201
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
202
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
203
|
Liao YZ, Ma J, Dou JZ. The Role of TDP-43 in Neurodegenerative Disease. Mol Neurobiol 2022; 59:4223-4241. [DOI: 10.1007/s12035-022-02847-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
|
204
|
Prieto Huarcaya S, Drobny A, Marques ARA, Di Spiezio A, Dobert JP, Balta D, Werner C, Rizo T, Gallwitz L, Bub S, Stojkovska I, Belur NR, Fogh J, Mazzulli JR, Xiang W, Fulzele A, Dejung M, Sauer M, Winner B, Rose-John S, Arnold P, Saftig P, Zunke F. Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy 2022; 18:1127-1151. [PMID: 35287553 PMCID: PMC9196656 DOI: 10.1080/15548627.2022.2045534] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by the abnormal intracellular accumulation of SNCA/α-synuclein. While the exact mechanisms underlying SNCA pathology are not fully understood, increasing evidence suggests the involvement of autophagy as well as lysosomal deficiencies. Because CTSD (cathepsin D) has been proposed to be the major lysosomal protease involved in SNCA degradation, its deficiency has been linked to the presence of insoluble SNCA conformers in the brain of mice and humans as well as to the transcellular transmission of SNCA aggregates. We here postulate that SNCA degradation can be enhanced by the application of the recombinant human proform of CTSD (rHsCTSD). Our results reveal that rHsCTSD is efficiently endocytosed by neuronal cells, correctly targeted to lysosomes and matured to an enzymatically active protease. In dopaminergic neurons derived from induced pluripotent stem cells (iPSC) of PD patients harboring the A53T mutation within the SNCA gene, we confirm the reduction of insoluble SNCA after treatment with rHsCTSD. Moreover, we demonstrate a decrease of pathological SNCA conformers in the brain and within primary neurons of a ctsd-deficient mouse model after dosing with rHsCTSD. Boosting lysosomal CTSD activity not only enhanced SNCA clearance in human and murine neurons as well as tissue, but also restored endo-lysosome and autophagy function. Our findings indicate that CTSD is critical for SNCA clearance and function. Thus, enzyme replacement strategies utilizing CTSD may also be of therapeutic interest for the treatment of PD and other synucleinopathies aiming to decrease the SNCA burden.Abbreviations: aa: amino acid; SNCA/α-synuclein: synuclein alpha; APP: amyloid beta precursor protein; BBB: blood brain barrier; BF: basal forebrain; CBB: Coomassie Brilliant Blue; CLN: neuronal ceroid lipofuscinosis; CNL10: neuronal ceroid lipofuscinosis type 10; Corr.: corrected; CTSD: cathepsin D; CTSB: cathepsin B; DA: dopaminergic; DA-iPSn: induced pluripotent stem cell-derived dopaminergic neurons; dox: doxycycline; ERT: enzyme replacement therapy; Fx: fornix, GBA/β-glucocerebrosidase: glucosylceramidase beta; h: hour; HC: hippocampus; HT: hypothalamus; i.c.: intracranially; IF: immunofluorescence; iPSC: induced pluripotent stem cell; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LSDs: lysosomal storage disorders; MAPT: microtubule associated protein tau; M6P: mannose-6-phosphate; M6PR: mannose-6-phosphate receptor; MB: midbrain; mCTSD: mature form of CTSD; neurofil.: neurofilament; PD: Parkinson disease; proCTSD: proform of CTSD; PRNP: prion protein; RFU: relative fluorescence units; rHsCTSD: recombinant human proCTSD; SAPC: Saposin C; SIM: structured illumination microscopy; T-insol: Triton-insoluble; T-sol: Triton-soluble; TEM: transmission electron microscopy, TH: tyrosine hydroxylase; Thal: thalamus.
Collapse
Affiliation(s)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), Nova Medical School, Nms, Nova University Lisbon, Lisboa, Portugal
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Joseph R Mazzulli
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| |
Collapse
|
205
|
Profile of Ana Maria Cuervo. Proc Natl Acad Sci U S A 2022; 119:e2204524119. [PMID: 35442777 PMCID: PMC9170057 DOI: 10.1073/pnas.2204524119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
206
|
Xu J, Minobe E, Kameyama M. Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease. Front Cell Neurosci 2022; 16:867385. [PMID: 35496903 PMCID: PMC9050104 DOI: 10.3389/fncel.2022.867385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 12/06/2022] Open
Abstract
Parkinson’s disease (PD), a common neurodegenerative disease characterized by motor dysfunction, results from the death of dopaminergic neurons in the substantia nigra pars compacta (SNc). Although the precise causes of PD are still unknown, several risk factors for PD have been determined, including aging, genetic mutations, environmental factors, and gender. Currently, the molecular mechanisms underlying risk factor-related neurodegeneration in PD remain elusive. Endoplasmic reticulum stress, excessive reactive oxygen species production, and impaired autophagy have been implicated in neuronal death in the SNc in PD. Considering that these pathological processes are tightly associated with intracellular Ca2+, it is reasonable to hypothesize that dysregulation of Ca2+ handling may mediate risk factors-related PD pathogenesis. We review the recent findings on how risk factors cause Ca2+ dyshomeostasis and how aberrant Ca2+ handling triggers dopaminergic neurodegeneration in the SNc in PD, thus putting forward the possibility that manipulation of specific Ca2+ handling proteins and subcellular Ca2+ homeostasis may lead to new promising strategies for PD treatment.
Collapse
|
207
|
Ramalingam M, Jeong HS, Hwang J, Cho HH, Kim BC, Kim E, Jang S. Autophagy Signaling by Neural-Induced Human Adipose Tissue-Derived Stem Cell-Conditioned Medium during Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 23:4193. [PMID: 35457010 PMCID: PMC9031864 DOI: 10.3390/ijms23084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson's disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3β (GSK3β) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3β activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Eungpil Kim
- Jeonnam Biopharmaceutical Research Center, Hwasun 58141, Korea;
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| |
Collapse
|
208
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
209
|
Doyle JM, Croll RP. A Critical Review of Zebrafish Models of Parkinson's Disease. Front Pharmacol 2022; 13:835827. [PMID: 35370740 PMCID: PMC8965100 DOI: 10.3389/fphar.2022.835827] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
A wide variety of human diseases have been modelled in zebrafish, including various types of cancer, cardiovascular diseases and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Recent reviews have summarized the currently available zebrafish models of Parkinson’s Disease, which include gene-based, chemically induced and chemogenetic ablation models. The present review updates the literature, critically evaluates each of the available models of Parkinson’s Disease in zebrafish and compares them with similar models in invertebrates and mammals to determine their advantages and disadvantages. We examine gene-based models, including ones linked to Early-Onset Parkinson’s Disease: PARKIN, PINK1, DJ-1, and SNCA; but we also examine LRRK2, which is linked to Late-Onset Parkinson’s Disease. We evaluate chemically induced models like MPTP, 6-OHDA, rotenone and paraquat, as well as chemogenetic ablation models like metronidazole-nitroreductase. The article also reviews the unique advantages of zebrafish, including the abundance of behavioural assays available to researchers and the efficiency of high-throughput screens. This offers a rare opportunity for assessing the potential therapeutic efficacy of pharmacological interventions. Zebrafish also are very amenable to genetic manipulation using a wide variety of techniques, which can be combined with an array of advanced microscopic imaging methods to enable in vivo visualization of cells and tissue. Taken together, these factors place zebrafish on the forefront of research as a versatile model for investigating disease states. The end goal of this review is to determine the benefits of using zebrafish in comparison to utilising other animals and to consider the limitations of zebrafish for investigating human disease.
