., concentration below the threshold concentration at which aggregation occurs) leads to platelet aggregation, which is followed by deaggregation. For non-responders of the drug, the synergism seems to be stronger, showing no deaggregatory pattern. The inhibition of synergism by yohimbine hydrochloride (YH), a blocker of alpha2A-adrenoreceptors is more pronounced in non-responders. A simple structural model based on receptor-receptor interaction is proposed to explain the synergism. The model explains synergy in terms of cooperative interaction between the low-affinity ADP receptor P2Y12 (Swiss Prot:Q9H244) and the alpha2A-adrenoreceptor (Swiss Prot:P08913). It follows that the synergistic effect can be achieved in only one of the two 3D structures for the alpha2A-adrenoreceptor P08913 permitted by homology modeling, as there is a better docking interface with the Q9H244. The synergism itself and the observed dichotomous phenomenon in relation to inhibition of synergism among responders and non-responders can be accounted for, if the interacting receptors on the dynamic membrane interface compete with the clopidogrel binding.
Collapse
Affiliation(s)
- Prabir Lahiri
- Institute of Haematology and Transfusion Medicine, Medical College, Kolkata, India
| | | | | | | | | | | |
Collapse
|
212
|
Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 2005; 26:209-20. [PMID: 16012194 DOI: 10.1385/jmn:26:2-3:209] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The existence of A2A-D2 heteromeric complexes is based on coimmunoprecipitation studies and on fluorescence resonance energy transfer and bioluminescence resonance energy transfer analyses. It has now become possible to show that A2A and D2 receptors also coimmunoprecipitate in striatal tissue, giving evidence for the existence of A2A-D2 heteromeric receptor complexes also in rat striatal tissue. The analysis gives evidence that these heteromers are constitutive, as they are observed in the absence of A2A and D2 agonists. The A2A-D2 heteromers could either be A2A-D2 heterodimers and/or higher-order A2A -D2 hetero-oligomers. In striatal neurons there are probably A2A-D2 heteromeric complexes, together with A2A-D2 homomeric complexes in the neuronal surface membrane. Their stoichiometry in various microdomains will have a major role in determining A2A and D2 signaling in the striatopallidal GABA neurons. Through the use of D2/D1 chimeras, evidence has been obtained that the fifth transmembrane (TM) domain and/or the I3 of the D2 receptor are part of the A2A-D2 receptor interface, where electrostatic epitope-epitope interactions involving the N-terminal part of I3 of the D2 receptor (arginine-rich epitope) play a major role, interacting with the carboxyl terminus of the A2A receptor. Computerized modeling of A2A-D2 heteromers are in line with these findings. It seems likely that A2A receptor-induced reduction of D2 receptor recognition, G protein coupling, and signaling, as well as the existence of A2A-D2 co-trafficking, are the consequence of the existence of an A2A-D2 receptor heteromer. The relevance of A2A-D2 heteromeric receptor complexes for Parkinson's disease and schizophrenia is emphasized as well as for the treatment of these diseases. Finally, recent evidence for the existence of antagonistic A2A-D3 heteromeric receptor complexes in cotransfected cell lines has been summarized.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Division of Cellular and Molecular Neurochemistry, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Franco R, Ciruela F, Casadó V, Cortes A, Canela EI, Mallol J, Agnati LF, Ferré S, Fuxe K, Lluis C. Partners for adenosine A1 receptors. J Mol Neurosci 2005; 26:221-32. [PMID: 16012195 DOI: 10.1385/jmn:26:2-3:221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are targets for therapy in a variety of neurological diseases. Using adenosine A1 receptors (A1Rs) as paradigm of GPCRs, this review focuses on how protein-protein interactions, from monomers to heteromers, can contribute to hormone/neurotransmitter/neuromodulator regulation. The interaction of A1Rs with other membrane receptors, enzymes, and adaptor and scaffolding proteins is relevant for receptor traffic, internalization, and desensitization, and A1Rs are extremely important in driving signaling through different intracellular pathways. There is even the possibility of linking together GPCR heteromeric complexes with ion channel receptors in a receptor mosaic that might have special integrative value and might constitute the molecular basis for learning and memory.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Woods AS, Ferré S. Amazing stability of the arginine-phosphate electrostatic interaction. J Proteome Res 2005; 4:1397-402. [PMID: 16083292 PMCID: PMC2945258 DOI: 10.1021/pr050077s] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic interactions between a basic epitope containing adjacent arginine residues and an acidic epitope containing a phosphorylated serine are involved in receptor heteromerization. In the present study, we demonstrate that this arginine-phosphate electrostatic interaction possesses a "covalent-like" stability. Hence, these bonds can withstand fragmentation by mass spectrometric collision-induced dissociation at energies similar to those that fragment covalent bonds and they demonstrate an extremely low dissociation constant by plasmon resonance. The present work also highlights the importance of phosphorylation-dephosphorylation events in the modulation of this electrostatic attraction. Phosphorylation of the acidic epitope, a casein kinase one consensus site, makes it available to interact with the basic epitope. On the other hand, phosphorylation of serine and/or threonine residues adjacent to the basic epitope, a protein kinase A consensus site, slows down the attraction between the epitopes. Although analyzed here in the frame of receptor heteromerization, the arginine-phosphate electrostatic interaction most likely represents a general mechanism in protein-protein interactions.
Collapse
Affiliation(s)
- Amina S Woods
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health/DHHS, 5000 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
215
|
Gatch MB, Selvig M, Forster MJ. GABAergic modulation of the discriminative stimulus effects of methamphetamine. Behav Pharmacol 2005; 16:261-6. [PMID: 15961966 PMCID: PMC3878065 DOI: 10.1097/01.fbp.0000166464.68186.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To assess whether gamma-aminobutyric acid (GABA) modulation of dopamine is important in mediation of the discriminative stimulus effects of methamphetamine, the GABA compounds chlordiazepoxide (benzodiazepine site agonist), pentobarbital (barbiturate site agonist), bicuculline and pentylenetetrazol (GABA(A) receptor antagonists) were tested in Sprague-Dawley rats trained to discriminate methamphetamine (1 mg/kg, i.p.) from saline. Each of the compounds produced modest amounts of methamphetamine-appropriate responding (20-35%) when tested alone. When tested in combination with methamphetamine, the antagonists (bicuculline and pentylenetetrazol) failed to shift the methamphetamine dose-effect curve. In contrast, chlordiazepoxide (25 mg/kg, i.p.) reduced methamphetamine-appropriate responding at each dose of methamphetamine tested, and pentobarbital (10 mg/kg, i.p.) dose-dependently decreased the discriminative stimulus effects of 1 mg/kg methamphetamine. In conclusion, GABA(A) antagonists and positive modulators likely do not produce methamphetamine-like stimulus effects. However, activation of GABA(A) receptors can interfere with the discriminative stimulus effects of methamphetamine.
