201
|
Le I, Dhandayuthapani S, Chacon J, Eiring AM, Gadad SS. Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics. Vaccines (Basel) 2022; 10:816. [PMID: 35632572 PMCID: PMC9146235 DOI: 10.3390/vaccines10050816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics.
Collapse
Affiliation(s)
- Ilene Le
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Subramanian Dhandayuthapani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Anna M. Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA
| |
Collapse
|
202
|
Ricklefs FL, Maire CL, Wollmann K, Dührsen L, Fita KD, Sahm F, Herold-Mende C, von Deimling A, Kolbe K, Holz M, Bergmann L, Fuh MM, Schlüter H, Alawi M, Reimer R, Peine S, Glatzel M, Westphal M, Lamszus K. Diagnostic potential of extracellular vesicles in meningioma patients. Neuro Oncol 2022; 24:2078-2090. [PMID: 35551407 PMCID: PMC9883720 DOI: 10.1093/neuonc/noac127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) play an important role in cell-cell communication, and tumor-derived EVs circulating in patient blood can serve as biomarkers. Here, we investigated the potential role of plasma EVs in meningioma patients for tumor detection and determined whether EVs secreted by meningioma cells reflect epigenetic, genomic, and proteomic alterations of original tumors. METHODS EV concentrations were quantified in patient plasma (n = 46). Short-term meningioma cultures were established (n = 26) and secreted EVs were isolated. Methylation and copy number profiling was performed using 850k arrays, and mutations were identified by targeted gene panel sequencing. Differential quantitative mass spectrometry was employed for proteomic analysis. RESULTS Levels of circulating EVs were elevated in meningioma patients compared to healthy individuals, and the plasma EV concentration correlated with malignancy grade and extent of peritumoral edema. Postoperatively, EV counts dropped to normal levels, and the magnitude of the postoperative decrease was associated with extent of tumor resection. Methylation profiling of EV-DNA allowed correct tumor classification as meningioma in all investigated cases, and accurate methylation subclass assignment in almost all cases. Copy number variations present in tumors, as well as tumor-specific mutations were faithfully reflected in meningioma EV-DNA. Proteomic EV profiling did not permit original tumor identification but revealed tumor-associated proteins that could potentially be utilized to enrich meningioma EVs from biofluids. CONCLUSIONS Elevated EV levels in meningioma patient plasma could aid in tumor diagnosis and assessment of treatment response. Meningioma EV-DNA mirrors genetic and epigenetic tumor alterations and facilitates molecular tumor classification.
Collapse
Affiliation(s)
- Franz L Ricklefs
- Corresponding Authors: Katrin Lamszus, MD, Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (); Franz Ricklefs, MD, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany ()
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kathrin Wollmann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Krystian D Fita
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katharina Kolbe
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Holz
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Bergmann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolph Reimer
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sven Peine
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Corresponding Authors: Katrin Lamszus, MD, Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (); Franz Ricklefs, MD, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany ()
| |
Collapse
|
203
|
Zhang X, Xu D, Song Y, He R, Wang T. Research Progress in the Application of Exosomes in Immunotherapy. Front Immunol 2022; 13:731516. [PMID: 35242126 PMCID: PMC8885989 DOI: 10.3389/fimmu.2022.731516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are nanoscale extracellular vesicles (EVs), which are present in all body fluids tested. They are secreted by a variety of cells including macrophages, dendritic cells, mast cells, granulocytes, lymphocytes, and tumor cells. Exosomes secreted by different cells have different biological components and functional characteristics and play an important role in many pathophysiological activities. Recent studies have revealed that exosomes can regulate the occurrence and development of inflammatory immune diseases and tumors by transmitting their unique proteins, lipids, and nucleic acids as signaling molecules to other cells. Exosomes serve as a novel class of diagnostic biomarkers and drug delivery systems with promising applications in immunotherapy, particularly because breakthroughs in nanotechnology have led to the development and exploration of engineered exosomes for immunotargeted therapies. Therefore, here we review the progress being made on the application of exosomes in immunotherapy and its multiple regulatory mechanisms and explore the potential application of exosomes in immunotherapy in the future.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Donggang Xu
- Second Clinical Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Rong He
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
204
|
Wu L, Li L, Li S, Liu L, Xin W, Li C, Yin X, Xu X, Bao F, Hua Z. Macrophage-mediated tumor-targeted delivery of engineered Salmonella typhimurium VNP20009 in anti-PD1 therapy against melanoma. Acta Pharm Sin B 2022; 12:3952-3971. [PMID: 36213533 PMCID: PMC9532557 DOI: 10.1016/j.apsb.2022.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial antitumor therapy has great application potential given its unique characteristics, including genetic manipulation, tumor targeting specificity and immune system modulation. However, the nonnegligible side effects and limited efficacy of clinical treatment limit their biomedical applications. Engineered bacteria for therapeutic applications ideally need to avoid their accumulation in normal organs and possess potent antitumor activity. Here, we show that macrophage-mediated tumor-targeted delivery of Salmonella typhimurium VNP20009 can effectively reduce the toxicity caused by administrating VNP20009 alone in a melanoma mouse model. This benefits from tumor-induced chemotaxis for macrophages combined with their slow release of loaded strains. Inspired by changes in the tumor microenvironment, including a decrease in intratumoral dysfunctional CD8+ T cells and an increase in PDL1 on the tumor cell surface, macrophages were loaded with the engineered strain VNP-PD1nb, which can express and secrete anti-PD1 nanoantibodies after they are released from macrophages. This novel triple-combined immunotherapy significantly inhibited melanoma tumors by reactivating the tumor microenvironment by increasing immune cell infiltration, inhibiting tumor cell proliferation, remodeling TAMs to an M1-like phenotype and prominently activating CD8+ T cells. These data suggest that novel combination immunotherapy is expected to be a breakthrough relative to single immunotherapy.
Collapse
|
205
|
Pancholi S, Tripathi A, Bhan A, Acharya MM, Pillai P. Emerging Concepts on the Role of Extracellular Vesicles and Its Cargo Contents in Glioblastoma-Microglial Crosstalk. Mol Neurobiol 2022; 59:2822-2837. [PMID: 35212938 PMCID: PMC10058057 DOI: 10.1007/s12035-022-02752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme is the most common, highly aggressive malignant brain tumor which is marked by highest inter- and intra-tumoral heterogeneity. Despite, immunotherapy, and combination therapies developed; the clinical trials often result into large number of failures. Often cancer cells are known to communicate with surrounding cells in tumor microenvironment (TME). Extracellular vesicles (EVs) consisting of diverse cargo mediates this intercellular communication and is believed to modulate the immune function against GBM. Tumor-associated microglia (TAM), though being the resident innate immune cell of CNS, is known to attain pro-tumorigenic M2 phenotype, and this immunomodulation is aided by extracellular vesicle-mediated transfer of oncogenic, immunomodulatory molecules. Besides, oncogenic proteins, long non-coding RNAs (lncRNAs), are believed to carry oncogenic potential, and therefore, understanding the mechanism leading to microglial dysregulation mediated by GBM-derived extracellular vesicle (GDEV) lncRNAs becomes crucial. This review focuses on current understanding of role of GDEV and lncRNA in microglial dysfunction and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Sangati Pancholi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ashutosh Tripathi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Centre at Houston (UT Health), Houston, TX, USA
| | - Arunoday Bhan
- Department of Surgery, City of Hope Medical Centre, Duarte, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Radiation Oncology, University of California, Irvine, CA, USA.
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
206
|
Fridman ES, Ginini L, Gil Z. The Role of Extracellular Vesicles in Metabolic Reprogramming of the Tumor Microenvironment. Cells 2022; 11:cells11091433. [PMID: 35563739 PMCID: PMC9104192 DOI: 10.3390/cells11091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) includes a network of cancerous and non-cancerous cells, together with associated blood vessels, the extracellular matrix, and signaling molecules. The TME contributes to cancer progression during various phases of tumorigenesis, and interactions that take place within the TME have become targets of focus in cancer therapy development. Extracellular vesicles (EVs) are known to be conveyors of genetic material, proteins, and lipids within the TME. One of the hallmarks of cancer is its ability to reprogram metabolism to sustain cell growth and proliferation in a stringent environment. In this review, we provide an overview of TME EV involvement in the metabolic reprogramming of cancer and stromal cells, which favors cancer progression by enhancing angiogenesis, proliferation, metastasis, treatment resistance, and immunoevasion. Targeting the communication mechanisms and systems utilized by TME-EVs is opening a new frontier in cancer therapy.
