201
|
Qiu Y, Feng D, Jiang W, Zhang T, Lu Q, Zhao M. 3D genome organization and epigenetic regulation in autoimmune diseases. Front Immunol 2023; 14:1196123. [PMID: 37346038 PMCID: PMC10279977 DOI: 10.3389/fimmu.2023.1196123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging field of research that investigates the relationship between gene regulatory function and the spatial structure of chromatin. Chromatin folding can be studied using chromosome conformation capture (3C) technology and 3C-based derivative sequencing technologies, including chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), and high-throughput chromosome conformation capture (Hi-C), which allow scientists to capture 3D conformations from a single site to the entire genome. A comprehensive analysis of the relationships between various regulatory components and gene function also requires the integration of multi-omics data such as genomics, transcriptomics, and epigenomics. 3D genome folding is involved in immune cell differentiation, activation, and dysfunction and participates in a wide range of diseases, including autoimmune diseases. We describe hierarchical 3D chromatin organization in this review and conclude with characteristics of C-techniques and multi-omics applications of the 3D genome. In addition, we describe the relationship between 3D genome structure and the differentiation and maturation of immune cells and address how changes in chromosome folding contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
202
|
Pickard J, Chen C, Salman R, Stansbury C, Kim S, Surana A, Bloch A, Rajapakse I. HAT: Hypergraph analysis toolbox. PLoS Comput Biol 2023; 19:e1011190. [PMID: 37276238 DOI: 10.1371/journal.pcbi.1011190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Recent advances in biological technologies, such as multi-way chromosome conformation capture (3C), require development of methods for analysis of multi-way interactions. Hypergraphs are mathematically tractable objects that can be utilized to precisely represent and analyze multi-way interactions. Here we present the Hypergraph Analysis Toolbox (HAT), a software package for visualization and analysis of multi-way interactions in complex systems.
Collapse
Affiliation(s)
- Joshua Pickard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- iReprogram, Inc., Ann Arbor, Michigan, United States of America
| | - Can Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rahmy Salman
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cooper Stansbury
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sion Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amit Surana
- Raytheon Technologies Research Center, East Hartford, Connecticut, United States of America
| | - Anthony Bloch
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- iReprogram, Inc., Ann Arbor, Michigan, United States of America
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
203
|
Kessler S, Minoux M, Joshi O, Ben Zouari Y, Ducret S, Ross F, Vilain N, Salvi A, Wolff J, Kohler H, Stadler MB, Rijli FM. A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest. Nat Commun 2023; 14:3242. [PMID: 37277355 DOI: 10.1038/s41467-023-38953-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Enhancer-promoter interactions preferentially occur within boundary-insulated topologically associating domains (TADs), limiting inter-TAD interactions. Enhancer clusters in linear proximity, termed super-enhancers (SEs), ensure high target gene expression levels. Little is known about SE topological regulatory impact during craniofacial development. Here, we identify 2232 genome-wide putative SEs in mouse cranial neural crest cells (CNCCs), 147 of which target genes establishing CNCC positional identity during face formation. In second pharyngeal arch (PA2) CNCCs, a multiple SE-containing region, partitioned into Hoxa Inter-TAD Regulatory Element 1 and 2 (HIRE1 and HIRE2), establishes long-range inter-TAD interactions selectively with Hoxa2, that is required for external and middle ear structures. HIRE2 deletion in a Hoxa2 haploinsufficient background results in microtia. HIRE1 deletion phenocopies the full homeotic Hoxa2 knockout phenotype and induces PA3 and PA4 CNCC abnormalities correlating with Hoxa2 and Hoxa3 transcriptional downregulation. Thus, SEs can overcome TAD insulation and regulate anterior Hoxa gene collinear expression in a CNCC subpopulation-specific manner during craniofacial development.
Collapse
Affiliation(s)
- Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 8, rue Sainte Elisabeth, 67 000, Strasbourg, France
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Yousra Ben Zouari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Fiona Ross
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Adwait Salvi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joachim Wolff
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
204
|
Hamley JC, Li H, Denny N, Downes D, Davies JOJ. Determining chromatin architecture with Micro Capture-C. Nat Protoc 2023; 18:1687-1711. [PMID: 36991220 DOI: 10.1038/s41596-023-00817-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Micro Capture-C (MCC) is a chromatin conformation capture (3C) method for visualizing reproducible three-dimensional contacts of specified regions of the genome at base pair resolution. These methods are an established family of techniques that use proximity ligation to assay the topology of chromatin. MCC can generate data at substantially higher resolution than previous techniques through multiple refinements of the 3C method. Using a sequence agnostic nuclease, the maintenance of cellular integrity and full sequencing of the ligation junctions, MCC achieves subnucleosomal levels of resolution, which can be used to reveal transcription factor binding sites analogous to DNAse I footprinting. Gene dense regions, close-range enhancer-promoter contacts, individual enhancers within super-enhancers and multiple other types of loci or regulatory regions that were previously challenging to assay with conventional 3C techniques, are readily observed using MCC. MCC requires training in common molecular biology techniques and bioinformatics to perform the experiment and analyze the data. The protocol can be expected to be completed in a 3 week timeframe for experienced molecular biologists.
Collapse
Affiliation(s)
- Joseph C Hamley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hangpeng Li
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Damien Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, Genomic Medicine and Cell and Gene Therapy Themes, Oxford, UK.
- National Institute of Health Research Blood and Transplant Research Unit, Oxford, UK.
| |
Collapse
|
205
|
González‐Serna D, Shi C, Kerick M, Hankinson J, Ding J, McGovern A, Tutino M, Villanueva‐Martin G, Ortego‐Centeno N, Callejas JL, Martin J, Orozco G. Identification of Mechanisms by Which Genetic Susceptibility Loci Influence Systemic Sclerosis Risk Using Functional Genomics in Primary T Cells and Monocytes. Arthritis Rheumatol 2023; 75:1007-1020. [PMID: 36281738 PMCID: PMC10953390 DOI: 10.1002/art.42396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a complex autoimmune disease with a strong genetic component. However, most of the genes associated with the disease are still unknown because associated variants affect mostly noncoding intergenic elements of the genome. We used functional genomics to translate the genetic findings into a better understanding of the disease. METHODS Promoter capture Hi-C and RNA-sequencing experiments were performed in CD4+ T cells and CD14+ monocytes from 10 SSc patients and 5 healthy controls to link SSc-associated variants with their target genes, followed by differential expression and differential interaction analyses between cell types. RESULTS We linked SSc-associated loci to 39 new potential target genes and confirmed 7 previously known SSc-associated genes. We highlight novel causal genes, such as CXCR5, as the most probable candidate gene for the DDX6 locus. Some previously known SSc-associated genes, such as IRF8, STAT4, and CD247, showed cell type-specific interactions. We also identified 15 potential drug targets already in use in other similar immune-mediated diseases that could be repurposed for SSc treatment. Furthermore, we observed that interactions were directly correlated with the expression of important genes implicated in cell type-specific pathways and found evidence that chromatin conformation is associated with genotype. CONCLUSION Our study revealed potential causal genes for SSc-associated loci, some of them acting in a cell type-specific manner, suggesting novel biologic mechanisms that might mediate SSc pathogenesis.