Collapse
Affiliation(s)
- M B Gatch
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, 76107, USA.
| | | | | |
Collapse
|
216
|
Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S, Nussdorfer GG, Leo G, Guidolin D. New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. J Histochem Cytochem 2005; 53:941-53. [PMID: 16055748 DOI: 10.1369/jhc.4a6355.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An important aspect of the image analysis of immunocytochemical preparations is the evaluation of colocalization of different molecules. The aim of the present study is to introduce image analysis methods to identify double-labeled locations exhibiting the highest association of two fluorophores and to characterize their pattern of distribution. These methods will be applied to the analysis of the cotrafficking of adenosine A2A and dopamine D2 receptors belonging to the G protein-coupled receptor family and visualized by means of fluorescence immunocytochemistry in Chinese hamster ovary cells after agonist treatment. The present procedures for colocalization have the great advantage that they are, to a large extent, insensitive to the need for a balanced staining with the two fluorophores. Thus, these procedures involve image processing, visualization, and analysis of colocalized events, using a covariance method and a multiply method and the evaluation of the identified colocalization patterns. Moreover, the covariance method offers the possibility of detecting and quantitatively characterizing anticorrelated patterns of intensities, whereas the immediate detection of colocalized clusters with a high concentration of labeling is a possibility offered by the multiply method. The present methods offer a new and sensitive approach to detecting and quantitatively characterizing strongly associated fluorescence events, such as those generated by receptor-receptor interaction, and their distribution patterns in dual-color confocal laser microscopy.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedical Sciences, Section of Physiology, University of Modena, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Biebermann H, Ambrugger P, Tarnow P, von Moers A, Schweizer U, Grueters A. Extended clinical phenotype, endocrine investigations and functional studies of a loss-of-function mutation A150V in the thyroid hormone specific transporter MCT8. Eur J Endocrinol 2005; 153:359-66. [PMID: 16131597 DOI: 10.1530/eje.1.01980] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Thyroid hormones, besides having other functions, are known to be essential for the development of the human brain. Recently the monocarboxylate transporter 8 (MCT8) was identified as a thyroid hormone transporter which is expressed in different regions of the human brain. Here we describe in detail the clinical and biochemical features in response to thyroid hormone administration of a boy carrying an MCT8 mutation (A150V) in the second transmembrane domain. METHODS To study the functional impact of the mutation we performed triiodothyronine (T3) uptake, immunofluorescence and dimerization studies. RESULTS Thyroid hormone (l-thyroxine (LT4) and LT3) administration did not result in any significant clinical changes; however, with high doses of LT4, alone or in combination with T3, TSH suppression was achieved. We could show a robust uptake of (125)I-T3 for wild type (WT) MCT8, whereas no specific uptake could be detected for the mutant A150V. Subcellular localization of WT and mutant MCT8 revealed a strong cell surface expression for the WT MCT8, in contrast to A150V, which is mostly retained intracellularly with only weak cell surface expression. We could also demonstrate for the first time that WT MCT8 as well as the mutant are able to form multimers. CONCLUSION Our findings open a wide field of possible interaction within the central nervous system and will help to understand the crucial role of MCT8 in early fetal brain development.
Collapse
Affiliation(s)
- Heike Biebermann
- Department of Pediatric Endocrinology, Charité Children's Hospital, Humboldt University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
218
|
Prinster SC, Hague C, Hall RA. Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 2005; 57:289-98. [PMID: 16109836 DOI: 10.1124/pr.57.3.1] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate physiological responses to a diverse array of stimuli. GPCRs have traditionally been thought to act as monomers, but recent evidence suggests that GPCRs may form dimers (or higher-order oligomers) as part of their normal trafficking and function. In fact, certain GPCRs seem to have a strict requirement for heterodimerization to attain proper surface expression and functional activity. Even those GPCRs that do not absolutely require heterodimerization may still specifically associate with other GPCR subtypes, sometimes resulting in dramatic effects on receptor pharmacology, signaling, and/or internalization. Understanding the specificity and functional significance of GPCR heterodimerization is of tremendous clinical importance since GPCRs are the molecular targets for numerous therapeutic drugs.
Collapse
Affiliation(s)
- Steven C Prinster
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
219
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
220
|
Uezono Y, Kanaide M, Kaibara M, Barzilai R, Dascal N, Sumikawa K, Taniyama K. Coupling of GABAB receptor GABAB2 subunit to G proteins: evidence from Xenopus oocyte and baby hamster kidney cell expression system. Am J Physiol Cell Physiol 2005; 290:C200-7. [PMID: 16120656 DOI: 10.1152/ajpcell.00269.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coupling of functional GABAB receptors (GABABR) to G proteins was investigated with an expression system of baby hamster kidney (BHK) cells and Xenopus oocytes. Fluorescence resonance energy transfer (FRET) analysis of BHK cells coexpressing GABAB1a receptor (GB1aR) fused to Cerulean, a brighter variant of cyan fluorescent protein, and GABAB2 receptor (GB2R) fused to Venus, a brighter variant of yellow fluorescent protein, revealed that GB1aR-Cerulean and GB2R-Venus form a heterodimer. The GABABR agonists baclofen and 3-aminopropylphosphonic acid (3-APPA) elicited inward-rectifying K+ currents in a concentration-dependent manner in oocytes expressing GB1aR and GB2R, or GB1aR-Cerulean and GB2R-Venus, together with G protein-activated inward-rectifying K+ channels (GIRKs), but not in oocytes expressing GB1aR alone or GB2R alone together with GIRKs. Oocytes coexpressing GB1aR + Galphai2-fused GB2R (GB2R-Galphai2) caused faster K+ currents in response to baclofen. Furthermore, oocytes coexpressing GB1aR + GB2R fused to Galphaqi5 (a chimeric Galphaq protein that activates PLC pathways) caused PLC-mediated Ca2+-activated Cl- currents in response to baclofen. In contrast, these responses to baclofen were not observed in oocytes coexpressing GB1aR-Galphai2 or GB1aR-Galphaqi5 together with GB2R. BHK cells and Xenopus oocytes coexpressing GB1aR-Cerulean + a triplet tandem of GB2R-Venus-Galphaqi5 caused FRET and Ca2+-activated Cl- currents, respectively, with a similar potency in BHK cells coexpressing GB1aR-Cerulean + GB2R-Venus and in oocytes coexpressing GB1aR + GB2R-Galphaqi5. Our results indicate that functional GABABR forms a heterodimer composed of GB1R and GB2R and that the signal transducing G proteins are directly coupled to GB2R but not to GB1R.