Collapse
Affiliation(s)
- Eran S. Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel
- Correspondence: ; Tel.: +972-4-854-2480
| |
Collapse
|
207
|
Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol 2022; 148:2347-2373. [PMID: 35451698 DOI: 10.1007/s00432-022-04011-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Noninvasive examination is an emerging area in the field of neuro-oncology. Liquid biopsy captures the landscape of genomic alterations of brain tumors and revolutionizes the traditional diagnosis approaches. Rapidly changing sequencing technologies and more affordable prices put the screws on more application of liquid biopsy in clinical settings. In the past few years, extensive application of liquid biopsy has been seen throughout the whole diagnosis and treatment process of brain tumors, including early and accurate detection, characterization and dynamic monitoring. Here, we summarized and compared the most advanced techniques and target molecules or macrostructures related to brain tumor liquid biopsy. We further reviewed and emphasized recent progression in different clinical settings for brain tumors in blood and CSF. The preferred protocol, potential novel biomarkers and future development are discussed in the last part.
Collapse
|
208
|
IL-3 signalling in the tumour microenvironment shapes the immune response via tumour endothelial cell-derived extracellular vesicles. Pharmacol Res 2022; 179:106206. [DOI: 10.1016/j.phrs.2022.106206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022]
|
209
|
Niu M, Liu Y, Yi M, Jiao D, Wu K. Biological Characteristics and Clinical Significance of Soluble PD-1/PD-L1 and Exosomal PD-L1 in Cancer. Front Immunol 2022; 13:827921. [PMID: 35386715 PMCID: PMC8977417 DOI: 10.3389/fimmu.2022.827921] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint pathway consisting of the cell membrane-bound molecule programmed death protein 1 (PD-1) and its ligand PD-L1 has been found to mediate negative regulatory signals that effectively inhibit T-cell proliferation and function and impair antitumor immune responses. Considerable evidence suggests that the PD-1/PD-L1 pathway is responsible for tumor immune tolerance and immune escape. Blockage of this pathway has been found to reverse T lymphocyte depletion and restore antitumor immunity. Antagonists targeting this pathway have shown significant clinical activity in specific cancer types. Although originally identified as membrane-type molecules, several other forms of PD-1/PD-L1 have been detected in the blood of cancer patients, including soluble PD-1/PD-L1 (sPD-1/sPD-L1) and exosomal PD-L1 (exoPD-L1), increasing the composition and functional complications of the PD-1/PD-L1 signaling pathway. For example, sPD-1 has been shown to block the PD-1/PD-L immunosuppressive pathway by binding to PD-L1 and PD-L2, whereas the role of sPD-L1 and its mechanism of action in cancer remain unclear. In addition, many studies have investigated the roles of exoPD-L1 in immunosuppression, as a biomarker for tumor progression and as a predictive biomarker for response to immunotherapy. This review describes the molecular mechanisms underlying the generation of sPD-1/sPD-L1 and exoPD-L1, along with their biological activities and methods of detection. In addition, this review discusses the clinical importance of sPD-1/sPD-L1 and exoPD-L1 in cancer, including their predictive and prognostic roles and the effects of treatments that target these molecules.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| |
Collapse
|
210
|
Shen DD, Pang JR, Bi YP, Zhao LF, Li YR, Zhao LJ, Gao Y, Wang B, Wang N, Wei L, Guo H, Liu HM, Zheng YC. LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in gastric cancer. Mol Cancer 2022; 21:75. [PMID: 35296335 PMCID: PMC8925194 DOI: 10.1186/s12943-022-01557-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Histone lysine-specific demethylase 1 (LSD1) expression has been shown to be significantly elevated in gastric cancer (GC) and may be associated with the proliferation and metastasis of GC. It has been reported that LSD1 repressed tumor immunity through programmed cell death 1 ligand 1 (PD-L1) in melanoma and breast cancer. The role of LSD1 in the immune microenvironment of GC is unknown. METHODS Expression LSD1 and PD-L1 in GC patients was analyzed by immunohistochemical (IHC) and Western blotting. Exosomes were isolated from the culture medium of GC cells using an ultracentrifugation method and characterized by transmission electronic microscopy (TEM), nanoparticle tracking analysis (NTA), sucrose gradient centrifugation, and Western blotting. The role of exosomal PD-L1 in T-cell dysfunction was assessed by flow cytometry, T-cell killing and enzyme-linked immunosorbent assay (ELISA). RESULTS Through in vivo exploration, mouse forestomach carcinoma (MFC) cells with LSD1 knockout (KO) showed significantly slow growth in 615 mice than T-cell-deficient BALB/c nude mice. Meanwhile, in GC specimens, expression of LSD1 was negatively correlated with that of CD8 and positively correlated with that of PD-L1. Further study showed that LSD1 inhibited the response of T cells in the microenvironment of GC by inducing the accumulation of PD-L1 in exosomes, while the membrane PD-L1 stayed constant in GC cells. Using exosomes as vehicles, LSD1 also obstructed T-cell response of other cancer cells while LSD1 deletion rescued T-cell function. It was found that while relying on the existence of LSD1 in donor cells, exosomes can regulate MFC cells proliferation with distinct roles depending on exosomal PD-L1-mediated T-cell immunity in vivo. CONCLUSION LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in GC; this finding indicates a new mechanism with which LSD1 may regulate cancer immunity in GC and provides a new target for immunotherapy against GC.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Yin-Rui Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Hebei, China
| | - Huiqin Guo
- Thoracic Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| |
Collapse
|
211
|
Feldman L, Brown C, Badie B. Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. Neuromolecular Med 2022; 24:35-40. [PMID: 34665390 PMCID: PMC11220928 DOI: 10.1007/s12017-021-08689-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Glioblastoma (GBM) are the most common and aggressive primary brain tumors in adults. Current mainstay treatments include surgery, chemotherapy, and radiation; however, these are ineffective. As a result, immunotherapy treatment strategies are being developed to harness the body's natural defense mechanisms against gliomas. Adoptive cell therapy with chimeric antigen receptor (CAR) T cells uses patients' own T cells that are genetically modified to target tumor-associated antigens. These cells are harvested from patients, engineered to target specific proteins expressed by the tumor and re-injected into the patient with the goal of destroying tumor cells. In this mini review, we outline the history of CAR T cell therapy, describe current antigen targets, and review challenges this treatment faces specifically in targeting GBM.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Division of Neurosurgery, City of Hope National Medical Center, MOB 2001, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| | - Christine Brown
- Departments of Cancer Immunotherapy & Tumor Immunology and Hematology & Hematopoietic Call Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Behnam Badie
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| |
Collapse
|
212
|
Ruan S, Greenberg Z, Pan X, Zhuang P, Erwin N, He M. Extracellular Vesicles as an Advanced Delivery Biomaterial for Precision Cancer Immunotherapy. Adv Healthc Mater 2022; 11:e2100650. [PMID: 34197051 PMCID: PMC8720116 DOI: 10.1002/adhm.202100650] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/22/2021] [Indexed: 12/11/2022]
Abstract
In recent years, cancer immunotherapy has been observed in numerous preclinical and clinical studies for showing benefits. However, due to the unpredictable outcomes and low response rates, novel targeting delivery approaches and modulators are needed for being effective to more broader patient populations and cancer types. Compared to synthetic biomaterials, extracellular vesicles (EVs) specifically open a new avenue for improving the efficacy of cancer immunotherapy by offering targeted and site-specific immunity modulation. In this review, the molecular understanding of EV cargos and surface receptors, which underpin cell targeting specificity and precisely modulating immunogenicity, are discussed. Unique properties of EVs are reviewed in terms of their surface markers, intravesicular contents, intrinsic immunity modulatory functions, and pharmacodynamic behavior in vivo with tumor tissue models, highlighting key indications of improved precision cancer immunotherapy. Novel molecular engineered strategies for reprogramming and directing cancer immunotherapeutics, and their unique challenges are also discussed to illuminate EV's future potential as a cancer immunotherapeutic biomaterial.
Collapse
Affiliation(s)
- Shaobo Ruan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Pei Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nina Erwin
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
213
|
Purow B. Delivering Glioblastoma a Kick-DGKα Inhibition as a Promising Therapeutic Strategy for GBM. Cancers (Basel) 2022; 14:cancers14051269. [PMID: 35267577 PMCID: PMC8909282 DOI: 10.3390/cancers14051269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Diacylglycerol kinase α (DGKα) inhibition may be particularly relevant for the treatment of glioblastoma (GBM), a relatively common brain malignancy incurable with current therapies. Prior reports have shown that DGKα inhibition has multiple direct activities against GBM cells, including suppressing the oncogenic pathways mTOR and HIF-1α. It also inhibits pathways associated with the normally treatment-resistant mesenchymal phenotype, yielding preferential activity against mesenchymal GBM; this suggests possible utility in combining DGKα inhibition with radiation and other therapies for which the mesenchymal phenotype promotes resistance. The potential for DGKα inhibition to block or reverse T cell anergy also suggests the potential of DGKα inhibition to boost immunotherapy against GBM, which is generally considered an immunologically "cold" tumor. A recent report indicates that DGKα deficiency increases responsiveness of macrophages, indicating that DGKα inhibition could also have the potential to boost macrophage and microglia activity against GBM-which could be a particularly promising approach given the heavy infiltration of these cells in GBM. DGKα inhibition may therefore offer a promising multi-pronged attack on GBM, with multiple direct anti-GBM activities and also the ability to boost both adaptive and innate immune responses against GBM. However, both the direct and indirect benefits of DGKα inhibition for GBM will likely require combinations with other therapies to achieve meaningful efficacy. Furthermore, GBM offers other challenges for the application of DGKα inhibitors, including decreased accessibility from the blood-brain barrier (BBB). The ideal DGKα inhibitor for GBM will combine potency, specificity, and BBB penetrability. No existing inhibitor is known to meet all these criteria, but the strong potential of DGKα inhibition against this lethal brain cancer should help drive development and testing of agents to bring this promising strategy to the clinic for patients with GBM.