Collapse
Affiliation(s)
- Jillian M Doyle
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
210
|
Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells 2022; 11:cells11071205. [PMID: 35406769 PMCID: PMC8997510 DOI: 10.3390/cells11071205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important function that mediates the degradation of intracellular proteins and organelles. Chaperone-mediated autophagy (CMA) degrades selected proteins and has a crucial role in cellular proteostasis under various physiological and pathological conditions. CMA dysfunction leads to the accumulation of toxic protein aggregates in the central nervous system (CNS) and is involved in the pathogenic process of neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s disease. Previous studies have suggested that the activation of CMA to degrade aberrant proteins can provide a neuroprotective effect in the CNS. Recent studies have shown that CMA activity is upregulated in damaged neural tissue following acute neurological insults, such as cerebral infarction, traumatic brain injury, and spinal cord injury. It has been also suggested that various protein degradation mechanisms are important for removing toxic aberrant proteins associated with secondary damage after acute neurological insults in the CNS. Therefore, enhancing the CMA pathway may induce neuroprotective effects not only in neurogenerative diseases but also in acute neurological insults. We herein review current knowledge concerning the biological mechanisms involved in CMA and highlight the role of CMA in neurodegenerative diseases and acute neurological insults. We also discuss the possibility of developing CMA-targeted therapeutic strategies for effective treatments.
Collapse
|
211
|
Palma JA, Martinez J, Millar Vernetti P, Ma T, Perez MA, Zhong J, Qian Y, Dutta S, Maina KN, Siddique I, Bitan G, Ades-Aron B, Shepherd TM, Kang UJ, Kaufmann H. mTOR Inhibition with Sirolimus in Multiple System Atrophy: A Randomized, Double-Blind, Placebo-Controlled Futility Trial and 1-Year Biomarker Longitudinal Analysis. Mov Disord 2022; 37:778-789. [PMID: 35040506 PMCID: PMC9018525 DOI: 10.1002/mds.28923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a fatal neurodegenerative disease characterized by the aggregation of α-synuclein in glia and neurons. Sirolimus (rapamycin) is an mTOR inhibitor that promotes α-synuclein autophagy and reduces its associated neurotoxicity in preclinical models. OBJECTIVE To investigate the efficacy and safety of sirolimus in patients with MSA using a futility design. We also analyzed 1-year biomarker trajectories in the trial participants. METHODS Randomized, double-blind, parallel group, placebo-controlled clinical trial at the New York University of patients with probable MSA randomly assigned (3:1) to sirolimus (2-6 mg daily) for 48 weeks or placebo. Primary endpoint was change in the Unified MSA Rating Scale (UMSARS) total score from baseline to 48 weeks. (ClinicalTrials.gov NCT03589976). RESULTS The trial was stopped after a pre-planned interim analysis met futility criteria. Between August 15, 2018 and November 15, 2020, 54 participants were screened, and 47 enrolled and randomly assigned (35 sirolimus, 12 placebo). Of those randomized, 34 were included in the intention-to-treat analysis. There was no difference in change from baseline to week 48 between the sirolimus and placebo in UMSARS total score (mean difference, 2.66; 95% CI, -7.35-6.91; P = 0.648). There was no difference in UMSARS-1 and UMSARS-2 scores either. UMSARS scores changes were similar to those reported in natural history studies. Neuroimaging and blood biomarker results were similar in the sirolimus and placebo groups. Adverse events were more frequent with sirolimus. Analysis of 1-year biomarker trajectories in all participants showed that increases in blood neurofilament light chain (NfL) and reductions in whole brain volume correlated best with UMSARS progression. CONCLUSIONS Sirolimus for 48 weeks was futile to slow the progression of MSA and had no effect on biomarkers compared to placebo. One-year change in blood NfL and whole brain atrophy are promising biomarkers of disease progression for future clinical trials. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jose Martinez
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Thong Ma
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Miguel A. Perez
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Judy Zhong
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yingzhi Qian
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York, NY, USA
| | - Suman Dutta
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine N. Maina
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Brain Research Institute, University of California, Los Angeles, CA, USA,Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Benjamin Ades-Aron
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Timothy M. Shepherd
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Un Jung Kang
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
212
|
Arotcarena M, Soria FN, Cunha A, Doudnikoff E, Prévot G, Daniel J, Blanchard‐Desce M, Barthélémy P, Bezard E, Crauste‐Manciet S, Dehay B. Acidic nanoparticles protect against α-synuclein-induced neurodegeneration through the restoration of lysosomal function. Aging Cell 2022; 21:e13584. [PMID: 35318803 PMCID: PMC9009122 DOI: 10.1111/acel.13584] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is an age‐related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, associated with the accumulation of misfolded α‐synuclein and lysosomal impairment, two events deemed interconnected. Protein aggregation is linked to defects in degradation systems such as the autophagy‐lysosomal pathway, while lysosomal dysfunction is partly related to compromised acidification. We have recently proven that acidic nanoparticles (aNPs) can re‐acidify lysosomes and ameliorate neurotoxin‐mediated dopaminergic neurodegeneration in mice. However, no lysosome‐targeted approach has yet been tested in synucleinopathy models in vivo. Here, we show that aNPs increase α‐synuclein degradation through enhancing lysosomal activity in vitro. We further demonstrate in vivo that aNPs protect nigral dopaminergic neurons from cell death, ameliorate α‐synuclein pathology, and restore lysosomal function in mice injected with PD patient‐derived Lewy body extracts carrying toxic α‐synuclein aggregates. Our results support lysosomal re‐acidification as a disease‐modifying strategy for the treatment of PD and other age‐related proteinopathies.