Collapse
Affiliation(s)
- David González‐Serna
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones Científicas (IPBLN‐CSIC)GranadaSpain
| | - Chenfu Shi
- Division of Musculoskeletal and Dermatological Sciences, Centre for Genetics and Genomics Versus Arthritis, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Martin Kerick
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones Científicas (IPBLN‐CSIC)GranadaSpain
| | - Jenny Hankinson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - James Ding
- Division of Musculoskeletal and Dermatological Sciences, Centre for Genetics and Genomics Versus Arthritis, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Amanda McGovern
- Division of Musculoskeletal and Dermatological Sciences, Centre for Genetics and Genomics Versus Arthritis, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Mauro Tutino
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Gonzalo Villanueva‐Martin
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones Científicas (IPBLN‐CSIC)GranadaSpain
| | - Norberto Ortego‐Centeno
- Department of Internal Medicine, Hospital Universitario San CecilioInstitute for Biosanitary Research of Granada (ibs.GRANADA)GranadaSpain
| | - José Luis Callejas
- Department of Internal Medicine, Hospital Universitario San CecilioInstitute for Biosanitary Research of Granada (ibs.GRANADA)GranadaSpain
| | - Javier Martin
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones Científicas (IPBLN‐CSIC)GranadaSpain
| | - Gisela Orozco
- Division of Musculoskeletal and Dermatological Sciences, Centre for Genetics and Genomics Versus Arthritis, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and NIHR Manchester Biomedical Research CentreManchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
206
|
Jia X, Lin W, Wang W. Regulation of chromatin organization during animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:19. [PMID: 37259007 DOI: 10.1186/s13619-023-00162-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/21/2023] [Indexed: 06/02/2023]
Abstract
Activation of regeneration upon tissue damages requires the activation of many developmental genes responsible for cell proliferation, migration, differentiation, and tissue patterning. Ample evidence revealed that the regulation of chromatin organization functions as a crucial mechanism for establishing and maintaining cellular identity through precise control of gene transcription. The alteration of chromatin organization can lead to changes in chromatin accessibility and/or enhancer-promoter interactions. Like embryogenesis, each stage of tissue regeneration is accompanied by dynamic changes of chromatin organization in regeneration-responsive cells. In the past decade, many studies have been conducted to investigate the contribution of chromatin organization during regeneration in various tissues, organs, and organisms. A collection of chromatin regulators were demonstrated to play critical roles in regeneration. In this review, we will summarize the progress in the understanding of chromatin organization during regeneration in different research organisms and discuss potential common mechanisms responsible for the activation of regeneration response program.
Collapse
Affiliation(s)
- Xiaohui Jia
- National Institute of Biological Sciences, Beijing, 102206, China
- China Agricultural University, Beijing, 100083, China
| | - Weifeng Lin
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
207
|
Lamy-Besnier Q, Bignaud A, Garneau JR, Titecat M, Conti DE, Von Strempel A, Monot M, Stecher B, Koszul R, Debarbieux L, Marbouty M. Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. MICROBIOME 2023; 11:111. [PMID: 37208714 PMCID: PMC10197239 DOI: 10.1186/s40168-023-01541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. RESULTS To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. CONCLUSIONS The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease). Video Abstract.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, 59000, France
| | - Devon E Conti
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Von Strempel
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site LMU Munich, Munich, Germany
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
208
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
209
|
Hunter E, Salter M, Powell R, Dring A, Naithani T, Chatziioannou ME, Gebregzabhar A, Issa M, Green J, Ng S, Lim CR, Keat CS, Suan AT, Raman R, Fatt HK, Luen FLW, Alshaker H, Pchejetski D, Blum D, Guiel T, Heaton R, Levine J, Akoulitchev A. Development and Validation of Blood-Based Predictive Biomarkers for Response to PD-1/PD-L1 Checkpoint Inhibitors: Evidence of a Universal Systemic Core of 3D Immunogenetic Profiling across Multiple Oncological Indications. Cancers (Basel) 2023; 15:2696. [PMID: 37345033 DOI: 10.3390/cancers15102696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Unprecedented advantages in cancer treatment with immune checkpoint inhibitors (ICIs) remain limited to only a subset of patients. Systemic analyses of the regulatory 3D genome architecture linked to individual epigenetic and immunogenetic controls associated with tumour immune evasion mechanisms and immune checkpoint pathways reveal a highly prevalent molecular profile predictive of response to PD-1/PD-L1 ICIs. A clinical blood test based on a set of eight (8) 3D genomic biomarkers has been developed and validated on the basis of an observational trial to predict response to ICI therapy. METHODS The predictive eight biomarker set is derived from prospective observational clinical trials, representing 280 treatments with Pembrolizumab, Atezolizumab, Durvalumab, Nivolumab, and Avelumab in a broad range of indications: melanoma, lung, hepatocellular, renal, breast, bladder, colon, head and neck, bone, brain, lymphoma, prostate, vulvar, and cervical cancers. RESULTS The 3D genomic eight biomarker panel for response to immune checkpoint therapy achieved a high accuracy of 85%, sensitivity of 93%, and specificity of 82%. CONCLUSIONS This study demonstrates that a 3D genomic approach can be used to develop a predictive clinical assay for response to PD-1/PD-L1 checkpoint inhibition in cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ann Dring
- Oxford BioDynamics Plc., Oxford OX4 2WB, UK
| | | | | | | | - Mutaz Issa
- Oxford BioDynamics Plc., Oxford OX4 2WB, UK
| | | | - Serene Ng
- Oxford BioDynamics (M) Sdn Bhd, Penang 10470, Malaysia
| | - Chun Ren Lim
- Oxford BioDynamics (M) Sdn Bhd, Penang 10470, Malaysia
| | - Cheah Soon Keat
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
- Island Hospital, Penang 10450, Malaysia
| | - Ang Tick Suan
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
| | - Rakesh Raman
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
| | - Ho Kean Fatt
- Mount Miriam Cancer Hospital (MMCH), Penang 11200, Malaysia
| | | | - Heba Alshaker
- School of Medicine, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Dave Blum
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | - Thomas Guiel
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | - Robert Heaton
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | - Jedd Levine
- Oxford BioDynamics Inc., Gaithersburg, MD 20878, USA
| | | |
Collapse
|
210
|
Guo Q, Wu S, Geschwind DH. Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution. Dev Neurosci 2023; 46:69-83. [PMID: 37231806 DOI: 10.1159/000530929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The neocortex is the region that most distinguishes human brain from other mammals and primates [Annu Rev Genet. 2021 Nov;55(1):555-81]. Studying the development of human cortex is important in understanding the evolutionary changes occurring in humans relative to other primates, as well as in elucidating mechanisms underlying neurodevelopmental disorders. Cortical development is a highly regulated process, spatially and temporally coordinated by expression of essential transcriptional factors in response to signaling pathways [Neuron. 2019 Sep;103(6):980-1004]. Enhancers are the most well-understood cis-acting, non-protein-coding regulatory elements that regulate gene expression [Nat Rev Genet. 2014 Apr;15(4):272-86]. Importantly, given the conservation of both DNA sequence and molecular function of the majority of proteins across mammals [Genome Res. 2003 Dec;13(12):2507-18], enhancers [Science. 2015 Mar;347(6226):1155-9], which are far more divergent at the sequence level, likely account for the phenotypes that distinguish the human brain by changing the regulation of gene expression. In this review, we will revisit the conceptual framework of gene regulation during human brain development, as well as the evolution of technologies to study transcriptional regulation, with recent advances in genome biology that open a window allowing us to systematically characterize cis-regulatory elements in developing human brain [Hum Mol Genet. 2022 Oct;31(R1):R84-96]. We provide an update on work to characterize the suite of all enhancers in the developing human brain and the implications for understanding neuropsychiatric disorders. Finally, we discuss emerging therapeutic ideas that utilize our emerging knowledge of enhancer function.
Collapse
Affiliation(s)
- Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Sarah Wu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - Daniel H Geschwind
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
211
|
Weischenfeldt J, Ibrahim DM. When 3D genome changes cause disease: the impact of structural variations in congenital disease and cancer. Curr Opin Genet Dev 2023; 80:102048. [PMID: 37156210 DOI: 10.1016/j.gde.2023.102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Large structural variations (SV) are a class of mutations that have long been known to cause a wide range of genetic diseases, from rare congenital disease to cancer. Many of these SVs do not directly disrupt disease-related genes and determining causal genotype-phenotype relationships has been challenging to disentangle in the past. This has started to change with our increased understanding of the 3D genome folding. The pathophysiologies of the different types of genetic diseases influence the type of SVs observed and their genetic consequences, and how these are connected to 3D genome folding. We propose guiding principles for interpreting disease-associated SVs based on our current understanding of 3D chromatin architecture and the gene-regulatory and physiological mechanisms disrupted in disease.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin, BIH Center for Regenerative Therapies, Berlin, Germany; Max-Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
212
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
213
|
Liu J, Li P, Sun J, Guo J. LPAD: using network construction and label propagation to detect topologically associating domains from Hi-C data. Brief Bioinform 2023; 24:7150739. [PMID: 37139561 DOI: 10.1093/bib/bbad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 04/09/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of chromosome conformation capture technique, the study of spatial conformation of a genome based on Hi-C technique has made a quantum leap. Previous studies reveal that genomes are folded into hierarchy of three-dimensional (3D) structures associated with topologically associating domains (TADs), and detecting TAD boundaries is of great significance in the chromosome-level analysis of 3D genome architecture. In this paper, we propose a novel TAD identification method, LPAD, which first extracts node correlations from global interactions of chromosomes based on the random walk with restart and then builds an undirected graph from Hi-C contact matrix. Next, LPAD designs a label propagation-based approach to discover communities and generates TADs. Experimental results verify the effectiveness and quality of TAD detections compared with existing methods. Furthermore, experimental evaluation of chromatin immunoprecipitation sequencing data shows that LPAD performs high enrichment of histone modifications remarkably nearby the TAD boundaries, and these results demonstrate LPAD's advantages on TAD identification accuracy.