Collapse
Affiliation(s)
- Benjamin Purow
- Neurology Department, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
214
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
215
|
Jung MY, Aibaidula A, Brown DA, Himes BT, Cumba Garcia LM, Parney IF. Superinduction of immunosuppressive glioblastoma extracellular vesicles by IFN-γ through PD-L1 and IDO1. Neurooncol Adv 2022; 4:vdac017. [PMID: 35990703 PMCID: PMC9389426 DOI: 10.1093/noajnl/vdac017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Glioblastoma (GBM), the most common primary brain tumor, has a median survival of 15-16 months. Immunotherapy is promising but GBM-mediated immunosuppression remains a barrier. GBMs express the interferon-gamma (IFN-γ)-responsive immunosuppressive molecules PD-L1 and IDO1. Extracellular vesicles (EVs) have also been implicated in GBM-mediated immunosuppression, in part through PD-L1. We therefore sought to determine if GBM IFN-γ exposure increased GBM EV-mediated immunosuppression and mechanisms underlying this.
Methods
Human GBM-derived cells were cultured in the presence/absence of IFN-γ. EV’s were harvested. PD-L1, IDO1, and EV-associated protein expression was assessed. GBM EV’s (+/-IFN-γ) were cultured with healthy donor monocytes. Immunosuppressive myeloid-derived suppressor cell (MDSC) and non-classical monocyte (NCM) frequency was determined. Impact of GBM (+/-IFN-γ) EV-treated monocytes on CD3/CD28-mediated T cell proliferation was assessed. The impact of PD-L1 and IDO1 knockdown in GBM EV’s in this system was evaluated.
Results
IFN-γ exposure increased PD-L1 and IDO1 expression in GBM cells and EV’s without altering EV size or frequency. IFN-γ-exposed GBM EVs induced more MDSC and NCM differentiation in monocytes and these monocytes caused more T cell inhibition than IFN-γ-naive GBM EVs. PD-L1 and/or IDO1 knockdown in GBM cells abrogated the immunosuppressive effects of IFN-γ-exposed GBM EVs on monocytes.
Conclusions
IFN-γ exposure such as might occur during an anti-tumor immune response results in superinduction of GBM EVs’ baseline immunosuppressive effects on monocytes. These effects are mediated by increased PD-L1 and IDO1 expression in GBM EV’s. This data highlights mechanisms of GBM EV-mediated immunosuppression and identifies therapeutic targets (PD-L1, IDO1) to reverse these effects.
Collapse
Affiliation(s)
- Mi-Yeon Jung
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Abudumijiti Aibaidula
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Desmond A Brown
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Benjamin T Himes
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Luz M Cumba Garcia
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ian F Parney
- Corresponding Author: Ian F. Parney, MD, PhD, Department of Neurological Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA ()
| |
Collapse
|
216
|
Zhang W, Zhong W, Wang B, Yang J, Yang J, Yu Z, Qin Z, Shi A, Xu W, Zheng C, Schuchter LM, Karakousis GC, Mitchell TC, Amaravadi R, Herlyn M, Dong H, Gimotty PA, Daaboul G, Xu X, Guo W. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression. Dev Cell 2022; 57:329-343.e7. [PMID: 35085484 PMCID: PMC8881799 DOI: 10.1016/j.devcel.2022.01.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Tumor-derived extracellular vesicles (TEVs) suppress the proliferation and cytotoxicity of CD8+ T cells, thereby contributing to tumor immune evasion. Here, we report that the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) co-localizes with programmed death ligand 1 (PD-L1) on the exosomes; both ICAM-1 and PD-L1 are upregulated by interferon-γ. Exosomal ICAM-1 interacts with LFA-1, which is upregulated in activated T cells. Blocking ICAM-1 on TEVs reduces the interaction of TEVs with CD8+ T cells and attenuates PD-L1-mediated suppressive effects of TEVs. During this study, we have established an extracellular vesicle-target cell interaction detection through SorTagging (ETIDS) system to assess the interaction between a TEV ligand and its target cell receptor. Using this system, we demonstrate that the interaction of TEV PD-L1 with programmed cell death 1 (PD-1) on T cells is significantly reduced in the absence of ICAM-1. Our study demonstrates that ICAM-1-LFA-1-mediated adhesion between TEVs and T cells is a prerequisite for exosomal PD-L1-mediated immune suppression.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqun Zhong
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beike Wang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiegang Yang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingbo Yang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ziyan Yu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiyuan Qin
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Shi
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Haidong Dong
- Departments of Urology and Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Phyllis A Gimotty
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia PA 19104, USA
| | | | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
217
|
Yamaguchi H, Hsu JM, Yang WH, Hung MC. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol 2022; 19:287-305. [DOI: 10.1038/s41571-022-00601-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
|
218
|
Shin JM, Lee C, Son S, Kim CH, Lee JA, Ko H, Shin S, Song SH, Park S, Bae J, Park J, Choe E, Baek M, Park JH. Sulfisoxazole Elicits Robust Antitumour Immune Response Along with Immune Checkpoint Therapy by Inhibiting Exosomal PD-L1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103245. [PMID: 34927389 PMCID: PMC8844465 DOI: 10.1002/advs.202103245] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Indexed: 05/08/2023]
Abstract
Despite their potent antitumor activity, clinical application of immune checkpoint inhibitors has been significantly limited by their poor response rates (<30%) in cancer patients, primarily due to immunosuppressive tumor microenvironments. As a representative immune escape mechanism, cancer-derived exosomes have recently been demonstrated to exhaust CD8+ cytotoxic T cells. Here, it is reported that sulfisoxazole, a sulfonamide antibacterial, significantly decreases the exosomal PD-L1 level in blood when orally administered to the tumor-bearing mice. Consequently, sulfisoxazole effectively reinvigorates exhausted T cells, thereby eliciting robust antitumor effects in combination with anti-PD-1 antibody. Overall, sulfisoxazole regulates immunosuppression through the inhibition of exosomal PD-L1, implying its potential to improve the response rate of anti-PD-1 antibodies.