Collapse
Affiliation(s)
- Yasuhito Uezono
- Dept. of Pharmacology, Nagasaki Univ. Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.
| | | | | | | | | | | | | |
Collapse
|
221
|
Petersson M, Diaz-Cabiale Z, Angel Narváez J, Fuxe K, Uvnäs-Moberg K. Oxytocin increases the density of high affinity α2-adrenoceptors within the hypothalamus, the amygdala and the nucleus of the solitary tract in ovariectomized rats. Brain Res 2005; 1049:234-9. [PMID: 15967417 DOI: 10.1016/j.brainres.2005.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 05/10/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Oxytocin induces long-term changes in, for example, blood pressure, spontaneous motor activity and corticosterone levels in rats. Previous studies in male rats have suggested a role for alpha(2)-adrenoceptors within the central nervous system in these effects. The aim of the present study was to investigate if oxytocin treatment in female rats would influence alpha(2)-adrenoceptors within the hypothalamus, the amygdala and the nucleus of the solitary tract (NTS). For this purpose, female ovariectomized (OVX) rats were treated with oxytocin (1 mg/kg s.c.) or saline once a day for 10 days. Rats were decapitated 5 days after the last injection, and brains and plasma were collected. Quantitative receptor autoradiography for characterization of high affinity alpha(2)-adrenoceptor agonist binding and radioimmunoassay for corticosterone were performed. Oxytocin increased the B(max) values of the alpha(2)-adrenoceptor agonist [3H]UK14.304 binding sites significantly in all the analyzed areas (P<0.05). K(d) values were unchanged. Plasma levels of corticosterone were significantly decreased in the oxytocin-treated rats (P<0.05). These findings are in further support of an interaction between oxytocin receptors and alpha(2)-adrenoceptors and show that oxytocin treatment may increase alpha(2)-adrenoceptor recognition probably leading to an increase in alpha(2)-adrenoceptor signaling in several parts of the brain.
Collapse
Affiliation(s)
- Maria Petersson
- Department of Molecular Medicine, Endocrine and Diabetes Unit, Karolinska Institutet/Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
222
|
Franco R, Casadó V, Mallol J, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI. Dimer-based model for heptaspanning membrane receptors. Trends Biochem Sci 2005; 30:360-6. [PMID: 15951182 DOI: 10.1016/j.tibs.2005.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 04/29/2005] [Accepted: 05/26/2005] [Indexed: 11/29/2022]
Abstract
The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.
Collapse
Affiliation(s)
- Rafael Franco
- Department Bioquímica i Biologia Molecular, Universitat de Barcelona, A. Diagonal, 645. 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Maggio R, Novi F, Scarselli M, Corsini GU. The impact of G-protein-coupled receptor hetero-oligomerization on function and pharmacology. FEBS J 2005; 272:2939-46. [PMID: 15955054 DOI: 10.1111/j.1742-4658.2005.04729.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although highly controversial just a few years ago, the idea that G-protein-coupled receptors (GPCRs) may undergo homo-oligomerization or hetero-oligomerization has recently gained considerable attention. The recognition that GPCRs may exhibit either dimeric or oligomeric structures is based on a number of different biochemical and biophysical approaches. Although much effort has been spent to demonstrate the mechanism(s) by which GPCRs interact with each other, the physiological relevance of this phenomenon remains elusive. An additional source of uncertainty stems from the realization that homo-oligomerization and hetero-oligomerization of GPCRs may affect receptor binding and activity in different ways, depending on the type of interacting receptors. In this brief review, the functional and pharmacological effects of the hetero-oligomerization of GPCR on binding and cell signaling are critically analyzed.
Collapse
|
224
|
Abstract
Trace amines (TAs) are endogenous compounds that are related to biogenic amine neurotransmitters and are present in the mammalian nervous system in trace amounts. Although their pronounced pharmacological effects and tight link to major human disorders such as depression and schizophrenia have been studied for decades, the understanding of their molecular mode of action remained incomplete because of the apparent absence of specialized receptors. However, the recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. The unique pharmacology and expression pattern of these receptors make them prime candidates for targets in drug development in the context of several neurological diseases. Current research focuses on dissecting their molecular pharmacology and on the identification of endogenous ligands for the apparently TA-insensitive members of this receptor family.