Collapse
Affiliation(s)
| | - Federico N. Soria
- Univ. Bordeaux CNRS IMN UMR 5293 Bordeaux France
- Achucarro Basque Center for Neuroscience Dpto. Neurociencias Universidad del País Vasco (UPV/EHU) Leioa Spain
| | - Anthony Cunha
- Univ. Bordeaux CNRS IMN UMR 5293 Bordeaux France
- Université de Bordeaux INSERM U1212 CNRS UMR 5320 ARNA ARN: Régulations Naturelle et Artificielle ChemBioPharm Bordeaux France
| | | | - Geoffrey Prévot
- Univ. Bordeaux CNRS IMN UMR 5293 Bordeaux France
- Université de Bordeaux INSERM U1212 CNRS UMR 5320 ARNA ARN: Régulations Naturelle et Artificielle ChemBioPharm Bordeaux France
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York New York USA
| | - Jonathan Daniel
- Université de Bordeaux Institut des Sciences Moléculaires CNRS UMR 5255 Talence France
| | | | - Philippe Barthélémy
- Université de Bordeaux INSERM U1212 CNRS UMR 5320 ARNA ARN: Régulations Naturelle et Artificielle ChemBioPharm Bordeaux France
| | - Erwan Bezard
- Univ. Bordeaux CNRS IMN UMR 5293 Bordeaux France
| | - Sylvie Crauste‐Manciet
- Université de Bordeaux INSERM U1212 CNRS UMR 5320 ARNA ARN: Régulations Naturelle et Artificielle ChemBioPharm Bordeaux France
| | | |
Collapse
|
213
|
Rakowski M, Porębski S, Grzelak A. Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23073625. [PMID: 35408992 PMCID: PMC8998447 DOI: 10.3390/ijms23073625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dietary supplements and nutraceuticals have entered the mainstream. Especially in the media, they are strongly advertised as safe and even recommended for certain diseases. Although they may support conventional therapy, sometimes these substances can have unexpected side effects. This review is particularly focused on the modulation of autophagy by selected vitamins and nutraceuticals, and their relevance in the treatment of neurodegenerative diseases, especially Parkinson’s disease (PD). Autophagy is crucial in PD; thus, the induction of autophagy may alleviate the course of the disease by reducing the so-called Lewy bodies. Hence, we believe that those substances could be used in prevention and support of conventional therapy of neurodegenerative diseases. This review will shed some light on their ability to modulate the autophagy.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
- Correspondence:
| | - Szymon Porębski
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| | - Agnieszka Grzelak
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| |
Collapse
|
214
|
Chung LYR, Lin YT, Liu C, Tai YC, Lin HY, Lin CH, Chen CC. Neuroinflammation Upregulated Neuronal Toll-Like Receptors 2 and 4 to Drive Synucleinopathy in Neurodegeneration. Front Pharmacol 2022; 13:845930. [PMID: 35401198 PMCID: PMC8987529 DOI: 10.3389/fphar.2022.845930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Parkinson’s disease (PD) is characterized by intraneuronal α-synuclein aggregation called Lewy bodies and progressive dopaminergic neurodegeneration. Toll-like receptor (TLR) signaling is a major pathway mediating inflammation. The molecular link on how neuroinflammation upregulates neuronal TLRs and induces accumulation of α-synuclein aggregates to drive synucleinopathy remains to be determined. Objective: Despite conditioned medium from microglia and TLR agonists were utilized to study their effects on neuronal cells, a Transwell coculture system, comprising lipopolysaccharide-activated microglia on top and retinoic acid-differentiated SH-SY5Y cells at the bottom more mimicking in vivo neuroinflammation, was employed to elucidate the mechanism of activated microglia on neuronal cells. Methods: Genetic variants of TLRs in PD patients were genotyped and the multiplex cytokines, sRAGE, and HMGB1were assessed. A coculture system was employed to measure α-synuclein aggregates and neurite shortening by confocal microscope. The expression of TLR2/4 and autophagy flux was detected by western blot and immunofluorescence. Results: PD patients showed higher plasma levels of proinflammatory cytokines and genetic TLR4 variant, c.896 A > G (p. D299G). Elevated proinflammatory cytokines in coculture medium was also seen. Phosphorylation and aggregation of α-synuclein, shortening of neurite, upregulation of TLR2/4 expression, activation of downstream p38 and JNK, and dampening of autophagic flux were seen in SH-SY5Y cells cocultured with activated microglia. Those were prevented by inhibiting TLR2/4 and p38/JNK signaling. Conclusion: Activated microglia-derived neuroinflammation induced neuronal TLR2/4-p38/JNK activation to perturb autophagy, causing accumulation of α-synuclein aggregates and neurite shortening. Targeting neuronal TLR2/4 pathway might be a mechanistic-based therapy for neurodegenerative disease, such as PD.
Collapse
Affiliation(s)
- Lucia Yi-Ru Chung
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi Liu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Tai
- Department of Neurology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Ching-Chow Chen, ; Chin-Hsien Lin,
| | - Ching-Chow Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ching-Chow Chen, ; Chin-Hsien Lin,
| |
Collapse
|
215
|
Kim BS, Song JA, Jang KH, Jang T, Jung B, Yoo SE, Lee JM, Kim E. Pharmacological Intervention Targeting FAF1 Restores Autophagic Flux for α-Synuclein Degradation in the Brain of a Parkinson's Disease Mouse Model. ACS Chem Neurosci 2022; 13:806-817. [PMID: 35230076 DOI: 10.1021/acschemneuro.1c00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
α-Synuclein accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Previously, we reported that Fas-associated factor 1 (FAF1), which plays a role in PD pathogenesis, potentiates α-synuclein accumulation through autophagy impairment in dopaminergic neurons. In this study, we show that KM-819, a FAF1-targeting compound, which has completed phase I clinical trials, interferes with α-synuclein accumulation in the mouse brain, as well as in human neuronal cells (SH-SY5Ys). KM-819 suppressed the accumulation of monomeric, oligomeric, and aggregated forms of α-synuclein in neuronal cells. Furthermore, KM-819 restored the turnover rate of α-synuclein in FAF1-overexpressing SH-SY5Y cells, implicating KM-819-mediated reconstitution of the α-synuclein degradative pathway. In addition, KM-819 reconstituted autophagic flux in FAF1-transfected SH-SY5Y cells, also suppressing α-synuclein-induced mitochondrial dysfunction. Moreover, oral administration of KM-819 also interfered with α-synuclein accumulation in the midbrain of mice overexpressing FAF1 via an adeno-associated virus system. Consistently, KM-819 reduced α-synuclein accumulation in both the hippocampus and the midbrain of human A53T α-synuclein transgenic mice. Collectively, these data imply that KM-819 may have therapeutic potential for patients with PD.
Collapse
Affiliation(s)
- Bok-Seok Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-A Song
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ki-Hong Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Taeik Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Bumjun Jung
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | | | | | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
216
|
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110:935-966. [PMID: 35134347 PMCID: PMC8930707 DOI: 10.1016/j.neuron.2022.01.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Motoki Fujimaki
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Sung Min Son
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
217
|
Zeng Q, Cui M. Current Progress in the Development of Probes for Targeting α-Synuclein Aggregates. ACS Chem Neurosci 2022; 13:552-571. [PMID: 35167269 DOI: 10.1021/acschemneuro.1c00877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein aggregates abnormally into intracellular inclusions in Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and many other neurological disorders, closely connecting with their pathogenesis. The accurate tracking of α-synuclein by targeting probes is of great significance for early diagnosis, disease monitoring, and drug development. However, there have been no promising α-synuclein targeting probes for clinical application reported so far. This overview focuses on various potential α-synuclein targeting probes reported in the past two decades, including small-molecule fluorescent probes and radiolabeled probes. We provide the current status of the development of the small molecular α-synuclein imaging probes, including properties of promising imaging molecules, strategies of processing new probes, limited progress, and growth prospects in this field, expecting to help in the further development of α-synuclein targeting probes.
Collapse
Affiliation(s)
- Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
218
|
Beger AW, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Pilot Analysis of the Basal Ganglia Sphingolipidome in Parkinson’s Disease and Lewy Body Disease. Metabolites 2022; 12:metabo12020187. [PMID: 35208260 PMCID: PMC8875811 DOI: 10.3390/metabo12020187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids constitute a complex class of bioactive lipids with diverse structural and functional roles in neural tissue. Lipidomic techniques continue to provide evidence for their association in neurological diseases, including Parkinson’s disease (PD) and Lewy body disease (LBD). However, prior studies have primarily focused on biological tissues outside of the basal ganglia, despite the known relevancy of this brain region in motor and cognitive dysfunction associated with PD and LBD. Therefore electrospray ionization high resolution mass spectrometry was used to analyze levels of sphingolipid species, including ceramides (Cer), dihydroceramides (DHC), hydoxyceramides (OH-Cer), phytoceramides (Phyto-Cer), phosphoethanolamine ceramides (PE-Cer), sphingomyelins (SM), and sulfatides (Sulf) in the caudate, putamen and globus pallidus of PD (n = 7) and LBD (n = 14) human subjects and were compared to healthy controls (n = 9). The most dramatic alterations were seen in the putamen, with depletion of Cer and elevation of Sulf observed in both groups, with additional depletion of OH-Cer and elevation of DHC identified in LBD subjects. Diverging levels of DHC in the caudate suggest differing roles of this lipid in PD and LBD pathogenesis. These sphingolipid alterations in PD and LBD provide evidence for biochemical involvement of the neuronal cell death that characterize these conditions.