Collapse
Affiliation(s)
- Jung Min Shin
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Department of Genetic ResourcesNational Marine Biodiversity Institute of Korea (MABIK)75 Jangsan‐ro 101‐gil, Janghang‐eupSeocheon33662Republic of Korea
| | - Chan‐Hyeong Lee
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Soyoung Son
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Chan Ho Kim
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Jae Ah Lee
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyewon Ko
- Bionanotechnology Research CenterKorea Research Institute of Bioscience & Biotechnology125 Gwahak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Sol Shin
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seok Ho Song
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seong‐Sik Park
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Ju‐Hyun Bae
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Ju‐Mi Park
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Eun‐Ji Choe
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Moon‐Chang Baek
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Jae Hyung Park
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| |
Collapse
|
219
|
Qiu Z, Zhao L, Shen JZ, Liang Z, Wu Q, Yang K, Min L, Gimple RC, Yang Q, Bhargava S, Jin C, Kim C, Hinz D, Dixit D, Bernatchez JA, Prager BC, Zhang G, Dong Z, Lv D, Wang X, Kim LJ, Zhu Z, Jones KA, Zheng Y, Wang X, Siqueira-Neto JL, Chavez L, Fu XD, Spruck C, Rich JN. Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells. Cancer Discov 2022; 12:502-521. [PMID: 34615656 PMCID: PMC8831451 DOI: 10.1158/2159-8290.cd-20-1848] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/03/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II-mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance in vitro and in vivo. YY1 interacted with CDK9 to regulate transcription elongation in GSCs. Genetic or pharmacologic targeting of the YY1-CDK9 complex elicited RNA m6A modification-dependent interferon responses, reduced regulatory T-cell infiltration, and augmented efficacy of immune checkpoint therapy in GBM. Collectively, these results suggest that YY1-CDK9 transcription elongation complex defines a targetable cell state with active transcription, suppressed interferon responses, and immunotherapy resistance in GBM. SIGNIFICANCE: Effective strategies to rewire immunosuppressive microenvironment and enhance immunotherapy response are still lacking in GBM. YY1-driven transcriptional elongation machinery represents a druggable target to activate interferon response and enhance anti-PD-1 response through regulating the m6A modification program, linking epigenetic regulation to immunomodulatory function in GBM.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Zhixin Qiu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.,Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Linjie Zhao
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.,Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jia Z. Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.,Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lihua Min
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ryan C. Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Qiyuan Yang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Chunyu Jin
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Denise Hinz
- Flow Cytometry Core Facility, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jean A. Bernatchez
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Briana C. Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Deguan Lv
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.,Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Xujun Wang
- SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leo J.Y. Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhe Zhu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Katherine A. Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.,School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lukas Chavez
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Jeremy N. Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.,Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Corresponding Authors: Jeremy N. Rich: ; +1(412) 623-3364; Address: UPMC Hillman Cancer Center, 5115 Centre Ave, Pittsburgh, PA 15232; Charles Spruck: ; +1(858) 401-3459; Address: 10901 N Torrey Pines Rd, La Jolla, CA 92037
| |
Collapse
|
220
|
Jahan S, Mukherjee S, Ali S, Bhardwaj U, Choudhary RK, Balakrishnan S, Naseem A, Mir SA, Banawas S, Alaidarous M, Alyenbaawi H, Iqbal D, Siddiqui AJ. Pioneer Role of Extracellular Vesicles as Modulators of Cancer Initiation in Progression, Drug Therapy, and Vaccine Prospects. Cells 2022; 11:490. [PMID: 35159299 PMCID: PMC8833976 DOI: 10.3390/cells11030490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading diseases, causing deaths worldwide. Nearly 10 million deaths were reported in 2020 due to cancer alone. Several factors are involved in cancer progressions, such as lifestyle and genetic characteristics. According to a recent report, extracellular vesicles (EVs) are involved in cancer initiation, progression, and therapy failure. EVs can play a major role in intracellular communication, the maintenance of tissue homeostasis, and pathogenesis in several types of diseases. In a healthy person, EVs carry different cargoes, such as miRNA, lncRNA etc., to help other body functions. On the other hand, the same EV in a tumor microenvironment carries cargoes such as miRNA, lncRNA, etc., to initiate or help cancer progression at various stages. These stages may include the proliferation of cells and escape from apoptosis, angiogenesis, cell invasion, and metastasis, reprogramming energy metabolism, evasion of the immune response, and transfer of mutations. Tumor-derived EVs manipulate by altering normal functions of the body and affect the epigenetics of normal cells by limiting the genetic makeup through transferring mutations, histone modifications, etc. Tumor-derived EVs also pose therapy resistance through transferring drug efflux pumps and posing multiple drug resistances. Such EVs can also help as biomarkers for different cancer types and stages, which ultimately help with cancer diagnosis at early stages. In this review, we will shed light on EVs' role in performing normal functions of the body and their position in different hallmarks of cancer, in altering the genetics of a normal cell in a tumor microenvironment, and their role in therapy resistance, as well as the importance of EVs as diagnostic tools.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shouvik Mukherjee
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Shaheen Ali
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Urvashi Bhardwaj
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ranjay Kumar Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Santhanaraj Balakrishnan
- Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Asma Naseem
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 81451, Saudi Arabia
| |
Collapse
|
221
|
Liu J, Peng X, Yang S, Li X, Huang M, Wei S, Zhang S, He G, Zheng H, Fan Q, Yang L, Li H. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Commun Signal 2022; 20:14. [PMID: 35090497 PMCID: PMC8796536 DOI: 10.1186/s12964-021-00816-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is the ligand for programmed death protein-1 (PD-1), is associated with immunosuppression. Signaling via PD-1/PD-L1 will transmits negative regulatory signals to T cells, inducing T-cell inhibition, reducing CD8+ T-cell proliferation, or promoting T-cell apoptosis, which effectively reduces the immune response and leads to large-scale tumor growth. Accordingly, many antibody preparations targeting PD-1 or PD-L1 have been designed to block the binding of these two proteins and restore T-cell proliferation and cytotoxicity of T cells. However, these drugs are ineffective in clinical practice. Recently, numerous of studies have shown that, in addition to the surface of tumor cells, PD-L1 is also found on the surface of extracellular vesicles secreted by these cells. Extracellular vesicle PD-L1 can also interact with PD-1 on the surface of T cells, leading to immunosuppression, and has been proposed as a potential mechanism underlying PD-1/PD-L1-targeted drug resistance. Therefore, it is important to explore the production, regulation and tumor immunosuppression of PD-L1 on the surface of tumor cells and extracellular vesicles, as well as the potential clinical application of extracellular vesicle PD-L1 as tumor biomarkers and therapeutic targets. Video Abstract
Collapse
|
222
|
Hao Q, Wu Y, Wu Y, Wang P, Vadgama JV. Tumor-Derived Exosomes in Tumor-Induced Immune Suppression. Int J Mol Sci 2022; 23:1461. [PMID: 35163380 PMCID: PMC8836190 DOI: 10.3390/ijms23031461] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a class of small membrane-bound extracellular vesicles released by almost all cell types and present in all body fluids. Based on the studies of exosome content and their interactions with recipient cells, exosomes are now thought to mediate "targeted" information transfer. Tumor-derived exosomes (TEX) carry a cargo of molecules different from that of normal cell-derived exosomes. TEX functions to mediate distinct biological effects such as receptor discharge and intercellular cross-talk. The immune system defenses, which may initially restrict tumor progression, are progressively blunted by the broad array of TEX molecules that activate suppressive pathways in different immune cells. Herein, we provide a review of the latest research progress on TEX in the context of tumor-mediated immune suppression and discuss the potential as well as challenges of TEX as a target of immunotherapy.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Yong Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
223
|
PD-L1 tumor expression is associated with poor prognosis and systemic immunosuppression in glioblastoma. J Neurooncol 2022; 156:453-464. [DOI: 10.1007/s11060-021-03907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
|
224
|
Dou X, Hua Y, Chen Z, Chao F, Li M. Extracellular vesicles containing PD-L1 contribute to CD8+ T-cell immune suppression and predict poor outcomes in small cell lung cancer. Clin Exp Immunol 2022; 207:307-317. [PMID: 35553630 PMCID: PMC9113186 DOI: 10.1093/cei/uxac006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 01/19/2023] Open
Abstract
Programmed death ligand-1 (PD-L1) is expressed on the surface of tumor cells and binds to programmed cell death protein-1 (PD1) on the surface of T cells, leading to cancer immune evasion via inhibition of T-cell function. One of the characteristics of small cell lung cancer (SCLC) is its ineffective anti-tumor immune response and highly immunosuppressive status in the tumor microenvironment. SCLC cells have been shown to generate extracellular vesicles (EVs), which may play an important role in tumor progression. We thus hypothesized that SCLC EVs may be important mediators of immunosuppression and that PD-L1 could play a role. Herein, we showed that PD-L1 was expressed on the surface of SCLC-derived EVs, with the potential to directly bind to PD1. Experimentally, we further showed that EVs secreted by SCLC cells can inhibit CD8+ T-cell activation and cytokine production in vitro in response to T-cell receptor stimulation. Importantly, an anti-PD-L1 blocking antibody significantly reversed the EV-mediated inhibition of CD8+ T-cell activation. Furthermore, we performed a retrospective study of patients with SCLC to determine the prognostic value of PD-L1 harvested from plasm circulating EVs. The results showed that EVs containing PD-L1 was an independent prognostic factor and significantly correlated with progression-free survival. Together, these results indicate that EVs containing PD-L1 can be served as a diagnostic biomarker for predicting the effectiveness of therapy, as well as a new strategy to enhance T-cell-mediated immunotherapy against SCLC cancers.
Collapse
Affiliation(s)
| | | | - Zhaowu Chen
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ming Li
- Correspondence: Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China, 230032.
| |
Collapse
|
225
|
Krapež G, Kouter K, Jovčevska I, Videtič Paska A. Dynamic Intercell Communication between Glioblastoma and Microenvironment through Extracellular Vesicles. Biomedicines 2022; 10:151. [PMID: 35052830 PMCID: PMC8773537 DOI: 10.3390/biomedicines10010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is simultaneously the most common and most aggressive primary brain tumor in the central nervous system, with poor patient survival and scarce treatment options. Most primary glioblastomas reoccur and evolve radio- and chemoresistant properties which make them resistant to further treatments. Based on gene mutations and expression profiles, glioblastoma is relatively well classified; however, research shows that there is more to glioblastoma biology than that defined solely by its genetic component. Specifically, the overall malignancy of the tumor is also influenced by the dynamic communication to its immediate and distant environment, as important messengers to neighboring cells in the tumor microenvironment extracellular vesicles (EVs) have been identified. EVs and their cargo can modulate the immune microenvironment and other physiological processes, and can interact with the host immune system. They are involved in tumor cell survival and metabolism, tumor initiation, progression, and therapy resistance. However, on the other hand EVs are thought to become an effective treatment alternative, since they can cross the blood-brain barrier, are able of specific cell-targeting and can be loaded with various therapeutic molecules.