Collapse
Affiliation(s)
- Lothar Lindemann
- F. Hoffmann-La Roche, Pharmaceuticals Division, Discovery Neuroscience, CH-4070-Basel, Switzerland.
| | | |
Collapse
|
225
|
Agnati LF, Tarakanov AO, Guidolin D. A simple mathematical model of cooperativity in receptor mosaics based on the “symmetry rule”. Biosystems 2005; 80:165-73. [PMID: 15823415 DOI: 10.1016/j.biosystems.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 11/11/2004] [Accepted: 11/18/2004] [Indexed: 11/22/2022]
Abstract
The phenomenon of receptor-receptor interactions was hypothesized about 20 years ago. It has been demonstrated by now that receptor-receptor interactions between G-protein coupled receptors (GPCRs) occur at plasma membrane level and result in the reciprocal modulation of their binding characteristics (i.e., cooperativity). One of the most important feature of this phenomenon is the concept of cluster of receptors, or receptor mosaic (RM). However, no proper mathematical approach has still been available to characterize RMs as far as their receptor composition, receptor topography and order of receptor activation inside the RM. This paper tries to fill the gap. A simple mathematical approach to the cooperativity in RMs formed by dimers of identical receptors and/or by iso-receptors is proposed. To this aim the so-called "symmetry rule" has been considered. This approach allows to describe by means of a simple energy function the effects of receptor composition (number of dimers), spatial organisation (respective location of the dimers) and order of activation (order according to which the single receptors are ligated) on the integrative cooperativity (index) of the RMs.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedical Sciences, University of Modena, Modena, Italy
| | | | | |
Collapse
|
226
|
Wang HL, Hsu CY, Huang PC, Kuo YL, Li AH, Yeh TH, Tso AS, Chen YL. Heterodimerization of opioid receptor-like 1 and mu-opioid receptors impairs the potency of micro receptor agonist. J Neurochem 2005; 92:1285-94. [PMID: 15748148 DOI: 10.1111/j.1471-4159.2004.02921.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nociceptin activation of ORL1 (opioid receptor-like 1 receptor) has been shown to antagonize mu receptor-mediated analgesia at the supraspinal level. ORL1 and mu-opioid receptor (muR) are co-expressed in several subpopulations of CNS neurons involved in regulating pain transmission. The amino acid sequence of ORL1 also shares a high degree of homology with that of mu receptor. Thus, it is hypothesized that ORL1 and muR interact to form the heterodimer and that ORL1/muR heterodimerization may be one molecular basis for ORL1-mediated antiopioid effects in the brain. To test this hypothesis, myc-tagged ORL1 and HA-tagged muR are co-expressed in human embryonic kidney (HEK) 293 cells. Co-immunoprecipitation experiments demonstrate that ORL1 dimerizes with muR and that intracellular C-terminal tails of ORL1 and muR are required for the formation of ORL1/muR heterodimer. Second messenger assays further indicate that formation of ORL1/muR heterodimer selectively induces cross-desensitization of muR and impairs the potency by which [D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin (DAMGO) inhibits adenylate cyclase and stimulates p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. These results provide the evidence that ORL1/muR heterodimerization and the resulting impairment of mu receptor-activated signaling pathways may contribute to ORL1-mediated antiopioid effects in the brain.
Collapse
MESH Headings
- Adenylyl Cyclases/drug effects
- Adenylyl Cyclases/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Cell Line
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Dimerization
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Humans
- Mitogen-Activated Protein Kinase 1/drug effects
- Mitogen-Activated Protein Kinase 1/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Pain/genetics
- Pain/metabolism
- Pain/physiopathology
- Protein Structure, Tertiary/physiology
- Rats
- Receptors, Opioid/chemistry
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Nociceptin Receptor
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology, Chang Gung University School of Medicine, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Kopanchuk S, Veiksina S, Petrovska R, Mutule I, Szardenings M, Rinken A, Wikberg JES. Co-operative regulation of ligand binding to melanocortin receptor subtypes: Evidence for interacting binding sites. Eur J Pharmacol 2005; 512:85-95. [PMID: 15840392 DOI: 10.1016/j.ejphar.2005.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 01/26/2005] [Accepted: 02/18/2005] [Indexed: 11/24/2022]
Abstract
This study evaluates the binding the melanocyte stimulating hormone peptide analogue [125I]NDP-MSH to melanocortin receptors MC1, MC3, MC4 and MC5 in insect cell membranes produced by baculovirus expression systems. The presence of Ca2+ was found to be mandatory to achieve specific [125I]NDP-MSH binding to the melanocortin receptors. Although association kinetics of [125I]NDP-MSH followed the regularities of simple bimolecular reactions, the dissociation of [125I]NDP-MSH from the melanocortin receptors was heterogeneous. Eleven linear and cyclic MSH peptides studied displaced the [125I]NDP-MSH binding to the studied melanocortin receptors, with the shapes of their competition curves varying from biphasic or shallow to super-steep (Hill coefficients ranging from 0.4 to 1.5). Notably the same peptide often gave highly different patterns on different melanocortin receptor subtypes; e.g. the MC4 receptor selective antagonist HS131 gave a Hill coefficient of 1.5 on the MC1 receptor but 0.5-0.7 on the MC(3-5) receptors. Adding a mask of one of the peptides to block its high affinity binding did not prevent other competing peptides to yield biphasic competition curves. The data indicate that the binding of MSH peptides to melanocortin receptors are governed by a complex dynamic homotropic co-operative regulations.
Collapse
MESH Headings
- Animals
- Binding Sites
- Binding, Competitive/drug effects
- Calcium/pharmacology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Iodine Radioisotopes
- Kinetics
- Ligands
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacology
- Radioligand Assay
- Receptor, Melanocortin, Type 1/metabolism
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Melanocortin/metabolism
- Spodoptera
- Time Factors
- alpha-MSH/analogs & derivatives
- alpha-MSH/metabolism
- gamma-MSH/metabolism
- gamma-MSH/pharmacology
Collapse
Affiliation(s)
- Sergei Kopanchuk
- Department of Pharmaceutical Biosciences, Uppsala University, BMC Box 591, 751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
228
|
Agnati LF, Fuxe K, Ferré S. How receptor mosaics decode transmitter signals. Possible relevance of cooperativity. Trends Biochem Sci 2005; 30:188-93. [PMID: 15817395 DOI: 10.1016/j.tibs.2005.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been demonstrated that receptor-receptor interactions between G-protein-coupled receptors (GPCRs) occur at the plasma-membrane level. It has also been shown that clustering of GPCRs in aggregates or receptor mosaics (RMs) results in the reciprocal modulation of their binding and decoding characteristics. It is hypothesized that cooperativity plays an important part in the decoding of signals processed by RMs of GPCRs. Thus, the binding of the ligand at one receptor alters the likelihood of the same ligand binding at the next site, in the case of RMs, formed by identical receptors and/or by iso-receptors (receptors that bind the same ligand).