Collapse
Affiliation(s)
- Aaron W. Beger
- Anatomy Department, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
- Correspondence:
| | - Beatrix Dudzik
- Anatomy Department, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| |
Collapse
|
219
|
Sepúlveda D, Cisternas-Olmedo M, Arcos J, Nassif M, Vidal RL. Contribution of Autophagy-Lysosomal Pathway in the Exosomal Secretion of Alpha-Synuclein and Its Impact in the Progression of Parkinson’s Disease. Front Mol Neurosci 2022; 15:805087. [PMID: 35250476 PMCID: PMC8891570 DOI: 10.3389/fnmol.2022.805087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is caused by the degeneration of dopaminergic neurons due to an accumulation of intraneuronal abnormal alpha-synuclein (α-syn) protein aggregates. It has been reported that the levels of exosomal α-syn of neuronal origin in plasma correlate significantly with motor dysfunction, highlighting the exosomes containing α-syn as a potential biomarker of PD. In addition, it has been found that the selective autophagy-lysosomal pathway (ALP) contributes to the secretion of misfolded proteins involved in neurodegenerative diseases. In this review, we describe the evidence that supports the relationship between the ALP and α-syn exosomal secretion on the PD progression and its implications in the diagnosis and progression of this pathology.
Collapse
Affiliation(s)
- Denisse Sepúlveda
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Marisol Cisternas-Olmedo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - René L. Vidal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- *Correspondence: René L. Vidal,
| |
Collapse
|
220
|
Cui M, Yoshimori T, Nakamura S. Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochem Int 2022; 155:105308. [PMID: 35181396 DOI: 10.1016/j.neuint.2022.105308] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionally conserved process by which cytoplasmic contents including protein aggregates and damaged organelles such as mitochondria and lysosomes, are sequestered by double-membrane structure, autophagosomes, and delivered to the lysosomes for degradation. Recently, considerable efforts have been made to reveal the role of autophagy in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease. Impairment of autophagy aggravates the accumulation of misfolded protein and damaged organelles in neurons, while sufficient autophagic activity reduces such accumulation in nervous system and ameliorates the pathology. Here we summarize recent progress regarding the role of autophagy in several neurodegenerative diseases and the potential autophagy-associated therapies for them.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan.
| |
Collapse
|
221
|
Chang EES, Ho PWL, Liu HF, Pang SYY, Leung CT, Malki Y, Choi ZYK, Ramsden DB, Ho SL. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Transl Neurodegener 2022; 11:10. [PMID: 35152914 PMCID: PMC8842874 DOI: 10.1186/s40035-022-00285-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are one of the most frequent genetic causes of both familial and sporadic Parkinson's disease (PD). Mounting evidence has demonstrated pathological similarities between LRRK2-associated PD (LRRK2-PD) and sporadic PD, suggesting that LRRK2 is a potential disease modulator and a therapeutic target in PD. LRRK2 mutant knock-in (KI) mouse models display subtle alterations in pathological aspects that mirror early-stage PD, including increased susceptibility of nigrostriatal neurotransmission, development of motor and non-motor symptoms, mitochondrial and autophagy-lysosomal defects and synucleinopathies. This review provides a rationale for the use of LRRK2 KI mice to investigate the LRRK2-mediated pathogenesis of PD and implications from current findings from different LRRK2 KI mouse models, and ultimately discusses the therapeutic potentials against LRRK2-associated pathologies in PD.
Collapse
Affiliation(s)
- Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
222
|
Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, Hutten SJ, Alcalay RN, Kim S, Ximénez-Embún P, Fan L, Kim D, Ko HS, Yacoubian T, Kanter E, Liu L, Tang G, Muñoz J, Sardi SP, Li A, Gan L, Cuervo AM, Sulzer D. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. SCIENCE ADVANCES 2022; 8:eabm6393. [PMID: 35138901 PMCID: PMC11809618 DOI: 10.1126/sciadv.abm6393] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The most common genetic risk factors for Parkinson's disease (PD) are a set of heterozygous mutant (MT) alleles of the GBA1 gene that encodes β-glucocerebrosidase (GCase), an enzyme normally trafficked through the ER/Golgi apparatus to the lysosomal lumen. We found that half of the GCase in lysosomes from postmortem human GBA-PD brains was present on the lysosomal surface and that this mislocalization depends on a pentapeptide motif in GCase used to target cytosolic protein for degradation by chaperone-mediated autophagy (CMA). MT GCase at the lysosomal surface inhibits CMA, causing accumulation of CMA substrates including α-synuclein. Single-cell transcriptional analysis and proteomics of brains from GBA-PD patients confirmed reduced CMA activity and proteome changes comparable to those in CMA-deficient mouse brain. Loss of the MT GCase CMA motif rescued primary substantia nigra dopaminergic neurons from MT GCase-induced neuronal death. We conclude that MT GBA1 alleles block CMA function and produce α-synuclein accumulation.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Biochemistry and Molecular Biology, Universidad de Cordoba, Cordoba, Spain
| | - Melody M. Cheng
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ming-Kai Pan
- Department of Neurology, Columbia University , New York, NY 10032, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ori J. Lieberman
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Samantha J. Hutten
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roy N. Alcalay
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Sangjun Kim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), ProteoRed-ISCIII, Madrid, Spain
| | - Li Fan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Donghoon Kim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Han Seok Ko
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Talene Yacoubian
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ellen Kanter
- Departments of Psychiatry and Pharmacology, Columbia University , New York, NY 10032, USA
| | - Ling Liu
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), ProteoRed-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Aiqun Li
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Sulzer
- Department of Neurology, Columbia University , New York, NY 10032, USA
- Departments of Psychiatry and Pharmacology, Columbia University , New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
223
|
Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson's disease. Sci Rep 2022; 12:2038. [PMID: 35132125 PMCID: PMC8821705 DOI: 10.1038/s41598-022-05941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and autophagy-related genes have been proposed as biomolecules of interest related to idiopathic Parkinson’s disease (PD). The objective of this study was to determine the IGF2 and IGF1 levels in plasma and peripheral blood mononuclear cells (PBMCs) from patients with moderately advanced PD and explore the potential correlation with autophagy-related genes in the same blood samples. IGF1 and IGF2 levels in patients' plasma were measured by ELISA, and the IGF2 expression levels were determined by real-time PCR and Western blot in PBMCs. The expression of autophagy-related genes was evaluated by real-time PCR. The results show a significant decrease in IGF2 plasma levels in PD patients compared with a healthy control group. We also report a dramatic decrease in IGF2 mRNA and protein levels in PBMCs from PD patients. In addition, we observed a downregulation of key components of the initial stages of the autophagy process. Although IGF2 levels were not directly correlated with disease severity, we found a correlation between its levels and autophagy gene profile expression in a sex-dependent pattern from the same samples. To further explore this correlation, we treated mice macrophages cell culture with α-synuclein and IGF2. While α-synuclein treatment decreased levels Atg5, IGF2 treatment reverted these effects, increasing Atg5 and Beclin1 levels. Our results suggest a relationship between IGF2 levels and the autophagy process in PD and their potential application as multi-biomarkers to determine PD patients' stages of the disease.