Collapse
Affiliation(s)
| | | | - Ivana Jovčevska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (G.K.); (K.K.)
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (G.K.); (K.K.)
| |
Collapse
|
226
|
Rufino-Ramos D, Lule S, Mahjoum S, Ughetto S, Cristopher Bragg D, Pereira de Almeida L, Breakefield XO, Breyne K. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 2022; 281:121366. [PMID: 35033904 PMCID: PMC8886823 DOI: 10.1016/j.biomaterials.2022.121366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sevda Lule
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Shadi Mahjoum
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Stefano Ughetto
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - D Cristopher Bragg
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Xandra O Breakefield
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Koen Breyne
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
227
|
In vitro characterization of a small molecule PD-1 inhibitor that targets the PD-l/PD-L1 interaction. Sci Rep 2022; 12:303. [PMID: 34996924 PMCID: PMC8741796 DOI: 10.1038/s41598-021-03590-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Targeting the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis with monoclonal antibodies (mAbs) represents a crucial breakthrough in anticancer therapy, but mAbs are limited by their poor oral bioavailability, adverse events in multiple organ systems, and primary, adaptive, and acquired resistance, amongst other issues. More recently, the advent of small molecule inhibitors that target the PD-1/PD-L1 axis have shown promising cellular inhibitory activity and the potential to counteract the disadvantages of mAbs. In this study, structure-based virtual screening identified small molecule inhibitors that effectively inhibited the PD-1/PD-L1 interaction. Six of those small molecule inhibitors were applied to cell-based experiments targeting PD-1: CH-1, CH-2, CH-3, CH-4, CH-5, and CH-6. Of all 6, CH-4 displayed the lowest cytotoxicity and strongest inhibitory activity towards the PD-1/PD-L1 interaction. The experiments revealed that CH-4 inhibited the interaction of soluble form PD-L1 (sPD-L1) with PD-1 surface protein expressed by KG-1 cells. Investigations into CH-4 analogs revealed that CH-4.7 effectively blocked the PD-1/sPD-L1 interaction, but sustained the secretion of interleukin-2 and interferon-γ by Jurkat cells. Our experiments revealed a novel small molecule inhibitor that blocks the interaction of PD-1/sPD-L1 and potentially offers an alternative PD-1 target for immune checkpoint therapy.
Collapse
|
228
|
Soffietti R, Bettegowda C, Mellinghoff IK, Warren KE, Ahluwalia MS, De Groot JF, Galanis E, Gilbert MR, Jaeckle KA, Le Rhun E, Rudà R, Seoane J, Thon N, Umemura Y, Weller M, van den Bent MJ, Vogelbaum MA, Chang SM, Wen PY. Liquid biopsy in gliomas: A RANO review and proposals for clinical applications. Neuro Oncol 2022; 24:855-871. [PMID: 34999836 PMCID: PMC9159432 DOI: 10.1093/neuonc/noac004] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND There is an extensive literature highlighting the utility of blood-based liquid biopsies in several extracranial tumors for diagnosis and monitoring. METHODS The RANO (Response Assessment in Neuro-Oncology) group developed a multidisciplinary international Task Force to review the English literature on liquid biopsy in gliomas focusing on the most frequently used techniques, that is circulating tumor DNA, circulating tumor cells, and extracellular vesicles in blood and CSF. RESULTS ctDNA has a higher sensitivity and capacity to represent the spatial and temporal heterogeneity in comparison to circulating tumor cells. Exosomes have the advantages to cross an intact blood-brain barrier and carry also RNA, miRNA, and proteins. Several clinical applications of liquid biopsies are suggested: to establish a diagnosis when tissue is not available, monitor the residual disease after surgery, distinguish progression from pseudoprogression, and predict the outcome. CONCLUSIONS There is a need for standardization of biofluid collection, choice of an analyte, and detection strategies along with rigorous testing in future clinical trials to validate findings and enable entry into clinical practice.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Corresponding Author: Riccardo Soffietti, MD, Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science Hospital, Via Cherasco 15, 10126 Turin, Italy ()
| | | | | | | | - Manmeet S Ahluwalia
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - John F De Groot
- Department of Neuro-Oncology, University of Texas, MD Anderson Cancer Center Houston, Houston, Texas, USA
| | - Evanthia Galanis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kurt A Jaeckle
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Emilie Le Rhun
- Departments of Neurology & Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Roberta Rudà
- Department of Neurology, Castelfranco Veneto/Treviso Hospital and Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Joan Seoane
- Vall d’Hebron Institute of Oncology (VHIO) University Hospital, Universitat Autònoma de Barcelona, ICREA,CIBERONC, Barcelona, Spain
| | - Niklas Thon
- Division of Neuro-Oncology, Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Munich, Germany
| | - Yoshie Umemura
- Division of Neuro-Oncology, Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Susan M Chang
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
229
|
Methods for the Detection of Circulating Biomarkers in Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:525-552. [DOI: 10.1007/978-3-031-04039-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
230
|
Kelly PD, Dambrino RJ, Guidry BS, Tang AR, Stewart TG, Mistry A, Morone PJ, Chambless LB. Red blood cell distribution width in glioblastoma. Clin Neurol Neurosurg 2021; 213:107096. [PMID: 34973653 DOI: 10.1016/j.clineuro.2021.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and deadly adult brain tumor. Red blood cell distribution width (RDW) has been found in non-central nervous system neoplasms to be associated with survival. This study aims to assess the prognostic value of pre-operative RDW and trends in RDW over time during the disease course. METHODS This single-institution retrospective cohort study identified patients ≥ 18 years old with pathology-proved glioblastoma treated between April 2003-May 2017 from an institutional database. A Cox proportional hazards model was developed using known prognostic clinical variables to predict overall survival time; a second model incorporating continuously valued RDW was then created. The additional prognostic value of RDW was assessed with a joint model F-test. The variation of RDW-CV over time was evaluated with linear mixed model of RDW. A post-hoc exploratory analysis was performed to assess the trend in RDW lab value leading up to time of death. RESULTS 346 adult GBM patients were identified; complete survival data was available for all patients. The addition of RDW to the multivariable Cox proportional hazards model did not increase prognostic value. There was an upward trend in RDW throughout the post-operative disease course. In a post-hoc analysis, there was an upward trend in RDW leading up to the time of death. CONCLUSION Although RDW has been prognostic of survival for many inflammatory, prothrombotic, and neoplastic diseases, pre-operative RDW was not associated with overall survival in GBM patients. RDW trended upwards throughout the disease course, suggesting possible systemic inflammatory effects of either glioblastoma or treatment.
Collapse
Affiliation(s)
- Patrick D Kelly
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert J Dambrino
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Bradley S Guidry
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Alan R Tang
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Thomas G Stewart
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Akshitkumar Mistry
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Peter J Morone
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lola B Chambless
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
231
|
Ketchen SE, Gamboa-Esteves FO, Lawler SE, Nowicki MO, Rohwedder A, Knipp S, Prior S, Short SC, Ladbury JE, Brüning-Richardson A. Drug Resistance in Glioma Cells Induced by a Mesenchymal-Amoeboid Migratory Switch. Biomedicines 2021; 10:9. [PMID: 35052688 PMCID: PMC8773151 DOI: 10.3390/biomedicines10010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer cell invasion is a precondition for tumour metastasis and represents one of the most devastating characteristics of cancer. The development of drugs targeting cell migration, known as migrastatics, may improve the treatment of highly invasive tumours such as glioblastoma (GBM). In this study, investigations into the role of the cell adhesion protein Cellular communication network factor 1 (CCN1, also known as CYR61) in GBM cell migration uncovered a drug resistance mechanism adopted by cells when treated with the small molecule inhibitor CCG-1423. This inhibitor binds to importin α/β inhibiting the nuclear translocation of the transcriptional co-activator MKL1, thus preventing downstream effects including migration. Despite this reported role as an inhibitor of cell migration, we found that CCG-1423 treatment did not inhibit GBM cell migration. However, we could observe cells now migrating by mesenchymal-amoeboid transition (MAT). Furthermore, we present evidence that CCN1 plays a critical role in the progression of GBM with increased expression in higher-grade tumours and matched blood samples. These findings support a potential role for CCN1 as a biomarker for the monitoring and potentially early prediction of GBM recurrence, therefore as such could help to improve treatment of and increase survival rates of this devastating disease.