Collapse
Affiliation(s)
- Jian Liu
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Pingjing Li
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Jialiang Sun
- College of Computer Science, Nankai University, Tianjin 300071, China
- Centre for Bioinformatics and Intelligent Medicine, Nankai University, Tianjin 300071, China
| | - Jun Guo
- College of Software, Northeastern University, Shenyang 110819, China
| |
Collapse
|
214
|
Ruben BS, Brahmachari S, Contessoto VG, Cheng RR, Oliveira Junior AB, Di Pierro M, Onuchic JN. Structural reorganization and relaxation dynamics of axially stressed chromosomes. Biophys J 2023; 122:1633-1645. [PMID: 36960531 PMCID: PMC10183323 DOI: 10.1016/j.bpj.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Chromosomes endure mechanical stresses throughout the cell cycle; for example, resulting from the pulling of chromosomes by spindle fibers during mitosis or deformation of the nucleus during cell migration. The response to physical stress is closely related to chromosome structure and function. Micromechanical studies of mitotic chromosomes have revealed them to be remarkably extensible objects and informed early models of mitotic chromosome organization. We use a data-driven, coarse-grained polymer modeling approach to explore the relationship between the spatial organization of individual chromosomes and their emergent mechanical properties. In particular, we investigate the mechanical properties of our model chromosomes by axially stretching them. Simulated stretching led to a linear force-extension curve for small strain, with mitotic chromosomes behaving about 10-fold stiffer than interphase chromosomes. Studying their relaxation dynamics, we found that chromosomes are viscoelastic solids with a highly liquid-like, viscous behavior in interphase that becomes solid-like in mitosis. This emergent mechanical stiffness originates from lengthwise compaction, an effective potential capturing the activity of loop-extruding SMC complexes. Chromosomes denature under large strains via unraveling, which is characterized by opening of large-scale folding patterns. By quantifying the effect of mechanical perturbations on the chromosome's structural features, our model provides a nuanced understanding of in vivo mechanics of chromosomes.
Collapse
Affiliation(s)
- Benjamin S Ruben
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Biophysics PhD Program, Harvard University, Cambridge, Massachusetts.
| | | | | | - Ryan R Cheng
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | | | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, Massachusetts; Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Physics and Astronomy, Department of Chemistry, Department of BioSciences, Rice University, Houston, Texas
| |
Collapse
|
215
|
Dai S, Liu S, Zhou C, Yu F, Zhu G, Zhang W, Deng H, Burlingame A, Yu W, Wang T, Li N. Capturing the hierarchically assorted modules of protein-protein interactions in the organized nucleome. MOLECULAR PLANT 2023; 16:930-961. [PMID: 36960533 DOI: 10.1016/j.molp.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
Nuclear proteins are major constituents and key regulators of nucleome topological organization and manipulators of nuclear events. To decipher the global connectivity of nuclear proteins and the hierarchically organized modules of their interactions, we conducted two rounds of cross-linking mass spectrometry (XL-MS) analysis, one of which followed a quantitative double chemical cross-linking mass spectrometry (in vivoqXL-MS) workflow, and identified 24,140 unique crosslinks in total from the nuclei of soybean seedlings. This in vivo quantitative interactomics enabled the identification of 5340 crosslinks that can be converted into 1297 nuclear protein-protein interactions (PPIs), 1220 (94%) of which were non-confirmative (or novel) nuclear PPIs compared with those in repositories. There were 250 and 26 novel interactors of histones and the nucleolar box C/D small nucleolar ribonucleoprotein complex, respectively. Modulomic analysis of orthologous Arabidopsis PPIs produced 27 and 24 master nuclear PPI modules (NPIMs) that contain the condensate-forming protein(s) and the intrinsically disordered region-containing proteins, respectively. These NPIMs successfully captured previously reported nuclear protein complexes and nuclear bodies in the nucleus. Surprisingly, these NPIMs were hierarchically assorted into four higher-order communities in a nucleomic graph, including genome and nucleolus communities. This combinatorial pipeline of 4C quantitative interactomics and PPI network modularization revealed 17 ethylene-specific module variants that participate in a broad range of nuclear events. The pipeline was able to capture both nuclear protein complexes and nuclear bodies, construct the topological architectures of PPI modules and module variants in the nucleome, and probably map the protein compositions of biomolecular condensates.
Collapse
Affiliation(s)
- Shuaijian Dai
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chen Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wenhao Zhang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Weichuan Yu
- The HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518057, China; Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Tingliang Wang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; The HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
216
|
Dey A, Shi G, Takaki R, Thirumalai D. Structural changes in chromosomes driven by multiple condensin motors during mitosis. Cell Rep 2023; 42:112348. [PMID: 37027299 DOI: 10.1016/j.celrep.2023.112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/10/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
We create a computational framework that utilizes loop extrusion (LE) by multiple condensin I/II motors to predict changes in chromosome organization during mitosis. The theory accurately reproduces the experimental contact probability profiles for the mitotic chromosomes in HeLa and DT40 cells. The LE rate is smaller at the start of mitosis and increases as the cells approach metaphase. Condensin II-mediated mean loop size is about six times larger than loops because of condensin I. The loops, which overlap each other, are stapled to a central dynamically changing helical scaffold formed by the motors during the LE process. A polymer physics-based data-driven method that uses the Hi-C contact map as the only input shows that the helix is characterized as random helix perversions (RHPs) in which the handedness changes randomly along the scaffold. The theoretical predictions, which are testable using imaging experiments, do not contain any parameters.
Collapse
Affiliation(s)
- Atreya Dey
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Guang Shi
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA
| | - Ryota Takaki
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Saxony, Germany
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA; Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
217
|
Cifello J, Kuksa PP, Saravanan N, Valladares O, Leung YY, Wang LS. hipFG: High-throughput harmonization and integration pipeline for functional genomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537695. [PMID: 37162864 PMCID: PMC10168270 DOI: 10.1101/2023.04.21.537695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Preparing functional genomic (FG) data with diverse assay types and file formats for integration into analysis workflows that interpret genome-wide association and other studies is a significant and time-consuming challenge. Here we introduce hipFG, an automatically customized pipeline for efficient and scalable normalization of heterogenous FG data collections into standardized, indexed, rapidly searchable analysis-ready datasets while accounting for FG datatypes (e.g., chromatin interactions, genomic intervals, quantitative trait loci).
Collapse
Affiliation(s)
- Jeffrey Cifello
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania
| | - Pavel P. Kuksa
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania
| | - Naveensri Saravanan
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania
| |
Collapse
|
218
|
Cosma MP, Neguembor MV. The magic of unraveling genome architecture and function. Cell Rep 2023; 42:112361. [PMID: 37059093 DOI: 10.1016/j.celrep.2023.112361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Over the last decades, technological breakthroughs in super-resolution microscopy have allowed us to reach molecular resolution and design experiments of unprecedented complexity. Investigating how chromatin is folded in 3D, from the nucleosome level up to the entire genome, is becoming possible by "magic" (imaging genomic), i.e., the combination of imaging and genomic approaches. This offers endless opportunities to delve into the relationship between genome structure and function. Here, we review recently achieved objectives and the conceptual and technical challenges the field of genome architecture is currently undertaking. We discuss what we have learned so far and where we are heading. We elucidate how the different super-resolution microscopy approaches and, more specifically, live-cell imaging have contributed to the understanding of genome folding. Moreover, we discuss how future technical developments could address remaining open questions.