Collapse
|
229
|
Novi F, Stanasila L, Giorgi F, Corsini GU, Cotecchia S, Maggio R. Paired activation of two components within muscarinic M3 receptor dimers is required for recruitment of beta-arrestin-1 to the plasma membrane. J Biol Chem 2005; 280:19768-76. [PMID: 15769745 DOI: 10.1074/jbc.m411281200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers. To address this question, we investigated the ability of different muscarinic receptor dimers to recruit beta-arrestin-1 using both co-immunoprecipitation and fluorescence microscopy in COS-7 cells. Experimentally, we first made use of a mutated muscarinic M(3) receptor, which is deleted in most of the third intracellular loop (M(3)-short). Although still capable of activating phospholipase C, this receptor loses almost completely the ability to recruit beta-arrestin-1 following carbachol stimulation in COS-7 cells. Subsequently, M(3)-short was co-expressed with the M(3) receptor. Under these conditions, the M(3)/M(3)-short heterodimer could not recruit beta-arrestin-1 to the plasma membrane, even though the control M(3)/M(3) homodimer could. We next tested the ability of chimeric adrenergic muscarinic alpha(2)/M(3) and M(3)/alpha(2) heterodimeric receptors to co-immunoprecipitate with beta-arrestin-1 following stimulation with adrenergic and muscarinic agonists. beta-Arrestin-1 co-immunoprecipitation could be induced only when carbachol or clonidine were given together and not when the two agonists were supplied separately. Finally, we tested the reciprocal influence that each receptor may exert on the M(2)/M(3) heterodimer to recruit beta-arrestin-1. Remarkably, we observed that M(2)/M(3) heterodimers recruit significantly greater amounts of beta-arrestin-1 than their respective M(3)/M(3) or M(2)/M(2) homodimers. Altogether, these findings provide strong evidence in favor of the view that binding of beta-arrestin-1 to muscarinic M(3) receptors requires paired stimulation of two receptor components within the same receptor dimer.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Biological Transport, Active
- COS Cells
- Carbachol/pharmacology
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Clonidine/pharmacology
- Dimerization
- Humans
- MAP Kinase Signaling System/drug effects
- Protein Binding/drug effects
- Protein Structure, Quaternary
- Receptor, Muscarinic M3/chemistry
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/metabolism
- Receptors, Adrenergic, alpha-2/chemistry
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transfection
- beta-Arrestin 1
- beta-Arrestins
Collapse
|
230
|
Bulenger S, Marullo S, Bouvier M. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 2005; 26:131-7. [PMID: 15749158 DOI: 10.1016/j.tips.2005.01.004] [Citation(s) in RCA: 349] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The idea that G-protein-coupled receptors (GPCRs) can function as dimers is now generally accepted. Although an increasing amount of data suggests that dimers represent the basic signaling unit for most, if not all, members of this receptor family, GPCR dimerization might also be necessary to pass quality-control checkpoints of the biosynthetic pathway of GPCRs. To date, this hypothesis has been demonstrated unambiguously only for a small number of receptors that must form heterodimers to be exported properly to the plasma membrane (referred to as obligatory heterodimers). However, increasing evidence suggests that homodimerization might have a similar role in the receptor maturation process for many GPCRs.
Collapse
Affiliation(s)
- Sébastien Bulenger
- Cell Biology Department, Institut Cochin, 27 rue du Fg St Jacques, 75014 Paris, France
| | | | | |
Collapse
|
231
|
Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R, Fuxe K. Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 2005; 67:400-7. [PMID: 15539641 DOI: 10.1124/mol.104.003376] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine A(2A) and dopamine D(2) receptors have been shown previously to form heteromeric complexes and interact at the level of agonist binding, G protein coupling, and trafficking. Because dopamine D(2) and D(3) receptors show a high degree of sequence homology, A(2A) and D(3) receptors may also interact in a similar manner. The present studies with confocal microscopy showed that A(2A)-yellow fluorescent protein (YFP) and D(3)-green fluorescent protein 2 (GFP2) receptors colocalize in the plasma membrane. Furthermore, fluorescence resonance energy transfer (FRET) analysis demonstrated that A(2A)-YFP and D(3)-GFP2 receptors give a positive FRET efficiency and are thereby likely to exist as heteromeric A(2A)/D(3) receptor complexes. Saturation experiments with [(3)H]dopamine demonstrated that the A(2A) receptor agonist 4-[2-[[6-amino-9(N-ethyl-beta-d-ribofuranuronaminoamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid (CGS-21680) reduced the affinity of the high-affinity agonist binding state of the D(3) receptor for [(3)H]dopamine. The A(2A) and D(2A) receptors seem to interact also at the level of G protein coupling, because the adenosine A(2A) receptor agonist CGS-21680 fully counteracted the D(3) receptor-mediated inhibition of a forskolin-mediated increase in cAMP levels. Taken together, when coexpressed in the same neuron, A(2A) and D(3) receptors seem to form A(2A)/D(3) heteromeric receptor complexes in which A(2A) receptors antagonistically modulate both the affinity and the signaling of the D(3) receptors. D(3) receptor is one of the therapeutic targets for treatment of schizophrenia, and therefore, the A(2A)/D(3) receptor interactions could provide an alternative antischizophrenic treatment.