Collapse
Affiliation(s)
- Sophie E. Ketchen
- Light Laboratories, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.E.K.); (A.R.); (J.E.L.)
| | - Filomena O. Gamboa-Esteves
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK; (F.O.G.-E.); (S.C.S.)
| | - Sean E. Lawler
- Brown University Cancer Center, Pathology & Laboratory Medicine, Brown University, Providence, RI 02903, USA;
| | - Michal O. Nowicki
- Harvey Cushing Neuro-Oncology Research Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Arndt Rohwedder
- Light Laboratories, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.E.K.); (A.R.); (J.E.L.)
| | - Sabine Knipp
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.K.); (S.P.)
| | - Sally Prior
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.K.); (S.P.)
| | - Susan C. Short
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK; (F.O.G.-E.); (S.C.S.)
| | - John E. Ladbury
- Light Laboratories, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.E.K.); (A.R.); (J.E.L.)
| | - Anke Brüning-Richardson
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.K.); (S.P.)
| |
Collapse
|
232
|
Zhan R, Wang S, Guo W, Gao X, Liu X, Xu K, Tang B. A simple, rapid and low-cost qPCR assay for evaluating the severity of exosomal PD-L1-mediated T cell exhaustion in blood samples. Chem Commun (Camb) 2021; 58:831-834. [PMID: 34931643 DOI: 10.1039/d1cc06496g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dual-aptamer activated proximity-induced qPCR assay was developed for the quantitative analysis of exosomal PD-L1 on T cell-exosome complexes in blood samples.
Collapse
Affiliation(s)
- Renhui Zhan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China. .,Medicine & Pharmacy Research Center, Binzhou Medical University, Shandong, Yantai 264003, P. R. China
| | - Shanshan Wang
- Yantai Vocational College of Culture and Tourism, Shandong, Yantai, 264003, P. R. China
| | - Wenfei Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
233
|
Billerhart M, Schönhofer M, Schueffl H, Polzer W, Pichler J, Decker S, Taschauer A, Maier J, Anton M, Eckmann S, Blaschek M, Heffeter P, Sami H, Ogris M. CD47-targeted cancer immunogene therapy: Secreted SIRPα-Fc fusion protein eradicates tumors by macrophage and NK cell activation. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:192-204. [PMID: 34729396 PMCID: PMC8526499 DOI: 10.1016/j.omto.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
CD47 protects healthy cells from macrophage attack by binding to signal regulatory protein α (SIRPα), while its upregulation in cancer prevents immune clearance. Systemic treatment with CD47 antibodies requires a weakened Fc-mediated effector function or lower CD47-binding affinity to prevent side effects. Our approach combines “the best of both worlds,” i.e., maximized CD47 binding and full Fc-mediated immune activity, by exploiting gene therapy for paracrine release. We developed a plasmid vector encoding for the secreted fusion protein sCV1-hIgG1, comprising highly efficient CD47-blocking moiety CV1 and Fc domain of human immunoglobulin G1 (IgG1) with maximized immune activation. sCV1-hIgG1 exhibited a potent bystander effect, blocking CD47 on all cells via fusion protein secreted from only a fraction of cells or when transferring transfection supernatant to untransfected cells. The CpG-free plasmid ensured sustained secretion of sCV1-hIgG1. In orthotopic human triple-negative breast cancer in CB17-severe combined immunodeficiency (SCID) mice, ex vivo transfection significantly delayed tumor growth and eradicated one-third of tumors. In intratumoral transfection experiments, CD47 blockage and increased migration of macrophages into the tumor were observed within 17 h of a single injection. Natural killer (NK) cell-mediated lysis of sCV1-hIgG1-expressing cells was demonstrated in vitro. Taken together, this approach also opens the opportunity to block, in principle, any immune checkpoints.
Collapse
Affiliation(s)
- Magdalena Billerhart
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Monika Schönhofer
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Hemma Schueffl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfram Polzer
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Julia Pichler
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Simon Decker
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Alexander Taschauer
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Julia Maier
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Martina Anton
- Institutes of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Sebastian Eckmann
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Manuel Blaschek
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Haider Sami
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Manfred Ogris
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
234
|
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles. Cancers (Basel) 2021; 13:cancers13246303. [PMID: 34944923 PMCID: PMC8699603 DOI: 10.3390/cancers13246303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted by a variety of cells. EVs are nanometer-scale vesicles composed of a lipid bilayer and contain biological functional molecules, such as microRNAs (miRNAs), mRNAs, and proteins. In this review, "EVs" is used as a comprehensive term for vesicles that are secreted from cells. EV research has been developing over the last four decades. Many studies have suggested that EVs play a crucial role in cell-cell communication. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. EVs derived from cancer cells and their microenvironments are diverse, change in nature depending on the condition. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, cells can encapsulate functional molecules in EVs. Hence, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. In this review, the potential of EVs as anti-cancer therapeutics is discussed.
Collapse
|
235
|
Transformable vesicles for cancer immunotherapy. Adv Drug Deliv Rev 2021; 179:113905. [PMID: 34331988 DOI: 10.1016/j.addr.2021.113905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapy that utilizes the human immune system to fight cancer represents a revolutionary method for cancer treatment. Immunotherapeutic agents that trigger the immune response should be carefully delivered to the desired site to maximize immunotherapy effectiveness and minimize side effects. Vesicles offer the possibility of encapsulating both hydrophilic and hydrophobic drugs and thus serve as a promising delivery tool. As multiple irreconcilable requirements exist at different transport stages, developing vesicles transformable in response to given stimuli is of great significance. In this review, we first introduced various vesicle types used for immunotherapy. Furthermore, the typical stimuli that trigger vesicle transformation and the usually generated transformation styles were described. Focusing on three aspects of antigen-presenting cell (APC)/T cell activation, tumor microenvironment (TME) amelioration, and immunogenic cell death (ICD)-induced immunotherapy, we reviewed recently reported transformable vesicles for tumor treatment. Finally, we put forward possible directions for future research and clinical translation.
Collapse
|
236
|
Rasihashemi SZ, Rezazadeh Gavgani E, Majidazar R, Seraji P, Oladghaffari M, Kazemi T, Lotfinejad P. Tumor-derived exosomal PD-L1 in progression of cancer and immunotherapy. J Cell Physiol 2021; 237:1648-1660. [PMID: 34825383 DOI: 10.1002/jcp.30645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a gravely important health issue all over the world and has been spreading fast. In recent years immune checkpoint treatment options have been used extensively as a primary line of treatment for different cancer types. PD-1 and its ligand, PD-L1, are members of the immune-checkpoints superfamily. Anti-PD-L1 and anti-PD-1 antibodies have shown efficacy against different cancer types, but fewer than 30% of patients have shown robust therapeutic responses and, therefore, it is hypothesized that exosomal PD-L1 is the mechanism to blame for failure in primary immune checkpoint therapy. The identical membrane topology of exosomal PD-L1 with tumor cell membrane-type provides the possibility to mimic immunosuppressive effects of tumor cell membrane PD-L1. In this review, it is discussed whether exosomal PD-L1 binds to antibodies and hence resistance to immunotherapy will be developed, and targeting exosome biogenesis inhibition can provide a new strategy to overcome tumor resistance to anti-PD-L1 therapy. Diagnostic and prognostic values of exosomal PD-L1 in different cancer types are discussed. Multiple clinical studies conclude that the level of tumor-derived exosomes (TEXs) as a biomarker for diagnosis could distinguish cancer patients from healthy controls. Elevated exosomal PD-L1 levels may be predictive of advanced disease stages, cancer metastasis, lower response to anti-PD-1/PD-L1 therapy, lower overall survival rates, and poor tumor prognosis. These novel findings of TEXs serve as promising therapeutic targets for early diagnosis and prevention of cancer progression.
Collapse
Affiliation(s)
- Seyed Z Rasihashemi
- Department of Cardiothoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parya Seraji
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Oladghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
237
|
Nikoobakht M, Shamshiripour P, Shahin M, Bouzari B, Razavi-Hashemi M, Ahmadvand D, Akbarpour M. A systematic update to circulating extracellular vesicles proteome; transcriptome and small RNA-ome as glioma diagnostic, prognostic and treatment-response biomarkers. Cancer Treat Res Commun 2021; 30:100490. [PMID: 34923387 DOI: 10.1016/j.ctarc.2021.100490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Brain gliomas are major neurosurgical challenges due to high mortality and morbidity. Hence, development of novel biomarkers is of great value to plan appropriate treatment strategy. Evaluation of the molecular content of extracellular vesicles (EVs) as novel non-invasive biomarker repertoires can provide a real-time portrait of disease status. This study aims to provide a systematic, comprehensive and critical report of the diagnostic and prognostic significance of EV biomarkers (proteins, DNAs and RNAs) for brain gliomas, discuss their biogenesis and passage through the blood brain barrier, and also highlight the high throughput methods used for EV biomarker discovery; as well as discussing potential limitations of EV isolation and characterization methods as glioma diagnostic, prognostic or treatment response biomarkers. Moreover, we critically appraise the bias risk in the previous studies, discuss the limitations EV biomarker discovery faces to enter neurosurgical practice in the future, and highlight the need for more optimized protocols for EV isolation and biomarker discovery in high throughput studies. The current systematic review was conducted upon PRISMA guidelines [10].