Collapse
Affiliation(s)
- Maria Pia Cosma
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, 510080 Guangzhou, China; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.
| |
Collapse
|
219
|
Zheng L, Liu L, Zhu W, Ding Y, Wu F. Predicting enhancer-promoter interaction based on epigenomic signals. Front Genet 2023; 14:1133775. [PMID: 37144127 PMCID: PMC10151517 DOI: 10.3389/fgene.2023.1133775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: The physical interactions between enhancers and promoters are often involved in gene transcriptional regulation. High tissue-specific enhancer-promoter interactions (EPIs) are responsible for the differential expression of genes. Experimental methods are time-consuming and labor-intensive in measuring EPIs. An alternative approach, machine learning, has been widely used to predict EPIs. However, most existing machine learning methods require a large number of functional genomic and epigenomic features as input, which limits the application to different cell lines. Methods: In this paper, we developed a random forest model, HARD (H3K27ac, ATAC-seq, RAD21, and Distance), to predict EPI using only four types of features. Results: Independent tests on a benchmark dataset showed that HARD outperforms other models with the fewest features. Discussion: Our results revealed that chromatin accessibility and the binding of cohesin are important for cell-line-specific EPIs. Furthermore, we trained the HARD model in the GM12878 cell line and performed testing in the HeLa cell line. The cross-cell-lines prediction also performs well, suggesting it has the potential to be applied to other cell lines.
Collapse
Affiliation(s)
- Leqiong Zheng
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Fangxiang Wu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
220
|
Cheng J, Cao X, Wang X, Wang J, Yue B, Sun W, Huang Y, Lan X, Ren G, Lei C, Chen H. Dynamic chromatin architectures provide insights into the genetics of cattle myogenesis. J Anim Sci Biotechnol 2023; 14:59. [PMID: 37055796 PMCID: PMC10103417 DOI: 10.1186/s40104-023-00855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Sharply increased beef consumption is propelling the genetic improvement projects of beef cattle in China. Three-dimensional genome structure is confirmed to be an important layer of transcription regulation. Although genome-wide interaction data of several livestock species have already been produced, the genome structure states and its regulatory rules in cattle muscle are still limited. RESULTS Here we present the first 3D genome data in Longissimus dorsi muscle of fetal and adult cattle (Bos taurus). We showed that compartments, topologically associating domains (TADs), and loop undergo re-organization and the structure dynamics were consistent with transcriptomic divergence during muscle development. Furthermore, we annotated cis-regulatory elements in cattle genome during myogenesis and demonstrated the enrichments of promoter and enhancer in selection sweeps. We further validated the regulatory function of one HMGA2 intronic enhancer near a strong sweep region on primary bovine myoblast proliferation. CONCLUSIONS Our data provide key insights of the regulatory function of high order chromatin structure and cattle myogenic biology, which will benefit the progress of genetic improvement of beef cattle.
Collapse
Affiliation(s)
- Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Binglin Yue
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610225, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Gang Ren
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China.
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
221
|
Zhang Q, Hua X, Sun Y, Lin Z, Cao Y, Zhao P, Xia Q. Dynamic chromatin conformation and accessibility changes mediate the spatial-specific gene regulatory network in Bombyx mori. Int J Biol Macromol 2023; 240:124415. [PMID: 37060980 DOI: 10.1016/j.ijbiomac.2023.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Silk gland genes of Bombyx mori can have strict spatial expression patterns, which impact their functions and silk quality; however, our understanding of their regulation mechanisms is currently insufficient. To address this, the middle silk gland (MSG) and posterior silk gland (PSG) of the silkworm were investigated. Gene ontology annotation showed that spatially specific expressed genes were involved in the formation of H3k9me and chromatin topology. Chromatin conformation data generated by Hi-C showed that the topologically associated domain boundaries around FibL and Sericin1 genes were significantly different between MSG and PSG. Changes in chromatin conformation led to changes in chromatin activity, which significantly affected the expression of nearby genes in silkworm. Chromatin accessibility regions of MSG and PSG were analyzed using FAIRE-seq, and 1006 transcription factor motifs were identified in open chromatin regions. Furthermore, the spatial-specific expression patterns of silk gland genes were mainly associated with homeobox-contained transcription factors, such as POU-M2, which was specifically bound and relatively highly expressed in the MSG. The regulatory network mediated by POU-M2 regulated most of the spatial-specific expressed genes in MSG, such as ADH1. These results can aid in improving silk performance, optimizing silkworm breeding, and improving the gene spatial regulatory model research for insects.
Collapse
Affiliation(s)
- Quan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaoting Hua
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yueting Sun
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China
| | - Zhongying Lin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
222
|
Gunsalus LM, McArthur E, Gjoni K, Kuang S, Pittman M, Capra JA, Pollard KS. Comparing chromatin contact maps at scale: methods and insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535480. [PMID: 37066196 PMCID: PMC10104037 DOI: 10.1101/2023.04.04.535480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome organization shapes development, evolution, and disease. However, no gold standard exists for comparing contact maps, and even simple methods often disagree. In this study, we propose novel comparison methods and evaluate them alongside existing approaches using genome-wide Hi-C data and 22,500 in silico predicted contact maps. We also quantify the robustness of methods to common sources of biological and technical variation, such as boundary size and noise. We find that simple difference-based methods such as mean squared error are suitable for initial screening, but biologically informed methods are necessary to identify why maps diverge and propose specific functional hypotheses. We provide a reference guide, codebase, and benchmark for rapidly comparing chromatin contact maps at scale to enable biological insights into the 3D organization of the genome.
Collapse
Affiliation(s)
- Laura M. Gunsalus
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA
| | - Evonne McArthur
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Ketrin Gjoni
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA
| | - Shuzhen Kuang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA
| | - Maureen Pittman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA
| | - John A. Capra
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
| | - Katherine S. Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
223
|
Ford BR, Poholek AC. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:869-879. [PMID: 36947818 PMCID: PMC10037537 DOI: 10.4049/jimmunol.2200681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Collapse
Affiliation(s)
- B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
224
|
Ni L, Tian Z. Toward cis-regulation in soybean: a 3D genome scope. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:28. [PMID: 37313524 PMCID: PMC10248674 DOI: 10.1007/s11032-023-01374-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
In eukaryotic cells, 3D genome plays an important role in the regulation of gene spatiotemporal expression, which is essential for the biological and developmental processes in a life cycle. In the past decade, the development of high-throughput technologies greatly enhances our ability to map the 3D genome organization, identifies multiple 3D genome structures, and investigates the functional role of 3D genome organization in gene regulation, which facilitates our understandings of cis-regulatory landscape and biological development. Comparing with the comprehensive analyses of 3D genome in mammals and model plants, the progress in soybean is much less. Future development and application of tools to precisely manipulate 3D genome structure at different levels will significantly strengthen the functional genome study and molecular breeding in soybean. Here, we review the recent progresses in 3D genome study and discuss future directions, which may help to improve soybean 3D functional genome study and molecular breeding.
Collapse
Affiliation(s)
- Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
225
|
Wang S, Luo Z, Liu W, Hu T, Zhao Z, Rosenfeld MG, Song X. The 3D genome and its impacts on human health and disease. LIFE MEDICINE 2023; 2:lnad012. [PMID: 39872109 PMCID: PMC11749360 DOI: 10.1093/lifemedi/lnad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 01/29/2025]
Abstract
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.
Collapse
Affiliation(s)
- Siqi Wang
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhengyu Luo
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiguang Liu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tengfei Hu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
226
|
Chan WF, Coughlan HD, Ruhle M, Iannarella N, Alvarado C, Groom JR, Keenan CR, Kueh AJ, Wheatley AK, Smyth GK, Allan RS, Johanson TM. Survey of activation-induced genome architecture reveals a novel enhancer of Myc. Immunol Cell Biol 2023; 101:345-357. [PMID: 36710659 PMCID: PMC10952581 DOI: 10.1111/imcb.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The transcription factor Myc is critically important in driving cell proliferation, a function that is frequently dysregulated in cancer. To avoid this dysregulation Myc is tightly controlled by numerous layers of regulation. One such layer is the use of distal regulatory enhancers to drive Myc expression. Here, using chromosome conformation capture to examine B cells of the immune system in the first hours after their activation, we reveal a previously unidentified enhancer of Myc. The interactivity of this enhancer coincides with a dramatic, but discrete, spike in Myc expression 3 h post-activation. However, genetic deletion of this region, has little impact on Myc expression, Myc protein level or in vitro and in vivo cell proliferation. Examination of the enhancer deleted regulatory landscape suggests that enhancer redundancy likely sustains Myc expression. This work highlights not only the importance of temporally examining enhancers, but also the complexity and dynamics of the regulation of critical genes such as Myc.