Collapse
Affiliation(s)
- Maria Torvinen
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
232
|
Uustare A, Vonk A, Terasmaa A, Fuxe K, Rinken A. Kinetic and functional properties of [3H]ZM241385, a high affinity antagonist for adenosine A2A receptors. Life Sci 2004; 76:1513-26. [PMID: 15680315 DOI: 10.1016/j.lfs.2004.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 10/02/2004] [Indexed: 12/01/2022]
Abstract
We have characterized the binding of [2-(3)H]-4-(2-[7-Amino-2-(2-furyl)-[1,2,4]-triazolo-[2,3-a]-[1,3,5]-triazin-5-ylamino]ethyl)phenol ([(3)H]ZM241385) to adenosine A(2A) receptors in membranes of rat striatum and transfected CHO cells. Saturation experiments showed that [(3)H]ZM241385 binds to a single class of binding sites with high affinity (K(d) = 0.23 nM and 0.14 nM in CHO cell and striatal membranes, respectively). The membranes of CHO cells required pretreatment with adenosine deaminase (ADA) to achieve high-affinity binding, while ADA had no influence on the ligand binding properties in striatal membranes. The binding of [(3)H]ZM241385 was fast and reversible, achieving equilibrium within 20 minutes at all radioligand concentrations. The kinetic analysis of the [(3)H]ZM241385 interaction with A(2A) receptors indicated that the reaction had at least two subsequent steps. The first step corresponds to a fast equilibrium, which also determines the antagonist potency to competitively inhibit CGS21680-induced accumulation of cAMP (first equilibrium constant K(A) = 6.6 nM). The second step corresponds to a slow process of conformational isomerization (equilibrium constant K(i) = 0.03). The combination of the two steps gives the dissociation constant K(d) = 0.20 nM based on the kinetic data, which is in good agreement with the directly measured value. The data obtained shed light on the mechanism of the [(3)H]ZM241385 interaction with adenosine A(2A) receptors from different sources in vitro. The isomerization step of the A(2A) antagonist radioligand binding has to be taken into account for the interpretation of the binding parameters obtained from the various competition assays and explain the discrepancy between antagonist affinity in saturation experiments versus its potency in functional assays.
Collapse
Affiliation(s)
- Ain Uustare
- Institute of Organic and Bioorganic Chemistry, University of Tartu, Jakobi Str. 2, EE-51014 Tartu, Estonia
| | | | | | | | | |
Collapse
|
233
|
Nemoto W, Toh H. Prediction of interfaces for oligomerizations of G-protein coupled receptors. Proteins 2004; 58:644-60. [DOI: 10.1002/prot.20332] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
234
|
Bakker RA, Dees G, Carrillo JJ, Booth RG, López-Gimenez JF, Milligan G, Strange PG, Leurs R. Domain swapping in the human histamine H1 receptor. J Pharmacol Exp Ther 2004; 311:131-8. [PMID: 15159444 DOI: 10.1124/jpet.104.067041] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) represent the largest family of receptors involved in transmembrane signaling. Although these receptors were generally believed to be monomeric entities, accumulating evidence supports the presence of GPCRs in multimeric forms. Here, using immunoprecipitation as well as time-resolved fluorescence resonance energy transfer to assess protein-protein interactions in living cells, we unambiguously demonstrate the occurrence of dimerization of the human histamine H(1) receptor. We also show the presence of domain-swapped H(1) receptor dimers in which there is the reciprocal exchange of transmembrane domain TM domains 6 and 7 between the receptors present in the dimer. Mutation of aspartate(107) in transmembrane (TM) 3 or phenylalanine(432) in TM6 to alanine results in two radioligand-binding-deficient mutant H(1) receptors. Coexpression of H(1)D(107) A and H(1)F(432)A, however, results in a reconstituted radioligand binding site that exhibits a pharmacological profile that corresponds to the wild-type H(1) receptor. Interestingly, the H(1) receptor radioligands [(3)H]mepyramine and [(3)H]-(-)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene show differential saturation binding values (B(max)) for wild-type H(1) receptors but not for the radioligand binding site that is formed upon coexpression of H(1) D(107)A and H(1) F(432)A receptors, suggesting the presence of different H(1) receptor populations.
Collapse
Affiliation(s)
- Remko A Bakker
- Leiden/Amsterdam Center for Drug Research, Faculty of Sciences, Department of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
The D1-like (D1, D5) and D2-like (D2, D3, D4) classes of dopamine receptors each has shared signaling properties that contribute to the definition of the receptor class, although some differences among subtypes within a class have been identified. D1-like receptor signaling is mediated chiefly by the heterotrimeric G proteins Galphas and Galphaolf, which cause sequential activation of adenylate cyclase, cylic AMP-dependent protein kinase, and the protein phosphatase-1 inhibitor DARPP-32. The increased phosphorylation that results from the combined effects of activating cyclic AMP-dependent protein kinase and inhibiting protein phosphatase 1 regulates the activity of many receptors, enzymes, ion channels, and transcription factors. D1 or a novel D1-like receptor also signals via phospholipase C-dependent and cyclic AMP-independent mobilization of intracellular calcium. D2-like receptor signaling is mediated by the heterotrimeric G proteins Galphai and Galphao. These pertussis toxin-sensitive G proteins regulate some effectors, such as adenylate cyclase, via their Galpha subunits, but regulate many more effectors such as ion channels, phospholipases, protein kinases, and receptor tyrosine kinases as a result of the receptor-induced liberation of Gbetagamma subunits. In addition to interactions between dopamine receptors and G proteins, other protein:protein interactions such as receptor oligomerization or receptor interactions with scaffolding and signal-switching proteins are critical for regulation of dopamine receptor signaling.
Collapse
Affiliation(s)
- Kim A Neve
- Veterans Affairs Medical Center and Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | |
Collapse
|
236
|
Ciruela F, Burgueño J, Casadó V, Canals M, Marcellino D, Goldberg SR, Bader M, Fuxe K, Agnati LF, Lluis C, Franco R, Ferré S, Woods AS. Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 2004; 76:5354-63. [PMID: 15362892 DOI: 10.1021/ac049295f] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous results from FRET and BRET experiments and computational analysis (docking simulations) have suggested that a portion of the third intracellular loop (I3) of the human dopamine D2 receptor (D2R) and the C-tail from the human adenosine A2A receptor (A2AR) are involved in A2AR-D2R heteromerization. The results of the present studies, using pull-down and mass spectrometry experiments, suggest that A2AR-D2R heteromerization depends on an electrostatic interaction between an Arg-rich epitope from the I3 of the D2R (217RRRRKR222) and two adjacent Asp residues (DD401-402) or a phosphorylated Ser (S374) residue in the C-tail of the A2AR. A GST-fusion protein containing the C-terminal domain of the A2AR (GST-A2ACT) was able to pull down the whole D2R solubilized from D2R-tranfected HEK-293 cells. Second, a peptide corresponding to the Arg-rich I3 region of the D2R (215VLRRRRKRVN224) and bound to Sepharose was able to pull down both GST-A2ACT and the whole A2AR solubilized from A2AR-tranfected HEK-293 cells. Finally, mass spectometry and pull-down data showed that the Arg-rich D2R epitope binds to two different epitopes from the C-terminal part of the A2AR, containing the two adjacent Asp residues or the phosphorylated Ser residue (388HELKGVCPEPPGLDDPLAQDGAVGS412 and 370SAQEpSQGNT378). The present results are the first example of epitope-epitope electrostatic interaction underlying receptor heteromerization, a new, expanding area of protein-protein interactions.