Collapse
Affiliation(s)
- Mehdi Nikoobakht
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Imaging Technologies and Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Shahin
- Department of Oncology, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Davoud Ahmadvand
- Department of Medical Imaging Technologies and Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno-TACT), Universal Science and Education Research Network (USERN); Advanced Cellular Therapeutics Facility, David and Etta Jonas Center for Cellular Therapy, Hematopoietic Cellular Therapy Program, The University of Chicago Medical Center, Chicago, 60637 IL, USA.
| |
Collapse
|
238
|
The Importance of Exosomal PD-L1 in Cancer Progression and Its Potential as a Therapeutic Target. Cells 2021; 10:cells10113247. [PMID: 34831468 PMCID: PMC8619537 DOI: 10.3390/cells10113247] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.
Collapse
|
239
|
Himes BT, Geiger PA, Ayasoufi K, Bhargav AG, Brown DA, Parney IF. Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications. Front Oncol 2021; 11:770561. [PMID: 34778089 PMCID: PMC8581618 DOI: 10.3389/fonc.2021.770561] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients. This limits the utility of all manner of immunotherapeutic agents, which have revolutionized the treatment of a number of cancers in recent years, but have failed to show similar benefit in GBM therapy. Understanding the mechanisms of tumor-mediated immune suppression in GBM is critical to the development of effective novel therapies, and reversal of this effect may prove key to effective immunotherapy for GBM. In this review, we discuss the current understanding of tumor-mediated immune suppression in GBM in both the local tumor microenvironment and systemically. We also discuss the effects of current GBM therapy on the immune system. We specifically explore some of the downstream effectors of tumor-driven immune suppression, particularly myeloid-derived suppressor cells (MDSCs) and other immunosuppressive monocytes, and the manner by which GBM induces their formation, with particular attention to the role of GBM-derived extracellular vesicles (EVs). Lastly, we briefly review the current state of immunotherapy for GBM and discuss additional hurdles to overcome identification and implementation of effective therapeutic strategies.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Philipp A Geiger
- Department of Neurosurgery, University Hospital Innsbruck, Tirol, Austria
| | | | - Adip G Bhargav
- Department of Neurosurgery, University of Kansas, Kansas City, KS, United States
| | - Desmond A Brown
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
240
|
Xing C, Li H, Li RJ, Yin L, Zhang HF, Huang ZN, Cheng Z, Li J, Wang ZH, Peng HL. The roles of exosomal immune checkpoint proteins in tumors. Mil Med Res 2021; 8:56. [PMID: 34743730 PMCID: PMC8573946 DOI: 10.1186/s40779-021-00350-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Targeting immune checkpoints has achieved great therapeutic effects in the treatment of early-stage tumors. However, most patients develop adaptive resistance to this therapy. The latest evidence demonstrates that tumor-derived exosomes may play a key role in systemic immune suppression and tumor progression. In this article, we highlight the role of exosomal immune checkpoint proteins in tumor immunity, with an emphasis on programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), as well as emerging evidence on roles of T cell immunoglobulin-3 (TIM-3), arginase 1 (ARG1), and estrogen receptor binding fragment-associated antigen 9 (EBAG9) expressed by exosomes.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Rui-Juan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Hui-Fang Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Zi-Neng Huang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Ji Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Zhi-Hua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
| | - Hong-Ling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Institute of Molecular Hematology, Central South University, Changsha, 410011 China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011 China
| |
Collapse
|
241
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
242
|
Shao B, Dang Q, Chen Z, Chen C, Zhou Q, Qiao B, Liu J, Hu S, Wang G, Yuan W, Sun Z. Effects of Tumor-Derived Exosome Programmed Death Ligand 1 on Tumor Immunity and Clinical Applications. Front Cell Dev Biol 2021; 9:760211. [PMID: 34722545 PMCID: PMC8554115 DOI: 10.3389/fcell.2021.760211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) is a typical immune surface protein that binds to programmed cell death 1 (PD-1) on T cells through its extracellular domain. Subsequently, T cell activity is inhibited, and tumor immune tolerance is enhanced. Anti-PD-1/PD-L1 immune checkpoint therapy blocks the combination of PD-1/PD-L1 and rejuvenates depleted T cells, thereby inhibiting tumor growth. Exosomes are biologically active lipid bilayer nanovesicles secreted by various cell types, which mediate signal communication between cells. Studies have shown that PD-L1 can not only be expressed on the surface of tumor cells, immune cells, and other cells in the tumor microenvironment, but also be released from tumor cells and exist in an extracellular form. In particular, exosome PD-L1 plays an unfavorable role in tumor immunosuppression. The immunomodulatory effect of exosome PD-L1 and its potential in fluid diagnosis have attracted our attention. This review aims to summarize the available evidence regarding the biological characteristics of exosome PD-L1 in tumor immunity, with a particular focus on the mechanisms in different cancers and clinical prospects. In addition, we also summarized the current possible and effective detection methods for exosome PD-L1 and proposed that exosome PD-L1 has the potential to become a target for overcoming anti-PD-1/PD-L1 antibody treatment resistance.
Collapse
Affiliation(s)
- Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
243
|
Xia Y, Wang WC, Shen WH, Xu K, Hu YY, Han GH, Liu YB. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454-3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC. Chem Biol Interact 2021; 349:109652. [PMID: 34520751 DOI: 10.1016/j.cbi.2021.109652] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for about 80-85% of total lung cancer cases. Identifying the molecular mechanisms of anti-tumor drugs is essential for improving therapeutic effects. Herein, we aim to investigate the role of thalidomide in the tumorigenicity of NSCLC. METHODS The A549 xenograft nude mouse model was established to explore therapeutic effects of thalidomide. The expression of FGD5-AS1 was evaluated in carcinomatous and paracarcinomatous tissues from NSCLC patients as well as NSCLC cell lines. CCK-8 assay was performed to assess cell viability. The invasive capacity was examined using transwell assay. The tube formation assay was applied to determine cell angiogenesis. Flow cytometry was subjected to validate CD8+ T cell activity. The FGD5-AS1/miR-454-3p/ZEB1 regulatory network was analyzed using luciferase reporter, RIP and ChIP assays. RESULTS Thalidomide reduced tumor growth and angiogenesis and increased CD8+ T cell ratio in a mouse model. Enhanced expression of FGD5-AS1 was positively correlated with the poor survival of NSCLC patients. Knockdown of FGD5-AS1 notably suppressed the proliferation, invasion and angiogenesis of cancer cells as well as the apoptosis of CD8+ T cells. Thalidomide targeted FGD5-AS1 to exert its anti-tumor activity in NSCLC. FGD5-AS1 acted as a sponge of miR-454-3p to upregulate ZEB1, thus increasing the expression of PD-L1 and VEGFA. Simultaneous overexpression of FGD5-AS1 and silencing of miR-454-3p reversed thalidomide-mediated anti-tumor effects in NSCLC. CONCLUSION Thalidomide inhibits NSCLC angiogenesis and immune evasion via FGD5-AS1/miR-454-3p/ZEB1 axis-mediated regulation of VEGFA expression and PD-1/PD-L1 checkpoint.
Collapse
Affiliation(s)
- Yang Xia
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China; Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wei-Cheng Wang
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China
| | - Wen-Hao Shen
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yang-Yang Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Gao-Hua Han
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China.
| | - Yong-Biao Liu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
244
|
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021; 184:5309-5337. [PMID: 34624224 DOI: 10.1016/j.cell.2021.09.020] [Citation(s) in RCA: 935] [Impact Index Per Article: 233.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Unprecedented advances have been made in cancer treatment with the use of immune checkpoint blockade (ICB). However, responses are limited to a subset of patients, and immune-related adverse events (irAEs) can be problematic, requiring treatment discontinuation. Iterative insights into factors intrinsic and extrinsic to the host that impact ICB response and toxicity are critically needed. Our understanding of the impact of host-intrinsic factors (such as the host genome, epigenome, and immunity) has evolved substantially over the past decade, with greater insights on these factors and on tumor and immune co-evolution. Additionally, we are beginning to understand the impact of acute and cumulative exposures-both internal and external to the host (i.e., the exposome)-on host physiology and response to treatment. Together these represent the current day hallmarks of response, resistance, and toxicity to ICB. Opportunities built on these hallmarks are duly warranted.