Collapse
Affiliation(s)
- Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Michelle Ruhle
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Carolina Alvarado
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Joanna R Groom
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Christine R Keenan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- School of Mathematics and StatisticsThe University of MelbourneParkvilleVICAustralia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
227
|
Kim YJ, Lee M, Lee YT, Jing J, Sanders JT, Botten GA, He L, Lyu J, Zhang Y, Mettlen M, Ly P, Zhou Y, Xu J. Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. SCIENCE ADVANCES 2023; 9:eadg1123. [PMID: 37000871 PMCID: PMC10065442 DOI: 10.1126/sciadv.adg1123] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Biomolecular condensates participate in the regulation of gene transcription, yet the relationship between nuclear condensation and transcriptional activation remains elusive. Here, we devised a biotinylated CRISPR-dCas9-based optogenetic method, light-activated macromolecular phase separation (LAMPS), to enable inducible formation, affinity purification, and multiomic dissection of nuclear condensates at the targeted genomic loci. LAMPS-induced condensation at enhancers and promoters activates endogenous gene transcription by chromatin reconfiguration, causing increased chromatin accessibility and de novo formation of long-range chromosomal loops. Proteomic profiling of light-induced condensates by dCas9-mediated affinity purification uncovers multivalent interaction-dependent remodeling of macromolecular composition, resulting in the selective enrichment of transcriptional coactivators and chromatin structure proteins. Our findings support a model whereby the formation of nuclear condensates at native genomic loci reconfigures chromatin architecture and multiprotein assemblies to modulate gene transcription. Hence, LAMPS facilitates mechanistic interrogation of the relationship between nuclear condensation, genome structure, and gene transcription in living cells.
Collapse
Affiliation(s)
- Yoon Jung Kim
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Lee
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Jacob T. Sanders
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Junhua Lyu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
228
|
Burgers TCQ, Vlijm R. Fluorescence-based super-resolution-microscopy strategies for chromatin studies. Chromosoma 2023:10.1007/s00412-023-00792-9. [PMID: 37000292 PMCID: PMC10356683 DOI: 10.1007/s00412-023-00792-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.
Collapse
Affiliation(s)
- Thomas C Q Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
229
|
Sumimoto H, Takano A, Igarashi T, Hanaoka J, Teramoto K, Daigo Y. Oncogenic epidermal growth factor receptor signal-induced histone deacetylation suppresses chemokine gene expression in human lung adenocarcinoma. Sci Rep 2023; 13:5087. [PMID: 36991099 PMCID: PMC10060241 DOI: 10.1038/s41598-023-32177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutated (mt) lung adenocarcinoma (LA) is refractory to immune checkpoint inhibitors (ICIs). However, the mechanisms have not been fully elucidated. CD8+ T cell infiltration was significantly lower in EGFR-mt than in EGFR-wild-type LA, which was associated with suppression of chemokine expression. Since this T cell-deserted tumor microenvironment may lead to the refractoriness of ICIs against EGFR-mt LA, we investigated the mechanism by focusing on the regulation of chemokine expression. The expression of C-X-C motif ligand (CXCL) 9, 10 and 11, which constitute a gene cluster on chromosome 4, was suppressed under EGFR signaling. The assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) revealed open chromatin peaks near this gene cluster following EGFR-tyrosine kinase inhibitor (TKI) treatment. The histone deacetylase (HDAC) inhibitor recovered the expression of CXCL9, 10 and 11 in EGFR-mt LA. Nuclear HDAC activity, as well as histone H3 deacetylation, were dependent on oncogenic EGFR signaling. Furthermore, the Cleavage Under Targets and Tagmentation (CUT & Tag) assay revealed a histone H3K27 acetylation peak at 15 kb upstream of CXCL11 after treatment with EGFR-TKI, which corresponded to one of the open chromatin peaks detected by ATAC-seq. The data suggest that EGFR-HDAC axis mediates silencing of the chemokine gene cluster through chromatin conformational change, which might be relevant to the ICI resistance by creating T cell-deserted tumor microenvironment. Targeting this axis may develop a new therapeutic strategy to overcome the ICI resistance of EGFR-mt LA.
Collapse
Affiliation(s)
- Hidetoshi Sumimoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Igarashi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Hanaoka
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Koji Teramoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
230
|
Pecori F, Torres-Padilla ME. Dynamics of nuclear architecture during early embryonic development and lessons from liveimaging. Dev Cell 2023; 58:435-449. [PMID: 36977375 PMCID: PMC10062924 DOI: 10.1016/j.devcel.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Nuclear organization has emerged as a potential key regulator of genome function. During development, the deployment of transcriptional programs must be tightly coordinated with cell division and is often accompanied by major changes in the repertoire of expressed genes. These transcriptional and developmental events are paralleled by changes in the chromatin landscape. Numerous studies have revealed the dynamics of nuclear organization underlying them. In addition, advances in live-imaging-based methodologies enable the study of nuclear organization with high spatial and temporal resolution. In this Review, we summarize the current knowledge of the changes in nuclear architecture in the early embryogenesis of various model systems. Furthermore, to highlight the importance of integrating fixed-cell and live approaches, we discuss how different live-imaging techniques can be applied to examine nuclear processes and their contribution to our understanding of transcription and chromatin dynamics in early development. Finally, we provide future avenues for outstanding questions in this field.
Collapse
Affiliation(s)
- Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany; Faculty of Biology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
231
|
Shin H, Kim Y. Regulation of loop extrusion on the interphase genome. Crit Rev Biochem Mol Biol 2023; 58:1-18. [PMID: 36921088 DOI: 10.1080/10409238.2023.2182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.
Collapse
Affiliation(s)
- Hyogyung Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoori Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.,New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
232
|
Bressan E, Reed X, Bansal V, Hutchins E, Cobb MM, Webb MG, Alsop E, Grenn FP, Illarionova A, Savytska N, Violich I, Broeer S, Fernandes N, Sivakumar R, Beilina A, Billingsley KJ, Berghausen J, Pantazis CB, Pitz V, Patel D, Daida K, Meechoovet B, Reiman R, Courtright-Lim A, Logemann A, Antone J, Barch M, Kitchen R, Li Y, Dalgard CL, The American Genome Center, Rizzu P, Hernandez DG, Hjelm BE, Nalls M, Gibbs JR, Finkbeiner S, Cookson MR, Van Keuren-Jensen K, Craig DW, Singleton AB, Heutink P, Blauwendraat C. The Foundational Data Initiative for Parkinson Disease: Enabling efficient translation from genetic maps to mechanism. CELL GENOMICS 2023; 3:100261. [PMID: 36950378 PMCID: PMC10025424 DOI: 10.1016/j.xgen.2023.100261] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/22/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
The Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD) is an international collaboration producing fundamental resources for Parkinson disease (PD). FOUNDIN-PD generated a multi-layered molecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA) neurons, a major affected cell type in PD. The lines were derived from the Parkinson's Progression Markers Initiative study, which included participants with PD carrying monogenic PD variants, variants with intermediate effects, and variants identified by genome-wide association studies and unaffected individuals. We generated genetic, epigenetic, regulatory, transcriptomic, and longitudinal cellular imaging data from iPSC-derived DA neurons to understand molecular relationships between disease-associated genetic variation and proximate molecular events. These data reveal that iPSC-derived DA neurons provide a valuable cellular context and foundational atlas for modeling PD genetic risk. We have integrated these data into a FOUNDIN-PD data browser as a resource for understanding the molecular pathogenesis of PD.