Collapse
|
224
|
Kawahata I, Fukunaga K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J Pharmacol Sci 2022; 148:248-254. [DOI: 10.1016/j.jphs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
|
225
|
Pang SYY, Lo RCN, Ho PWL, Liu HF, Chang EES, Leung CT, Malki Y, Choi ZYK, Wong WY, Kung MHW, Ramsden DB, Ho SL. LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson's disease. Transl Neurodegener 2022; 11:5. [PMID: 35101134 PMCID: PMC8805403 DOI: 10.1186/s40035-022-00281-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA) represent two most common genetic causes of Parkinson’s disease (PD). Both genes are important in the autophagic-lysosomal pathway (ALP), defects of which are associated with α-synuclein (α-syn) accumulation. LRRK2 regulates macroautophagy via activation of the mitogen activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) kinase (MEK) and the calcium-dependent adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways. Phosphorylation of Rab GTPases by LRRK2 regulates lysosomal homeostasis and endosomal trafficking. Mutant LRRK2 impairs chaperone-mediated autophagy, resulting in α-syn binding and oligomerization on lysosomal membranes. Mutations in GBA reduce glucocerebrosidase (GCase) activity, leading to glucosylceramide accumulation, α-syn aggregation and broad autophagic abnormalities. LRRK2 and GBA influence each other: GCase activity is reduced in LRRK2 mutant cells, and LRRK2 kinase inhibition can alter GCase activity in GBA mutant cells. Clinically, LRRK2 G2019S mutation seems to modify the effects of GBA mutation, resulting in milder symptoms than those resulting from GBA mutation alone. However, dual mutation carriers have an increased risk of PD and earlier age of onset compared with single mutation carriers, suggesting an additive deleterious effect on the initiation of PD pathogenic processes. Crosstalk between LRRK2 and GBA in PD exists, but its exact mechanism is unclear. Drugs that inhibit LRRK2 kinase or activate GCase are showing efficacy in pre-clinical models. Since LRRK2 kinase and GCase activities are also altered in idiopathic PD (iPD), it remains to be seen if these drugs will be useful in disease modification of iPD.
Collapse
|
226
|
Abstract
The notion that autoimmune responses to α-synuclein may be involved in the pathogenesis of this disorder stems from reports that mutations in α-synuclein or certain alleles of the major histocompatibility complex (MHC) are associated with the disease and that dopaminergic and norepinephrinergic neurons in the midbrain can present antigenic epitopes. Here, we discuss recent evidence that a defined set of peptides derived from α-synuclein act as antigenic epitopes displayed by specific MHC alleles and drive helper and cytotoxic T cell responses in patients with PD. Moreover, phosphorylated α-synuclein may activate T cell responses in a less restricted manner in PD. While the roles for the acquired immune system in disease pathogenesis remain unknown, preclinical animal models and in vitro studies indicate that T cells may interact with neurons and exert effects related to neuronal death and neuroprotection. These findings suggest that therapeutics that target T cells and ameliorate the incidence or disease severity of inflammatory bowel disorders or CNS autoimmune diseases such as multiple sclerosis may be useful in PD.
Collapse
|
227
|
Marino G, Calabresi P, Ghiglieri V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:153-166. [PMID: 35034731 DOI: 10.1016/b978-0-12-819410-2.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alpha-synuclein (α-synuclein) is a small, acidic protein containing 140 amino acids, highly expressed in the brain and primarily localized in the presynaptic terminals. It is found in high concentrations in Lewy Bodies, proteinaceous aggregates that constitute a typical histopathologic hallmark of Parkinson's disease. Altered environmental conditions, genetic mutations and post-translational changes can trigger abnormal aggregation processes with the increased frequency of oligomers, protofibrils, and fibrils formation that perturbs the neuronal homeostasis leading to cell death. Relevant to neuronal activity, a function of α-synuclein that has been extensively detailed is its regulatory actions in the trafficking of synaptic vesicles, including the processes of exocytosis, endocytosis and neurotransmitter release. Most recently, increasing attention has been paid to the possible role that α-synuclein plays at a postsynaptic level by interacting with selective subunits of the glutamate N-methyl-d-aspartate receptor, altering the corticostriatal plasticity of distinct neuronal populations.
Collapse
Affiliation(s)
- Gioia Marino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
228
|
Le S, Fu X, Pang M, Zhou Y, Yin G, Zhang J, Fan D. The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technol Cancer Res Treat 2022; 21:15330338221114178. [PMID: 36131551 PMCID: PMC9500268 DOI: 10.1177/15330338221114178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) plays an important role in regulating a variety of cellular functions by selectively degrading damaged or functional proteins in the cytoplasm. One of the cellular processes in which CMA participates is the oxidative stress response. Oxidative stress regulates CMA activity, while CMA protects cells from oxidative damage by degrading oxidized proteins and preventing the accumulation of excessive reactive oxygen species (ROS). Changes in CMA activity have been found in many human diseases, and oxidative stress is also involved. Therefore, understanding the interaction mechanism of ROS and CMA will provide new targets for disease treatment. In this review, we discuss the role of CMA in combatting oxidative stress during the development of different conditions, such as aging, neurodegeneration, liver diseases, infections, pulmonary disorders, and cancers.
Collapse
Affiliation(s)
- Shuangshuang Le
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Xin Fu
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Maogui Pang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Yao Zhou
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Guoqing Yin
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Jie Zhang
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Daiming Fan
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| |
Collapse
|
229
|
Yang J, Zhang W, Zhang S, Iyaswamy A, Sun J, Wang J, Yang C. Novel Insight into Functions of Transcription Factor EB (TFEB) in Alzheimer’s Disease and Parkinson’s Disease. Aging Dis 2022; 14:652-669. [PMID: 37191408 DOI: 10.14336/ad.2022.0927] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/27/2022] [Indexed: 03/31/2023] Open
Abstract
A key pathological feature of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) is the accumulation of aggregated and misfolded protein aggregates with limited effective therapeutic agents. TFEB (transcription factor EB), a key regulator of lysosomal biogenesis and autophagy, plays a pivotal role in the degradation of protein aggregates and has thus been regarded as a promising therapeutic target for these NDs. Here, we systematically summarize the molecular mechanisms and function of TFEB regulation. We then discuss the roles of TFEB and autophagy-lysosome pathways in major neurodegenerative diseases including AD and PD. Finally, we illustrate small molecule TFEB activators with protective roles in NDs animal models, which show great potential for being further developed into novel anti-neurodegenerative agents. Overall, targeting TFEB for enhancing lysosomal biogenesis and autophagy may represent a promising opportunity for the discovery of disease-modifying therapeutics for neurodegenerative disorders though more in-depth basic and clinical studies are required in the future.
Collapse
|
230
|
Francelle L, Mazzulli JR. Neuroinflammation in aucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson’s disease. Brain Res 2022; 1780:147798. [PMID: 35063468 PMCID: PMC9126024 DOI: 10.1016/j.brainres.2022.147798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases (LSDs) are rare genetic disorders caused by a disruption in cellular clearance, resulting in pathological storage of undegraded lysosomal substrates. Recent clinical and genetic studies have uncovered links between multiple LSDs and common neurodegenerative diseases such as Parkinson's disease (PD). Here, we review recent literature describing the role of glia cells and neuroinflammation in PD and LSDs, including Gaucher disease (GD) and neuronal ceroid lipofuscinosis (NCL), and highlight converging inflammation pathways that lead to neuron loss. Recent data indicates that lysosomal dysfunction and accumulation of storage materials can initiate the activation of glial cells, through interaction with cell surface or cytosolic pattern recognition receptors that detect pathogenic aggregates of cellular debris. Activated glia cells could act to protect neurons through the elimination of toxic protein or lipid aggregates early in the disease process. However prolonged glial activation that occurs over several decades in chronic-age related neurodegeneration could induce the inappropriate elimination of synapses, leading to neuron loss. These studies provide mechanistic insight into the relationship between lysosomal dysfunction and glial activation, and offer novel therapeutic pathways for the treatment of PD and LSDs focused on reducing neuroinflammation and mitigating cell loss.