Collapse
Affiliation(s)
- Francisco Ciruela
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, E-08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Kase H, Mori A, Jenner P. Adenosine A2A-receptor antagonists: beyond dopaminergic therapies for Parkinson's disease. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddstr.2004.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
238
|
Grant M, Collier B, Kumar U. Agonist-dependent Dissociation of Human Somatostatin Receptor 2 Dimers. J Biol Chem 2004; 279:36179-83. [PMID: 15231824 DOI: 10.1074/jbc.m407310200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) represent the largest and most diverse family of cell surface receptors. Several GPCRs have been documented to dimerize with resulting changes in pharmacology and signaling. We have previously reported, by means of photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence correlation spectroscopic analysis in live cells, that human somatostatin receptor (hSSTR) 5 could both homodimerize and heterodimerize with hSSTR1 in the presence of the agonist SST-14. By contrast, hSSTR1 remained monomeric when expressed alone regardless of agonist exposure in live cells. However, the effect of the agonist on other hSSTR members remains unknown. Using pbFRET microscopy and Western blot, we provide evidence for agonist-dependent dissociation of self-associated hSSTR2 stably expressed in CHO-K1 and HEK-293 cells. Furthermore, the dissociation of the hSSTR2 dimer occurred in a concentration-dependent manner. Moreover, blocking receptor dissociation using a cross-linker agent perturbed receptor trafficking. Taking these data together, we suggest that the process of GPCR dimerization may operate differently, even among members of the same family, and that receptor dissociation as well as dimerization may be important steps for receptor dynamics.
Collapse
Affiliation(s)
- Michael Grant
- Fraser Laboratories for Diabetes Research, Department of Medicine, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada
| | | | | |
Collapse
|
239
|
Grant M, Patel RC, Kumar U. The role of subtype-specific ligand binding and the C-tail domain in dimer formation of human somatostatin receptors. J Biol Chem 2004; 279:38636-43. [PMID: 15247250 DOI: 10.1074/jbc.m406276200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) represent the largest and most diverse family of cell surface receptors. Several GPCRs have been documented to dimerize with resulting changes in pharmacology. We have previously reported by means of photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence correlation spectroscopic (FCS) analysis in live cells, that human somatostatin receptor (hSSTR) 5 could both homodimerize and heterodimerize with hSSTR1 in the presence of the agonist SST-14. In contrast, hSSTR1 remained monomeric when expressed alone regardless of agonist exposure in live cells. In an effort to elucidate the role of ligand and receptor subtypes in heterodimerization, we have employed both pb-FRET microscopy and Western blot on cells stably co-expressing hSSTR1 and hSSTR5 treated with subtype-specific agonists. Here we provide evidence that activation of hSSTR5 but not hSSTR1 is necessary for heterodimeric assembly. This property was also reflected in signaling as shown by increases in adenylyl cyclase coupling efficiencies. Furthermore, receptor C-tail chimeras allowed for the identification of the C-tail as a determinant for dimerization. Finally, we demonstrate that heterodimerization is subtype-selective involving ligand-induced conformational changes in hSSTR5 but not hSSTR1 and could be attributed to molecular events occurring at the C-tail. Understanding the mechanisms by which GPCRs dimerize holds promise for improvements in drug design and efficacy.
Collapse
Affiliation(s)
- Michael Grant
- Fraser Laboratories For Diabetes Research, Royal Victoria Hospital, Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | |
Collapse
|
240
|
Ferré S, Ciruela F, Canals M, Marcellino D, Burgueno J, Casadó V, Hillion J, Torvinen M, Fanelli F, Benedetti Pd PD, Goldberg SR, Bouvier M, Fuxe K, Agnati LF, Lluis C, Franco R, Woods A. Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat Disord 2004; 10:265-71. [PMID: 15196504 DOI: 10.1016/j.parkreldis.2004.02.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Emerging evidence shows that G protein-coupled receptors can form homo- and heteromers. These include adenosine A(2A) receptor-dopamine D(2) receptor heteromers, which are most probably localized in the dendritic spines of the striatopallidal GABAergic neurons, where they are in a position to modulate glutamatergic neurotransmission. The discovery of A(2A) receptor-dopamine D(2) receptor heteromers gives a frame for the well-known antagonistic interaction between both receptors, which is the bases for a new therapeutic approach for neuro-psychiatric disorders, such as Parkinson's disease and schizoprenia. The present review deals mainly with the biochemical and molecular aspects of A(2A) receptor-dopamine D(2) receptor interactions. Recent results at the molecular level show that A(2A) receptor-dopamine D(2) receptor heteromers represent the first example of epitope-epitope electrostatic interaction underlying receptor heteromerization. Most probably A(2A) receptor-D(2) receptor heteromerization is not static, but subject to a dynamic regulation, related to the phosphorylation dependence of the A(2A) receptor epitope and to the ability of the D(2) receptor epitope to bind different partners. Finding out the mechanisms involved in this dynamic regulation can have important implications for the treatment of basal ganglia disorders, schizophrenia and drug addiction.