Collapse
Affiliation(s)
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vikas Bansal
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Elizabeth Hutchins
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Melanie M. Cobb
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Michelle G. Webb
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Eric Alsop
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Francis P. Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Natalia Savytska
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ivo Violich
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Stefanie Broeer
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Noémia Fernandes
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ramiyapriya Sivakumar
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kimberley J. Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Joos Berghausen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline B. Pantazis
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vanessa Pitz
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dhairya Patel
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bessie Meechoovet
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Rebecca Reiman
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Amanda Courtright-Lim
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Amber Logemann
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jerry Antone
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mariya Barch
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Robert Kitchen
- Massachusetts General Hospital, Cardiovascular Research Center, Charlestown, MA, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - The American Genome Center
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
- Massachusetts General Hospital, Cardiovascular Research Center, Charlestown, MA, USA
- Protein/Peptide Sequencing Facility, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Mike Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - David W. Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
233
|
Zhong JY, Niu L, Lin ZB, Bai X, Chen Y, Luo F, Hou C, Xiao CL. High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat Commun 2023; 14:1250. [PMID: 36878904 PMCID: PMC9988853 DOI: 10.1038/s41467-023-36899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Canonical three-dimensional (3D) genome structures represent the ensemble average of pairwise chromatin interactions but not the single-allele topologies in populations of cells. Recently developed Pore-C can capture multiway chromatin contacts that reflect regional topologies of single chromosomes. By carrying out high-throughput Pore-C, we reveal extensive but regionally restricted clusters of single-allele topologies that aggregate into canonical 3D genome structures in two human cell types. We show that fragments in multi-contact reads generally coexist in the same TAD. In contrast, a concurrent significant proportion of multi-contact reads span multiple compartments of the same chromatin type over megabase distances. Synergistic chromatin looping between multiple sites in multi-contact reads is rare compared to pairwise interactions. Interestingly, the single-allele topology clusters are cell type-specific even inside highly conserved TADs in different types of cells. In summary, HiPore-C enables global characterization of single-allele topologies at an unprecedented depth to reveal elusive genome folding principles.
Collapse
Affiliation(s)
- Jia-Yong Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Longjian Niu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.,School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhuo-Bin Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, 29634-0974, USA
| | - Chunhui Hou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
234
|
Chen M, Liu X, Liu Q, Shi D, Li H. 3D genomics and its applications in precision medicine. Cell Mol Biol Lett 2023; 28:19. [PMID: 36879202 PMCID: PMC9987123 DOI: 10.1186/s11658-023-00428-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging discipline that studies the three-dimensional structure of chromatin and the three-dimensional and functions of genomes. It mainly studies the three-dimensional conformation and functional regulation of intranuclear genomes, such as DNA replication, DNA recombination, genome folding, gene expression regulation, transcription factor regulation mechanism, and the maintenance of three-dimensional conformation of genomes. Self-chromosomal conformation capture (3C) technology has been developed, and 3D genomics and related fields have developed rapidly. In addition, chromatin interaction analysis techniques developed by 3C technologies, such as paired-end tag sequencing (ChIA-PET) and whole-genome chromosome conformation capture (Hi-C), enable scientists to further study the relationship between chromatin conformation and gene regulation in different species. Thus, the spatial conformation of plant, animal, and microbial genomes, transcriptional regulation mechanisms, interaction patterns of chromosomes, and the formation mechanism of spatiotemporal specificity of genomes are revealed. With the help of new experimental technologies, the identification of key genes and signal pathways related to life activities and diseases is sustaining the rapid development of life science, agriculture, and medicine. In this paper, the concept and development of 3D genomics and its application in agricultural science, life science, and medicine are introduced, which provides a theoretical basis for the study of biological life processes.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| |
Collapse
|
235
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
236
|
Dang D, Zhang SW, Duan R, Zhang S. Defining the separation landscape of topological domains for decoding consensus domain organization of the 3D genome. Genome Res 2023; 33:386-400. [PMID: 36894325 PMCID: PMC10078287 DOI: 10.1101/gr.277187.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Topologically associating domains (TADs) have emerged as basic structural and functional units of genome organization and have been determined by many computational methods from Hi-C contact maps. However, the TADs obtained by different methods vary greatly, which makes the accurate determination of TADs a challenging issue and hinders subsequent biological analyses about their organization and functions. Obvious inconsistencies among the TADs identified by different methods indeed make the statistical and biological properties of TADs overly depend on the chosen method rather than on the data. To this end, we use the consensus structural information captured by these methods to define the TAD separation landscape for decoding the consensus domain organization of the 3D genome. We show that the TAD separation landscape could be used to compare domain boundaries across multiple cell types for discovering conserved and divergent topological structures, decipher three types of boundary regions with diverse biological features, and identify consensus TADs (ConsTADs). We illustrate that these analyses could deepen our understanding of the relationships between the topological domains and chromatin states, gene expression, and DNA replication timing.
Collapse
Affiliation(s)
- Dachang Dang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;
| | - Ran Duan
- Department of Software Engineering, Yunnan University, Kunming 650500, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
237
|
Vestlund J, Sumida N, Mehmood R, Bhartiya D, Wu S, Göndör A. The Nodewalk assay to quantitate chromatin fiber interactomes in very small cell populations. Nat Protoc 2023; 18:755-782. [PMID: 36434098 DOI: 10.1038/s41596-022-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
The chromosome conformation capture method and its derivatives, such as circularized chromosome conformation capture, carbon copy chromosome conformation capture, high-throughput chromosome conformation capture and capture high-throughput chromosome conformation capture, have pioneered our understanding of the principles of chromosome folding in the nucleus. These technical advances, however, cannot precisely quantitate interaction frequency in very small input samples. Here we describe a protocol for the Nodewalk assay, which is based on converting chromosome conformation capture DNA samples to RNA and subsequently to cDNA using strategically placed primers. This pipeline enables the quantitative analyses of chromatin fiber interactions without compromising its sensitivity down to <300 cells, making it suitable for MiSeq analyses of higher-order chromatin structures in biopsies, circulating tumor cells and transitional cell states, for example. Importantly, the quality of the Nodewalk sample can be assessed before sequencing to avoid unnecessary costs. Moreover, it enables analyses from hundreds of different restriction enzyme fragment viewpoints within the same initial small input sample to uncover complex, genome-wide networks. Following optimization of the different steps, the entire protocol can be completed within 2 weeks.
Collapse
Affiliation(s)
- Johanna Vestlund
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Noriyuki Sumida
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.,Bio Systems Design Department, Bio Analytical Systems Product Division, Analytical & Medical Solution Business Group, Hitachi High Technologies, Hitachinaka, Ibaraki, Japan
| | - Rashid Mehmood
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Deeksha Bhartiya
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Shuangyang Wu
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
238
|
Shi G, Thirumalai D. A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants. Nat Commun 2023; 14:1150. [PMID: 36854665 PMCID: PMC9974990 DOI: 10.1038/s41467-023-36412-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
The principles that govern the organization of genomes, which are needed for an understanding of how chromosomes are packaged and function in eukaryotic cells, could be deciphered if the three-dimensional (3D) structures are known. Recently, single-cell imaging techniques have been developed to determine the 3D coordinates of genomic loci in vivo. Here, we introduce a computational method (Distance Matrix to Ensemble of Structures, DIMES), based on the maximum entropy principle, with experimental pairwise distances between loci as constraints, to generate a unique ensemble of 3D chromatin structures. Using the ensemble of structures, we quantitatively account for the distribution of pairwise distances, three-body co-localization, and higher-order interactions. The DIMES method can be applied to both small and chromosome-scale imaging data to quantify the extent of heterogeneity and fluctuations in the shapes across various length scales. We develop a perturbation method in conjunction with DIMES to predict the changes in 3D structures from structural variations. Our method also reveals quantitative differences between the 3D structures inferred from Hi-C and those measured in imaging experiments. Finally, the physical interpretation of the parameters extracted from DIMES provides insights into the origin of phase separation between euchromatin and heterochromatin domains.
Collapse
Affiliation(s)
- Guang Shi
- Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712, USA. .,Department of Materials Science, University of Illinois, Urbana, Illinois, 61801, USA.