Collapse
|
231
|
Petese A, Cesaroni V, Cerri S, Blandini F. Are Lysosomes Potential Therapeutic Targets for Parkinson's Disease? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:642-655. [PMID: 34370650 DOI: 10.2174/1871527320666210809123630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Parkinson´s Disease (PD) is the second most common neurodegenerative disorder, affecting ~2-3% of the population over 65 years old. In addition to progressive degeneration of nigrostriatal neurons, the histopathological feature of PD is the accumulation of misfolded α-synuclein protein in abnormal cytoplasmatic inclusions, known as Lewy Bodies (LBs). Recently, Genome-Wide Association Studies (GWAS) have indicated a clear association of variants within several lysosomal genes with risk for PD. Newly evolving data have been shedding light on the relationship between lysosomal dysfunction and alpha-synuclein aggregation. Defects in lysosomal enzymes could lead to the insufficient clearance of neurotoxic protein materials, possibly leading to selective degeneration of dopaminergic neurons. Specific modulation of lysosomal pathways and their components could be considered a novel opportunity for therapeutic intervention for PD. The purpose of this review is to illustrate lysosomal biology and describe the role of lysosomal dysfunction in PD pathogenesis. Finally, the most promising novel therapeutic approaches designed to modulate lysosomal activity, as a potential disease-modifying treatment for PD will be highlighted.
Collapse
Affiliation(s)
- Alessandro Petese
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Cesaroni
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
232
|
Grosso Jasutkar H, Oh SE, Mouradian MM. Therapeutics in the Pipeline Targeting α-Synuclein for Parkinson's Disease. Pharmacol Rev 2022; 74:207-237. [PMID: 35017177 PMCID: PMC11034868 DOI: 10.1124/pharmrev.120.000133] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and the fastest growing neurologic disease in the world, yet no disease-modifying therapy is available for this disabling condition. Multiple lines of evidence implicate the protein α-synuclein (α-Syn) in the pathogenesis of PD, and as such, there is intense interest in targeting α-Syn for potential disease modification. α-Syn is also a key pathogenic protein in other synucleionpathies, most commonly dementia with Lewy bodies. Thus, therapeutics targeting this protein will have utility in these disorders as well. Here we discuss the various approaches that are being investigated to prevent and mitigate α-Syn toxicity in PD, including clearing its pathologic aggregates from the brain using immunization strategies, inhibiting its misfolding and aggregation, reducing its expression level, enhancing cellular clearance mechanisms, preventing its cell-to-cell transmission within the brain and perhaps from the periphery, and targeting other proteins associated with or implicated in PD that contribute to α-Syn toxicity. We also discuss the therapeutics in the pipeline that harness these strategies. Finally, we discuss the challenges and opportunities for the field in the discovery and development of therapeutics for disease modification in PD. SIGNIFICANCE STATEMENT: PD is the second most common neurodegenerative disorder, for which disease-modifying therapies remain a major unmet need. A large body of evidence points to α-synuclein as a key pathogenic protein in this disease as well as in dementia with Lewy bodies, making it of leading therapeutic interest. This review discusses the various approaches being investigated and progress made to date toward discovering and developing therapeutics that would slow and stop progression of these disabling diseases.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Stephanie E Oh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
233
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021. [PMID: 34674795 PMCID: PMC8728543 DOI: 10.5483/bmbrep.2021.54.12.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
234
|
Cui H, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase acts as a link between chaperone-mediated autophagy and macroautophagy. Biochem Pharmacol 2021; 197:114899. [PMID: 34968496 DOI: 10.1016/j.bcp.2021.114899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023]
Abstract
The accumulation of aggregated α-synuclein (α-syn) has been identified as the primary component of Lewy bodies that are the pathological hallmarks of Parkinson's disease (PD). Several preclinical studies have shown α-syn aggregation, and particularly the intermediates formed during the aggregation process to be toxic to cells. Current PD treatments only provide symptomatic relief, and α-syn serves as a promising target to develop a disease-modifying therapy for PD. Our previous studies have revealed that a small-molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, increases α-syn degradation by accelerating macroautophagy (MA) leading to disease-modifying effects in preclinical PD models. However, α-syn is also degraded by chaperone-mediated autophagy (CMA). In the present study, we tested the effects of PREP inhibition or deletion on CMA activation and α-syn degradation. HEK-293 cells were transfected with α-syn and incubated with 1 & 10 µM KYP-2047 for 24 h. Both 1 & 10 µM KYP-2047 increased LAMP-2A levels, induced α-syn degradation and reduced the expression of Hsc70, suggesting that the PREP inhibitor prevented α-syn aggregation by activating the CMA pathway. Similarly, KYP-2047 increased the LAMP-2A immunoreactivity and reduced the Hsc70 levels in mouse primary cortical neurons. When LAMP-2A was silenced by a siRNA, KYP-2047 increased the LC3BII/LC3BI ratio and accelerated the clearance of α-syn. Additionally, KYP-2047 induced CMA effectively also when MA was blocked by bafilomycin A1. Based on our results, we suggest that PREP might function as a core network node in MA-CMA crosstalk, and PREP inhibition can reduce α-syn levels via both main autophagy systems.
Collapse
Affiliation(s)
- H Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Finland
| | - S Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Finland
| | - T T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
235
|
Riera-Tur I, Schäfer T, Hornburg D, Mishra A, da Silva Padilha M, Fernández-Mosquera L, Feigenbutz D, Auer P, Mann M, Baumeister W, Klein R, Meissner F, Raimundo N, Fernández-Busnadiego R, Dudanova I. Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity. Life Sci Alliance 2021; 5:5/3/e202101185. [PMID: 34933920 PMCID: PMC8711852 DOI: 10.26508/lsa.202101185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023] Open
Abstract
Using cryo-ET, cell biology, and proteomics, this study shows that aggregating proteins impair the autophagy-lysosomal pathway in neurons by sequestering a subunit of the AP-3 adaptor complex. The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like β-sheet proteins (β proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, β proteins interact with and sequester AP-3 μ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3μ1 expression ameliorates neurotoxicity caused by β proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.