Collapse
Affiliation(s)
- Sergi Ferré
- National Institute on Drug Abuse, IRP, NIH, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Risso F, Grilli M, Parodi M, Bado M, Raiteri M, Marchi M. Nicotine exerts a permissive role on NMDA receptor function in hippocampal noradrenergic terminals. Neuropharmacology 2004; 47:65-71. [PMID: 15165834 DOI: 10.1016/j.neuropharm.2004.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/29/2004] [Accepted: 02/20/2004] [Indexed: 11/29/2022]
Abstract
The coexistence of nicotinic cholinergic receptors (nAChRs) and of N-methyl-D-aspartate (NMDA) receptors on the same noradrenergic axon terminals and the nAChR/NMDA receptor cross-talk were investigated by monitoring the release of noradrenaline (NA) evoked in superfused rat hippocampal synaptosomes by (-)-nicotine and NMDA alone or in combination. In medium containing a physiological concentration (1.2 mM) of Mg2+, the release of [3H]NA was very slightly increased by NMDA plus glycine, whereas it was significantly enhanced by (-)-nicotine. The (-)-nicotine/NMDA combination elicited supraadditive release which was totally abolished by the nAChR blocker mecamylamine and partly prevented by selectively blocking NMDA receptors. Supraadditive [3H]NA release was also observed by exposing synaptosomes to veratrine, but not to ionomycin. The supraadditive release elicited by the (-)-nicotine/NMDA or the veratrine/NMDA combination was sensitive to the protein kinase A/C inhibitor staurosporine and the selective protein kinase A inhibitor H89, but insensitive to the protein kinase C inhibitor Ro 31-8220. It is concluded that (i) release-modulating nAChRs and NMDA receptors coexist on hippocampal noradrenergic axon terminals; and (ii) nicotine permits NMDA receptor activation in the presence of Mg2+, possibly because the nicotine-induced influx of Na+ depolarizes the nerve ending membrane sufficiently to remove the Mg2+ block.
Collapse
Affiliation(s)
- Francesca Risso
- Sezione di Farmacologia e Tossicologia, Dipartimento di Medicina Sperimentale, Università di Genova, Viale Cembrano 4, 16148 Genoa, Italy
| | | | | | | | | | | |
Collapse
|
242
|
Agnati LF, Santarossa L, Genedani S, Canela EI, Leo G, Franco R, Woods A, Lluis C, Ferré S, Fuxe K. On the Nested Hierarchical Organization of CNS: Basic Characteristics of Neuronal Molecular Networks. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/978-3-540-27862-7_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
|
243
|
Canals M, Burgueño J, Marcellino D, Cabello N, Canela EI, Mallol J, Agnati L, Ferré S, Bouvier M, Fuxe K, Ciruela F, Lluis C, Franco R. Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Neurochem 2003; 88:726-34. [PMID: 14720222 DOI: 10.1046/j.1471-4159.2003.02200.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The results presented in this paper show that adenosine A2A receptor (A2AR) form homodimers and that homodimers but not monomers are the functional species at the cell surface. Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques have been used to demonstrate in transfected HEK293 cells homodimerization of A2AR, which are heptaspanning membrane receptors with enriched expression in striatum. The existence of homodimers at the cell surface was demonstrated by time-resolved FRET. Although agonist activation of the receptor leads to the formation of receptor clusters, it did not affect the degree of A2AR-A2AR dimerization. Both monomers and dimers were detected by immunoblotting in cell extracts. However, cell surface biotinylation of proteins has made evident that more than 90% of the cell surface receptor is in its dimeric form. Thus, it seems that homodimers are the functional form of the receptor present on the plasma membrane. A deletion mutant version of the A2A receptor, lacking its C-terminal domain, was also able to form both monomeric and dimeric species when cell extracts from transfected cells were analyzed by immunoblotting. This suggests that the C-terminal tail does not participate in the dimerization. This is relevant as the C-terminal tail of A2AR is involved in heteromers formed by A2AR and dopamine D2 receptors. BRET ratios corresponding to A2AR-A2AR homodimers were higher than those encountered for heterodimers formed by A2AR and dopamine D2 receptors. As A2AR and dopamine D2 receptors do indeed interact, these results indicate that A2AR homodimers are the functional species at the cell surface and that they coexist with A2AR/D2 receptor heterodimers.
Collapse
Affiliation(s)
- Meritxell Canals
- Department of Biochemistry and Molecular Biology of the University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Abstract
Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). A growing body of biochemical and functional evidence supports the existence of GPCR-GPCR homo- and hetero-oligomers. In particular, hetero-oligomers can display pharmacological and functional properties distinct from those of the homodimer or oligomer thus adding another level of complexity to how GPCRs are activated, signal and traffick in the cell. Dimerization may also play a role in influencing the activity of agonists and antagonists. We are only beginning to unravel how and why such complexes are formed, the functional implications of which will have an enormous impact on GPCR biology. Future research that studies GPCRs as dimeric or oligomeric complexes will enhance not only our understanding of GPCRs in cellular function but will also be critical for novel drug design and improved treatment of the vast array of GPCR-related conditions.
Collapse
Affiliation(s)
- Karen M Kroeger
- Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, 6009, Perth, WA, Australia
| | | | | |
Collapse
|
245
|
Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferré S, Lluis C, Bouvier M, Franco R. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 2003; 278:46741-9. [PMID: 12933819 DOI: 10.1074/jbc.m306451200] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is evidence for strong functional antagonistic interactions between adenosine A2A receptors (A2ARs) and dopamine D2 receptors (D2Rs). Although a close physical interaction between both receptors has recently been shown using co-immunoprecipitation and co-localization assays, the existence of a A2AR-D2R protein-protein interaction still had to be demonstrated in intact living cells. In the present work, fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques were used to confirm the occurrence of A2AR-D2R interactions in co-transfected cells. The degree of A2AR-D2R heteromerization, measured by BRET, did not vary after receptor activation with selective agonists, alone or in combination. BRET competition experiments were performed using a chimeric D2R-D1R in which helices 5 and 6, the third intracellular loop (I3), and the third extracellular loop (E3) of the D2R were replaced by those of the dopamine D1 receptor (D1R). Although the wild type D2R was able to decrease the BRET signal, the chimera failed to achieve any effect. This suggests that the helix 5-I3-helix 6-E3 portion of D2R holds the site(s) for interaction with A2AR. Modeling of A2AR and D2R using a modified rhodopsin template followed by molecular dynamics and docking simulations gave essentially two different possible modes of interaction between D2R and A2AR. In the most probable one, helix 5 and/or helix 6 and the N-terminal portion of I3 from D2R approached helix 4 and the C-terminal portion of the C-tail from the A2AR, respectively.
Collapse
Affiliation(s)
- Meritxell Canals
- Department of Biochemistry and Molecular Biology, University of Barcelona, Martí y Franquès 1, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|