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712, USA. .,Department of Physics, University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
239
|
Feigin C, Li S, Moreno J, Mallarino R. The GRN concept as a guide for evolutionary developmental biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:92-104. [PMID: 35344632 PMCID: PMC9515236 DOI: 10.1002/jez.b.23132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
Organismal phenotypes result largely from inherited developmental programs, usually executed during embryonic and juvenile life stages. These programs are not blank slates onto which natural selection can draw arbitrary forms. Rather, the mechanisms of development play an integral role in shaping phenotypic diversity and help determine the evolutionary trajectories of species. Modern evolutionary biology must, therefore, account for these mechanisms in both theory and in practice. The gene regulatory network (GRN) concept represents a potent tool for achieving this goal whose utility has grown in tandem with advances in "omic" technologies and experimental techniques. However, while the GRN concept is widely utilized, it is often less clear what practical implications it has for conducting research in evolutionary developmental biology. In this Perspective, we attempt to provide clarity by discussing how experiments and projects can be designed in light of the GRN concept. We first map familiar biological notions onto the more abstract components of GRN models. We then review how diverse functional genomic approaches can be directed toward the goal of constructing such models and discuss current methods for functionally testing evolutionary hypotheses that arise from them. Finally, we show how the major steps of GRN model construction and experimental validation suggest generalizable workflows that can serve as a scaffold for project design. Taken together, the practical implications that we draw from the GRN concept provide a set of guideposts for studies aiming at unraveling the molecular basis of phenotypic diversity.
Collapse
Affiliation(s)
- Charles Feigin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA,School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jorge Moreno
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
240
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
241
|
Silveira PP, Meaney MJ. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiol Dis 2023; 178:106008. [PMID: 36690304 DOI: 10.1016/j.nbd.2023.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
We explore how functional genomics approaches that integrate datasets from human and non-human model systems can improve our understanding of the effect of gene-environment interplay on the risk for mental disorders. We start by briefly defining the G-E paradigm and its challenges and then discuss the different levels of regulation of gene expression and the corresponding data existing in humans (genome wide genotyping, transcriptomics, DNA methylation, chromatin modifications, chromosome conformational changes, non-coding RNAs, proteomics and metabolomics), discussing novel approaches to the application of these data in the study of the origins of mental health. Finally, we discuss the multilevel integration of diverse types of data. Advance in the use of functional genomics in the context of a G-E perspective improves the detection of vulnerabilities, informing the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore; Brain - Body Initiative, Agency for Science, Technology and Research (ASTAR), Singapore.
| |
Collapse
|
242
|
Yang L, Yan Y, Li J, Zhou C, Jin J, Zhang T, Wu H, Li X, Wang W, Yuan L, Zhang X, Gao J. (Tn5-)FISH-based imaging in the era of 3D/spatial genomics. BIOPHYSICS REPORTS 2023; 9:15-25. [PMID: 37426200 PMCID: PMC10323772 DOI: 10.52601/bpr.2023.220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/20/2023] [Indexed: 07/11/2023] Open
Abstract
3D genomics mainly focuses on the 3D position of single genes at the cell level, while spatial genomics focuses more on the tissue level. In this exciting new era of 3D/spatial genomics, half-century old FISH and its derivative methods, including Tn5-FISH, play important roles. In this review, we introduce the Tn5-FISH we developed recently, and present six different applications published by our collaborators and us, based on (Tn5-)FISH, which can be either general BAC clone-based FISH or Tn5-FISH. In these interesting cases, (Tn5-)FISH demonstrated its vigorous ability of targeting sub-chromosomal structures across different diseases and cell lines (leukemia, mESCs (mouse embryonic stem cells), and differentiation cell lines). Serving as an effective tool to image genomic structures at the kilobase level, Tn5-FISH holds great potential to detect chromosomal structures in a high-throughput manner, thus bringing the dawn for new discoveries in the great era of 3D/spatial genomics.
Collapse
Affiliation(s)
- Liheng Yang
- Seaver College, Pepperdine University, CA 90263, USA
| | - Yan Yan
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, BNRist, Department of Automation, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics, Beijing 100084, China
| | - JunLin Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100084, China
| | - Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, China
| | - Tongmei Zhang
- Medical Oncology, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Haokaifeng Wu
- Centre for Regenerative Medicine and Health, HongKong Institute of Science & Innovation, Chinese Academy of Sciences, HongKong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| | - Li Yuan
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100084, China
| | - Xu Zhang
- Beijing Institute of Collaborative Innovation, Beijing 100094, China
| | - Juntao Gao
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, BNRist, Department of Automation, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics, Beijing 100084, China
- Institute for TCM-X, Beijing 100084, China
| |
Collapse
|
243
|
Li FZ, Zhang XF, Cai HY, Ran LQ, Zhou HY, Liu ZE. Chromosome Three-Dimensional Structure Reconstruction: An Iterative ShRec3D Algorithm. J Comput Biol 2023; 30:575-587. [PMID: 36847350 DOI: 10.1089/cmb.2022.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The three-dimensional (3D) structure of chromosomes is of great significance to ensure that the genome performs various functions (e.g., gene expression) correctly and replicates and separates correctly in mitosis. Since the emergence of Hi-C in 2009, a new experimental technique in molecular biology, researchers have been paying more and more attention to the reconstruction of chromosome 3D structure. To reconstruct the 3D structure of chromosomes based on Hi-C experimental data, many algorithms have been proposed, among which ShRec3D is one of the most outstanding. In this article, an iterative ShRec3D algorithm is presented to greatly improve the native ShRec3D algorithm. Experimental results show that our algorithm can significantly promote the performance of ShRec3D, and this improvement is applicable to almost all data noise range and signal coverage range, so it is universal.
Collapse
Affiliation(s)
- Fang-Zhen Li
- School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China
| | - Xue-Fen Zhang
- College of Smart City, Beijing Union University, Beijing, China
| | - Hui-Ying Cai
- School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China
| | - Ling-Qiang Ran
- School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China
| | - Hai-Yan Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhi-E Liu
- College of Physics and Electronic Engineering, Qilu Normal University, Jinan, China
| |
Collapse
|
244
|
Huang YF, Liu L, Wang F, Yuan XW, Chen HC, Liu ZF. High-Resolution 3D Genome Map of Brucella Chromosomes in Exponential and Stationary Phases. Microbiol Spectr 2023; 11:e0429022. [PMID: 36847551 PMCID: PMC10100373 DOI: 10.1128/spectrum.04290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The three-dimensional (3D) genome structure of an organism or cell is highly relevant to its biological activities, but the availability of 3D genome information for bacteria, especially intracellular pathogens, is still limited. Here, we used Hi-C (high-throughput chromosome conformation capture) technology to determine the 3D chromosome structures of exponential- and stationary-phase Brucella melitensis at a 1-kb resolution. We observed that the contact heat maps of the two B. melitensis chromosomes contain a prominent diagonal and a secondary diagonal. Then, 79 chromatin interaction domains (CIDs) were detected at an optical density at 600 nm (OD600) of 0.4 (exponential phase), with the longest CID being 106 kb and the shortest being 12 kb. Moreover, we obtained 49,363 significant cis-interaction loci and 59,953 significant trans-interaction loci. Meanwhile, 82 CIDs of B. melitensis at an OD600 of 1.5 (stationary phase) were detected, with the longest CID being 94 kb and the shortest being 16 kb. In addition, 25,965 significant cis-interaction loci and 35,938 significant trans-interaction loci were obtained in this phase. Furthermore, we found that as the B. melitensis cells grew from the logarithmic to the plateau phase, the frequency of short-range interactions increased, while that of long-range interactions decreased. Finally, combined analysis of 3D genome and whole-genome transcriptome (RNA-seq) data revealed that the strength of short-range interactions in Chr1 is specifically and strongly correlated with gene expression. Overall, our study provides a global view of the chromatin interactions in the B. melitensis chromosomes, which will serve as a resource for further study of the spatial regulation of gene expression in Brucella. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and in the regulation of gene expression. Three-dimensional genome sequencing has been performed in many mammals and plants, but the availability of such data for bacteria, especially intracellular pathogens, is still limited. Approximately 10% of sequenced bacterial genomes contain more than one replicon. However, how multiple replicons are organized within bacterial cells, how they interact, and whether these interactions help to maintain or segregate these multipartite genomes are unresolved issues. Brucella is a Gram-negative, facultative intracellular, and zoonotic bacterium. Except for Brucella suis biovar 3, Brucella species have two chromosomes. Here, we applied Hi-C technology to determine the 3D genome structures of exponential- and stationary-phase Brucella melitensis chromosomes at a 1-kb resolution. Combined analysis of the 3D genome and RNA-seq data indicated that the strength of short-range interactions in B. melitensis Chr1 is specifically and strongly correlated with gene expression. Our study provides a resource to achieve a deeper understanding of the spatial regulation of gene expression in Brucella.