Collapse
Affiliation(s)
- Irene Riera-Tur
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Tillman Schäfer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Experimental Systems Immunology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Archana Mishra
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Miguel da Silva Padilha
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Lorena Fernández-Mosquera
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dennis Feigenbutz
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Patrick Auer
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology Group, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany .,Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Irina Dudanova
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany .,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
236
|
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells 2021; 10:3547. [PMID: 34944054 PMCID: PMC8700067 DOI: 10.3390/cells10123547] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
237
|
Vijiaratnam N, Foltynie T. Disease modifying therapies III: Novel targets. Neuropharmacology 2021; 201:108839. [PMID: 34656651 DOI: 10.1016/j.neuropharm.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Despite significant research advances, treatment of Parkinson's disease (PD) remains confined to symptomatic therapies. Approaches aiming to halt or reverse disease progression remain an important but unmet goal. A growing understanding of disease pathogenesis and the identification of novel pathways contributing to initiation of neurodegeneration and subsequent progression has highlighted a range of potential novel targets for intervention that may influence the rate of progression of the disease process. Exploiting techniques to stratify patients according to these targets alongside using them as biomarkers to measure target engagement will likely improve patient selection and preliminary outcome measurements in clinical trials. In this review, we summarize a number of PD-related mechanisms that have recently gained interest such as neuroinflammation, lysosomal dysfunction and insulin resistance, while also exploring the potential for targeting peripheral interfaces such as the gastrointestinal tract and its ecosystem to achieve disease modification. We explore the rationale for these approaches based on preclinical studies, while also highlighting the status of relevant clinical trials as well as the promising role biomarkers may play in current and future studies.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
238
|
Fredriksen K, Aivazidis S, Sharma K, Burbidge KJ, Pitcairn C, Zunke F, Gelyana E, Mazzulli JR. Pathological α-syn aggregation is mediated by glycosphingolipid chain length and the physiological state of α-syn in vivo. Proc Natl Acad Sci U S A 2021; 118:e2108489118. [PMID: 34893541 PMCID: PMC8685670 DOI: 10.1073/pnas.2108489118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
GBA1 mutations that encode lysosomal β-glucocerebrosidase (GCase) cause the lysosomal storage disorder Gaucher disease (GD) and are strong risk factors for synucleinopathies, including Parkinson's disease and Lewy body dementia. Only a subset of subjects with GBA1 mutations exhibit neurodegeneration, and the factors that influence neurological phenotypes are unknown. We find that α-synuclein (α-syn) neuropathology induced by GCase depletion depends on neuronal maturity, the physiological state of α-syn, and specific accumulation of long-chain glycosphingolipid (GSL) GCase substrates. Reduced GCase activity does not initiate α-syn aggregation in neonatal mice or immature human midbrain cultures; however, adult mice or mature midbrain cultures that express physiological α-syn oligomers are aggregation prone. Accumulation of long-chain GSLs (≥C22), but not short-chain species, induced α-syn pathology and neurological dysfunction. Selective reduction of long-chain GSLs ameliorated α-syn pathology through lysosomal cathepsins. We identify specific requirements that dictate synuclein pathology in GD models, providing possible explanations for the phenotypic variability in subjects with GCase deficiency.
Collapse
Affiliation(s)
- Kristina Fredriksen
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Stefanos Aivazidis
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Karan Sharma
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kevin J Burbidge
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Friederike Zunke
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Eilrayna Gelyana
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| |
Collapse
|
239
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
240
|
Kim HJ, Koh HC. Chaperon-mediated autophagy can regulate diquat-induced apoptosis by inhibiting α-synuclein accumulation cooperatively with macroautophagy. Food Chem Toxicol 2021; 158:112706. [PMID: 34848256 DOI: 10.1016/j.fct.2021.112706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
α-Synuclein, which is associated with Parkinson's disease, is cleared by the ubiquitin-proteasome system and autophagy lysosome system. Chaperon-mediated autophagy (CMA) and macroautophagy are major subtypes of autophagy and play a critical role in pesticide-induced α-synucleinopathy. In this study, we explored the role of CMA in diquat (DQ)-induced α-synucleinopathy and characterized the relationship between CMA and macroautophagy in the clearance of pathologic α-synuclein for the prevention of DQ neurotoxicity. DQ was cytotoxic to SH-SY5Y cells in a concentration-dependent manner, as shown by decreased cell viability and increased cytotoxicity. DQ treatment was also found to induce autophagy such as CMA and macroautophagy by monitoring the expression of Lamp2A and microtubule-associated protein 1A/1B light chain 3B (LC3-II) respectively. Following DQ treatment, SH-SY5Y cells were found to have induced phosphorylated and detergent-insoluble α-synuclein deposits, and MG132, a proteasome inhibitor, effectively potentiated both CMA and macroautophagy for preventing α-synuclein aggregation. Interestingly, CMA impairment by Lamp2A-knock down decreased the LC3II expression compared to in DQ-treated cells transfected with control siRNA. In Lamp2-knock down cells, pathologic α-synuclein was increased 12 h after DQ treatment, but there was no change observed at 24 h. In DQ-treated cells, macroautophagy by 3-methyladenine and bafilomycin inhibition increased Lamp2A expression, indicating an increase in CMA activity. In addition, CMA modulation affected apoptosis, and inhibiting lysosome activity by NH4Cl increased apoptosis in DQ-treated cells. An increase in autophagy was confirmed to compensate for the decrease in lysosome activity. Pretreatment with z-VAD-fmk, a pan-caspase inhibitor, significantly enhanced the macroautophagy response of DQ-exposed cells without alterations in Lamp2A expression. Our results suggest that CMA can regulate DQ-induced α-synucleinopathy cooperatively with macroautophagy, and crosstalk between macroautophagy and CMA plays an important role in DQ-induced cytotoxicity. Taken together, autophagy modulation may be a useful treatment strategy in pesticide-induced neurodegenerative disorders through preventing α-synucleinopathy.
Collapse
Affiliation(s)
- Hong Ju Kim
- Department of Pharmacology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 04763, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 04763, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 04763, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, 222 Wangsimni-ro, Seongdong-gu, 04763, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 04763, Seoul, Republic of Korea.
| |
Collapse
|
241
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021; 54:592-600. [PMID: 34674795 PMCID: PMC8728543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 08/21/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synucleincontaining protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies. [BMB Reports 2021; 54(12): 592-600].
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
242
|
Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, Diaz A, Lindenau K, Tu V, Krause GJ, Jafari M, Singh R, Muñoz J, Macian F, Cuervo AM. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol 2021; 23:1255-1270. [PMID: 34876687 PMCID: PMC8688252 DOI: 10.1038/s41556-021-00800-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2021] [Indexed: 01/02/2023]
Abstract
Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.
Collapse
Affiliation(s)
- Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranee Aflakpui
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fernando Garcia
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Javier Muñoz
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Fernando Macian
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
243
|
Padilla-Godínez FJ, Ramos-Acevedo R, Martínez-Becerril HA, Bernal-Conde LD, Garrido-Figueroa JF, Hiriart M, Hernández-López A, Argüero-Sánchez R, Callea F, Guerra-Crespo M. Protein Misfolding and Aggregation: The Relatedness between Parkinson's Disease and Hepatic Endoplasmic Reticulum Storage Disorders. Int J Mol Sci 2021; 22:ijms222212467. [PMID: 34830348 PMCID: PMC8619695 DOI: 10.3390/ijms222212467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of cellular homeostasis can lead to misfolding of proteins thus acquiring conformations prone to polymerization into pathological aggregates. This process is associated with several disorders, including neurodegenerative diseases, such as Parkinson’s disease (PD), and endoplasmic reticulum storage disorders (ERSDs), like alpha-1-antitrypsin deficiency (AATD) and hereditary hypofibrinogenemia with hepatic storage (HHHS). Given the shared pathophysiological mechanisms involved in such conditions, it is necessary to deepen our understanding of the basic principles of misfolding and aggregation akin to these diseases which, although heterogeneous in symptomatology, present similarities that could lead to potential mutual treatments. Here, we review: (i) the pathological bases leading to misfolding and aggregation of proteins involved in PD, AATD, and HHHS: alpha-synuclein, alpha-1-antitrypsin, and fibrinogen, respectively, (ii) the evidence linking each protein aggregation to the stress mechanisms occurring in the endoplasmic reticulum (ER) of each pathology, (iii) a comparison of the mechanisms related to dysfunction of proteostasis and regulation of homeostasis between the diseases (such as the unfolded protein response and/or autophagy), (iv) and clinical perspectives regarding possible common treatments focused on improving the defensive responses to protein aggregation for diseases as different as PD, and ERSDs.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rodrigo Ramos-Acevedo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Hilda Angélica Martínez-Becerril
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Luis D. Bernal-Conde
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Jerónimo F. Garrido-Figueroa
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Marcia Hiriart
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
| | - Adriana Hernández-López
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rubén Argüero-Sánchez
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy and Allied Sciences, Mwanza 1464, Tanzania;
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
- Correspondence:
| |
Collapse
|
244
|
Alpha-Synuclein and Cognitive Decline in Parkinson Disease. Life (Basel) 2021; 11:life11111239. [PMID: 34833115 PMCID: PMC8625417 DOI: 10.3390/life11111239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder in elderly people. It is characterized by the aggregation of misfolded alpha-synuclein throughout the nervous system. Aside from cardinal motor symptoms, cognitive impairment is one of the most disabling non-motor symptoms that occurs during the progression of the disease. The accumulation and spreading of alpha-synuclein pathology from the brainstem to limbic and neocortical structures is correlated with emerging cognitive decline in PD. This review summarizes the genetic and pathophysiologic relationship between alpha-synuclein and cognitive impairment in PD, together with potential areas of biomarker advancement.