Collapse
Affiliation(s)
- Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beth A Helmink
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
245
|
Persano S, Vicini F, Poggi A, Fernandez JLC, Rizzo GMR, Gavilán H, Silvestri N, Pellegrino T. Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study. Pharmaceutics 2021; 13:1668. [PMID: 34683961 PMCID: PMC8537446 DOI: 10.3390/pharmaceutics13101668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapies have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown clinically relevant success in glioblastoma (GBM). This is principally due to the brain's "immune-privileged" status and the peculiar tumor microenvironment (TME) of GBM characterized by a lack of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms. Herein, we explore a local mild thermal treatment, generated via cubic-shaped iron oxide magnetic nanoparticles (size ~17 nm) when exposed to an external alternating magnetic field (AMF), to induce immunogenic cell death (ICD) in U87 glioblastoma cells. In accordance with what has been observed with other tumor types, we found that mild magnetic hyperthermia (MHT) modulates the immunological profile of U87 glioblastoma cells by inducing stress-associated signals leading to enhanced phagocytosis and killing of U87 cells by macrophages. At the same time, we demonstrated that mild magnetic hyperthermia on U87 cells has a modulatory effect on the expression of inhibitory and activating NK cell ligands. Interestingly, this alteration in the expression of NK ligands in U87 cells upon MHT treatment increased their susceptibility to NK cell killing and enhanced NK cell functionality. The overall findings demonstrate that mild MHT stimulates ICD and sensitizes GBM cells to NK-mediated killing by inducing the upregulation of specific stress ligands, providing a novel immunotherapeutic approach for GBM treatment, with potential to synergize with existing NK cell-based therapies thus improving their therapeutic outcomes.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Francesco Vicini
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (A.P.); (J.L.C.F.)
| | | | - Giusy Maria Rita Rizzo
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Helena Gavilán
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Niccolo Silvestri
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| |
Collapse
|
246
|
Hofer F, Di Sario G, Musiu C, Sartoris S, De Sanctis F, Ugel S. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells 2021; 10:cells10102700. [PMID: 34685679 PMCID: PMC8534848 DOI: 10.3390/cells10102700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute a plastic and heterogeneous cell population among immune cells within the tumour microenvironment (TME) that support cancer progression and resistance to therapy. During tumour progression, cancer cells modify their metabolism to sustain an increased energy demand to cope with uncontrolled cell proliferation and differentiation. This metabolic reprogramming of cancer establishes competition for nutrients between tumour cells and leukocytes and most importantly, among tumour-infiltrating immune cells. Thus, MDSCs that have emerged as one of the most decisive immune regulators of TME exhibit an increase in glycolysis and fatty acid metabolism and also an upregulation of enzymes that catabolise essential metabolites. This complex metabolic network is not only crucial for MDSC survival and accumulation in the TME but also for enhancing immunosuppressive functions toward immune effectors. In this review, we discuss recent progress in the field of MDSC-associated metabolic pathways that could facilitate therapeutic targeting of these cells during cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Ugel
- Correspondence: ; Tel.: +39-045-8126451; Fax: +39-045-8126455
| |
Collapse
|
247
|
Killingsworth B, Welsh JA, Jones JC. EV Translational Horizons as Viewed Across the Complex Landscape of Liquid Biopsies. Front Cell Dev Biol 2021; 9:556837. [PMID: 34616722 PMCID: PMC8488153 DOI: 10.3389/fcell.2021.556837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular Vesicle (EV)-based diagnostic and therapeutic tools are an area of intensive study and substantial promise, but EVs as liquid biopsies have advanced years ahead of EVs as therapeutic tools. EVs are emerging as a promising approach for detecting tumors, evaluating the molecular profiles of known disease, and monitoring treatment responses. Although correlative assays based on liquid biopsies are already having an impact on translational studies and clinical practice, much remains to be learned before these assays will be optimized for clinical correlations, functional biological studies, and therapeutic use. What follows is an overview of current evidence supporting the investigation and use of liquid biopsies, organized by specific liquid biopsy components available for analysis, along with a summary of what challenges must be overcome before these assays will provide functional biological insights into the pathogenesis and treatment of disease. The same challenges must also be overcome before it will be feasible to measure and monitor the dosing, distribution, pharmacokinetics, and delivery of EV therapeutics and their cargo in complex biofluids where EVs and circulate with and are co-isolated with a number of other nanoscale materials, including lipoproteins (LPPs), ribonucleoprotein complexes (RNPs), and cell free nucleic acids (cfNA).
Collapse
Affiliation(s)
- Bryce Killingsworth
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joshua A Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
248
|
Zhu F, Ji Y, Li L, Bai X, Liu X, Luo Y, Liu T, Lin B, Lu Y. High-Throughput Single-Cell Extracellular Vesicle Secretion Analysis on a Desktop Scanner without Cell Counting. Anal Chem 2021; 93:13152-13160. [PMID: 34551257 DOI: 10.1021/acs.analchem.1c01446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-cell EV (extracellular vesicle) secretion analysis is emerging for a better understanding of non-genetic cellular heterogeneity regulating human health and diseases through intercellular mediators. However, the requirements of expensive and bulky instrumentations hinder its widespread use. Herein, by combining gold nanoparticle-enhanced silver staining and the Poisson distribution, we reported the use of a home-use scanner to realize high-throughput single-cell EV secretion analysis without cell counting. We applied the platform to analyze the secretions of different EV phenotypes with the human oral squamous cell carcinoma cell line and primary cells from patients, which generated single-cell results comparable with those of the immunofluorescence approach. Notably, we also realized the quantification of the number of EVs secreted from every single cell using their respective titration curves obtained from population samples, making it possible to directly compare different EV phonotypes in regard to their secretion number, secretion rate, and so forth. The technology introduced here is simple, easy to operate, and of low cost, which make it a potential, easily accessible, and affordable tool for widespread use in both basic and clinical research.
Collapse
Affiliation(s)
- Fengjiao Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Ji
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Linmei Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Bai
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianming Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
249
|
Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, Wang Z, Yuan F, Fox M, Zhang HG, Guo H, Tieri D, Kong M, Watson CT, Mitchell RA, Zhang X, McMasters KM, Huang J, Yan J. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab 2021; 33:2040-2058.e10. [PMID: 34559989 PMCID: PMC8506837 DOI: 10.1016/j.cmet.2021.09.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/01/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
One of the defining characteristics of a pre-metastatic niche, a fundamental requirement for primary tumor metastasis, is infiltration of immunosuppressive macrophages. How these macrophages acquire their phenotype remains largely unexplored. Here, we demonstrate that tumor-derived exosomes (TDEs) polarize macrophages toward an immunosuppressive phenotype characterized by increased PD-L1 expression through NF-kB-dependent, glycolytic-dominant metabolic reprogramming. TDE signaling through TLR2 and NF-κB leads to increased glucose uptake. TDEs also stimulate elevated NOS2, which inhibits mitochondrial oxidative phosphorylation resulting in increased conversion of pyruvate to lactate. Lactate feeds back on NF-κB, further increasing PD-L1. Analysis of metastasis-negative lymph nodes of non-small-cell lung cancer patients revealed that macrophage PD-L1 positively correlates with levels of GLUT-1 and vesicle release gene YKT6 from primary tumors. Collectively, our study provides a novel mechanism by which macrophages within a pre-metastatic niche acquire their immunosuppressive phenotype and identifies an important link among exosomes, metabolism, and metastasis.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Fan Zhang
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Jiangxi Provincial Children's Hospital, Jiangxi, Nanchang, China
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Diego Elias Montoya-Durango
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chenghui Yang
- Department of Breast Surgery, Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Department of Breast Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen Wang
- Department of Breast Surgery, Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Matthew Fox
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert A Mitchell
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Kelly M McMasters
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jian Huang
- Department of Breast Surgery, Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
250
|
Abdayem P, Planchard D. Update on molecular pathology and role of liquid biopsy in nonsmall cell lung cancer. Eur Respir Rev 2021; 30:200294. [PMID: 34289984 PMCID: PMC9489045 DOI: 10.1183/16000617.0294-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/26/2020] [Indexed: 02/03/2023] Open
Abstract
Personalised medicine, an essential component of modern thoracic oncology, has been evolving continuously ever since the discovery of the epidermal growth factor receptor and its tyrosine kinase inhibitors. Today, screening for driver alterations in patients with advanced lung adenocarcinoma as well as those with squamous cell carcinoma and no/little history of smoking is mandatory. Multiplex molecular platforms are preferred to sequential molecular testing since they are less time- and tissue-consuming. In this review, we present the latest updates on the nine most common actionable driver alterations in nonsmall cell lung cancer. Liquid biopsy, a simple noninvasive technique that uses different analytes, mostly circulating tumour DNA, is an appealing tool that is used in thoracic oncology to identify driver alterations including resistance mutations. Additional roles are being evaluated in clinical trials and include monitoring the response to treatment, screening for lung cancer in high-risk patients and early detection of relapse in the adjuvant setting. In addition, liquid biopsy is being tested in immune-oncology as a prognostic, predictive and pharmacodynamic tool. The major limitation of plasma-based assays remains their low sensitivity when compared to tissue-based assays. Ensuring the clinical validity and utility of liquid biopsy will definitely optimise cancer care.
Collapse
Affiliation(s)
- Pamela Abdayem
- Dept of Cancer Medicine, Thoracic Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - David Planchard
- Dept of Cancer Medicine, Thoracic Group, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|