Collapse
Affiliation(s)
- Yong-Fang Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin-Wei Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
245
|
van der Sande M, Frölich S, van Heeringen SJ. Computational approaches to understand transcription regulation in development. Biochem Soc Trans 2023; 51:1-12. [PMID: 36695505 PMCID: PMC9988001 DOI: 10.1042/bst20210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Gene regulatory networks (GRNs) serve as useful abstractions to understand transcriptional dynamics in developmental systems. Computational prediction of GRNs has been successfully applied to genome-wide gene expression measurements with the advent of microarrays and RNA-sequencing. However, these inferred networks are inaccurate and mostly based on correlative rather than causative interactions. In this review, we highlight three approaches that significantly impact GRN inference: (1) moving from one genome-wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to measure cell type-specific signals and predict context-specific GRNs, and (3) neural networks as flexible models. Together, these experimental and computational developments have the potential to significantly impact the quality of inferred GRNs. Ultimately, accurately modeling the regulatory interactions between transcription factors and their target genes will be essential to understand the role of transcription factors in driving developmental gene expression programs and to derive testable hypotheses for validation.
Collapse
Affiliation(s)
| | | | - Simon J. van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
246
|
Shi Z, Xu J, Niu L, Shen W, Yan S, Tan Y, Quan X, Cheung E, Huang K, Chen Y, Li L, Hou C. Evolutionarily distinct and sperm-specific supersized chromatin loops are marked by Helitron transposons in Xenopus tropicalis. Cell Rep 2023; 42:112151. [PMID: 36827186 DOI: 10.1016/j.celrep.2023.112151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/24/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Transposable elements (TEs) are abundant in metazoan genomes and have multifaceted effects on host fitness. However, the mechanisms underlying the functions of TEs are still not fully understood. Here, we combine Hi-C, ATAC-seq, and ChIP-seq assays to report the existence of multimegabase supersized loop (SSL) clusters in the Xenopus tropicalis sperm. We show that SSL anchors are inaccessible and devoid of the architectural protein CTCF, RNA polymerase II, and modified histones. Nearly all SSL anchors are marked by Helitrons, a class II DNA transposon. Molecular dynamics simulations indicate that SSL clusters are likely formed via a molecular agent-mediated chromatin condensation process. However, only slightly more SSL anchor-associated genes are expressed at late embryo development stages, suggesting that SSL anchors might only function in sperm. Our work shows an evolutionarily distinct and sperm-specific genome structure marked by a subset of Helitrons, whose establishment and function remain to be explored.
Collapse
Affiliation(s)
- Zhaoying Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinsheng Xu
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Longjian Niu
- China State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Shen
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuting Yan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yongjun Tan
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; China State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Edwin Cheung
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; Frontier Science Centre for Precision Oncology of Ministry of Education, University of Macau, Taipa, Macau 999078, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yonglong Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Li Li
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunhui Hou
- China State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
247
|
Boyd RJ, McClymont SA, Barrientos NB, Hook PW, Law WD, Rose RJ, Waite EL, Rathinavelu J, Avramopoulos D, McCallion AS. Evaluating the mouse neural precursor line, SN4741, as a suitable proxy for midbrain dopaminergic neurons. RESEARCH SQUARE 2023:rs.3.rs-2520557. [PMID: 36824793 PMCID: PMC9949168 DOI: 10.21203/rs.3.rs-2520557/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate of disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo , mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable a proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.
Collapse
|
248
|
Heng E, Thanedar S, Heng HH. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes (Basel) 2023; 14:493. [PMID: 36833419 PMCID: PMC9956237 DOI: 10.3390/genes14020493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The powerful utilities of current DNA sequencing technology question the value of developing clinical cytogenetics any further. By briefly reviewing the historical and current challenges of cytogenetics, the new conceptual and technological platform of the 21st century clinical cytogenetics is presented. Particularly, the genome architecture theory (GAT) has been used as a new framework to emphasize the importance of clinical cytogenetics in the genomic era, as karyotype dynamics play a central role in information-based genomics and genome-based macroevolution. Furthermore, many diseases can be linked to elevated levels of genomic variations within a given environment. With karyotype coding in mind, new opportunities for clinical cytogenetics are discussed to integrate genomics back into cytogenetics, as karyotypic context represents a new type of genomic information that organizes gene interactions. The proposed research frontiers include: 1. focusing on karyotypic heterogeneity (e.g., classifying non-clonal chromosome aberrations (NCCAs), studying mosaicism, heteromorphism, and nuclear architecture alteration-mediated diseases), 2. monitoring the process of somatic evolution by characterizing genome instability and illustrating the relationship between stress, karyotype dynamics, and diseases, and 3. developing methods to integrate genomic data and cytogenomics. We hope that these perspectives can trigger further discussion beyond traditional chromosomal analyses. Future clinical cytogenetics should profile chromosome instability-mediated somatic evolution, as well as the degree of non-clonal chromosomal aberrations that monitor the genomic system's stress response. Using this platform, many common and complex disease conditions, including the aging process, can be effectively and tangibly monitored for health benefits.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sanjana Thanedar
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Henry H. Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
249
|
Li K, Chi R, Liu L, Feng M, Su K, Li X, He G, Shi Y. 3D genome-selected microRNAs to improve Alzheimer's disease prediction. Front Neurol 2023; 14:1059492. [PMID: 36860572 PMCID: PMC9968804 DOI: 10.3389/fneur.2023.1059492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a type of neurodegenerative disease that has no effective treatment in its late stage, making the early prediction of AD critical. There have been an increase in the number of studies indicating that miRNAs play an important role in neurodegenerative diseases including Alzheimer's disease via epigenetic modifications including DNA methylation. Therefore, miRNAs may serve as excellent biomarkers in early AD prediction. Methods Considering that the non-coding RNAs' activity may be linked to their corresponding DNA loci in the 3D genome, we collected the existing AD-related miRNAs combined with 3D genomic data in this study. We investigated three machine learning models in this work under leave-one-out cross-validation (LOOCV): support vector classification (SVC), support vector regression (SVR), and knearest neighbors (KNNs). Results The prediction results of different models demonstrated the effectiveness of incorporating 3D genome information into the AD prediction models. Discussion With the assistance of the 3D genome, we were able to train more accurate models by selecting fewer but more discriminatory miRNAs, as witnessed by several ML models. These interesting findings indicate that the 3D genome has great potential to play an important role in future AD research.
Collapse
Affiliation(s)
- Keyi Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Runqiu Chi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Su
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Guang He ✉
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,Yi Shi ✉
| |
Collapse
|
250
|
Zhang L, Wu J, Liang J, Lin R, Sun C, Dai Q, Zhang L, Guo H, Zhao R, Wang X. Conserved noncoding sequences correlate with distant gene contacts in Arabidopsis and Brassica. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36762577 DOI: 10.1111/jipb.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Physical contact between genes distant on chromosomes is a potentially important way for genes to coordinate their expressions. To investigate the potential importance of distant contacts, we performed high-throughput chromatin conformation capture (Hi-C) experiments on leaf nuclei isolated from Brassica rapa and Brassica oleracea. We then combined our results with published Hi-C data from Arabidopsis thaliana. We found that distant genes come into physical contact and do so preferentially between the proximal promoter of one gene and the downstream region of another gene. Genes with higher numbers of conserved noncoding sequences (CNSs) nearby were more likely to have contact with distant genes. With more CNSs came higher numbers of transcription factor binding sites and more histone modifications associated with the activity. In addition, for the genes we studied, distant contacting genes with CNSs were more likely to be transcriptionally coordinated. These observations suggest that CNSs may enrich active histone modifications and recruit transcription factors, correlating with distant contacts to ensure coordinated expression. This study advances our knowledge of gene contacts and provides insights into the relationship between CNSs and distant gene contacts in plants.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Runmao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qirui Dai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lupeng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiling Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|