Collapse
|
245
|
Menon S, Kofoed RH, Nabbouh F, Xhima K, Al-Fahoum Y, Langman T, Mount HTJ, Shihabuddin LS, Sardi SP, Fraser PE, Watts JC, Aubert I, Tandon A. Viral alpha-synuclein knockdown prevents spreading synucleinopathy. Brain Commun 2021; 3:fcab247. [PMID: 34761222 PMCID: PMC8576194 DOI: 10.1093/braincomms/fcab247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
The accumulation of aggregated alpha-synuclein (α-syn) in Parkinson's disease, dementia with Lewy bodies and multiple system atrophy is thought to involve a common prion-like mechanism, whereby misfolded α-syn provides a conformational template for further accumulation of pathological α-syn. We tested whether silencing α-syn gene expression could reduce native non-aggregated α-syn substrate and thereby disrupt the propagation of pathological α-syn initiated by seeding with synucleinopathy-affected mouse brain homogenates. Unilateral intracerebral injections of adeno-associated virus serotype-1 encoding microRNA targeting the α-syn gene reduced the extent and severity of both the α-syn pathology and motor deficits. Importantly, a moderate 50% reduction in α-syn was sufficient to prevent the spread of α-syn pathology to distal brain regions. Our study combines behavioural, immunohistochemical and biochemical data that strongly support α-syn knockdown gene therapy for synucleinopathies.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Rikke H Kofoed
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Fadl Nabbouh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Kristiana Xhima
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yasmeen Al-Fahoum
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Tammy Langman
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Howard T J Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Lamya S Shihabuddin
- Sanofi, Framingham, MA 01701, USA
- Present address: 5AM Ventures, Boston, MA, USA
| | | | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabelle Aubert
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence to: Anurag Tandon, PhD Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada E-mail:
| |
Collapse
|
246
|
Fellner L, Gabassi E, Haybaeck J, Edenhofer F. Autophagy in α-Synucleinopathies-An Overstrained System. Cells 2021; 10:3143. [PMID: 34831366 PMCID: PMC8618716 DOI: 10.3390/cells10113143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein in the cell body of neurons, giving rise to the so-called Lewy bodies (LBs), is the major characteristic for PD and DLB, whereas the accumulation of α-synuclein in oligodendroglial cells, so-called glial cytoplasmic inclusions (GCIs), is the hallmark for MSA. The mechanisms involved in the intracytoplasmic inclusion formation in neuronal and oligodendroglial cells are not fully understood to date. A possible mechanism could be an impaired autophagic machinery that cannot cope with the high intracellular amount of α-synuclein. In fact, different studies showed that reduced autophagy is involved in α-synuclein aggregation. Furthermore, altered levels of different autophagy markers were reported in PD, DLB, and MSA brains. To date, the trigger point in disease initiation is not entirely clear; that is, whether autophagy dysfunction alone suffices to increase α-synuclein or whether α-synuclein is the pathogenic driver. In the current review, we discuss the involvement of defective autophagy machinery in the formation of α-synuclein aggregates, propagation of α-synuclein, and the resulting neurodegenerative processes in α-synucleinopathies.
Collapse
Affiliation(s)
- Lisa Fellner
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Elisa Gabassi
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
247
|
Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers (Basel) 2021; 13:cancers13225622. [PMID: 34830777 PMCID: PMC8616104 DOI: 10.3390/cancers13225622] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The modulation of autophagy represents a potential therapeutic strategy for cancer. More than one hundred clinical trials have been conducted or are ongoing to explore the efficacy of autophagy modulators to reduce the tumor growth and potentiate the anti-cancer effects of conventional therapy. Despite this, the effective role of autophagy during tumor initiation, growth, and metastasis remains not well understood. Depending on the cancer type and stage of cancer, autophagy may have tumor suppressor properties as well as help cancer cells to proliferate and evade cancer therapy. The current review aims to summarize the current knowledge about the autophagy implications in cancer and report the therapeutic opportunities based on the modulation of the autophagy process. Abstract The malignant transformation of a cell produces the accumulation of several cellular adaptions. These changes determine variations in biological processes that are necessary for a cancerous cell to survive during stressful conditions. Autophagy is the main nutrient recycling and metabolic adaptor mechanism in eukaryotic cells, represents a continuous source of energy and biomolecules, and is fundamental to preserve the correct cellular homeostasis during unfavorable conditions. In recent decades, several findings demonstrate a close relationship between autophagy, malignant transformation, and cancer progression. The evidence suggests that autophagy in the cancer context has a bipolar role (it may act as a tumor suppressor and as a mechanism of cell survival for established tumors) and demonstrates that the targeting of autophagy may represent novel therapeutic opportunities. Accordingly, the modulation of autophagy has important clinical benefits in patients affected by diverse cancer types. Currently, about 30 clinical trials are actively investigating the efficacy of autophagy modulators to enhance the efficacy of cytotoxic chemotherapy treatments. A deeper understanding of the molecular pathways regulating autophagy in the cancer context will provide new ways to target autophagy for improving the therapeutic benefits. Herein, we describe how autophagy participates during malignant transformation and cancer progression, and we report the ultimate efforts to translate this knowledge into specific therapeutic approaches to treat and cure human cancers.
Collapse
|
248
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
249
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
250
|
Focus on the Small GTPase Rab1: A Key Player in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222112087. [PMID: 34769517 PMCID: PMC8584362 DOI: 10.3390/ijms222112087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. It is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of large aggregates in the survival neurons called Lewy bodies, which mainly contain α-synuclein (α-syn). The cause of cell death is not known but could be due to mitochondrial dysfunction, protein homeostasis failure, and alterations in the secretory/endolysosomal/autophagic pathways. Survival nigral neurons overexpress the small GTPase Rab1. This protein is considered a housekeeping Rab that is necessary to support the secretory pathway, the maintenance of the Golgi complex structure, and the regulation of macroautophagy from yeast to humans. It is also involved in signaling, carcinogenesis, and infection for some pathogens. It has been shown that it is directly linked to the pathogenesis of PD and other neurodegenerative diseases. It has a protective effect against α–σψν toxicity and has recently been shown to be a substrate of LRRK2, which is the most common cause of familial PD and the risk of sporadic disease. In this review, we analyze the key aspects of Rab1 function in dopamine neurons and its implications in PD neurodegeneration/restauration. The results of the current and former research support the notion that this GTPase is a good candidate for therapeutic strategies.
Collapse
|